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Abstract. We study ergodic infinite measure preserving transformations T
possessing reference sets of finite measure for which the set of densities of
the conditional distributions given a first return (or entrance) at time n is pre-

compact in a suitable function space. Assuming regular variation of wandering
rates, we establish versions of the Darling-Kac theorem and the arcsine laws

for waiting times and for occupation times, which apply to transformations

with indifferent orbits and to random walks driven by Gibbs-Markov maps.

1. Introduction

The present paper is devoted to stochastic properties of transformations with
an infinite invariant measure. We establish distributional limit theorems general-
izing classical results about null-recurrent Markov chains to the weakly dependent
processes generated by these dynamical systems. Specifically, we improve the ab-
stract distributional limit theorems presented in [TZ] (a Darling-Kac type result
and two arcsine laws), significantly weakening the assumptions, and present a new
limit theorem related to them. The conditions we give enable us to cover new
classes of examples with this renewal-theoretic approach.

Understanding probabilistic properties of a measure preserving transformation
(m.p.t.) T on a σ-finite measure space (X,A, µ) often depends on information about
the long-term behaviour of its transfer operator T̂ : L1(µ) → L1(µ) describing the
evolution of probability densities under T , that is, T̂ u := d(ν ◦ T−1)/dµ, where
ν has density u w.r.t. µ. Equivalently,

∫
X

(g ◦ T ) · u dµ =
∫

X
g · T̂ u dµ for all

u ∈ L1(µ) and g ∈ L∞(µ), i.e. T̂ is dual to g 7−→ g ◦ T . The operator T̂ naturally
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extends to {u : X → [0,∞) measurable A}, invariance of µ means T̂1 = 1, and T is
conservative ergodic (c.e.) iff

∑
k≥0 T̂

ku = ∞ a.e. for all u ∈ L1(µ) with
∫
u dµ > 0.

The probability density T̂nu represents the distribution of the process (Tn)n≥0

at time n, when u is its initial density. Typically, distributional limit theorems
(both in finite and infinite measure preserving situations) based on the behaviour
of T̂ require some condition related to the convergence, after suitable normalization,
of T̂nu (or of

∑n−1
k=0 T̂

ku) to the invariant density 1X . To verify an assumption of
this type we need to study the full asymptotics of the operator.

Using a renewal-theoretic approach originating from [T5], we showed in [TZ]
that, for certain questions about infinite measure preserving systems, a different
kind of condition which only depends on the dynamics up to the first return (or
entrance) to a suitable reference set Y suffices. For Y ∈ A with µ(Y ) > 0 the first re-
turn (entrance) time of Y is1 ϕ(x) = ϕY (x) := min{n ≥ 1 : Tnx ∈ Y }, x ∈ X, and
we define TY x := Tϕ(x)x, x ∈ X. The restricted measure µ |Y ∩A is invariant under
the first return map, TY restricted to Y . In other words, 1Y =

∑
k≥1 T̂

k1Y ∩{ϕ=k}
a.e. If µ(Y ) < ∞, we can regard ϕ as a random variable on the probability space
(Y, Y ∩A, µY ), µY (E) := µ(Y )−1µ(Y ∩E). Under additional properties making Y a
suitable reference set, the asymptotic behaviour of its return distribution, i.e. that
of the (first) return probabilities fk(Y ) := µY (Y ∩ {ϕY = k}), is a crucial feature
determining the stochastic properties of the system. For distributional limit theo-
rems to hold, regular variation of fk(Y ) or, more generally, of the tail probabilities
qn(Y ) :=

∑
k>n fk(Y ) = µY (Y ∩ {ϕY > n}), or the wandering rate of Y given

by wN (Y ) := µ(Y )
∑N−1

n=0 qn(Y ) = µ(Y N ), where Y N :=
⋃N−1

n=0 T
−nY , N ≥ 1, is

decisive.

The distributional limit theorems of [TZ] which we are going to generalize
here apply to (necessarily non-invertible) c.e.m.p.t.s T on a σ-finite measure space
(X,A, µ) for which there is a reference set Y ∈ A, 0 < µ(Y ) < ∞, and some
probability density H such that

(1.1)
1

wN (Y )

N−1∑
n=0

T̂n1Yn → H uniformly on Y as N →∞.

Here

(1.2) Y0 := Y and Yn := Y c ∩ {ϕ = n}, n ≥ 1,

so that µ(Yn) = µ(Y ) qn(Y ), and Y N =
⋃N−1

n=0 Yn (disjoint), and

(1.3) T̂n1Yn
=
∑
k>n

T̂ k1Y ∩{ϕ=k}, n ≥ 0,

cf. (2.3) of [TZ]. To understand the probabilistic meaning of (1.1), observe via
(1.3) that it is a generalized (averaged) version of

(1.4) fk(Y )−1 · T̂ k1Y ∩{ϕ=k} → H uniformly on Y as N →∞.

Suppose our system starts with initial density µ(Y )−1 ·1Y . The probability density
Hk on the left-hand side of (1.4) then is the conditional density of our process at

1Whenever the set Y is understood, we suppress the dependence of ϕ on Y in our notation.



INFINITE INVARIANT MEASURES AND COMPACT REGENERATION 3

time k, given that this is the time of its first return to Y . In other words, having
returned at step k, the process starts anew, this time with initial density Hk. Re-
turning to Y therefore constitutes a proper renewal or stochastic regeneration iff
Hk = µ(Y )−1 · 1Y for all k ≥ 1, and we obtain an imbedded renewal process in this
case. Interesting dynamical systems, however, do not usually come with an obvious
regenerative event like that. Still, knowing the Hk or, more generally, the densities
on the left-hand side of (1.1), means to know exactly how our process fails to re-
generate properly as it returns to Y , and the convergence conditions (1.4) or (1.1)
ensure that, asymptotically as k →∞, there is a definite way in which this happens.

As illustrated in [TZ], condition (1.1) can indeed be verified quite easily for
a large family of examples. Still, requiring the densities wN (Y )−1

∑N−1
n=0 T̂

n1Yn

to actually converge (even uniformly) is a rather strong condition, not satisfied in
various other natural examples. The purpose of the present paper is to extend the
method developed in [TZ] by showing that (1.1) may be replaced by the significantly
more general assumption that

(1.5)

{
1

wN (Y )

N−1∑
n=0

T̂n1Yn

}
N≥1

=: HY is a (strongly) precompact set in B

with B = L∞(µ). We thus require that the different ways in which our process
regenerates (improperly) upon its first return to Y form a small set. While for the
examples we are going to discuss, precompactness in L∞(µ) can be verified with
little effort (using distortion control and the Arzela-Ascoli theorem), we will in fact
show that for the arcsine laws even precompactness in B = L1(µ) suffices.

2. Main results

The first set of results we present generalizes the abstract distributional limit
theorems of [TZ], showing that their conclusions remain valid under suitable com-
pactness assumptions. To formulate them, we need to recall some basic concepts. A
function a : (L,∞) → (0,∞) is regularly varying of index ρ ∈ R at infinity, written
a ∈ Rρ, if a(ct)/a(t) → cρ as t→∞ for any c > 0, and we shall interpret sequences
(an)n≥0 as functions on R+ via t 7−→ a[t]. Slow variation means regular variation of
index 0. Rρ(0) is the family of functions r : (0, ε) → R+ regularly varying of index
ρ at zero (same condition as above, but for t↘ 0). Basic background information
about regular variation can be found in Chapter 1 of [BGT]. Throughout we use
the efficient convention that for an, bn ≥ 0 and ϑ ∈ [0,∞),

an ∼ ϑ · bn as n→∞ means lim
n→∞

an/bn = ϑ,

even in case ϑ = 0, where it is equivalent to the usual an = o(bn) as n → ∞.
(An analogous convention applies to f(s) ∼ ϑ · g(s) as s ↘ 0 etc.) This extension
enables us to avoid tedious distinctions between the ϑ > 0 and the ϑ = 0 case in
our notation (but requires extra care as this distinction now has to be made in the
arguments). We shall heavily depend on Karamata’s Tauberian theorem for dis-
crete Laplace transforms and the Monotone Density theorem for regularly varying
functions, in the versions provided by Proposition 4.2 and Lemma 4.1 of [TZ].
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If ν is a probability measure on (X,A) and (Rn)n≥1 is a sequence of measurable
real-valued functions on X, distributional convergence of (Rn)n≥1 w.r.t. ν to some
random variable R will be denoted by Rn

ν=⇒ R. Strong distributional convergence

Rn
L(µ)
=⇒ R on the σ-finite measure space (X,A, µ) means that Rn

ν=⇒ R for all
probability measures ν � µ. We denote the family of probability densities w.r.t.
µ by D(µ) := {u ∈ L1(µ) :

∫
X
u dµ = 1, u ≥ 0}. Let H ⊆ D(µ) be a collection of

densities. If there is some K ∈ N0 such that infu∈H infY

∑K
k=0 T̂

ku > 0, we say
that H is uniformly sweeping (in K steps) for Y .

2.1. The Darling-Kac theorem. Henceforth T denotes a c.e.m.p.t. of the
σ-finite measure space (X,A, µ). We are interested in the asymptotic distributional
behaviour of ergodic sums Sn(f) :=

∑n−1
j=0 f ◦ T j , n ∈ N0, of functions f ∈ L1(µ)

with
∫

X
f dµ 6= 0. For Y ∈ A, 0 < µ(Y ) <∞, we define

an(Y ) :=
∫

Y

Sn(1Y ) dµY =
n−1∑
k=0

µ(Y ∩ T−kY )
µ(Y )

, n ≥ 0

(which is the obvious candidate for a normalizing sequence for (Sn(1Y ))n≥0). We let
Mα, α ∈ [0, 1], denote a non-negative real random variable distributed according to
the (normalized) Mittag-Leffler distribution of order α, which can be characterized
by its moments

(2.1) E [Mr
α] = r!

(Γ(1 + α))r

Γ(1 + rα)
, r ∈ N0.

We are going to prove

Theorem 2.1 (Ergodic sums of integrable functions). Let T be a c.e.m.p.t.
on the σ-finite measure space (X,A, µ), and assume there is some Y ∈ A, 0 <
µ(Y ) <∞, such that

(2.2) HY =

{
1

wN (Y )

N−1∑
n=0

T̂n1Yn

}
N≥1

is precompact in L∞(µ)
and uniformly sweeping

and

(2.3) (wN (Y )) ∈ R1−α for some α ∈ [0, 1].

Then

1
an

Sn(f)
L(µ)
=⇒ µ(f) · Mα for all f ∈ L1(µ) with

∫
X

f dµ 6= 0,

where

an :=
1

µ(Y )
an(Y ) ∼ 1

Γ(1 + α)Γ(2− α)
· n

wn(Y )
as n→∞.



INFINITE INVARIANT MEASURES AND COMPACT REGENERATION 5

2.2. The arcsine law for occupation times. The second limit theorem we
are interested in concerns occupation times of certain subsets A ⊆ X of infinite
measure. As in [ATZ] and [TZ] we say that two disjoint sets A1, A2 ⊆ X are
dynamically separated by Y ⊆ X (under the action of T ) if x ∈ A1 (resp. A2)
and Tnx ∈ A2 (resp. A1) imply the existence of some k = k(x) ∈ {0, . . . , n} for
which T kx ∈ Y (i.e. T -orbits can’t pass from one set to the other without visiting
Y ). Define the following quantities related to first returns through the set A1: Let
fn(Y,A1) := µY (Y ∩T−1A1∩{ϕY = n}), qn(Y,A1) := µY (Y ∩T−1A1∩{ϕY > n}),
and wn(Y,A1) := µ(Y )

∑n−1
k=0 qn(Y,A1) =

∑n−1
k=0 µ(Y ∩ T−1A1 ∩ {ϕY > n}), n ≥

1. We are going to study the distributional behaviour of Sn(1A1) in cases where
µ(A1) = µ(A2) = ∞ and where Y , 0 < µ(Y ) <∞, is a set for which the first return
(or entrance) behaviour of T through the Ai is good. (For related questions about
the pointwise behaviour in such situations see [ATZ].)

