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Abstract

We show that distributional and weak functional limit theorems for
ergodic processes often hold for arbitrary absolutely continuous initial
distributions. This principle is illustrated in the setup of ergodic sums,
renewal-theoretic variables, and hitting times for ergodic measure preserv-
ing transformations.
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1 Introduction

Probability theory of dynamical systems has become a very active field of re-
search. A nonsingular map T on a σ-finite measure space (X,A,m) (meaning
that T is measurable and m ◦ T−1 � m), generates, for any initial distribution
P � m according to which an initial state X0 ∈ X is chosen, a sequence of
random elements Xn := TnX0, n ≥ 0, of X representing the consecutive states
of the system. Despite their nontrivial dependence structure, such (Xn)n≥0, and
derived processes like, for example, Yn := f(Xn), n ≥ 0, for suitable measurable
f : X → R, often share the regular asymptotic behavior of more classical types
of random processes. Typically, such results depend on T being ergodic (i.e.
A ∈ A and T−1A = A imply 0 ∈ {m(A),m(Ac)}) and the existence of a σ-finite
absolutely continuous invariant measure µ (meaning µ ◦ T−1 = µ), plus some
additional assumptions ensuring a form of asymptotic independence.

While results of this kind are usually stated in terms of the invariant measure
(if finite), there is no reason to regard the latter as a natural initial distribution
P representing, say, incomplete but nontrivial information about the actual
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initial state of a deterministic system. It is therefore most desirable to extend
such results to a large class of nonstationary probability measures P . While
almost sure statements trivially carry over to every P � m, the question is
more interesting for convergence in distribution, where (for finite m) validity
for all P � m is equivalent to the limit theorem being mixing in the sense of
Rényi, cf. [R], [E], and [AE], which means that it persists under conditioning on
any event of positive probability. Besides its obvious interest from the point of
view of modelling, the possibility of changing measures in weak limit theorems
has recently become a useful tool for establishing distributional limit theorems
in the first place, cf. [TZ].

A simple and very useful sufficient condition for scalar processes (called
asymptotic T -invariance below) has been introduced in [E]. While still not as
well known as it ought to be, it has entered the ergodic theory literature, see
e.g. [A0], [A1], [T], and [MT]. The present semi-expository note attempts to
popularize this principle by offering an ergodic theoretical approach to Eagle-
son’s result, and provides a slightly more general formulation which also covers
functional limit theorems. We then collect a couple of natural applications, that
is, types of distributional and functional limit theorems for ergodic transforma-
tions which are always mixing in Rényi’s sense.

Throughout (M,d) is a separable metric space with Borel σ-field BM . A
sequence (νn)n≥1 of probability measures on (M,BM ) converges weakly to the
probability measure ν on (M,BM ), written νn =⇒ ν, if the integrals of bounded
continuous function ψ : M → R converge, i.e.

∫
ψ dνn −→

∫
ψ dν as n→∞. If

Rn, n ≥ 1, are random variables on a probability space (X,A, P ), taking values
in (M,BM ), and R is another random element of M , not necessarily defined
on X, then (Rn)n≥1 converges in distribution to R if the distributions P ◦R−1

n

of the Rn converge weakly to that of R. Explicitly specifying the underlying
measure, we denote this by

Rn
P=⇒ R.

We are interested in situations in which a distributional limit theorem Rn
P=⇒ R

automatically carries over to a large collection of other probability measures:
For measurable maps Rn, n ≥ 1, of a σ-finite measure space (X,A,m) into
(M,BM ), strong distributional convergence (terminology taken from §3.6 of [A0])
to a random element R, written

Rn
L(m)
=⇒ R,

means that Rn
Q

=⇒ R for all probability measures Q � m. If m itself is a
probability measure, this is equivalent to Rn

m=⇒ R (mixing), meaning that
Rn

mE=⇒ R for every E ∈ A with m(E) > 0, where mE(A) := m(E ∩ A)/m(E)
is the conditional measure on E.

The following result enables us to change initial distributions in a large
variety of interesting situations.
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Theorem 1 (Asymptotically invariant random elements of M) Let Rn,
n ≥ 1, be random variables on the probability space (X,A, P ), taking values in
the separable metric space (M,d), and R a random element of M such that

Rn
P=⇒ R as n→∞.

