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Abstract

We determine the asymptotics of the Kolmogorov complexity of sym-
bolic orbits of certain infinite measure preserving transformations. Specifi-
cally, we prove that the Brudno - White individual ergodic theorem for the
complexity generalizes to a ratio ergodic theorem analogous to previously
established extensions of the Shannon - McMillan - Breiman theorem.

2000 Mathematics Subject Classification. Primary: 37A40, 03D15;
Secondary: 37A35, 37E05.

Keywords: Kolmogorov complexity, algorithmic information content,
infinite invariant measure, intermittency, indifferent orbits, ratio ergodic
theorem

1 Introduction and statement of results

Kolmogorov complexity theory offers an interesting possibility of describing the
complicated behaviour of typical orbits of ergodic transformations. It provides
us with an essentially unique meaningful way of assigning, to any finite string
ω ∈ A∗ :=

⋃
l≥0 Al of symbols from a finite alphabet A, an integer C(ω), the

complexity of ω, formalizing the intuitive concept of the length of the shortest
possible description of ω. We refer to [LV] for a readable account of complexity
theory, the basics required for our purpose will briefly be reviewed in Section
2. For the dynamicist it is natural to apply this notion to orbits of dynamical
systems via the usual symbolic coding w.r.t. a partition of the phase space.
Specifically, let T be a nonsingular transformation of a σ-finite measure space
(X,A, µ) (i.e. T is measurable with µ ◦ T−1 � µ), and ξ a finite measurable
partition (mod µ). For a.e. x ∈ X the member ξ(x) of ξ containing x is well
defined, and so are the ξn(x), where ξn :=

∨n−1
k=0 T

−kξ, n ≥ 1. We will identify
ξn(x) with the ξ-coding of the orbit section (T kx)0≤k<n, i.e. with the string
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(ξ(T kx))n−1
k=0 ∈ ξn over the alphabet A :=ξ. Using this convention, we define

the complexity of the n-orbit (T kx)0≤k<n of x ∈ X w.r.t. the partition ξ as
C(ξn(x)).

It has been shown that this approach leads to results closely related to key
facts from Kolmogorov-Sinai (K-S) entropy theory. If µ is an ergodic invariant
probability measure for T , it turns out that the behaviour of C(ξn(x)) is similar
to that of the information function Iξn

(x) := − logµ(ξn(x)). In particular, just
as the Shannon-McMillan-Breiman theorem, the individual ergodic theorem for
information, asserts that

− logµ(ξn(x))
n

−→ hµ(T, ξ)
as n→∞
for a.e. x ∈ X, (1.1)

(where, of course, hµ(T ) and hµ(T, ξ) denote the K-S-entropy of T w.r.t. µ (and
ξ)), the Brudno-White-theorem (cf. [Br], [Wh]), the individual ergodic theorem
for orbit complexity, ensures that also

C(ξn(x))
n

−→ hµ(T, ξ)
as n→∞
for a.e. x ∈ X. (1.2)

Quite recently, cf. [BBGMV], [BG], typical and average growth rates1 of
the quantity C(ξn(x)) have been proposed as a means of distinguishing between
some transformations for which classical entropy theory appears not to be ap-
plicable. This zoo of ”weakly chaotic” systems accommodates some transfor-
mations on [0, 1] which have a (σ-finite) infinite invariant measure µ absolutely
continuous w.r.t. Lebesgue measure λ, namely piecewise C2 interval maps with
indifferent fixed points like, for example,

Tx :=
{
x+ 2pxp+1 for x ∈ (0, 1/2),
2x− 1 for x ∈ (1/2, 1), (1.3)

where2 p ∈ [1,∞). Families of transformations containing these maps have been
studied extensively from the viewpoint of infinite ergodic theory, see e.g. [T1]-
[T3], [A0]-[A3], [Z1]-[Z2], [TZ], and references therein.

In accordance with numerical experiments (cf. Section 7 of [BBGMV]),
[BG] provides pointwise estimates for maps T as in (1.3) proving that, up to
a logarithmic error, C(ξn) has the same order of magnitude as the number
Sn :=

∑n−1
k=0 1Y ◦ T k of visits to Y := (1/2, 1). This is then used to show that

the average growth rate of C(ξn) is similar to that of Sn. As already pointed out
in Section 5 of [BBGMV], sharper results require a closer look at the complicated

1More precisely, the weaker concept of chaos indices, i.e. of best polynomial approxima-
tions to the actual rate, is used there.