For α, β ∈ (0, 1) we let Lα,β denote a random variable with (values in [0, 1]
and) distribution given by

Pr({0 ≤ Lα,β ≤ t}) =
b sinπα

π

∫ t

0

xα−1(1− x)α−1

b2x2α + 2bxα(1− x)α cosπα+ (1− x)2α
dx

=
1
πα

arccot
(

((1− t)/t)α

b sinπα
+ cotπα

)
, t ∈ (0, 1],

where b := (1 − β)/β, cf. [L1] and [T5]. Continuously extending this family, we
let Lα,1 := 1 and Lα,0 := 0, α ∈ [0, 1], and L1,β := β, Pr(L0,β = 1) = β =
1 − Pr(L0,β = 0). Then E[Lα,β ] = β and Var[Lα,β ] = (1 − α)β(1 − β). Generally,
cf. Proposition 1 of [T5], if α, β ∈ [0, 1], then

(2.4) E[Lr
α,β ] = (−1)rβ

r−1∑
j=0

(−1)j+1

(
α

r − j

)
E[Lj

α,β ] +
(
α− 1
r

) , r ∈ N,

where, by convention, E[L0
α,β ] = 1. We are going to prove the following generaliza-

tion of [T5] and Theorem 3.2 in [TZ]:

Theorem 2.2 (Arcsine law for occupation times). Let T be a c.e.m.p.t. of
the σ-finite measure space (X,A, µ), and assume that X = A1∪Y ∪A2 (measurable
and pairwise disjoint) where Y ∈ A, 0 < µ(Y ) <∞, dynamically separates A1 and
A2. Suppose that

(2.5) HY =

{
1

wN (Y )

N−1∑
n=0

T̂n1Yn

}
N≥1

is precompact in L1(µ),

with

(2.6) (wN (Y )) ∈ R1−α for some α ∈ [0, 1].

If, in addition,

(2.7) HY,A1 =

{
1

wN (Y,A1)

N−1∑
n=0

T̂n1A1∩Yn

}
N≥1

is precompact in L1(µ),
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and

(2.8)
wN (Y,A1)
wN (Y )

−→ β ∈ [0, 1] as N →∞,

then
1
n
Sn(1A)

L(µ)
=⇒ Lα,β

for every A ∈ A satisfying µ(A4A1) <∞.

2.3. The arcsine law for waiting times. Let T be a c.e.m.p.t. of the σ-
finite measure space (X,A, µ). For Y ∈ A, µ(Y ) > 0, we define the N0-valued vari-
ables Zn(Y ), n ≥ 0, on X by Zn(Y )(x) := max({0}∪{1 ≤ k ≤ n : T kx ∈ Y }). The
Dynkin-Lamperti arcsine law for waiting times describes the asymptotic behaviour
of these renewal-theoretic quantities in infinite measure preserving situations: For
α ∈ (0, 1) we let Zα denote a random variable (with values in [0, 1]) having the
B(α, 1− α)-distribution (sometimes called the generalized arcsine law), i.e.

Pr ({0 ≤ Zα ≤ t}) =
sinπα
π

∫ t

0

dx

x1−α(1− x)α
, t ∈ [0, 1].

Continuously extending this family to α ∈ {0, 1} we let Z0 := 0 and Z1 := 1. Since
for any α ∈ [0, 1], Zα is a bounded random variable, its distibution is determined
by its moments E[Zr

α] = (−1)r
(−α

r

)
, r ∈ N0, which satisfy the recursion formula

(2.9) E[Zr
α] =

r−1∑
j=0

(−1)r−j+1

(
α

r − j

)
E[Zj

α] for r ∈ N.

In particular, E[Zα] = α and Var[Zα] = α(1− α)/2. We are going to prove

Theorem 2.3 (Arcsine law for waiting times). Let T be a c.e.m.p.t. on
the σ-finite space (X,A, µ), and assume there is some Y ∈ A, 0 < µ(Y ) <∞, such
that

(2.10) HY =

{
1

wN (Y )

N−1∑
n=0

T̂n1Yn

}
N≥1

is precompact in L1(µ),

and

(2.11) (wN (Y )) ∈ R1−α for some α ∈ [0, 1].

Then
1
n
Zn(Y )

L(µ)
=⇒ Zα.

Remark 3.5 of [TZ], about limit theorems for other renewal-theoretic variables,
also applies in the present setup. Proposition 7.1 of [TZ] provides a condition

under which n−1Zn(Y )
L(µ)
=⇒ Zα implies n−1Zn(E)

L(µ)
=⇒ Zα for all E ∈ Y ∩ A with

µ(E) > 0.
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2.4. Complete excursions spent in one component. Theorem 2.3 shows
that a preselected inspection time n will, for most orbits, fall into some long excur-
sion from Y . For the situation of Theorem 2.2 this means that this last excursion
really contributes to the occupation times of the component A1. Formally we have

(2.12)
n∑

j=1

1A1 ◦ T j =
Zn∑
j=1

1A1 ◦ T j + (1Y ∩T−1A1 ◦ T
Zn) · (n− Zn), n ∈ N0,

where Zn := Zn(Y ), and the sum on the right-hand side, henceforth denoted Kn,
is the amount of time spent in A1 during excursions completed before step n. We

know that (n − Zn)/n
L(µ)
=⇒ 1 − Zα, which is not concentrated in zero if α < 1.

Therefore it is interesting to have a closer look at Kn. For α, β ∈ [0, 1] we let Kα,β

denote a random variable taking values in [0, 1], and with distribution characterized
by the following recursion formula for its moments (where, by convention, we start
with E[K0

α,β ] := 1),

(2.13) E[Kr
α,β ] = (−1)rβ

r−1∑
j=0

(−1)j+1

(
α

r − j

)
E[Kj

α,β ], r ∈ N.

In particular, E[Kα,β ] = αβ and Var[Kα,β ] = α(1 − α)β/2. Note that (2.13) is
parallell to (2.4), with the rightmost term inside the square brackets missing, and
that (2.13) generalizes (2.9) via the extra factor β. The fact that these are the
moments of a probability distribution on [0, 1] is implicit in the proof of the Theorem
2.4 below which identifies Kα,β as the limiting variable for the sequence (Kn/n)n≥1.
The boundary cases obviously are K0,β = 0 and K1,β = β for all β ∈ [0, 1], while
Kα,0 = 0 and Kα,1 = Zα in distribution for α ∈ [0, 1]. A tangible description of the
other distributions2 is given by

Proposition 2.1 (Identifying the density of Kα,β). For α, β ∈ (0, 1), the
distribution of Kα,β is given by

Pr({0 ≤ Kα,β ≤ t}) =
sinπα
π

∫ t

0

(1 + b)xα−1(1− x)α

b2x2α + 2bxα(1− x)α cosπα+ (1− x)2α
dx

for t ∈ [0, 1], where b := (1− β)/β.

We will establish the following limit theorem.

Theorem 2.4 (Completed excursions to a component). Let (X,A, µ, T )
and Y,A1, A2 be as in Theorem 2.2, satisfying (2.5) - (2.8). Then

1
n
SZn(Ac)(1A)

L(µ)
=⇒ Kα,β

for every A ∈ A satisfying µ(A4A1) <∞.

2Note that (2.13) does not just give Kα,β = βZα in distribution, which the similarity to (2.9)

might suggest. In particular, the variances differ.
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2.5. Arcsine laws for randomly chosen excursions. Theorems 2.2 and
2.4 neither use, nor provide, further insight into details of the dependence structure
of our dynamically defined process. In particular, they don’t tell us if (or in what
sense) our excursion-length process (ϕ ◦ T j

Y )j≥0 is (or needs to be) asymptotically
independent of the process (1Y ∩T−1A1 ◦ T

j
Y )j≥1 selecting the component. The fol-

lowing ”randomized” version of these theorems (which actually is an application of
them) shows that combining the dynamical excursion process (ϕ ◦ T j

Y )j≥0 with an
independent iid process selecting excursions, we still end up with the same limiting
behaviour.

Let Ω := {ω = (ωi)i≥0 : ωi ∈ {0, 1}} with the usual σ-field B and shift map
σ : Ω → Ω. For β ∈ [0, 1] let νβ denote the Bernoulli measure on (Ω,B) with
νβ([1]) = β, where [1] := {ω ∈ Ω : ω0 = 1}. We use this system to decide,
according to the value of ωl, whether or not to count the steps within the l-th
excursion of a T -orbit (Tnx)n≥1 from Y :

Theorem 2.5 (Arcsine law for occupation times of independently se-
lected excursions). Let (X,A, µ, T ) and Y be as in Theorem 2.3, satisfying (2.10)
and (2.11), and write Sj :=

∑j−1
i=0 1Y ◦T i and Zn := Zn(Y ). On the product of this

system and the Bernoulli shift (Ω,B, νβ , σ), β ∈ [0, 1], define

Ln(x, ω) :=
n−1∑
j=0

ωSj(x) · (1Y c ◦ T j)(x), n ≥ 1.

Then
1
n
Ln

L(µ⊗νβ)
=⇒ Lα,β and

1
n
LZn

L(µ⊗νβ)
=⇒ Kα,β.

Other variants can be obtained using similar arguments.

2.6. A comment on wandering rates. Regular variation of (wN (Y )) is a
property of the system (X,A, µ, T ) rather than a property of a particular set: By
Proposition 3.2 and Remark 3.6 of [TZ],

if {wN (Y )−1∑N−1
n=0 T̂

n1Yn}N≥1 is uniformly integrable,(2.14)
then Y has minimal wandering rate,

meaning that limN→∞wN (Z)/wN (Y ) ≥ 1 for all Z ∈ A, 0 < µ(Z) < ∞. Equiva-
lently, wN (Y ) ∼ wN (Z) provided µ(Z) > 0 and Z ⊆ Y . This common rate is a cru-
cial asymptotic characteristic of the system, the wandering rate of T , (wN (T )). As
our compactness conditions imply uniform integrability, we may replace (wN (Y ))
by (wN (T )) in Theorems 2.1 to 2.5. Similarly, we may replace (wN (Y,A1)) by
(wN (TY ∪A1)) in Theorems 2.2 and 2.4.

2.7. Application to specific classes of transformations. To conclude the
paper, we will illustrate our abstract results by applying them to several classes of
examples, thereby extending earlier results, covering new situations, and demon-
strating that our conditions can readily be verified in various nontrivial situations.

In particular, this is the case for transformations with ergodic behaviour gov-
erned by some distinct (and exceptional) indifferent orbits. Examples include indif-
ferent fixed (or periodic) points, which have already been studied in [TZ], but we
can now remove an extra assumption that had been required there. Moreover, our



INFINITE INVARIANT MEASURES AND COMPACT REGENERATION 9

compactness conditions also cover the case of the indiffererent orbits of flat critical
points.

In addition, we are now also able to deal with situations where, in marked
contrast to the above, an infinite invariant measure reflects the homogeneity of
a system on an infinite space: To conclude the paper, we briefly discuss how our
results apply to random walks driven by Gibbs-Markov maps. While there are other
approaches that could be used in this case (employing functional limit theorems
showing that the partial sum processes converge to a Wiener process), it is worth
observing that our method works there as well.

3. Compact sets of densities, Asymptotically invariant sequences,
and Strong distributional convergence

The present section contains the tools enabling us to understand the signif-
icance of the compactness properties. The following classical companion of the
mean ergodic theorem, and some relatives discussed below, lie at the heart of our
approach:

Theorem 3.1 (L1-characterization of ergodicity). A m.p.t. T on a σ-finite
measure space (X,A, µ) is ergodic iff∥∥∥∥∥ 1

n

n−1∑
k=0

T̂ k(u− u∗)

∥∥∥∥∥
1

−→ 0 for all u, u∗ ∈ D(µ).

See [Kr], Theorem 2.1.3, or [Yo] for the usual Hahn-Banach proof of Theorem
3.1. We emphasize that there also is a nice alternative w∗-compactness argument
parallel to the proof of Lin’s characterization of exactness, cf. [Li] or Theorem 1.3.3
in [A0]. We will repeatedly employ uniform versions of this and similar convergence
results, obtained via the following simple principle:

Remark 3.1 (Equicontinuity and precompactness). A family F of maps
between two metric spaces (Mi, di), i ∈ {1, 2}, is equicontinuous if for every ε > 0
there is some δ > 0 s.t. for all F ∈ F , d2(F (a), F (b)) < ε whenever d1(a, b) < δ.
If F = (Fι)ι∈I, I some directed index set, and if we have pointwise convergence
limι Fι(a) = F (a) for all a ∈M1, then equicontinuity of F implies that the conver-
gence Fι → F is uniform on precompact subsets K of M1.