Assume there is a σ-finite measure m on (X,A) such that P � m, and an
ergodic nonsingular transformation T on (X,A,m) under which (Rn)n≥1 is
asymptotically invariant in measure in that

d(Rn ◦ T,Rn) m−→ 0 as n→∞. (1)

Then
Rn

L(m)
=⇒ R as n→∞.

Remark 1 a) Convergence in measure, m−→, w.r.t. a σ-finite measure is to be

understood as
Q−→ for all probability measures Q� m.

b) A parallel statement for continuous-parameter families (Rt)t≥0 which sat-
isfy d(Rt ◦ T,Rt)

m−→ 0 as t→∞ follows by exactly the same argument.
c) If m happens to be infinite, we can w.l.o.g. pass to an equivalent proba-

bility measure (w.r.t. which T is nonsingular) without spoiling (1).
d) For real-valued Rn, the result is contained in [E] (but our proof is differ-

ent). An example of a mixing functional limit theorem (i.e. for path-valued Rn),
in the context of Donsker’s invariance principle for independent and strongly (α-
) mixing processes, is discussed in [B] (cf. §14 and §19 there), see also § VIII.5
of [JS].

e) A related result for a.s.-versions of distributional limit theorems is given
in §4 of [ChG].

2 Proof of Theorem 1

The transfer operator T̂ : L1(m) → L1(m) of the nonsingular map T on
(X,A,m) describes the evolution of probability densities under T , that is, T̂ u :=
d(P ◦T−1)/dm, where P has density u w.r.t. m. Equivalently,

∫
(g ◦T ) ·u dm =∫

g · T̂ u dm for all u ∈ L1(m) and g ∈ L∞(m), i.e. T̂ is dual to g 7−→ g ◦ T .
We let D(m) denote the set of probability densities w.r.t. m. The following
classical companion of the mean ergodic theorem, due to Yosida [Y] (see also
[Kr], Theorem 2.1.3), is central to our argument:

Theorem 2 (Yosida’s Theorem) Let T be a nonsingular map on a σ-finite
measure space (X,A,m). Then T is ergodic if and only if∥∥∥∥∥ 1

n

n−1∑
k=0

T̂ k(u− u∗)

∥∥∥∥∥
L1(m)

−→ 0 for all u, u∗ ∈ D(m). (2)
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We are now ready for the

Proof of Theorem 1. Fix any probability measure Q � m on (X,A). To

prove Rn
Q

=⇒ R it is enough to show that∫
ψ d(Q ◦R−1

n ) =
∫
ψ ◦Rn dQ −→ E[ψ(R)] as n→∞ (3)

whenever ψ : M → R is bounded and (uniformly) Lipschitz. Fix such a ψ. Since,
by assumption, the corresponding statement is true for P , (3) is equivalent to∫

ψ ◦Rn dP −
∫
ψ ◦Rn dQ −→ 0 as n→∞. (4)

Choose any ε > 0 and let u := dP/dm, and u∗ := dQ/dm. Replacing P and
Q by K-step arithmetic averages generated by T , with K = K(ε) sufficiently
large, we obtain, via (2),∣∣∣∣∣
∫
ψ ◦ Rn d

(
1
K

K−1∑
k=0

P ◦ T−k

)
−
∫
ψ ◦Rn d

(
1
K

K−1∑
k=0

Q ◦ T−k

)∣∣∣∣∣
=

∣∣∣∣∣
∫
ψ ◦Rn ·

(
1
K

K−1∑
k=0

T̂ k(u− u∗)

)
dm

∣∣∣∣∣
≤ sup

M
|ψ| ·

∥∥∥∥∥ 1
K

K−1∑
k=0

T̂ k(u− u∗)

∥∥∥∥∥
L1(m)

<
ε

2
for all n ≥ 1.

The assertion of the theorem therefore follows once we verify∣∣∣∣∣
∫
ψ ◦ Rn d

(
1
K

K−1∑
k=0

P ◦ T−k

)
−
∫
ψ ◦Rn dP

∣∣∣∣∣ < ε

4
for n ≥ n0(ε), (5)

as well as the analogous statement with P replaced by Q.