2For p ∈ (0, 1) there is an invariant probability measure µ� λ, see e.g. Example 3 of [T1].
We refer to [G1], [G2], [Sa], [Yo] for recent work about this case.
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pointwise ergodic behaviour of infinite measure preserving transformations. We
are going to address this ”very delicate point in ergodic theory” (loc.cit.) and
clarify the a.e. behaviour of C(ξn), amending the argument used in [BG].

Let us first recall that there is a meaningful entropy theory even in situations
with infinite invariant measure: Following [Kr], we may define the measure
theoretic entropy of any conservative ergodic measure preserving transformation
(c.e.m.p.t.) T on a σ-finite space (X,A, µ) as

hµ(T ) := µ(Y )hµY
(TY ),

where Y ∈ A is any set with 0 < µ(Y ) < ∞, TY : Y → Y is the first return
map of Y , i.e. TY x := Tϕ(x)x with ϕ(x) := min{n ≥ 1 : Tnx ∈ Y }, x ∈ Y ,
the first return time, and the probability measure µY (E) := µ(Y ∩E)/µ(Y ) on
(Y, Y ∩A) is invariant and ergodic under TY . Due to Abramov’s formula for the
entropy of first-return maps, cf. [Ab], the definition of hµ(T ) does not depend
on the choice of Y . Combining this notion with asymptotic characteristics of
an infinite m.p.t. (like wandering rate or asymptotic type) leads to useful iso-
morphism invariants, cf. [A1] and [T2].

It is well known (cf. [T1], [T2]) that the map T from (1.3) is conservative
and exact (hence also ergodic) w.r.t. λ, and preserves a σ-finite infinite measure
µ� λ (unique up to a multiplicative constant) with a positive density h which
is continuous on (0, 1]. As shown in [T2], the entropy of T satisfies Rohlin’s
formula

hµ(T ) =
∫

X

log |T ′| dµ, (1.4)

and hence is nonzero and finite. It is clear that the natural partition ξ =
{(0, 1/2), (1/2, 1)} is generating. Moreover, a version of the Shannon-McMillan-
Breiman theorem is available for these infinite measure preserving maps, assert-
ing that for every f ∈ L1(µ) with

∫
f dµ 6= 0,

− logµ(ξn(x))
Sn(f)(x)

−→ hµ(T )∫
f dµ

as n→∞
for a.e. x ∈ X, (1.5)

where Sn(f) :=
∑n−1

k=0 f ◦ T k, n ≥ 1 (compare also [KS]). Notice that, by the
ergodic theorem, the standard version (1.1) for finite µ can also be stated in this
way. The aim of the present paper is to show that the Brudno-White result (1.2)
extends to our infinite measure preserving situations in an analogous fashion.
In particular, for T from (1.3), and any f ∈ L1(µ) with

∫
f dµ 6= 0, we show

that
C(ξn(x))
Sn(f)(x)

−→ hµ(T )∫
f dµ

as n→∞
for a.e. x ∈ X. (1.6)

In fact, we can deal with the much larger class of AFN-maps studied in [Z1]
and [Z2], generalizing earlier work from [A0], [A3], [ADU], and [T1]-[T3]. A
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piecewise monotonic system is a triple (X,T, ξ), where X is the union of some
finite family of disjoint bounded open intervals, ξ is a collection of non-empty
pairwise disjoint open subintervals with λ(X\

⋃
ξ) = 0, and T : X → X is a

map such that T |Z is continuous and strictly monotonic for each Z ∈ ξ. The
maps of [Z1], [Z2] are C2 on each Z ∈ ξ and satisfy Adler’s condition

T ′′/(T ′)2 is bounded on
⋃
ξ, (1.7)

as well as the finite image condition

Tξ = {TZ : Z ∈ ξ} is finite. (1.8)

There is a finite set ζ ⊆ ξ of cylinders Z having an indifferent fixed point xZ

as an endpoint (i.e. limx→xZ ,x∈Z Tx = xZ and limx→xZ ,x∈Z T
′x = 1), and each

xZ is a one-sided regular source, i.e.

for x ∈ Z, Z ∈ ζ, we have (x− xZ)T ′′(x) ≥ 0. (1.9)

The maps are uniformly expanding on sets bounded away from {xZ : Z ∈ ζ}, in
the sense that letting Xε := X\

⋃
Z∈ζ ((xZ − ε, xZ + ε) ∩ Z) we have

|T ′| ≥ ρ(ε) > 1 on Xε for each ε > 0. (1.10)

Given (1.7)-(1.10) we call (X,T, ξ) an AFN-system. If T is conservative ergodic
and if ζ 6= ∅, then the AFN-system is called basic. (See Theorem 1 in [Z1] for
ergodic decompositions of AFN-systems into basic components.)