For example, if T is m.p. and ergodic on (X,A, µ), and H ⊆ D(µ) is precompact
in L1(µ), then so is W := {u− u∗ : u, u∗ ∈ H}, and since the sequence of averaging
operators n−1

∑n−1
k=0 T̂

k : L1(µ) → L1(µ), n ∈ N, is equicontinuous (each having
operator norm = 1), the pointwise convergence asserted by Theorem 3.1 implies
uniform convergence on W, meaning that

(3.1)

∥∥∥∥∥ 1
n

n−1∑
k=0

T̂ k(u− u∗)

∥∥∥∥∥
1

−→ 0
uniformly in u, u∗ ∈ H ⊆ D(µ)
if H is precompact in L1(µ).

The sequences (Rn)n≥0 of observables whose asymptotic distributional be-
haviour under T is of interest to us are asymptotically T -invariant in measure
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in the sense3 that

(3.2) Rn ◦ T −Rn
µ−→ 0 as n→∞.

We need good control of the distributional behaviour of such sequences w.r.t. initial
distributions from some precompact family H ⊆ D(µ). For the arcsine laws the
following observation suffices.

Proposition 3.1 (Equivalent moments principle I). Let T be an ergodic
m.p.t. on the σ-finite measure space (X,A, µ), and (Rn)n≥0 a sequence of measur-
able functions Rn : X → [0,∞).

a) Suppose that (Rn) satisfies

(3.3) Rn ◦ T −Rn
µ−→ 0.

If

(3.4) {Rn}n≥0 is bounded (i.e. w∗-precompact) in L∞(µ),

then, for every u ∈ D(µ),

(3.5) ‖(Rn ◦ T −Rn) · u‖1 −→ 0 as n→∞,

and for all u, u∗ ∈ D(µ),

(3.6)
∫

X

Rn · u dµ−
∫

X

Rn · u∗ dµ −→ 0 as n→∞.

b) If, in addition, (γn)n≥0 is a sequence in [0,∞) with G(s) :=
∑

n≥0 γne
−ns <∞

for s > 0, and
∑

n≥0 γn = ∞, then, for all u, u∗ ∈ D(µ), the weighed Laplace
transform Rγ(s) :=

∑
n≥0Rn γne

−ns, s > 0, satisfies

(3.7)
∫

X

Rγ(s) · u dµ−
∫

X

Rγ(s) · u∗ dµ = o (G(s)) as s↘ 0.

c) Moreover, if H ⊆ D(µ) is precompact in L1(µ), then convergence in (3.5), (3.6),
and (3.7) is uniform in u, u∗ ∈ H.

Proof. (i) We first prove our assertions concerning (3.5). For any ε > 0 and
u ∈ D(µ),

(3.8)
∫

X

|Rn ◦ T −Rn| · u dµ ≤ ε+ sup
j≥0

‖Rj ◦ T −Rj‖∞ ·
∫
{|Rn◦T−Rn|>ε}

u dµ,

and the rightmost integral tends to 0 as n→∞ since Rn ◦ T −Rn
µ−→ 0. Hence,

(3.9) ‖(Rn ◦ T −Rn) · u‖1 −→ 0 for all u ∈ D(µ).

If H ⊆ D(µ) is precompact in L1(µ), it is tight, so that there is some Y ∈ A,
0 < µ(Y ) < ∞, with

∫
Y c u dµ < ε for all u ∈ H. Moreover, H is uniformly

integrable, i.e. there is some M ∈ (0,∞) for which
∫
{u>M} u dµ < ε whenever

u ∈ H. Therefore, returning to (3.8), we see that∫
{|Rn◦T−Rn|>ε}

u dµ < ε+
∫

Y ∩{|Rn◦T−Rn|>ε}
u dµ

< 2ε+M · µ(Y ∩ {|Rn ◦ T −Rn| > ε}),

3Throughout,
µ−→ for some σ-finite measure µ means

ν−→ for all probability measures ν � µ.
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proving that (3.9) holds uniformly in u ∈ H.
Note that, more generally, we have∥∥(Rn ◦ T k −Rn) · u

∥∥
1
−→ 0 as n→∞,

for every u ∈ D(µ) and k ∈ N, the convergence being uniform in u ∈ H for any
fixed k. (The continuous images T̂ jH, j ∈ N, are precompact, too.)

(ii) As a consequence of the previous step, we also have, for any K ≥ 1,∫
X

Rn · u dµ−
∫

X

Rn ·

(
1
K

K−1∑
k=0

T̂ ku

)
dµ =

1
K

K−1∑
k=0

∫
X

(
Rn −Rn ◦ T k

)
· u dµ→ 0

as n→∞, uniformly in u ∈ H. But for any u, u∗ ∈ D(µ),∣∣∣∣∣
∫

X

Rn ·

(
1
K

K−1∑
k=0

T̂ k(u− u∗)

)
dµ

∣∣∣∣∣ ≤ sup
j≥0

‖Rj‖∞ ·

∥∥∥∥∥ 1
K

K−1∑
k=0

T̂ k(u− u∗)

∥∥∥∥∥
1

,

and according to Theorem 3.1 the right-hand side is arbitrarily small if we choose
K large in the first place. By (3.1), we see that this in fact holds uniformly in
u, u∗ ∈ H. Putting things together, our assertions concerning (3.6) follow.

(iii) To finally deal with the weighed transform Rγ(s), write down∫
X

Rγ(s) · (u− u∗) dµ =
∑
n≥0

(∫
X

Rn · (u− u∗) dµ
)
γn e

−ns,

which, due to (the uniform version of) (3.6) and G(s) →∞, implies our statements.
�

For the proof of the Darling-Kac theorem we will use a similar result applicable
to variables of the type Rn := (Sn(1Y )/an)r, n ≥ 0, with fixed r ≥ 0, which no
longer form bounded sequences in L∞(µ) since an = o(n) as n→∞. It is not too
surprising that a stronger compactness assumption is called for in this case. Due to
Sn(1Y ) = Sn−m(1Y ) ◦ Tm on Ym for n ≥ m ≥ 0, this choice of Rn clearly satisfies
condition (3.10) below. The other conditions will be verified (by induction on r) in
the proof of the theorem.

Proposition 3.2 (Equivalent moments principle II). Let T be a c.e.m.p.t.
on the σ-finite measure space (X,A, µ) and Y ∈ A with 0 < µ(Y ) < ∞. Let
(Rn)n≥0 be a sequence of measurable functions Rn : X → [0,∞).

a) Suppose that

(3.10)
for all m,n ≥ 0, the function 1Ym ·Rn is integrable, and
there is some κ s.t. Rn ≤ κ ·Rn−m ◦ Tm on Ym for n ≥ m ≥ 0,

and

(3.11) ‖(Rn ◦ T −Rn) · u‖1 −→ 0
for all u ∈ L∞(µ) supported
on Y M for some M = M(u),

If

(3.12) {1Y ·Rn}n≥0 is weakly precompact in L1(µ),
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then, for any u, u∗ ∈ D(µ) ∩ L∞(µ) which are supported on Y , we have

(3.13)
∫

X

Rn · u dµ−
∫

X

Rn · u∗ dµ −→ 0 as n→∞.

b) If, in addition, (γn)n≥0 is a sequence in [0,∞) with G(s) :=
∑

n≥0 γne
−ns <∞

for s > 0, and
∑

n≥0 γn = ∞, then the weighed Laplace transform

Rγ(s) :=
∑
n≥0

Rn γne
−ns, s > 0,

converges a.e. on Y , is integrable there, and satisfies, for any u, u∗ ∈ D(µ)∩L∞(µ)
supported on Y ,

(3.14)
∫

X

Rγ(s) · u dµ−
∫

X

Rγ(s) · u∗ dµ = o (G(s)) as s↘ 0.

c) Moreover, if H ⊆ {u ∈ D(µ) ∩ L∞(µ) : u is supported on Y } is precompact in
L∞(µ), then convergence in (3.11), (3.13), and (3.14) is uniform in u, u∗ ∈ H.

Proof. (i) Assume w.l.o.g. that µ(Y ) = 1. By assumption (3.12), {Rn |Y
}n≥0 is weakly precompact in L1(µ |Y ∩A), which is equivalent to L1-boundedness
plus uniform integrability (cf. Theorem III.C.12 of [Wo], or Corollary IV.8.11 of
[DS]). According to the Eberlein - Šmulian theorem (Theorem II.C.3 of [Wo], or
Theorem V.6.1 of [DS]), weak precompactness in a Banach space is equivalent to
weak sequential precompactness4, meaning that any subsequence of N contains a
further subsequence nj ↗∞ such that there is some R(1) ∈ L1(µ |Y ∩A) with

(3.15)
∫

Y

Rnj
· g dµ −→

∫
Y

R(1) · g dµ as j →∞ for all g ∈ L∞(µ |Y ∩A).

We are going to extend this compactness statement. We claim that for every
M ≥ 1,

(3.16) {Rn |Y M }n≥0 is weakly precompact in L1(µ |Y M∩A),

so that every subsequence of N has a limit point R(M) ∈ L1(µ |Y M∩A) along some
nj ↗∞, that is,∫

Y M

Rnj
· g dµ −→

∫
Y M

R(M) · g dµ as j →∞ for all g ∈ L∞(µ |Y M∩A).

Diagonalizing in an obvious manner, we can then conclude that for any subsequence
of N there are a further subsequence nj ↗ ∞ and some measurable R : X → R
such that for all M ≥ 1 we have 1Y M ·R ∈ L1(µ) and

(3.17)
∫

Y M

Rnj
· g dµ −→

∫
Y M

R · g dµ as j →∞ if 1Y M · g ∈ L∞(µ |Y M∩A).

Fix any M ≥ 1. By the first bit of (3.10), {Rn |Y M }n≥0 is a sequence in
L1(µ |Y M∩A). To establish our claim (3.16), we first note that it is bounded, as for

4Recall that we can’t use metrizability arguments here: the weak topology on (the closed
unit ball of) L1(ν) is metrizable iff L∞(ν) is separable (cf. Theorem V.5.2 in [DS]). The latter

fails, for example, if ν is Lebesgue measure on a nondegenerate interval.
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n > M ,∫
Y M

Rn dµ =
M−1∑
m=0

∫
X

1Ym ·Rn dµ ≤ κ
M−1∑
m=0

∫
X

1Ym ·Rn−m ◦ Tm dµ

= κ
M−1∑
m=0

∫
X

T̂m1Ym
·Rn−m dµ ≤ κM · sup

n≥1

∫
Y

Rn dµ <∞,

where we use (3.10) and T̂m1Ym
≤ 1Y . We also need to check uniform integrability:

For any n > M and K ∈ (0,∞), we have, again by (3.10),

Y M ∩ {Rn > K} ⊆
M−1⋃
m=0

Ym ∩ T−m (Y ∩ {Rn−m > K/κ}) .

Therefore we see that∫
Y M∩{Rn>K}

Rn dµ ≤
M−1∑
m=0

∫
Ym∩T−m(Y ∩{Rn−m>K/κ})

Rn dµ

≤ κ
M−1∑
m=0

∫
X

1Ym
·
(
1Y ∩{Rn−m>K/κ}Rn−m

)
◦ Tm dµ

= κ

M−1∑
m=0

∫
Y ∩{Rn−m>K/κ}

T̂m1Ym ·Rn−m dµ

≤ κM · sup
n≥1

∫
Y ∩{Rn>K/κ}

Rn dµ −→ 0 as K →∞,

since the sequence (1Y · Rn)n≥0 is uniformly integrable by assumption. This com-
pletes the proof of (3.16).

(ii) Suppose now that R is any weak limit point of (Rn) in the sense of (3.17).
We are going to show that R is a.e. constant, which, in particular, entails∫

Y

Rnj · (u− u∗) dµ −→
∫

Y

R · (u− u∗) dµ = R ·
∫

Y

(u− u∗) dµ = 0

for u, u∗ ∈ D(µ) ∩ L∞(µ) supported on Y . A straightforward subsequence-in-
subsequence argument based on the compactness property established above then
proves our assertion that∫

Y

Rn · u dµ−
∫

Y

Rn · u∗ dµ −→ 0 as n→∞.