Rewrite the left-hand side of (5) as
∣∣∣ 1
K

∑K−1
k=0

∫
(ψ ◦ Rn ◦ T k − ψ ◦Rn) dP

∣∣∣
to see that it suffices to prove that for every j ≥ 0 and v ∈ D(m),∫

(ψ ◦ Rn ◦ T j+1 − ψ ◦Rn ◦ T j) · v dm −→ 0 as n→∞. (6)

Since T is nonsingular, we may assume w.l.o.g. that j = 0. Let Ψn := ψ ◦ Rn,
and observe that due to Lipschitz continuity of ψ the sequence (Ψn)n≥1 inherits
asymptotic T -invariance in measure from (Rn)n≥1, that is,

Ψn ◦ T −Ψn
m−→ 0 as n→∞. (7)

Now take any ε′ > 0, then∫
|Ψn ◦ T −Ψn| · v dm ≤ ε′ + 2 sup

M
|ψ| ·

∫
{|Ψn◦T−Ψn|>ε′}

v dm,
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and because of (7) the right-most term tends to 0 as n → ∞. This proves (6)
and hence our theorem.

3 Applications

We collect a number of interesting situations in which Theorem 1 can, with little
effort, be applied to give strong distributional convergence in distributional limit
theorems and weak invariance principles for ergodic processes.

3.1 Ergodic sums and partial sum processes

The most obvious examples of asymptotically invariant sequences (Rn) for a
conservative ergodic nonsingular map T on (X,A,m) are normalized ergodic
sums

∑n−1
k=0 f ◦T k, n ≥ 1. For the reader’s convenience we recall the most basic

observation (cf. [E]):

Corollary 1 (Ergodic sums in R) Let T be a nonsingular conservative er-
godic map on the probability space (X,A,m), P � m some probability measure,
and f : X → R measurable. For constants An ∈ R, Bn > 0, n ≥ 1, consider the
normalized ergodic sums

Sn : X → R, n ≥ 1, Sn(x) :=
1
Bn

(
n−1∑
k=0

f ◦ T k(x)−An

)
.

Then, for any R-valued random variable S,

Sn
P=⇒ S implies Sn

L(m)
=⇒ S.

Proof. Asymptotic T -invariance Sn ◦ T − Sn
m−→ 0 is obvious.

Turning to functional limit theorems, we denote functions to be regarded as
elements of a path space M by x, y and their values at t by xt, yt. Similarly, ran-
dom elements of M will be denoted by S,Sn, . . . with corresponding coordinate
variables St,Sn,t etc. As a simple warm-up, consider the space C[0, 1] of continu-
ous real functions on [0, 1], with the uniform metric dC(x, y) := supt∈[0,1] |xt − yt|,
x, y ∈ C[0, 1]. See [B] for an exposition of weak convergence theory for Borel
probabilities on C[0, 1]. Most prominently, Donsker’s invariance principle as-
serts distributional convergence in C[0, 1] of (affinely interpolated) partial sum
processes for iid sequences of square integrable random variables to a Wiener
process W = (Wt)t∈[0,1] (understood to be a random element of C[0, 1]). Func-
tional CLTs have been studied for a large variety of ergodic dynamical systems.
We check that, for general ergodic stationary sequences, such a limit theorem,
if valid, automatically holds for all absolutely continuous probabilities:

Corollary 2 (Ergodic sums in C) Let T be a measure preserving ergodic map
on the probability space (X,A,m), P � m some probability measure, σ > 0,
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and f ∈ L2(m). Consider the partial sum processes Sn : X → C[0, 1], n ≥ 1,
given by

Sn,t(x) :=
1

σ
√
n

btnc−1∑
k=0

f ◦ T k(x) +
t− btnc /n

1/n
· (f ◦ T btnc)

 .

Then
Sn

P=⇒ W in C[0, 1] implies Sn
L(m)
=⇒ W in C[0, 1].

Proof. In view of Theorem 1 we only need to check that dC(Sn ◦ T,Sn) m−→ 0
as n→∞, which is easily done:

Since we trivially have dC(Sn ◦T,Sn) = max0≤j≤n

∣∣(Sn ◦ T )j/n − Sn,j/n

∣∣ and∣∣(Sn ◦ T )j/n − Sn,j/n

∣∣ ≤ (|f |+
∣∣f ◦ T j

∣∣)/σ√n, we just need to show that

max0≤j≤n

∣∣f ◦ T j
∣∣

σ
√
n

m−→ 0. (8)

But for any ε > 0, we have

m

({
max0≤j≤n

∣∣f ◦ T j
∣∣

σ
√
n

≥ ε

})
≤ (n+ 1) ·m

({
|f | ≥ εσ

√
n
})

≤ 2
(σε)2

∫
{|f |≥εσ

√
n}
f2 dm,

and since f ∈ L2(m), the rightmost integral tends to zero as n→∞.