Any basic AFN-system (X,T, ξ) has an invariant measure µ � λ with
µ(X) = ∞ whose density dµ/dλ has a version h bounded on each Xε. As
shown in [Z2], the Krengel entropy of T always satisfies Rohlin’s formula (1.4),
the fundamental partition generates, and Thaler’s version (1.5) of the Shannon-
McMillan-Breiman theorem holds. We are going to prove an analogous ratio
ergodic theorem for orbit complexity:

Theorem 1 (Ratio ergodic theorem for complexity of AFN-maps) Let
(X,T, ξ) be a basic AFN-map with finite ξ, invariant measure µ � λ, and
hµ(T ) <∞. Then, for any f ∈ L1(µ) with

∫
f dµ 6= 0,

C(ξn(x))
Sn(f)(x)

−→ hµ(T )∫
f dµ

as n→∞
for a.e. x ∈ X. (1.11)

This result reduces (many aspects of) the asymptotic study of C(ξn(x)) to
that of Sn(f)(x). Precise results about these ergodic sums are available in
case each rZ(x) := Tx − x, x ∈ Z ∈ ζ, is regularly varying at xZ , e.g. if
rZ(x) = aZ |x− xZ |1+pZ + o(|x− xZ |1+pZ ) for x → xZ as in example (1.3).
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For results about the a.e. behaviour of ergodic sums Sn(f) of observables f
integrable w.r.t. an infinite invariant measure see [A0], [A2], and [AD] (non-
integrable functions have been studied in [ATZ]). In particular, it is possible to
characterize those normalizing sequences (an) for which limn→∞ a−1

n Sn(f) (resp.
limn→∞ a−1

n Sn(f)) is positive (resp. finite) almost everywhere. Moreover, the
Darling-Kac theorem for infinite measure preserving transformations (cf. [A0],
[A2], [A3] and [TZ]) provides us with a distributional limit theorem for Sn(f),
and hence also for C(ξn).

The result for interval maps is a consequence of the following abstract the-
orem which is the main result of the present paper.

Let T be some c.e.m.p.t. on the σ-finite space (X,A, µ) and ξ ⊆ A a partition
(mod µ) of X. Assume that Y is ξ-measurable with 0 < µ(Y ) <∞ and return
time ϕ. Then there is a natural induced partition (mod µY ) on Y ,

ξY :=
⋃
k≥1

{V ∩ {ϕ = k} : V ∈ Y ∩ ξk} (1.12)

(ignoring empty intersections). For any probability measure ν we let Hν(η) :=
−

∑
M∈η ν(M) log ν(M) denote the entropy of a countable (mod ν) partition

η w.r.t. ν. As in [ATZ] and [TZ] we say that two disjoint sets A,B ⊆ X are
dynamically separated by Y ⊆ X (under the action of T ) if x ∈ A (resp. B)
and Tnx ∈ B (resp. A) imply the existence of some k = k(x) ∈ {0, . . . , n}
for which T kx ∈ Y (i.e. T -orbits can’t pass from one set to the other without
visiting Y ).

Theorem 2 (Ratio ergodic theorem for orbit complexity) Let T be some
c.e.m.p.t. on the σ-finite space (X,A, µ) with hµ(T ) < ∞, and let ξ ⊆ A be a
finite generating partition (mod µ). Assume that there is some ξ-measurable set
Y , 0 < µ(Y ) < ∞, with return time ϕ, such that Y dynamically separates any
two different elements of Y c ∩ ξ. If

HµY
(ξY ) <∞ and

∫
Y

log ◦ϕdµY <∞, (1.13)

then, for any f ∈ L1(µ) with
∫
f dµ 6= 0,

C(ξn(x))
Sn(f)(x)

−→ hµ(T )∫
f dµ

as n→∞
for a.e. x ∈ X. (1.14)

Remark 1 According to Aaronson’s ergodic theorem (cf. Section 2.4 of [A0]),
it is impossible to replace the ergodic sums Sn(f) in (1.5) by any normalizing
constants an ∈ (0,∞), n ≥ 1.
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2 Finite strings and their complexity

We briefly review what we need to know about Kolmogorov complexity, referring
to [LV] for details and more information. Given some finite alphabet A we let
A∗ :=

⋃
l≥0 Al with the convention that A0 = {ε}, ε denoting the empty string.