By ergodicity, we know that R is a.e. constant as soon as R ◦T = R a.e.. Note
that {ϕ ≤ M} ⊆ Y M+1 and T ({ϕ ≤ M + 1}) ⊆ Y M+1 for M ≥ 1. Therefore, if
g ∈ L∞(µ) is supported on {ϕ ≤ M + 1}, then T̂ g ∈ L∞(µ) is supported on Y M ,
and we can apply (3.17) to g and T̂ g, obtaining∫

X

Rnj · g dµ→
∫

X

R · g dµ and
∫

X

Rnj · T̂ g dµ→
∫

X

(R ◦ T ) · g dµ.

However, due to (3.11), we have∣∣∣∣∫
X

Rn ·
(
g − T̂ g

)
dµ

∣∣∣∣ ≤ ∫
X

|Rn ◦ T −Rn| · g dµ −→ 0,
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so that the two limits coincide, i.e.∫
X

R · g dµ =
∫

X

(R ◦ T ) · g dµ for g ∈ L∞(µ) supported on some {ϕ ≤M + 1}.

But {ϕ ≤ M} ↗ X as M → ∞, showing that integrating against these test
functions g uniquely determines a function R. Hence R ◦ T = R a.e. as required.

(iii) We verify the assertions about uniform convergence in (3.11) and (3.13). In
the first case we note that (3.11), which implicitely states that 1Y · (Rn ◦T −Rn) ∈
L1(µ) for each n ≥ 0, implies (e.g. via the principle of uniform boundedness,
cf. Theorem II.1.11 of [DS] or I.A.7 of [Wo]) that {1Y · (Rn ◦ T −Rn)}n≥0 is
bounded in L1(µ), i.e. that the linear functionals ψn : L∞(µ) → R, ψn(u) :=

∫
Y

|Rn ◦ T −Rn| · u dµ, n ≥ 0, are equicontinuous, and our claim follows by L∞(µ)-
precompactness of H, cf. Remark 3.1.

Similarly, since W := {u − u∗ : u, u∗ ∈ H} is L∞(µ)-precompact as well,
uniformity of (3.13) in u, u∗ ∈ H follows by the same type of argument, as the ρn :
L∞(µ) → R, ρn(w) :=

∫
Y
Rn · w dµ, n ≥ 0, due to (3.12), also are equicontinuous.

(iv) For any fixed s > 0 the measurable function Rγ(s) : X → [0,∞] satisfies,
due to monotone convergence,∫

Y

Rγ(s) dµ =
∑
n≥0

(∫
Y

Rn dµ

)
γne

−ns ≤ G(s) · sup
n≥0

∫
Y

Rn dµ <∞

({1Y ·Rn}n≥0 being bounded in L1(µ) by (3.12)). Hence Rγ(s) is a.e. finite and
integrable on Y . The remaining statements about Rγ(s) follow exactly as in the
proof of the previous proposition. �

Remark 3.2 (Version for Lp, p ∈ (1,∞)). By the same type of argument,
the statement of the proposition remains true with L1 and L∞ replaced by Lp and
Lq, respectively, for arbitrary p ∈ (1,∞) and 1/p+ 1/q = 1.

Remark 3.3 (Limitations of our approach). a) While our proof of the
Darling-Kac theorem requires, via Proposition 3.2, condition (2.2), the weaker as-
sumption (2.5) might still be sufficient. b) It is also natural to ask whether the
assumptions of strong precompactness could be replaced by weak precompactness.
Our proofs below depend crucially on the uniform convergence in (3.6) and (3.13),
respectively. Under the assumptions of Proposition 3.1, the corresponding stronger
conclusion would read∫

X

Rn · u dµ−
∫

X

Rn · u∗ dµ −→ 0
as n→∞, uniformly in u, u∗ from any
weakly L1(µ)-precompact H ⊆ D(µ),

which (in that situation) is equivalent to Rn
τ−→ 1X in the Mackey toplogy τ =

τ(L∞(µ), L1(µ)), cf. [Sc]. This, however, would entail Rn
µ−→ 1X , cf. [No], which,

for the relevant choice of Rn, is not the case in the α < 1 situations of our theorems.
(Still, we can’t rule out that an argument more sensitive to the particular densities
u, u∗ we need to deal with could give more general results.)

We will use the previous two propositions in the following way:
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Remark 3.4 (Applying the equivalent moments principles). In the sit-
uation of either proposition, with H,H∗ precompact sets of densities as specified
there, if for some un ∈ H, n ≥ 0, we have

lim
n→∞

∫
X

Rn · un dµ > 0,

then ∫
X

Rn · u dµ ∼
∫

X

Rn · un dµ
as n→∞,

uniformly in u ∈ H∗.

This is a uniform version of the ”equivalent moments principle”, Lemma 4.4, of
[TZ]. Similarly, if there are κ ∈ [0,∞) and us ∈ H, s > 0, such that∫

X

Rγ(s) · us dµ ∼ κ ·G(s) as s↘ 0,

then ∫
X

Rγ(s) · u dµ ∼ κ ·G(s)
as s↘ 0,

uniformly in u ∈ H∗.

We also need the following related observation:

Remark 3.5 (Normalized transforms). Let H be a (strongly) precompact
subset of a Banach space B, (Dn)n≥0 a sequence in B, and dn ≥ 0, n ≥ 0, such
that d−1

n Dn ∈ H whenever dn > 0. Suppose that βn ∈ [0,∞), n ≥ 0, are such that∑
n≥0 βndn ∈ (0,∞). Then

u :=

∑
n≥0 βnDn∑
n≥0 βndn

belongs to the closed convex hull coB(H) of H in B,

and (by Mazur’s theorem, cf. Theorem V.2.6 of [DS]) coB(H) is compact. We
will consider sets H of probability densities as specified in Proposition 3.1 (or 3.2),
precompact in B = Lq(µ), q = 1 (or q = ∞). Assume that Dn : X → [0,∞),
n ≥ 0, are integrable functions such that

Dn∫
X
Dn dµ

∈ H for n ≥ 0 with
∫

X
Dn dµ > 0,

and that (γn)n≥0 is a sequence in [0,∞) such that∑
n≥0

(∫
X

Dn dµ

)
γn e

−ns ∈ (0,∞) for s > 0.

Then each of the functions us : X → [0,∞), s > 0, defined by

us :=

∑
n≥0Dn γn e

−ns∑
n≥0

(∫
X
Dn dµ

)
γn e−ns

,

belongs to the (compact) closed convex hull coq(H) ⊆ D(µ) of H in Lq(µ).

With the aid of these results we are able to generalize the crucial analytic
Lemmas 4.2 and 4.3 of [TZ].



16 ROLAND ZWEIMÜLLER

Proposition 3.3 (Integrating transforms). Let T be a c.e.m.p.t. on the
σ-finite measure space (X,A, µ), Y ∈ A with 0 < µ(Y ) <∞, and assume that H ⊆
D(µ) and Rn : X → [0,∞), n ≥ 0, satisfy the assumptions of either Proposition
3.1 or Proposition 3.2.

Let vn : Y → [0,∞), n ≥ 0, be bounded measurable functions with
∫

Y

∑
n≥0 vn dµ >

0, and (bn)n≥0 be a sequence in [0,∞) such that B(s) :=
∑

n≥0 bn e
−ns ∈ (0,∞)

for s > 0. Assume that

(3.18)
∑n

k=0 vk∑n
k=0

∫
Y
vk dµ

∈ H

for all n ∈ N0 for which the denominator is positive, and that for some ϑ ∈ [0,∞),

(3.19)
n∑

k=0

∫
Y

vk dµ ∼ ϑ ·
n∑

k=0

bk as n→∞.

Let (γn)n≥0 be a sequence in [0,∞) with
∑

n≥0 γn = ∞ and such that G(s) :=∑
n≥0 γn e

−ns ∈ (0,∞) for s > 0, and consider the weighed Laplace transform
Rγ(s) :=

∑
n≥0Rn γne

−ns.

a) Suppose that for some κ ∈ [0,∞),

(3.20)
∫

Y

∑
n≥0

vn e
−ns

 ·Rγ(s) dµ ∼ κϑ ·B(s)G(s) as s↘ 0.

If ϑ > 0, then, for any u ∈ D(µ) resp. u ∈ D(µ) ∩ L∞(µ) with
∫

Y
u dµ = 1,

(3.21)
∫

X

Rγ(s) · u dµ ∼ κ · G(s) as s↘ 0.

b) Assume that r = 0, or that r ∈ N and B ∈ R−ρ(0) for some ρ ∈ [0,∞). Suppose
also that for some κ ∈ [0,∞) and some u ∈ D(µ) resp. u ∈ D(µ) ∩ L∞(µ) with∫

Y
u dµ = 1,

(3.22)
∫

X

Rγ(s) · u dµ ∼ κ ·G(s) as s↘ 0,

then, as s↘ 0,

(3.23)
∫

Y

∑
n≥0

nrvn e
−ns

 ·Rγ(s) dµ ∼ κϑ · (−1)rr!
(
−ρ
r

)(
1
s

)r

B(s)G(s).

c) If, in the situation of b), vn ↘ 0 a.e. on Y as n → ∞, so that vn =
∑

k>n wk

with wn ≥ 0, n ≥ 1, measurable, then, for all r ≥ 1, as s↘ 0,
(3.24)∫

Y

∑
n≥1

nrwn e
−ns

 ·Rγ(s) dµ ∼ κϑ · (−1)r−1r!
(

1− ρ

r

)(
1
s

)r−1

B(s)G(s).

Proof. a) Due to (3.19) we have

(3.25)
∑
n≥0

(∫
Y

vn dµ

)
e−ns ∼ ϑ ·B(s) as s↘ 0,
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and the relation (3.20) thus shows that∫
Y

Rγ(s) · us dµ ∼ κ ·G(s) as s↘ 0,

where

(3.26) us :=

∑
n≥0 vn e

−ns∑
n≥0(

∫
Y
vn dµ) e−ns

=

∑
n≥0 (

∑n
k=0 vk) e−ns∑

n≥0

(∑n
k=0

∫
Y
vk dµ

)
e−ns

, s > 0,

so that (cf. Remark 3.5) us ∈ coq(H), s > 0, with q = 1 (or q = ∞) in the situation
of Proposition 3.1 (or 3.2). We can thus apply the respective proposition to obtain
the desired conclusion (cf. Remark 3.4).

b) Suppose first that r = 0 (but not necessarily B ∈ R−ρ(0)). Recalling (3.25)
we see that (3.23) essentially restates part c) of the relevant proposition, which (cf.
Remark 3.4) guarantees that

(3.27)
∫

Y

Rγ(s) · us dµ ∼ κ ·G(s) as s↘ 0.

By Remark 3.5, all the densities us belong to the Lq(µ)-compact set coq(H).

Assume now that r ≥ 1 and B ∈ R−ρ(0). We let Vn :=
∑n

k=0 vk, Bn :=∑n
k=0 bk, n ≥ 0. On Y we have, for s > 0,

(3.28)
∑
n≥0

nrvn e
−ns = (1−e−s)

∑
n≥0

(n+1)rVn e
−ns−

∑
n≥0

((n+ 1)r − nr)Vn e
−ns.

Since

(3.29)
Vn∫

Y
Vn dµ

∈ H for all n ∈ N0 with
∫

Y
Vn dµ > 0,

(and using (n+1)r ∼ nr), the r = 0 case discussed above, applied to nrVn, therefore
yields, for s↘ 0,∫

Y

∑
n≥0

(n+ 1)rVn e
−ns

 ·Rγ(s) dµ ∼ κ ·

∑
n≥0

nr

(∫
Y

Vn dµ

)
e−ns

 ·G(s).

Now
∑

n≥0Bne
−ns ∼ B(s)/s ∈ R−(ρ+1)(0), and by (3.19) and part b) of Lemma

4.1 in [TZ] (the differentiation lemma),∑
n≥0

nr

(∫
Y

Vn dµ

)
e−ns ∼ ϑ ·

∑
n≥0

nrBn e
−ns ∼ ϑ · cρ+1,r

(
1
s

)r+1

B(s)

as s↘ 0, where cρ,r := (−1)rr!
(−ρ

r

)
for ρ ∈ R and r ≥ 0, so that

(3.30) (1−e−s)
∫

Y

∑
n≥0

(n+ 1)rVn e
−ns

·Rγ(s) dµ ∼ κϑ·cρ+1,r

(
1
s

)r

B(s)G(s).