For more general limit theorems, consider processes with unbounded time
interval and càdlàg paths: Let D[0,∞) denote the spaces of right-continuous
real functions x : [0,∞) → R possessing left limits everywhere. We equip this
space with the usual Skorohod (J 1-) topology (cf. [S]), which we introduce using
a variant of the Skorohod metric given in [P], §VI.1. Given x, y ∈ D[0,∞) we
first define, for any M > 0, the distance dD,M (x, y) as the infimum of all δ > 0
such that there exist some k ∈ N and points 0 = s0 < s1 < . . . < sk and
0 = t0 < t1 < . . . < tk with sk, tk ≥M , |si − ti| ≤ δ for 0 ≤ i ≤ k, and

|xs − yt| ≤ δ if s ∈ [si, si+1) and t ∈ [ti, ti+1) for some 0 ≤ i < k.

The metric on D[0,∞) we are going to use is given by

dD(x, y) :=
∑
M≥1

2−M (1 ∧ dD,M (x, y)), x, y ∈ D[0,∞).

For background information on the Skorohod space thus defined, we also refer to
[B]. Extending the previous result, we show that distributional convergence of
normalized ergodic sums in D[0,∞) automatically implies strong distributional
convergence:

6



Corollary 3 (Ergodic sums in D) Let T be a nonsingular conservative er-
godic map on the σ-finite space (X,A,m), P � m some probability measure,
and f : X → R measurable. For constants An ∈ R, Bn > 0, n ≥ 1, consider the
normalized ergodic sum processes given by

Sn : X → D[0,∞), n ≥ 1, Sn,t(x) :=
1
Bn

btnc−1∑
k=0

f ◦ T k(x)−An

 .

Then, for any random element S of D[0,∞),

Sn
P=⇒ S in D[0,∞) implies Sn

L(m)
=⇒ S in D[0,∞).

Proof. We check that (Sn)n≥1 is asymptotically T -invariant in measure, i.e.
that

dD(Sn ◦ T,Sn) m−→ 0 as n→∞. (9)

Fix any M ∈ N and n ≥ 2. To estimate dD,M (Sn ◦ T,Sn), consider the points
si := i/n and ti := (i + 1)/n for 1 ≤ i ≤ Mn =: k, which clearly satisfy
|si − ti| ≤ 1/n. Since, for s ∈ [0,M ],

(Sn ◦ T )s =
1
Bn

b(s+ 1
n )nc−1∑

k=1

f ◦ T k(x)−An

 = Sn,s+ 1
n
− f

Bn
,

we see that

|(Sn ◦ T )s − Sn,t| ≤
|f |
Bn

if s ∈ [si, si+1) and t ∈ [ti, ti+1)
for some 0 ≤ i < k.

Given any δ > 0, we therefore have dD,M (Sn ◦ T,Sn) ≤ δ on {|f | /Bn ≤ δ} for
n ≥ 1/δ. As M does not show up in this estimate, the same is true for dD, that
is,

dD(Sn ◦ T,Sn) ≤ δ on
{
|f |
Bn

≤ δ

}
for n ≥ 1/δ.

By conservativity and our assumption Sn
P=⇒ S, we have Bn → ∞, showing

that m({|f | /Bn ≤ δ}) → 1 as n→∞, and (9) follows. Now use Theorem 1 to
conclude the proof.

Remark 2 a) Using dD,M (x, y) ≤ sup[0,M ] |x− y| we could have tried to argue
as before. However, the analogue of (8) breaks down, even in iid situations, if
f has heavy tails: In fact, if the distribution of f is the one-sided stable law
of order α ∈ (0, 1), Mn := max0≤j≤n

∣∣f ◦ T j
∣∣, and Sn :=

∑n−1
k=0 f ◦ T k, then

Sn/Mn has a non-degenerate limit distribution, cf. [Da].
b) Due to the use of the clever metric from [P], the argument is as simple

as it should be. It takes a less pleasant form if, instead, we work with the more
common metric to be found e.g. in [B], §16 (which, of course, induces the same
topology).
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In particular, weak convergence in D[0,∞) of partial sum processes of sta-
tionary ergodic sequences to non-Gaussian stable processes automatically ex-
tends to all absolutely continuous measures. For a different example, take an
infinite measure preserving transformation T satisfying a functional version of
the Darling-Kac theorem for the occupation times