We can w.l.o.g. identify A with AM := {0, . . . ,M − 1}, M := #A ≥ 2. The
lexicographical order on A∗M gives a natural enumeration nM : A∗M → N0 of all
finite strings (with nM (ε) = 0). For example, the function n2 is explicitly given
by

n2(ω0, ω1, . . . , ωl−1) = 2l +
l−1∑
i=0

ωi2i − 1, ωi ∈ {0, 1}. (2.1)

The string (V, . . . , V ) consisting of l identical symbols V ∈ A, l ∈ N0, will be
denoted by (V l). Given ω(1), . . . , ω(j) ∈ A∗, we simply write (ω(1), . . . , ω(j)) for
their concatenation, e.g. ((0, 13), (0, 1, 1, 0, 0, 1), (10)) = (0, 1, 1, 1, 0, 1, 1, 0, 0, 1).
The length of ω = (ω0, ω1, . . . , ωl−1) ∈ A∗ is lM (ω) := l, and its binary length is
blM (ω) := l2(n−1

2 ◦ nM (ω)). It is easy to see that for every j ∈ N there is some
constant τM (j) ∈ N such that

blM (ω(1), . . . , ω(j)) ≤
j∑

i=1

blM (ω(i)) + τM (j) for all ω(1), . . . , ω(j) ∈ A∗.

(2.2)
In particular, for every r ∈ N there is some constant φM (r) ∈ N such that

blM (χ, ω) ≤ blM (ω) + φM (r) for all χ, ω ∈ A∗ with blM (χ) ≤ r. (2.3)

The self-delimiting version of ω is the string

ω := (1lM (ω), 0, ω) ∈ A∗. (2.4)

This provides us with a prefix code, i.e. if ω 6= σ, then neither of ω and σ can
be an initial piece of the other. For n ∈ N0 we let n := n−1

M (n) ∈ A∗.

The most convenient way to introduce Kolmogorov complexity here is to
use Turing machines (TM s) (cf. Section 1.7 of [LV]). Intuitively, a TM Υ
is a computer (with infinite memory), which follows a fixed finite set of rules
to process some input, given by a string π from some DΥ ⊆ A∗, resulting in
some output Υ(π) ∈ A∗. Formally, TMs therefore are certain maps Υ : DΥ ⊆
A∗ → A∗. The corresponding numerical functions nM ◦ Υ ◦ n−1

M : nM (DΥ) ⊆
N0 → N0, usually called recursive, represent those functions which are regarded
computable, i.e. those which can be evaluated by following some rule. (Various
other attempts to formalize the intuitive idea of computability lead to exactly
the same class of functions.)

For the precise definition of Turing machines or, equivalently, of recur-
sive functions, we refer to [LV]. We will only need to know that any map
Υ : DΥ ⊆ A∗ → A∗ which can be described by some concrete algorithm based
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on elementary arithmetic operations (i.e. anything an actual computer could
do) is a TM, and that the composition Σ ◦Υ of two TMs Σ,Υ again is a TM.

Intuitively, an object is simple if it is easy to describe it. For a given TM
Υ, the Υ-complexity of a string ω ∈ A∗ is the binary length of its shortest
description in terms of Υ, that is, of the shortest input π which generates the
output Υ(π) = ω,

CΥ(ω) := min{blM (π) : π ∈ A∗, Υ(π) = ω}, ω ∈ A∗. (2.5)

This quantity clearly depends on the choice of the TM Υ. The key to a mean-
ingful concept is the fact that there exist universal Turing machines Ξ, meaning
that Ξ is able to simulate any other TM, i.e. for every TM Υ on A∗ there is
some σ(Υ) ∈ A∗ such that

Ξ(σ(Υ), π) = Υ(π) for all π ∈ DΥ. (2.6)

Fixing such a Ξ, we define the (Kolmogorov-) complexity of ω as

C(ω) := CΞ(ω) = min{blM (π) : π ∈ A∗, Ξ(π) = ω}, ω ∈ A∗. (2.7)