Due to (3.29) and ((n+ 1)r − nr) ∼ r nr−1 as n→∞, we obtain analogously that
(3.31)∫

Y

∑
n≥0

((n+ 1)r − nr)Vn e
−ns

 ·Rγ(s) dµ ∼ κϑ · r cρ+1,r−1

(
1
s

)r

B(s)G(s)
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as s↘ 0. Recalling (3.28), we can combine (3.30) and (3.31) to find∫
Y

∑
n≥1

nrvn e
−ns

 ·Rγ(s) dµ ∼ κϑ · (cρ+1,r − r cρ+1,r−1)︸ ︷︷ ︸
=cρ,r

(
1
s

)r

B(s)G(s)

as s↘ 0. This completes the proof of (3.23).

c) We need to sharpen (3.23) to get (3.24) for r ≥ 1. As for the case r ≥ 1
above, this is done by exactly the same argument as in the proof of part b) of
Lemma 4.3 in [TZ]. �

We finally review another important principle which (though, unfortunately,
not too widely known) has proved very useful for establishing distributional limit
theorems for ergodic transformations, and is of considerable interest in itself. The
final versions of our limit theorems which assert strong distributional convergence
crucially depend on it.

Proposition 3.4 (Strong distributional convergence of asymptotically
invariant sequences). Let T be an ergodic m.p.t. on the σ-finite measure space
(X,A, µ), and assume that Rn : X → R, n ∈ N, are measurable functions satisfying

Rn ◦ T −Rn
µ−→ 0 or

Rn ◦ T
Rn

µ−→ 1 as n→∞.

Then the following statements hold:

a) If R is a random variable taking values in R and Rn
ν=⇒ R for some ν � µ,

then Rn
L(µ)
=⇒ R.

b) There are nk ↗ ∞ and some random variable R taking values in R, such that

Rnk

L(µ)
=⇒ R.

See [Ea] for the probability preserving case. For ergodic sums, this result can be
found in [A1] or [A0], §3.6, but (as pointed out in [T4]), the same argument applies
for general asymptotically invariant sequences (Rn). This proof first establishes
the compactness property b) and then derives a) by a subsequence-in-subsequence
argument. We take the opportunity to offer an alternative direct proof, showing
that the proposition follows naturally from Theorem 3.1 via Proposition 3.1.a).

Proof of Proposition 3.4. a) Assume that Rn
ν=⇒ R for some ν � µ.

Letting u := dν/dµ ∈ D(µ) this is equivalent to saying that∫
X

g(Rn) · u dµ −→ E[g(R)] as n→∞

for all g ∈ CL := {g ∈ C(R,R) : g |R is Lipschitz}. For g of this type, let Lip(g)
denote a suitable Lipschitz constant. We claim that we can apply part a) of Propo-
sition 3.1 to the sequence (g(Rn))n∈N: we have ‖g(Rn)‖∞ ≤ ‖g‖∞ for all n ∈ N,
and

{|g(Rn) ◦ T − g(Rn)| > ε} ⊆ {|Rn ◦ T −Rn| > ε/Lip(g)} ,
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so that g(Rn) ◦ T − g(Rn)
µ−→ 0, provided that Rn ◦ T − Rn

µ−→ 0. If we merely
assume Rn ◦ T/Rn

µ−→ 1, continuity of g in ±∞ shows that we may focus on the
subset of X where Rn, Rn ◦ T are in some compact real interval, where the same
argument applies.

The proposition thus implies∫
X

g(Rn) · u∗ dµ −→ E[g(R)] as n→∞ for all u∗ ∈ D(µ),

and hence, since g ∈ CL was arbitrary, our claim.

b) The second statement follows at once from a) and the classical Helly com-
pactness theorem. �

Remark 3.6. Theorem 3.1, Proposition 3.1, and hence also Proposition 3.4,
remain valid if T is only assumed to be nonsingular (meaning that µ ◦ T−1 � µ)
instead of measure preserving.

4. Proof of the Darling-Kac theorem

We are now ready for the proof of our version of the Darling-Kac theorem.

Proof of Theorem 2.1. (i) As a consequence of Hopf’s ratio ergodic the-
orem (cf. [A0], [KK], or [Z5]), it is enough to consider a single function f . We
choose f := 1Y and let Sn :=

∑n
j=1 1Y ◦ T j , n ≥ 0. Due to an →∞, the sequence

(a−1
n Sn)n≥1 clearly is asymptotically invariant in measure, showing that we need

only consider a single probability measure ν, cf. Proposition 3.4. As the limit
distribution is determined by its moments, it is enough to verify that

(4.1)
∫

Y

(
Sn

an

)r

dµY −→ µ(Y )r E[Mr
α] = µ(Y )r r!

(Γ(1 + α))r

Γ(1 + rα)
, r ≥ 0.

This will be done by inductively proving that, for all r ≥ 0,

(�r)
∑
n≥0

(∫
Y

Sr
n dµY

)
e−ns ∼ r!

s

(
1

sQY (s)

)r

as s↘ 0,

where QY (s) :=
∑

n≥0 qn(Y )e−ns, s > 0. Due to our assumption on the wandering
rate (and KTT) we have, for s > 0,

(4.2) QY (s) =
(

1
s

)1−α

`

(
1
s

)
, and wn(Y ) ∼ µ(Y )n1−α`(n)

Γ(2− α)
as n→∞

with ` slowly varying at infinity. Since (
∫

Y
Sr

n dµY )n≥0 is non-decreasing, (�r)
implies (4.1) for any sequence (an) satisfying

an ∼
1

Γ(1 + α)Γ(2− α)
· n

wn(Y )
as s↘ 0,

and the r = 1 case of (4.1) shows that we may take an := µ(Y )−1an(Y ), n ≥ 0.

For r = 0, we have Sr
n = 1, hence

∫
X
S0

n · u dµ = 1 and therefore
∑

n≥0(
∫

X
S0

n ·
u dµ)e−ns ∼ 1/s as s↘ 0 for any u ∈ D(µ), showing, in particular, (�0).
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A simple argument (compare (5.9) of [TZ]) shows that our uniform sweeping
assumption implies that for every r ≥ 0,

(4.3)
∫

Y

Sr
n · u dµ �

∫
Y

Sr
n dµY as n→∞ uniformly in u ∈ co∞(HY ),

which trivially entails an analogous statement for the corresponding Laplace trans-
forms.

(ii) Before proving (�r) for r ≥ 1, we first establish the weaker statement that
for all r ≥ 0,

(♦r)
∑
n≥0

(∫
Y

Sr
n dµY

)
e−ns � 1

s

(
1

sQY (s)

)r

as s↘ 0.

For r = 0 this is clear from (�0). For the inductive step we assume (♦j) for
0 ≤ j < r. Lemma 5.1 of [TZ] shows that, for s > 0,∫

Y

∑
n≥0

T̂n1Yn
e−ns

 ·
∑

n≥0

Sr
n e

−ns

 dµ(4.4)

=
1

1− e−s

r−1∑
j=0

(
r

j

)∫
Y

∑
n≥1

T̂n1Y ∩{ϕ=n} e
−ns

 ·
∑

n≥0

Sj
n e

−ns

 dµ.

We consider the right-hand side of (4.4): Note (cf. (5.5) of [TZ]) that

1Y −
∑
n≥1

T̂n1Y ∩{ϕ=n} e
−ns = (1− FY (s))

∑
n≥0 T̂

n1Yn e
−ns

QY (s)
a.e.

with FY (s) :=
∑

k≥1 fk(Y ) e−ks → 1 as s↘ 0, while, due to (2.2) and Remark 3.5,
{us}s>0 ⊆ co∞(HY ) is a precompact (hence bounded) subset of L∞(µ), where

us :=

∑
n≥0 T̂

n1Yn e
−ns∑

n≥0(
∫

Y
T̂n1Yn

dµ) e−ns
=

∑
n≥0 T̂

n1Yn e
−ns

µ(Y )QY (s)
, s > 0.

Consequently,

(4.5)
∑
n≥1

T̂n1Y ∩{ϕ=n} e
−ns −→ 1Y uniformly as s↘ 0,

which implies that for any j ≥ 0, as s↘ 0,∫
Y

∑
n≥1

T̂n1Y ∩{ϕ=n} e
−ns

 ·
∑

n≥0

Sj
n e

−ns

 dµ ∼
∫

Y

∑
n≥0

Sj
n e

−ns

 dµ.

Observe now that for 0 ≤ j < r − 1 we have
∫

Y
Sj

n dµ = o(
∫

Y
Sr−1

n dµ) as n → ∞
(since Sn → ∞ a.e. on X), so that the term with j = r − 1 dominates the
asymptotics of the right-hand side of (4.4). We therefore conclude that for any
r ≥ 0,

(4.6)
∫

Y

∑
n≥0

T̂n1Yn e
−ns

 ·
∑

n≥0

Sr
n e

−ns

 dµ ∼ r

s

∫
Y

∑
n≥0

Sr−1
n e−ns

 dµ
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as s↘ 0. Combining this with (4.3), we obtain

∑
n≥0

(∫
Y

Sr
n dµ

)
e−ns � µ(Y )

∫
Y

∑
n≥0

Sr
n e

−ns

 · us dµ(4.7)

∼ r

sQY (s)

∑
n≥0

(∫
Y

Sr−1
n dµ

)
e−ns

as s↘ 0, and (♦r) follows.

(iii) Having established (♦r), an easy argument (cf. the second part of Lemma
5.3 in [TZ]) shows that for all r ≥ 0,∫

Y

Sr
n dµ = O

((
n

QY (1/n)

)r )
= O

((
nα

`(n)

)r )
as n→∞.

Letting (an) be any sequence in (0,∞) with

an ∼
nα

µ(Y )Γ(1 + α)`(n)
∼ 1

Γ(1 + α)Γ(2− α)
· n

wn(Y )
as n→∞,

we therefore see that the sequence of moments

(4.8)
{∫

Y

(
Sn

an

)r

dµY

}
n≥0

is bounded for every r ≥ 0,

and since Sn = Sn−k ◦T k on Y c∩{ϕ = k}, the same is true with Y and µY replaced
by Y M and µY M , with M ≥ 1 arbitrary but fixed. Moreover, as |Sn ◦ T − Sn| ≤ 1,
we can use the mean-value theorem to ensure that for arbitrary r ≥ 0, as n→∞,

(4.9)
∫

Y M

∣∣∣∣(Sn

an

)r

◦ T −
(
Sn

an

)r∣∣∣∣ dµY M = O

(
1
an

∫
Y M

(
Sn

an

)r−1

dµY M

)
−→ 0.

(iv) We can now improve the argument to tackle the inductive step for the
proof of (�r): Assume (�j) for 0 ≤ j < r and recall (4.6) to see that∫

Y

∑
n≥0

Sr
n e

−ns

 · us dµ ∼
r!
s

(
1

sQY (s)

)r

as s↘ 0.

Our previous considerations show that choosing vn := T̂n1Yn
, Rn := (Sn/an)r, and

γn := ar
n, we are in the situation of part a) of Proposition 3.3 (precompactness

being immediate from (4.8)), so that∫
Y

∑
n≥0

Sr
n e

−ns

 · us dµ ∼
∫

Y

∑
n≥0

Sr
n e

−ns

 dµY as s↘ 0,

completing the proof of (�r). �
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5. Proof of the Arcsine laws

Our new tools enable us to prove the generalized arcsine laws following a strat-
egy parallel to the argument used above.

Proof of Theorem 2.2. (i) We write Ln :=
∑n

k=1 1A1 ◦ T k, n ≥ 0, and
prove inductively that for all u ∈ D(µ) and all r ≥ 0,

(♣r)
∑
n≥0

(∫
X

Lr
n · u dµ

)
e−ns ∼ r! E[Lr

α,β ]
(

1
s

)r+1

as s↘ 0.