∑n−1
k=0 1Y ◦ T k of some set

with 0 < µ(Y ) < ∞, cf. [A2], that is, convergence w.r.t. µY in D[0,∞) to a
Mittag-Leffler process M = (Mt)t≥0 of order α ∈ (0, 1) (the inverse of the stable
subordinator). The corollary shows that this functional convergence holds for
every Q� µ.

3.2 A renewal theoretic invariance principle

Here is another application to null-recurrent situations (i.e. maps T preserv-
ing an infinite measure µ): For a fixed set Y ∈ A, µ(Y ) > 0, we define the
N0-valued variables Zn(Y ), n ≥ 0, on X by Zn(Y )(x) := max({0} ∪ {1 ≤
k ≤ n : T kx ∈ Y }), which gives the time of the last visit to Y up to time n.
The Dynkin-Lamperti arcsine law for waiting times describes the asymptotic
behaviour of these renewal-theoretic quantities in infinite measure preserving
situations, see [Dy], [L1] for the classical setup, and [T], [TZ] for ergodic trans-
formations and strong distributional convergence. In [L2] Lamperti has given a
renewal-theoretic invariance principle which can be reformulated as a functional
limit theorem for the Zn. Here, too, our simple test applies:

Corollary 4 (Waiting times in D) Let T be a nonsingular conservative er-
godic map on the σ-finite space (X,A,m), P � m some probability measure,
and Y ∈ A, m(Y ) > 0. Consider the normalized waiting-time processes given
by

Zn : X → D[0,∞), n ≥ 1, Zn,t(x) :=
1
n
Zbtnc(Y ).

Then, for any random element Z of D[0,∞),

Zn
P=⇒ Z in D[0,∞) implies Zn

L(m)
=⇒ Z in D[0,∞).

Proof. We check asymptotic T -invariance of (Zn)n≥1, dD(Zn ◦ T,Zn) m−→ 0 as
n → ∞. As in the proof of Corollary 3 it is easy to estimate dD,M (Zn ◦ T,Zn)
for M ∈ N. Consider the same set of points, si := i/n and ti := (i + 1)/n for
1 ≤ i ≤Mn =: k. Abbreviating Zn := Zn(Y ), we note that

Zn ◦ T = Zn+1 − 1 on
⋃n

j=1
T−jY .

Therefore, for s ∈ [0,M ], we have

(Zn ◦ T )s =
Zbsnc ◦ T

n
=
Zbsn+1c − 1

n
= Zn,s+1/n −

1
n

on
⋃n

j=1
T−jY ,

and hence

|(Zn ◦ T )s − Zn,t| ≤
1
n

on
⋃n

j=1 T
−jY , if s ∈ [si, si+1) and

t ∈ [ti, ti+1) for some 0 ≤ i < k.
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As
⋃n

j=1 T
−jY ↗ X mod m, asymptotic T -invariance follows as before.

3.3 Hitting times and associated point processes

We turn to a different circle of questions which has recently attracted a lot
of attention. Let T be a conservative ergodic nonsingular map on the σ-finite
measure space (X,A,m). For sets Y ∈ A of non-zero measure define ϕY (x) :=
inf{n ≥ 1 : Tnx ∈ A}, x ∈ X, which is finite a.e. When restricted to Y , ϕY

is the return-time function of Y , while it is usually called the entrance-time or
hitting-time function when regarded as a function on X. The restriction of the
map TY : X → Y , TY x := TϕY (x)x, to Y is the first-return map of Y . If Yn ∈ A,
n ≥ 1, are sets of positive measure with Yn ↘ ∅ or m(Yn) → 0, we can think of
(Yn)n≥1 as a sequence of asymptotically rare events and study, for some fixed
initial probability P � m, the distributions of their hitting times ϕYn

as n→∞.
It has been shown that for a large variety of transformations with reasonable
mixing conditions these distributions do converge (after normalization) to an
exponential distribution. Relevant references include [H], [HSV], [AG], and
[KL]. For situations with different limit laws see e.g. [BZ].