The crucial point here is that up to an additive constant, C(ω) is independent of
the choice of Ξ: Let Ξ′ be another universal TM. For any ω ∈ A∗ there is some
π′ ∈ A∗ such that blM (π′) = CΞ′(ω) and Ξ′(π′) = ω. But then π := (σ(Ξ′), π′)
satisfies Ξ(π) = Ξ′(π′) = ω, and it has length blM (π) ≤ blM (π′)+κ = CΞ′(ω)+κ
with κ := φM (blM (σ(Ξ′))) independent of ω, cf. (2.3). Hence CΞ(ω) ≤ CΞ′(ω)+
κ for all ω. Interchanging the roles of Ξ and Ξ′, we see that there is some constant
κΞ,Ξ′ such that

|CΞ(ω)− CΞ′(ω)| ≤ κΞ,Ξ′ for all ω ∈ A∗. (2.8)

For asymptotic questions about strings with large complexity the particular
choice of Ξ therefore is immaterial.

Note that, quite trivially, there is some constant κ such that

C(ω) ≤ blM (ω) + κ for all ω ∈ A∗, (2.9)

since Ξ(σ(ΥId), ω) = ω, with ΥId the identity on A∗, and κ = φM (blM (σ(ΥId)))
as in (2.3).

Due to the use of binary length in the definition of C, the particular choice
of A doesn’t affect asymptotic properties (as long, of course, as A remains fixed
during all computations). To see this, take any universal TM Ξ2 on A∗2, and
observe that we obtain a universal TM ΞM on A∗M by letting ΞM := n−1

M ◦ n2 ◦
Ξ2 ◦ n−1

2 ◦ nM . Let C(M) denote the corresponding complexity function on A∗M .
Then C(M) = C(2) ◦ n−1

2 ◦ nM and an argument like the one proving (2.8) shows
that for M ≤ N , | C(M) − C(N) | is bounded on A∗M ⊆ A∗N . (There are TMs
ΥM,N and Υ−1

M,N on A∗2 converting n−1◦nM (ω) into n−1◦nN (ω) and vice versa.)
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3 Proof of Theorem 2

The reference set Y is the union of the finite family Y ∩ ξ ⊆ ξ, and we can
assume w.l.o.g. that µ(Y ) = 1. By Hopf’s ratio ergodic theorem (see [KK] or
[Z3] for simple proofs), it is enough to consider f := 1Y , and we will abbreviate
Sn := Sn(1Y ). Because of the evident T -invariance of all the limits involved, we
need only consider x ∈ Y (meaning that the string ξn(x) starts with a symbol
V ∈ Y ∩ ξ). Therefore our goal is to prove that

C(ξn(x))
Sn(x)

−→ hµ(T )
as n→∞

for a.e. x ∈ Y . (3.1)

Splitting of symbolic orbits. The invariant measure µ being infinite, typical
orbits of T spend most of their time in Y c, so that their ξ-codings consist of
very long blocks (Zb) of symbols Z ∈ Y c ∩ ξ, while symbols V ∈ Y ∩ ξ are very
scarce. Refining the argument of [BG], we are going to break up these symbolic
sequences in a way that captures this structure:

Due to dynamical separation, ξ-codings of orbits never contain a block of
the type (W a, Zb) with W,Z ∈ Y c ∩ ξ, W 6= Z and a, b ≥ 1. Therefore we can
represent any ω ∈ (Y ∩ ξ) × ξ∗ (i.e. ω ∈ ξ∗ with first symbol from Y ∩ ξ) as a
sequence of (possibly void) blocks of the type (Zb), Z ∈ Y c ∩ ξ, delimited by
single symbols V ∈ Y ∩ ξ, that is,

ω = (V1, Z
b1
1 , V2, Z

b2
2 , . . . , Vj , Z

bj

j , Vj+1, Z
d
j+1) (3.2)

with j = j(ω), d = d(ω) ∈ N0, and bi = bi(ω) ∈ N0, Vi = Vi(ω) ∈ Y ∩ ξ,
Zi = Zi(ω) ∈ Y c ∩ ξ for i ∈ {1, . . . , j}. This representation is unique (except,
of course, for the Zi with zero exponents bi).