By KTT and monotonicity of the sequences (
∫

Y
Lr

n ·u dµ)n≥1, the asymptotic equa-
tions (♣r), r ≥ 0, imply∫

X

Lr
n · u dµ ∼ E[Lr

α,β ] · nr as n→∞,

which entails n−1Ln
L(µ)
=⇒ Lα,β , since the distribution of Lα,β is determined by its

moments. Note that (Ln/n)n≥1 is asymptotically T -invariant in measure (so that,
as in the proof of the DK-theorem, it would be enough to check convergence of the
moments for µY if we appeal to Proposition 3.4). Moreover, for every r ≥ 1, the
sequence Rn := (Ln/n)r, n ≥ 1, satisfies

Rn ◦ T −Rn
µ−→ 0 as n→∞.

This follows from the r = 1 case, using the mean-value theorem and the fact that
Ln, Ln ◦ T ≤ n.

For r = 0, we have Lr
n = 1, and therefore

∑
n≥0(

∫
Y
L0

n · u dµ)e−ns ∼ 1/s for
any u ∈ D(µ), that is (♣0).

(ii) For the inductive step, assume (♣j) for 0 ≤ j < r. According to Lemma
6.1 of [TZ] we have, for s > 0,

(1− e−s)
∫

Y

∑
n≥0

(∑
k>n

T̂ k1Y ∩{ϕ=k}

)
e−ns

∑
n≥0

Lr
ne
−ns

 dµ

(5.1)

= e−s
r−1∑
j=0

(
r

j

)∫
Y

∑
n≥1

nr−j T̂n+11Y ∩T−1A1∩{ϕ=n+1} e
−ns

∑
n≥0

Lj
ne
−ns

 dµ

+ µ(Y )(−1)rQ
(r)
Y,A1

(s),

where QY,A1(s) :=
∑

n≥1 qn(Y,A1)e−ns. We are going to turn this into an as-
ymptotic recursion formula for

∑
n≥0(

∫
Y
Lr

n dµY )e−ns. By our assumptions on the
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wandering rates involved, we see via KTT and the differentiation lemma (Proposi-
tion 4.2 and Lemma 4.1 of [TZ]) that there is some ` ∈ R0 such that

QY (s) =
∑
n≥1

qn(Y )e−ns =
(

1
s

)1−α

`

(
1
s

)
for s > 0,(5.2)

QY,A1(s) ∼ β QY (s) = β

(
1
s

)1−α

`

(
1
s

)
as s↘ 0, and

Q
(r)
Y,A1

(s) ∼ β r!
(
α− 1
r

)(
1
s

)r+1−α

`

(
1
s

)
as s↘ 0 for all r ≥ 0.

We consider the right-hand side of (5.1): For fixed j, we take ρ := 1 − α,
ϑ := µ(Y ), κ := E[Lj

α,β ], bn := qn(Y,A1), as well as wn := T̂n+11Y ∩T−1A1∩{ϕ=n+1},
γn := nj (so that G(s) ∼ j!(1/s)j+1 as s ↘ 0), and Rn := (Ln/n)j , n ≥ 1. As
shown in (6.5) of [TZ], vn−1 =

∑
k>n−1 wk = T̂n1A1∩Yn

. Due to our compactness
assumption (2.7), and (♣j), we can apply part c) of Proposition 3.3 to obtain

∫
Y

∑
n≥1

nr−j T̂n+11Y ∩T−1A1∩{ϕ=n+1} e
−ns

∑
n≥0

Lj
ne
−ns

 dµ

∼ µ(Y )r!
(
r

j

)−1

(−1)r−j−1

(
α

r − j

)
E[Lj

α,β ] ·
(

1
s

)r

QY,A1(s) as s↘ 0.

Summing over j, and using (5.2), we find for the complete right-hand side of (5.1)
that

e−s
r−1∑
j=0

(
r

j

)∫
Y

∑
n≥1

nr−j T̂n+11Y ∩T−1A1∩{ϕ=n+1} e
−ns

∑
n≥0

Lj
ne
−ns

 dµ

+ (−1)rQ
(r)
Y,A1

(s)

∼ µ(Y )r! (−1)rβ

r−1∑
j=0

(−1)j+1

(
α

r − j

)
E[Lj

α,β ] +
(
α− 1
r

) (
1
s

)r+1−α

`

(
1
s

)

as s↘ 0. Plugging this into (5.1), and recalling (2.4), we get

∫
Y

∑
n≥0

T̂n1Yn
e−ns

 ·
∑

n≥0

Lr
n e

−ns

 dµ ∼ µ(Y )r! E[Lr
α,β ] ·

(
1
s

)r+1

QY (s)

as s ↘ 0, and we may employ part a) of Proposition 3.3 with ϑ := µ(Y ), Rn :=
(Ln/n)r, γn := nr, κ := E[Lr

α,β ], and vn := T̂n1Yn
, to derive the desired relation

(♣r), thus completing the inductive step. �

The proof of the third limit theorem proceeds along similar lines.
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Proof of Theorem 2.3. (i) We prove inductively that for all u ∈ D(µ) and
all r ≥ 0,

(♠r)
∑
n≥0

(∫
Y

Zr
n · u dµ

)
e−ns ∼ r! E[Zr

α]
(

1
s

)r+1

as s↘ 0,

which, by KTT and monotonicity of the sequences (
∫

Y
Zr

n · u dµ)n≥1, is equivalent
to ∫

Y

Zr
n · u dµ ∼ E[Zr

α] · nr as n→∞.

The assertion of the theorem then follows by the method of moments. According
to Lemma 1 of [T4], (Zn/n)n≥1 is asymptotically T -invariant in measure. We will
use that, in fact, for every r ≥ 1, the sequence Rn := (Zn/n)r, n ≥ 1, satisfies

Rn ◦ T −Rn
µ−→ 0 as n→∞

(same argument as in the proof of Theorem 2.2).

For r = 0, we have Z0
n = 1{ϕ≤n} ↗ 1 a.e., hence

∫
X
Z0

n ·u dµ↗ 1 and therefore∑
n≥0(

∫
X
Z0

n · u dµ)e−ns ∼ 1/s for any u ∈ D(µ), that is (♠0).

(ii) For the inductive step, assume (♠j) for 0 ≤ j < r. According to Lemma
7.1 of [TZ], we have, for s > 0,∫

Y

∑
n≥0

T̂n1Yn
e−ns

 ·
∑

n≥0

Zr
n e

−ns

 dµ(5.3)

=
1

1− e−s

r−1∑
j=0

(
r

j

)∫
Y

∑
n≥1

nr−j T̂n1Y ∩{ϕ=n} e
−ns

 ·
∑

n≥0

Zj
n e

−ns

 dµ.

Due to our assumption on the wandering rate (and KTT) we have QY ∈ Rα−1(0).
We first consider the right-hand side of (5.3): For fixed j, we take ρ := 1 − α,
ϑ := µ(Y ), bn = qn(Y ), as well as wn := T̂n1Y ∩{ϕ=n} (so that vn :=

∑
k>n wk =

T̂n1Yn
), γn := nj , and Rn := (Zn/n)j , n ≥ 0. Note that E[Zj

α] may or may not
be positive. In either case, due to (♠j), we can apply part c) of Proposition 3.3 to
obtain ∫

Y

∑
n≥1

nr−j T̂n1Y ∩{ϕ=n} e
−ns

 ·
∑

n≥0

Zj
n e

−ns

 dµ

∼ µ(Y )r!
(
r

j

)−1

(−1)r−j−1

(
α

r − j

)
E[Zj

α] ·
(

1
s

)r

QY (s) as s↘ 0.

Summing over j we find for the complete right-hand side of (5.3) that

1
1− e−s

r−1∑
j=0

(
r

j

)∫
Y

∑
n≥1

nr−j T̂n1Y ∩{ϕ=n} e
−ns

 ·
∑

n≥0

Zj
n e

−ns

 dµ

∼ µ(Y )r!

r−1∑
j=0

(−1)r−j+1

(
α

r − j

)
E[Zj

α]

 (1
s

)r+1

QY (s) as s↘ 0.
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Plugging this into (5.3), and recalling (2.9), we get∫
Y

∑
n≥0

T̂n1Yn e
−ns

 ·
∑

n≥0

Zr
n e

−ns

 dµ ∼ µ(Y )r! E[Zr
α] ·
(

1
s

)r+1

QY (s)

as s ↘ 0. We may then employ part a) of Proposition 3.3 with ϑ := µ(Y ),
Rn := (Zn/n)r, γn := nr, κ := E[Zr

α], and vn := T̂n1Yn , to conclude that (♠r)
holds. This completes the inductive step. �

6. Proof of Proposition 2.1 and Theorems 2.4 and 2.5

We turn to the remaining abstract results of Section 2, first offering two different
ways of determining the explicit form of the limit laws Kα,β . A quick argument,
pointed out by the referee, uses what we already know about densities and moments
of the Lα,β :

First proof of Proposition 2.1. Fix α, β ∈ (0, 1), abbreviate L := Lα,β ,
and let K denote a random variable with the density given in the conclusion of
proposition. Using the explicit densities, it is easy to see that

E [Kr] =
1

1− β

(
E [Lr]− E

[
Lr+1

])
for r ∈ N0.

Now use (2.4) to see that the E [Kr] satisfy (2.13). �

Alternatively, it is possible to directly determine the density of Kα,β starting
from the moment recursion (2.13). We follow the approach indicated in [L1] in
connection with the Lα,β :

Second proof of Proposition 2.1. We fix α, β ∈ (0, 1), and write K :=
Kα,β . Observe that the recursion formula (2.13) is equivalent to saying that

(6.1)
∑
r≥0

E[Kr] yr =
1

1− β + β(1− y)α
.

Letting ν denote the distribution of K on ([0, 1],B[0,1]), (6.1) enables us to identify
the Stieltjes transform ν̂ of the latter, which is defined as

ν̂(w) :=
∫ 1

0

dν(x)
w + x

for w ∈ C− := C \ (−∞, 0],

see e.g. Chapter 8 of [W1], or Section 5.13 of [W2]. We have

1
y
ν̂

(
1
y

)
=
∫ 1

0

dν(x)
1 + yx

= E
[

1
1 + yK

]
=
∑
r≥0

E[Kr] (−y)r,

and hence, due to (6.1),

(6.2) ν̂(w) =
wα−1

(1− β)wα + β(1 + w)α
for w ∈ C−,
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where the holomorphic power functions are defined using the principal branch of
the logarithm on C−. We use the following variant of Stieltjes’ complex inversion
formula,

(6.3) lim
y↗π

∫ b

a

ν̂
(
xe−iy

)
− ν̂

(
xeiy

)
2πi

dx =
G(b+)−G(b)

2
− G(a+)−G(a)

2
for a, b ∈ [0, 1], where G denotes the distribution function of ν. This can be derived
from the standard inversion formula, see e.g. Theorem 7a on p. 339 of [W1], by
an argument parallell to that used in the proof of Corollary V.14.1 of [W2] (which
is (6.3) in the special case of measures with a continuous density). We claim that
in our case the limit for the integrand exists,

lim
y↗π

ν̂
(
xe−iy

)
− ν̂

(
xeiy

)
2πi

=
sinπα
π

(1 + b)xα−1(1− x)α

b2x2α + 2bxα(1− x)α cosπα+ (1− x)2α
,

and that convergence is uniform in x ∈ [ε, 1 − ε] for any fixed ε ∈ (0, 1/2). It is
then clear from (6.3) that this limit function is in fact the density of ν on (0, 1).