Again, results of this type are usually stated in terms of an invariant mea-
sure µ, or some other particular initial distribution P (Lebesgue measure on
an interval, say), and sometimes extended to a family of very regular initial
distributions Q � m (see e.g. [CoG]). We show that they automatically hold
for all Q� m (for which Eagleson’s result [E] suffices):

Corollary 5 (Hitting-times) Let T be a conservative ergodic nonsingular map
on the σ-finite space (X,A,m), and P � m some probability measure. Let
Yn ∈ A, and γn > 0, n ≥ 1, with γn → ∞. Assume that Yn ↘ ∅ or that m is
T -invariant with m(Yn) → 0. Consider the normalized hitting times

Rn : X → [0,∞], n ≥ 1, Rn(x) := γ−1
n · ϕYn

(x).

Then, for any random variable R taking values in [0,∞],

Rn
P=⇒ R implies Rn

L(m)
=⇒ R.

Proof. To check asymptotic T -invariance of (Rn)n≥1, observe that for any set
Y of positive measure,

ϕY ◦ T = ϕY − 1 on {ϕY > 1} = T−1Y c. (10)

Consequently, |Rn ◦ T −Rn| = 1/γn on T−1Y c
n , and by our assumptions on

(Yn)n≥1 we have Q(T−1Yn) → 0 as n → ∞ for every probability measure
Q� m, which proves Rn ◦ T −Rn

m−→ 0, and hence Corollary 5.

Let M := Mp([0,∞)), the space of counting measures on ([0,∞),B[0,∞)),
that is, measures ν : B[0,∞) → N0. Equipped with the topology of vague conver-
gence, meaning that νn → v in M iff νn(f) → v(f) for every continuous function
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f : [0,∞) → R with compact support, M is a Polish space (has a complete and
separable metric d). A point process N on [0,∞) is a random element of M .

We are interested in the point processes Nn given by the successive visits to
the target sets Yn: The interarrival times between consecutive visits of to Yn

are
ϕYn , ϕYn ◦ TYn , ϕYn ◦ T 2

Yn
, . . .

and the actual arrival times are the ϕYn,k :=
∑k−1

j=0 ϕYn ◦ T
j
Yn

, k ≥ 1. The
number of visits to Yn within the time set B ∈ B[0,∞) defines the point pro-
cess Nn : X → Mp([0,∞)), Nn(B) :=

∑
k≥1 1B(ϕYn,k). Under fairly general

assumptions, functional versions of the hitting-time limit theorems mentioned
above are available, asserting distributional convergence (after normalization)
of the Nn to some limiting point process (usually Poisson), see e.g. [H].

Corollary 6 (Hitting-time processes) Let T be a conservative ergodic non-
singular map on the σ-finite space (X,A,m), and P � m some probability
measure. Let Yn ∈ A, and γn > 0, n ≥ 1, with γn →∞. Assume that Yn ↘ ∅
or that m is T -invariant with m(Yn) → 0. Consider the rescaled point processes

Nn : X → Mp([0,∞)), n ≥ 1, Nn(B) :=
∑
j≥0

1B

(
ϕYn,j(x)
γn

)
,

Then, for any random element N of Mp([0,∞)),

Nn
P=⇒ N in Mp([0,∞)) implies Nn

L(m)
=⇒ N in Mp([0,∞)).

Proof. Recall that (according to standard results, see e.g. [Ka]) convergence
Nn

P=⇒ N is equivalent to convergence of finite tuples of interarrival times, i.e.
to the assertion that for every K ≥ 1,

γ−1
n ·

(
ϕYn

, ϕYn
◦ TYn

, . . . , ϕYn
◦ TK−1

Yn

) P=⇒ (τ0, τ1, . . . , τK−1) , (11)

where the τj , j ≥ 0, are the interarrival times of the limit process N. It is
therefore sufficient to show that, for K ≥ 1,

γ−1
n ·

(
ϕYn , ϕYn ◦ TYn , . . . , ϕYn ◦ TK−1

Yn

) L(m)
=⇒ (τ0, τ1, . . . , τK−1) .