For any fixed integer K ≥ 1 we now split ω into four components: first define

Θ(1)
K (ω) := (V1, Z

b1∧K
1 , V2, Z

b2∧K
2 , . . . , Vj , Z

bj∧K
j ), (3.3)

where a ∧ b := min(a, b), i.e. we throw away the last block (Vj+1, Z
d
j+1) and

truncate the other (Zbi
i ) at length K. There is an obvious algorithm turning

any ω into Θ(1)
K (ω), showing that the map Θ(1)

K is a Turing machine. To keep
track of the information lost in passing from ω to Θ(1)

K (ω), we first record the
final block, letting

Θ(2)
K (ω) := (Vj+1, Z

d
j+1). (3.4)

We single out one element V̂ ∈ Y ∩ ξ and one Ẑ ∈ Y c ∩ ξ. We use these special
symbols to represent binary words in our alphabet ξ, recording which blocks
have been truncated by defining

Θ(3)
K (ω) := (γ1, . . . , γj), (3.5)
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where γi = γi(ω) = Ẑ if bi > K, and γi = V̂ otherwise. Finally, we keep track
of how much has been chopped off: Let 1 ≤ i1 < . . . < iL ≤ j, L = L(ω) ∈ N0,
be those i with bi > K, and define

Θ(4)
K (ω) := (V̂ , Ẑbi1−K , . . . , V̂ , ẐbiL

−K). (3.6)

(Note that blocks (Zbi
i ) of ω with bi ≤ K do not contribute at all to this string!)

Evidently, the transformations Θ(2)
K , Θ(3)

K , and Θ(4)
K from (Y ∩ ξ) × ξ∗ into ξ∗

can be performed by easy algorithms and hence are Turing machines.

The obvious fact that ω contains more information than Θ(1)
K (ω) and can,

on the other hand, easily be reconstructed by combining the partial informa-
tion contained in Θ(1)

K (ω), Θ(2)
K (ω), Θ(3)

K (ω), and Θ(4)
K (ω), is formalized in the

following lemma which will be crucial for our argument. It allows us to analyze
C(ω) by separately studying the complexity of these pieces.

Lemma 1 (Complexity of split strings) For every K ∈ N there is some
κK ∈ N such that for all ω ∈ (Y ∩ ξ)× ξ∗ we have

C(Θ(1)
K (ω))− κK ≤ C(ω) ≤ C(Θ(1)

K (ω)) + 2
4∑

i=2

C(Θ(i)
K (ω)) + κK .

Proof. (i) The first inequality is easy: Consider the TM ΥK := Θ(1)
K ◦ Ξ.

For any ω ∈ (Y ∩ ξ) × ξ∗ there is some π ∈ ξ∗ such that blM (π) = C(ω) and
Ξ(π) = ω. In this case,

Ξ (σ(ΥK), π) = ΥK (π) = Θ(1)
K (ω),

and the argument π′ := (σ(ΥK), π) ∈ ξ∗ in the left-most expression has binary
length blM (π′) ≤ blM (π) + κK with κK := φM (blM (σ(ΥK))), cf. (2.3), proving
that C(Θ(1)

K (ω)) ≤ C(ω) + κK .

(ii) To prove the second inequality, we first observe that, starting from Ξ, it
is possible to construct a TM Υ such that

Υ
(
lM (π(2)), . . . , lM (π(4)), π(1), . . . , π(4)

)
(3.7)

=
(
lM (Ξ(π(2))), . . ., lM (Ξ(π(4))),Ξ(π(1)), . . . ,Ξ(π(4))

)
for all π(1), . . . , π(4) ∈ ξ∗. (Including the self-delimiting versions of the lengths
lM (π(2)), . . . , lM (π(4)) of π(2), . . . , π(4) in the left-hand argument enables a re-
construction of each of the building blocks π(1), . . . , π(4) through a TM. Then
apply Ξ to each of these words, and finally represent the respective results
Ξ(π(1)), . . . ,Ξ(π(4)) as a single string in the same format as the input string.)
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Take ω ∈ (Y ∩ξ)×ξ∗, and let ω(i) := Θ(i)
K (ω). Then there is an obvious algo-

rithm recovering ω from ω(1), . . . , ω(4). Representing the combined information
of these four words by means of the string(

lM (ω(2)), . . . , lM (ω(4)), ω(1), . . . , ω(4)
)
∈ ξ∗,

(thus enabling a reconstruction of the ω(i)) we therefore see that there is a TM
ΣK such that

ΣK

(
lM (Θ(2)

K (ω)), . . . , lM (Θ(4)
K (ω)),Θ(1)

K (ω), . . . ,Θ(4)
K (ω)

)
= ω (3.8)

for all ω ∈ (Y ∩ ξ)× ξ∗, and ΛK := ΣK ◦Υ again is a TM.