To validate our assertion about the uniform limit, let z = z(y) := e−iy, so that
z, z → −1 as y ↗ π. In particular, as the power functions are holomorphic on C−,
we get (1 + xz)α, (1 + xz)α → (1 − x)α, uniformly in x ∈ [ε, 1 − ε]. The principal
branch also gives zαzα = (zz)α = 1 and hence zα−1zα − zα−1zα = z − z → 0. On
the other hand, as y ↗ π, our z and z approach the cut (−∞, 0] from different
sides, and we obtain

zα(1 + xz)α − zα(1 + xz)α ∼ (1− x)α(zα + zα)

= 2(1− x)α cos yα −→ 2(1− x)α cosπα,

and analogously, zα−1(1+xz)α−zα−1(1+xz)α → 2i(1−x)α sinπα, again uniformly
in x ∈ [ε, 1−ε]. Putting things together reveals the explicit form of the density. �

Theorem 2.4 will be established by the same method as Theorems 2.1 - 2.3.
To get started, we observe, splitting orbits at their first return to Y , that Kn :=∑Zn

j=1 1A1 ◦ T j , n ≥ 0, satisfies a dissection identity similar to that for Sn(1A1)
(compare Lemma 6.1 of [TZ]): We have, for n ≥ 0,

(6.4) Kn =

 k − 1 +Kn−k ◦ T k on Y ∩ T−1A1 ∩ {ϕ = k}, 1 ≤ k ≤ n,
Kn−k ◦ T k on Y ∩ T−1Ac

1 ∩ {ϕ = k}, 1 ≤ k ≤ n,
0 on Y ∩ {ϕ > n},

which results in

Lemma 6.1 (Splitting moments at the first return). Let T be a c.e.m.p.t.
of (X,A, µ), and assume that X = A1 ∪ Y ∪A2 (measurable and pairwise disjoint)
such that Y ∈ A, 0 < µ(Y ) < ∞, dynamically separates A1 and A2. Let Kn :=∑Zn

j=1 1A1 ◦ T j, n ≥ 0, then, for r ≥ 1 and s > 0,

(1− e−s)
∫

Y

∑
n≥0

T̂n1Yn e
−ns

∑
n≥0

Kr
n e

−ns

 dµ(6.5)

= e−s
r−1∑
j=0

(
r

j

)∫
Y

∑
n≥1

nr−j T̂n+11Y ∩T−1A1∩{ϕ=n+1} e
−ns

∑
n≥0

Kj
n e

−ns

 dµ.
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Proof. As in the proof of Lemma 6.1 of [TZ] or Lemma 1 of [T5]. �

Observe that this is like (5.1) with the last term missing.

Proof of Theorem 2.4. We prove inductively that for all u ∈ D(µ) and all
r ≥ 0,

(Fr)
∑
n≥0

(∫
Y

Kr
n · u dµ

)
e−ns ∼ r! E[Kr

α,β ]
(

1
s

)r+1

as s↘ 0.

By KTT and monotonicity of the (
∫

Y
Kr

n ·u dµ)n≥1, the (Fr), r ≥ 0, imply
∫

Y
Kr

n ·

u dµ ∼ E[Kr
α,β ] · nr as n→∞, and hence n−1Kn

L(µ)
=⇒ Kα,β .

Observe that (Kn/n)n≥1 is asymptotically T -invariant in measure, which fol-
lows easily from the asymptotic T -invariance of (Zn/n)n≥1 already used in the
proof of Theorem 2.3. For the proof of (Fr) we need Rn ◦ T − Rn

µ−→ 0 for
Rn := (Kn/n)r, n ≥ 1. To validate this, note that Kn,Kn ◦ T ≤ n, so that by the
mean-value theorem, |Rn ◦ T −Rn| ≤ r |(Kn ◦ T )/n−Kn/n|.

To start the induction, note that
∑

n≥0(
∫

Y
K0

n · u dµ)e−ns ∼ 1/s for any u ∈
D(µ), which is (F0). For the inductive step, assume (Fj) for 0 ≤ j < r. Then
argue as in the proof of Theorem 2.2, using Lemma 6.1 instead of (5.1). �

We conclude this section proving our arcsine law for randomly chosen excur-
sions.

Proof of Theorem 2.5. We are going to show that Theorems 2.2 and 2.4
apply to the following simple skew product in which Ln(x, ω) corresponds to the
occupation times of a nice component A1. Let X∗ := X×Ω, equipped with product
σ-field A∗ := A⊗ B and measure µ∗ := µ⊗ ν. Define T ∗ : X∗ → X∗ by

T ∗(x, ω) :=
{

(Tx, σω) if x ∈ Y ,
(Tx, ω) if x ∈ Y c.

It is immediate that T ∗ preserves µ∗. Let Y ∗ := Y × Ω, then µ∗(Y ∗) < ∞ and
X∗ =

⋃
n≥1(T

∗)−nY ∗ mod µ∗, so that Maharam’s recurrence theorem (cf. Theorem
1.1.7 of [A0]) ensures conservativity of T ∗. To show that T ∗ is also ergodic, we
need only prove ergodicity of the induced map T ∗Y ∗ on (Y ∗,A∗, µ∗Y ∗). But T ∗Y ∗ is
ergodic since T ∗Y ∗ = TY ⊗ σ, a product of two probability preserving maps, one
ergodic, and one exact. Letting A∗1 := Y c × [1] and A∗2 := Y c × [0], we see that
these sets are dynamically separated by Y ∗, and that X∗ = Y ∪A1 ∪A2 (disjoint).
Moreover,

Ln(x, ω) =
n∑

j=1

(1[1] ◦ σSj(x)(ω))(1Y c ◦ T j)(x) =
n∑

j=1

1A∗1
◦ (T ∗)j (x, ω).

We denote the first-return time of Y ∗ under T ∗ by ϕ∗, and write w∗N (Y ∗) for
the corresponding wandering rate etc. For k ≥ 1 we then have Y ∗ ∩ {ϕ∗ = k} =
(Y ∩ {ϕ = k})× Ω, and therefore

T̂ ∗
k
1Y ∗∩{ϕ∗=k} = T̂ k ⊗ σ (1Y ∩{ϕ=k} ⊗ 1Ω)(6.6)

= T̂ k1Y ∩{ϕ=k} ⊗ 1Ω.
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Similarly, for k ≥ 2, Y ∗ ∩ (T ∗)−1A∗1 ∩{ϕ∗ = k} = (Y ∩{ϕ = k})×σ−1[1], and thus

T̂ ∗
k
1Y ∗∩(T∗)−1A∗1∩{ϕ∗=k} = T̂ k ⊗ σ

(
1Y ∩{ϕ=k} ⊗ 1σ−1[1]

)
(6.7)

= T̂ k1Y ∩{ϕ=k} ⊗ σ̂1σ−1[1]

= T̂ k1Y ∩{ϕ=k} ⊗ 1[1].

As a consequence we see that µ∗(Y ∗ ∩ {ϕ∗ = k}) = µ(Y ∩ {ϕ = k}) and µ∗(Y ∗ ∩
(T ∗)−1A∗1 ∩ {ϕ∗ = k}) = µ(Y ∩ {ϕ = k}) · ν([1]), implying (w∗N (Y ∗)) ∈ R1−α as
well as w∗N (Y ∗, A∗1)/w

∗
N (Y ∗) = β, and, using (1.3), that the sequences{

1
w∗N (Y ∗)

N−1∑
n=0

T̂ ∗
n
1Y ∗

n

}
N≥1

and

{
1

w∗N (Y ∗, A∗1)

N−1∑
n=0

T̂ ∗
n
1A∗1∩Y ∗

n

}
N≥1

inherit the required precompactness property from {wN (Y )−1
∑N−1

n=0 T̂
n1Yn}N≥1.

All assumptions of Theorems 2.2 and 2.4 being satisfied, our assertions follow. �

7. Application to various classes of transformations

A fibred system (or piecewise invertible system) is a quintuple (X,A,m, T, ξ),
where (X,A,m, T ) is a nonsingular transformation on a σ-finite measure space,
and ξ is a (finite or countable) partition mod m such that every cylinder Z ∈ ξ
has positive measure and the branches T |Z : Z −→ TZ, Z ∈ ξ, are bijective
and bimeasurable. More specifically, we deal with situations in which (X, d) is
a metric space with Borel σ-field A, so that X comes with a partition ξ0 into
connected components, and we then assume that ξ refines ξ0 and that each branch
is a homeomorphism onto its image. ξ is a Markov partition if each TZ, Z ∈ ξ,
is measurable ξ. We let ξn denote the family of cylinders of rank n, that is, those
sets of the form Z = [Z0, . . . , Zn−1] :=

⋂n−1
i=0 T

−iZi with Zi ∈ ξ which have positive
measure. If the measure is invariant, we denote it by µ and call (X,A, µ, T, ξ) a
measure preserving fibred system.

Assume that Y is ξ-measurable with return time ϕ, and with partition ξY,0

into connected components. Then there is a natural induced partition (mod µY )
on Y , ξY :=

⋃
k≥1

{
V ∩ {ϕ = k} ∩ T−kM : V ∈ Y ∩ ξk, M ∈ ξY,0

}
, and each set

Y ∩ {ϕ = k} (and also Y ∩ T−1A1 ∩ {ϕ = k} if A1 is measurable ξ) then is
measurable ξk+1 and a union of cylinder sets for the induced map TY .

One way to express distortion properties of T or TY is in terms of the regularity
of the image densities d(µ ◦ (Tn |Z)−1)/dµ = T̂n1Z defined on the image sets
TnZ, Z ∈ ξn, n ≥ 1. The regularity of a function v : B → (0,∞), B ⊆ Y , is
RB(v) := inf{ρ > 0 : v(x) ≤ (1 + ρ · d(x, y))v(y) for x, y ∈ B}, cf. [Z3], and
RB(v) implies an upper bound for the Lipschitz constant of v/

∫
B
v µB . Therefore,

if a family VB of positive functions on B has uniformly bounded regularity, then
{v/

∫
B
v µB : v ∈ VB} is precompact in the topology of uniform convergence on B by

the Arzela-Ascoli theorem, and so is the union of finitely many families of this type.
For the examples below, uniformly bounded regularity of the {T̂Y 1W : W ∈ ξY }
follows from standard bounded distortion results, and finiteness of the family of
images B = TY W , W ∈ ξY then ensures that our compactness assumptions are
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satisfied in a very strong sense: We get precompactness in L∞(µ) of the family

(7.1) H′′Y :=
{
fk(Y )−1 · T̂ k1Y ∩{ϕ=k} : k ≥ 1 with fk(Y ) > 0

}
,

and hence of H′Y := {qn(Y )−1 · T̂n1Yn}n≥1 and of HY , both of which are contained
in co∞(H′′Y ). Analogously, H′′Y,A1

:= {fk(Y,A1)−1 · T̂ k1Y ∩T−1A1∩{ϕ=k} : k ≥ 1 with
fk(Y,A1) > 0} is precompact in L∞(µ) for the relevant sets A1 below, and so are
H′Y := {qn(Y,A1)−1 · T̂n1Yn∩A1}n≥1 and HY,A1 .

Having generalized the abstract distributional limit theorems of [TZ], we first
illustrate the strength of our results in the light of the main class of examples
discussed there.

7.1. Interval maps with indifferent fixed points. In [Z1] and [Z2] a large
class of infinite measure preserving interval maps T with indifferent fixed points,
called AFN-maps, has been studied, generalizing earlier results from [A0], [A2],
[T1]-[T3]. (See [Z2] or [TZ] for definitions and notation.) In [TZ] we showed that
these systems often satisfy condition (1.1), the basic assumption in the abstract
distributional limit theorems derived there.

Still, we weren’t able to cover all cases: While the behaviour at every single
indifferent fixed point is good (Lemma 8.1 of [TZ] or Lemma 2 of [T5]), there are
simple examples with (wn(T )) ∈ R1−α which violate (for the usual type of reference
sets) the condition (1.1) required in [TZ]:

Example 7.1. Consider AFN-maps T : [0, 1] → [0, 1] with two full branches
and indifferent fixed points at x = 0 and x = 1, i.e. ξ = ζ = {Z1, Z2}, and
TZi = (0, 1). Take Ai := Zi ∩ T−1Zi, and Y := (A1 ∪ A2)c. As a consequence of
Theorem 8.1 of [TZ], we have, for i ∈ {1, 2},

(7.2)
1

wN (Y,Ai)

N−1∑
n=0

T̂n1Yn∩T−1Ai
→ Di uniformly on Y as N →∞,

where the Di have disjoint supports, {Di > 0} = Zi ∩ T−1(Zc
i ) ⊆ Y . Fix any

α ∈ (0, 1). It is well known (see e.g. Lemma 4.8.6 and the proof of Theorem
4.8.7 of [A0]), that we can choose T in such a way that wN (Y,Ai) ∼ N1−α`i(N)
as N → ∞, for any prescribed `i ∈ R0, i ∈ {1, 2}. Now take `1(t) := 1 and
`2(t) := exp[(log t)1/3 cos((log t)1/3)], t > 0, so that

lim
N→∞

wN (Y,A1)
wN (Y,A2)

= 0, while lim
N→∞

wN (Y,A1)
wN (Y,A2)

= ∞.