Since it is easily seen that for any Y of positive measure,

T k
Y ◦ T = T k

Y for k ≥ 1 on {ϕY > 1} = T−1Y c,

we obtain, recalling (10) above,

sup
k≥1

∣∣ϕY ◦ T k
Y ◦ T − ϕY ◦ T k

Y

∣∣ = 1 on T−1Y c. (12)

Now fix any K ≥ 1 and consider the random vector Rn : X → RK on the
left-hand side of (11). Equipping RK with the metric d corresponding to the
sup-norm, we see from (12) that

d(Rn ◦ T,Rn) = 1/γn on T−1Y c
n ,

10



and d(Rn ◦ T,Rn) m−→ 0 follows as in the proof of Corollary 5.

Remark 3 Analogous statements (with analogous proofs) hold for continuous-
parameter families (Yε)ε>0 of measurable sets with µ(Yε) → 0 or Yε ↘ ∅ as
ε↘ 0.

3.4 Appendix: A compactness proof of Yosida’s theorem

We finally take the opportunity to point out an alternative to the usual Hahn-
Banach proof of the crucial characterization of ergodicity via (2). It is analogous
to the proof of Lin’s characterization of exactness, cf. [L] or Theorem 1.3.3 in
[A0]. In the present context it is of interest for the following reason: The
proof of Eagleson’s result in [E] relies on a ”compactness plus subsequence-
in-subsequence” argument (for the sequence of characteristic functions of the
variables Rn under consideration), and so does the argument given in Section
3.6 of [A0] (for sequences of continuous functions of the Rn). Due to the use of
Yosida’s theorem, which also gives a good intuitive understanding of ”why the
result is true”, our proof of Theorem 1 avoids this type of reasoning. In a sense,
however, the compactness argument has only been hidden behind the statement
of Yosida’s result:

Proof of Yosida’s Theorem. The other direction being trivial, we assume
that the nonsingular map T on the σ-finite measure space (X,A,m) is ergodic,
and fix any w ∈ L1(m) with

∫
X
w dm = 0. Let Wn := n−1

∑n−1
k=0 T̂

kw and
Gn := sgnWn, n ∈ N, so that ‖Gn‖∞ ≤ 1 and∥∥∥∥∥ 1

n

n−1∑
k=0

T̂ kw

∥∥∥∥∥
1

=
∫

X

Gn ·Wn dm =
∫

X

Dn · w dm,

where the Dn := n−1
∑n−1

k=0 Gn ◦ T k, n ∈ N, satisfy ‖Dn‖∞ ≤ 1. We need to
prove ∫

X

Dn · w dm −→ 0 as n→∞. (13)

To do so, we choose some partition γ ⊆ A of X into sets of finite positive
measure, and let Aw ⊆ A denote the σ-field generated by γ, w, and the Dn,
n ∈ N. As (X,Aw,m |Aw

) is σ-finite and countably generated, L1(m |Aw
) is

separable, so that (see, e.g. Proposition II.A.15 of [W]) the closed unit ball
U∞ of its dual space L∞(m |Aw

) is metrizable in the weak∗-topology. Together
with Alaoglu’s theorem (Theorem II.A.9 of [W]), this shows that U∞ is weak∗

sequentially compact. Let D be any weak∗ limit point of the sequence (Dn)n∈N
in U∞, i.e. suppose there are nj ↗∞ such that∫

X

Dnj
· f dm −→

∫
X

D · f dm for all f ∈ L1(m |Aw
). (14)

11



We are going to show that any such D is a.e. constant, implying in particular
that ∫

X

Dnj · w dm −→ D ·
∫

X

w dm = 0 as j →∞.

A subsequence-in-subsequence argument based on sequential compactness of
U∞ then yields (13).

By ergodicity, we need only check that any limit point D as above is T -
invariant (mod m) to see that it is constant (mod m). According to (14) we
also have∫

X

Dnj
◦ T · f dm =

∫
X

Dnj
· T̂ f dm −→

∫
X

D · T̂ f dm =
∫

X

D ◦ T · f dm

as j →∞, for all f ∈ L1(m |Aw
), but∣∣∣∣∫

X

(Dnj ◦ T −Dnj ) · f dm
∣∣∣∣ =

∣∣∣∣ 1
nj

∫
X

(
Gnj −Gnj ◦ Tnj

)
· f dm

∣∣∣∣
≤

2 ‖f‖1
nj

→ 0,

so that the respective limits coincide, i.e.
∫

X
D ◦ T · f dm =

∫
X
D · f dm for all

f ∈ L1(m |Aw
), proving D ◦ T = D a.e. as required.
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