Now fix any ω ∈ (Y ∩ ξ) × ξ∗. There are π(1), . . . , π(4) ∈ ξ∗ such that
blM (π(i)) = C(Θ(i)

K (ω)) and Ξ(π(i)) = Θ(i)
K (ω) for i ∈ {1, . . . , 4}. Due to the

latter property, (3.7) and (3.8) together show that

ΛK

(
lM (π(2)), . . . , lM (π(4)), π(1), . . . , π(4)

)
= ω,

and hence

Ξ
(
σ(ΛK), lM (π(2)), . . . , lM (π(4)), π(1), . . . , π(4)

)
= ω.

Now (2.2) yields an upper bound for the binomial length of the input string
π ∈ ξ∗ on the left-hand side,

blM (π) ≤ blM (π) +
k∑

i=2

(
blM

(
lM (π(i))

)
+ blM

(
π(i)

))
+ blM (σ(ΛK)) + τM (8).

Using the obvious (and very crude) estimate

blM

(
lM (π)

)
≤ blM (π) + κ(M) for all π ∈ A∗

with κ(M) a suitable constant, our assertion follows.

The splitting introduced above will be the key tool for our proof. Due to
our lemma it is enough to show that

lim
K→∞

lim
n→∞

C
(
Θ(1)

K (ξn(x))
)

Sn(x)
= hµ(T ) for a.e. x ∈ Y , (3.9)

while, for i ∈ {2, 3, 4},

lim
K→∞

lim
n→∞

C
(
Θ(i)

K (ξn(x))
)

Sn(x)
= 0 for a.e. x ∈ Y . (3.10)
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Dynamical meaning of the splitting. To establish (3.9) as well as (3.10) for
i ∈ {2, 3, 4}, we explicitly express the objects involved in terms of the dynamics.
Assume that ω := ξn(x) for some x ∈ Y and n ≥ 1, with block structure given
by (3.2), and components as in (3.3)-(3.6). Letting Zn(x) := max{0 ≤ k < n :
T kx ∈ Y }, we then have

j = j(ω) = SZn(x)(x) = Sn(x)− 1, (3.11)

and
bi = bi(ω) = ϕ ◦ T i−1

Y (x)− 1 for i ∈ {1, . . . , j}. (3.12)

The above splitting of symbolic orbits corresponds to viewing the induced sys-
tem through coarser partitions. For any countable partition (mod µY ) %Y of
Y one has hµY

(TY , %Y ) ≤ HµY
(%Y ), and %Y -codings will always be understood

w.r.t. TY , that is, %Y,j :=
∨j−1

i=0 T
−i
Y ρY , j ≥ 1. We need to consider, for K ≥ 1,

ηK
Y := {Y ∩ {ϕ > K}, Y ∩ {ϕ ≤ K}}. (3.13)

Clearly µY (Y ∩ {ϕ > K}) → 0 as K → ∞, and hence HµY
(ηK

Y ) → 0 as well.
Consequently,

lim
K→∞

hµY
(TY , η

K
Y ) = 0. (3.14)

Next, observe that due to our assumption on dynamical separation,

ξY ={V ∩ {ϕ = 1} : V ∈ Y ∩ ξ}∪ (3.15)

{V ∩ T−1Z ∩ {ϕ = k} : V ∈ Y ∩ ξ, Z ∈ Y c ∩ ξ, k > 1}

(disregarding empty intersections). We define finite truncated versions of ξY by
letting

ξK
Y :={V ∩ {ϕ = 1} : V ∈ Y ∩ ξ}∪ (3.16)

{V ∩ T−1Z ∩ {ϕ = k} : V ∈ Y ∩ ξ, Z ∈ Y c ∩ ξ, k ∈ {2, . . . ,K}}∪
{V ∩ T−1Z ∩ {ϕ > K} : V ∈ Y ∩ ξ, Z ∈ Y c ∩ ξ},

which trivially satisfy hµY
(TY , ξ

K
Y ) ≤ hµY

(TY , ξY ). Due to HµY
(ξY ) < ∞ we

have hµY
(TY , ξY ) ≤ hµY

(TY , ξ
K
Y ) + HµY

(ξY | ξK
Y ), see e.g. Lemma 3.2.15 of

[Ke], and HµY
(ξY | ξK

Y ) → 0 as K →∞. Therefore,

lim
K→∞

hµY
(TY , ξ

K
Y ) = hµY

(TY , ξY ) = hµY
(TY ), (3.17)

since ξY is easily seen to be a generator for TY .