Then, although (wN (Y ))N≥1 = (wN (Y,A1)+wN (Y,A2))N≥1 ∈ R1−α, the sequence
(wN (Y )−1

∑N−1
n=0 T̂

n1Yn
)N≥1 does not converge on Y . Note, however, that it still

forms a precompact set in L∞(µ), and its accumulation points are the convex com-
binations of the Di.

We are now in a position to remove the (mild) additional assumption (8.8)
of [TZ], which we imposed in order to exclude such counterexamples. Whereas
convergence (1.1) may be lost, precompactness (1.5) never is. Simply observe that
the induced map TY (for the special reference set Y = Y (T ) defined in (8.5) of [TZ])
only has a finite number of different images, and inverse branches with uniformly
bounded regularity of derivatives (cf. [Z2], [Z3]). Therefore we no longer need the
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central convergence lemma which originally motivated the present approach to the
limit theorems.

For a basic AFN-map T , our distributional limit theorems therefore apply as
soon as the general condition of regular variation (wn(T )) ∈ R1−α of the wandering
rate (plus the balance condition (2.8) in case of Theorem 2.2) is satisfied. The
relation between regular variation of (wn(T )) and the local behaviour of T at its
indifferent fixed points has earlier been discussed in [T4].

7.2. Interval maps with flat critical points. Another family of interval
maps whose ergodic properties are governed by some distinct indifferent orbit is
that of maps T with flat critical points, i.e. points c at which all derivatives of T
vanish. The dynamical effect of such a point is that orbits getting close to c, say∣∣T kx− c

∣∣ < δ, follow the critical orbit for a very long time,
∣∣T k+jx− T jc

∣∣ < δ for
1 ≤ j ≤ J(δ) with J(δ) growing faster than − log δ as δ ↘ 0. We briefly discuss
how our abstract results apply in this setup.

Continuing earlier work of [BM], [Z4] was devoted to flat S-unimodal maps
T on an interval X := [a, b] satisfying the Misiurewicz condition, meaning that
there is some open subinterval Y around c to which the orbit of c does not return,
cn := Tnc /∈ Y for n ≥ 1. Assume for simplicity that the graph of T is symmetric
under the involution I(x) := b − (x − a) in the sense that T = T ◦ I. Such a map
always possesses a conservative ergodic invariant measure µ � λ and µ is infinite
iff
∫

log | T ′ | dλ = −∞. Suppose that V (e−t) is regularly varying of index −α at
0, α ∈ [0, 1], where V is the inverse of U(t) := T (c) − T (c − t), t ∈ [0, c − a], and
that, in addition, the postcritical Lyapunov exponent of T ,

lim
n→∞

1
n

log | (Tn)′(c1) |∈ (0,∞)

exists. Then the wandering rate (wn(T )) belongs to R1−α. Moreover, the reference
set Y can be chosen arbitrarily small and in such a way that T k(Y ∩{ϕ = k}) = Y
or = ∅ for all k ≥ 1, and that TY has branches with uniformly bounded distortion,
so that {fk(Y )−1 · T̂ k1Y ∩{ϕ=k}}k≥1 is precompact in L∞(µ). (See [Z4] for proofs of
these statements.) We are thus in the situation of our abstract results, and recover
the Darling-Kac theorem and the Dynkin-Lamperti arcsine law for T (which in [Z4]
had been obtained via pointwise dual ergodicity, the proof of which requires extra
work).

Our third limit theorem, the arcsine law for occupation times, turns up more
naturally if we consider a variation of the previous situation which allows for two
distinct flat critical points. Since the arguments are similar to the unimodal case,
we content ourselves with a sketch of the main points in the simplest case:

Example 7.2 (Arcsine law for shadowing times of flat critical points).
Let T satisfy all the properties mentioned above. We consider another map S for
which the involution I is a dynamical symmetry, S ◦ I = I ◦S, defined by Sx := Tx
for x < c and Sx := 1 − S(1 − x) for x > c. This map has two distinct one-
sided critical points c− and c+, with orbits c±n := Tnc±, n ≥ 0, clearly satisfying
I(c−n ) = c+n . Observing that T ◦T = T ◦S, i.e. that T is a continuous 2-to-1 factor
of S, we see that S, too, is a Misiurewicz map, c±n /∈ Y for n ≥ 1, and that S
preserves the infinite conservative ergodic measure µ̃ = (µ + µ ◦ I−1)/2 � λ with
wn(S) ∼ wn(T ) ∈ R1−α as n→∞.
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Typical orbits (Snx)n≥0 spend most of their time closely shadowing either c−

or c+. We fix any δ ∈ (0,diam(Y )/4) and say that the orbit of x is δ-shadowing the
left critical point c− during the time interval {k, . . . , k + J} if

∣∣Sk+jx− Sjc
∣∣ < δ

for 1 ≤ j ≤ J (hence Skx ∈ Y and Sk+jx /∈ Y for 1 ≤ j ≤ J). Denote the total
number of such steps k + j < n by s−δ (n). We claim that the proportion of time
spent δ-shadowing c− satisfies the following arcsine law,

(7.3)
s−δ (n)
n

L(λ)
=⇒ Lα,1/2.

To verify this statement, we construct a conservative ergodic measure preserving
extension (M,B, ν̃, R) of (X,A, µ̃, S). Let Y − and Y + denote the left- and right-
hand halves of Y , respectively, and define M := (Y − × {−1}) ∪ (Y + × {1}) ∪
(Y c × {−1, 1}) ⊆ X × {−1, 1}, and B the trace of the product σ-field. Let π and
σ be the natural projections of M onto X and {−1, 1}, and set ν̃(E) := µ̃(π(E)) if
π(E) ∈ Y ∩B and ν̃(E) := µ̃(π(E))/2 if π(E) ∈ Y c∩B. Finally, define R : M →M
by

R(x, s) :=
{

(Sx, σ(Sx)) if Sx ∈ Y ,
(Sx, s) if Sx ∈ Y c,

so that R essentially acts like S, but R-orbits always remember which part of Y they
visited last. We have a decomposition X = A1 ∪ Z ∪A2, where Z := π−1Y , A1 :=
Y c×{−1}, and Z dynamically separates A1 and A2. Moreover, Rk(Z∩T−1A1∩{τ =
k}) ∈ {∅, Z} for all k ≥ 1, where τ = ϕ ◦ π is the first return time of Z, the
branches of RZ have bounded distortion, and by symmetry our new system also
satisfies wN (Z,A1) = wN (Z)/2 ∈ R1−α. We can therefore apply Theorem 2.2 to
see that

(7.4)
1
n

n−1∑
k=0

1A1 ◦Rk L(ν̃)
=⇒ Lα,1/2.

However, the distribution of the time an orbit takes between escaping a δ-shadow
and entering Y , has exponentially small tail. Therefore it is not hard to see that
(7.4) implies (7.3), compare Section 5 of [Z4].

7.3. Random walks driven by Gibbs-Markov maps. Let (X,A, µ, T, ξ)
be an ergodic probability preserving fibred system given by a Gibbs-Markov map (cf.
[A0], [AD2]) with finite image partition, i.e. with #Tξ < ∞. Any ξ-measurable
map φ : X −→ Z defines a Z-extension Tφ of T , that is the m.p.t. on the σ-finite
infinite measure space (X × Z,A ⊗ P(Z), µ ⊗ µZ), µZ denoting counting measure
on Z, given by

Tφ(x, g) := (Tx, g + φ(x)).

Writing φn :=
∑n−1

k=0 φ ◦T k, n ≥ 0, we see that Tn
φ (x, g) = (Tnx, g+φn(x)), n ≥ 0.

We henceforth assume (see [AD2] for definitions) that φ is aperiodic, and that
either φ ∈ L2(µ) with

∫
X
φdµ = 0, or that the µ-distribution of φ is in the strict

domain of attraction of a nondegenerate stable distribution of order p ∈ (1, 2). The
local limit theory for (φn)n≥0 developed in [AD2] (see also [AD1], [ADSZ], [GH])
implies that Tφ is conservative and exact, and pointwise dual ergodic with return
sequence (an(T ))n≥1 ∈ Rα with α := 1/2 or α := 1− 1/p ∈ (0, 1/2), respectively.



32 ROLAND ZWEIMÜLLER

A natural candidate for a good reference set Y of finite measure is the g = 0
section Y := X × {0}. The first return time function ϕY simply is ϕY (x, i) =
min{n ≥ 1 : |φn(x)| = 0}, and as φ is measurable ξ, we see that Y ∩ {ϕY = k} is
the union of some subcollection Φk of ξk. The transfer operator T̂φ of Tφ satisfies

T̂n
φ (1Z u⊗ 1{g}) = T̂n(1Z u)⊗ 1{g+φn(Z)} for n ≥ 1, Z ∈ ξn, and u ∈ L1(µ).

Due to the standard strong distortion control available for Gibbs-Markov maps,
and #Tξ <∞, (X,A, µ, T, ξ) actually has the property that

(7.5) Hξ :=
{
µ(Z)−1T̂n1Z : n ≥ 1, Z ∈ ξn

}
is precompact in L∞(µ)

(the T̂n1Z : n ≥ 1, Z ∈ ξn have uniformly bounded regularity). Hence co(Hξ),
which contains H′′Y , is compact in L∞(µ). Moreover, finiteness of Tξ together
with bounded regularity are easily seen to imply that any family of functions from
co(Hξ) which are supported on Y is uniformly sweeping. According to Proposition
3.8.7 of [A0], our previous remarks about pointwise dual ergodicity imply that
wn(Tφ) ∈ R1−α (Y being a uniform set for Tφ). We thus see that Theorems 2.1,
2.3, and 2.5 apply in the present situation.

To also illustrate the arcsine law for occupation times in this context, we focus
on the special case of symmetric and bounded φ, |φ| ≤ 2M (so that the above
applies with α = 1/2). (The classical arcsine theory for random walks, see e.g.
Theorem 20.2 of [S2], shows that, for symmetric φ and (φ ◦ Tn)n≥1 independent,
one still has n−1

∑n−1
j=0 1X×N◦T j

φ =⇒ L1/2,1/2 even if wn(Tφ) ∈ R1−α with α < 1/2.
Therefore it is a priori clear that occupation times of half-lines cannot be covered
by our Theorem 2.2 for general unbounded φ.) Consider A1 := X× (M +N) which
Y ∗ := X × {−M, . . . ,M} dynamically separates from A2 := X × (−M − N). As
before, we see that H′′Y ∗ and H′′Y ∗,A1

are precompact in L∞(µ), and by symmetry,
wN (Y ∗, A1) = wN (Y ∗)/2. We are thus in the situation of Theorems 2.2 and 2.4
with β = 1/2.

In particular, Theorems 2.1 to 2.4 show that for bounded φ with symmetric
distribution, and any probability measure ν � µ⊗ µZ, we have, as n→∞,

ν

({
#{j ≤ n : φj = 0}√

n
≤ t

})
−→ 2

π

∫ t

0

e−
y2

π dy, t ≥ 0,

while

ν

({
#{j ≤ n : φj > 0}

n
≤ t

})
−→ 2

π
arcsin

√
t, t ∈ [0, 1],

and

ν

({
max({i ≤ n : φi = 0})

n
≤ t

})
−→ 2

π
arcsin

√
t, t ∈ [0, 1],

all of which are parallel to classical results about the coin-tossing random walk, and
that

ν

({
#{j ≤ max({i ≤ n : φi = 0}) : φj > 0}

n
≤ t

})
−→ 2

π

(
arcsin

√
t+
√
t(1− t)

)
, t ∈ [0, 1].



INFINITE INVARIANT MEASURES AND COMPACT REGENERATION 33

References

[A0] J. Aaronson: An Introduction to Infinite Ergodic Theory. AMS 1997.
[A1] J. Aaronson: The asymptotic distributional behaviour of transformations preserving infi-

nite measures. Journal d’Analyse Math. 39 (1981), 203-234.

[A2] J. Aaronson: Random f-expansions. Ann. Probab. 14 (1986), 1037-1057.
[AD1] J. Aaronson, M. Denker: A local limit theorem for stationary processes in the domain of

attraction of a normal distribution. in: Asymptotic methods in probability and statistics
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