Proof of (3.9). Let us first fix some K ≥ 1 and consider Θ(1)
K (ξn(x)), which is

a string of the form

ω̃ = (V1, Z
k1
1 , V2, Z

k2
2 , . . . , Vj , Z

kj

j ) ∈ (Y ∩ ξ)× ξ∗ with 0 ≤ ki ≤ K. (3.18)
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Successively applying

ψ(V Zk) :=

 V ∩ {ϕ = 1} if k = 0
V ∩ T−1Z ∩ {ϕ = k + 1} if k ∈ {1, . . . ,K − 1}
V ∩ T−1Z ∩ {ϕ ≥ K + 1} if k = K

to its basic building blocks, we obtain a representation

Ψ(ω̃) := (ψ(V1Z
k1
1 ), . . . , ψ(VjZ

kj

j )) ∈ (ξK
Y )∗

of ω̃ in terms of the truncated induced partition ξK
Y . Since there are easy

algorithms turning ω̃ into Ψ(ω̃) and vice versa, the usual argument shows that
there is some constant κ′K such that∣∣∣C (

Θ(1)
K (ω)

)
− C

(
Ψ(Θ(1)

K (ω))
)∣∣∣ ≤ κ′K for all ω ∈ (Y ∩ ξ)× ξ∗. (3.19)

(At this point we consider strings over two (since K is fixed) different alphabets
ξ and ξK

Y .) Recalling that ki = bi ∧K = (ϕ ◦ T i−1
Y (x)− 1) ∧K, that is, ki = k,

0 ≤ k < K, iff x ∈ Y ∩ {ϕ = k + 1}, and ki = K iff x ∈ Y ∩ {ϕ > K}, we see
that our new string Ψ(Θ(1)

K (ω)) is the ξK
Y -coding of the j-orbit (T k

Y x)
j−1
k=0 of x

under TY , i.e.
Ψ(Θ(1)

K (ξn(x))) = ξK
Y,Sn(x)−1(x). (3.20)

According to the Brudno -White theorem (1.2) for TY and ξK
Y , we have

j−1 · C(ξK
Y,j(x)) −→ hµY

(TY , ξ
K
Y ) as j →∞ for a.e. x ∈ Y .

Therefore, using (3.19), we obtain

lim
n→∞

C
(
Θ(1)

K (ξn(x))
)

Sn(x)
= lim

n→∞

C
(
ξK
Y,Sn(x)−1(x)

)
Sn(x)− 1

= hµY
(TY , ξ

K
Y )

for a.e. x ∈ Y . Combining this with (3.17), our assertion (3.9) follows.

We turn to the remaining estimates from above.

Proof of (3.10) for i = 3. Fix anyK ≥ 1 and consider the string Θ(3)
K (ξn(x)) =

(γ1, . . . , γj) recording which excursions from Y take more than K+1 steps. We
have j = j(ω) = Sn(x)− 1 and

γi =

{
Ẑ if T i−1

Y (x) ∈ Y ∩ {ϕ > K + 1}
V̂ if T i−1

Y (x) ∈ Y ∩ {ϕ ≤ K + 1}.

Via the map ΣK : {Ẑ, V̂ }∗ → (ηK+1
Y )∗ which identifies the symbols Ẑ and V̂

with Y ∩ {ϕ > K + 1} and Y ∩ {ϕ ≤ K + 1} respectively, we thus obtain the

12



coding of the j-orbit (T k
Y x)

j−1
k=0 of x under TY with respect to the partition ηK+1

Y

of Y ,
ΣK ◦Θ(3)

K (ξn(x)) = ηK+1
Y,Sn(x)−1(x), (3.21)

and it is clear that the complexities of ηK+1
Y,Sn(x)−1(x) and Θ(3)

K (ξn(x)) coincide.
Applying the Brudno -White theorem (1.2) to TY and ηK+1

Y , we obtain

j−1 · C(ηK+1
Y,j (x)) −→ hµ(TY , η

K+1
Y ) as j →∞ for a.e. x ∈ Y ,

and hence

lim
n→∞

C
(
Θ(3)

K (ξn(x))
)

Sn(x)
= lim

n→∞

C
(
ηK+1

Y,Sn(x)−1(x)
)

Sn(x)− 1
= hµ(TY , η

K+1
Y )

for a.e. x ∈ Y . Letting K →∞, our claim (3.10) follows by (3.14).

Proof of (3.10) for i = 4. Fix any K ≥ 1. To estimate the complexity
of the string ω̃ := Θ(4)

K (ξn(x)) = (V̂ , Ẑl1 , . . . , V̂ , ẐlL) with lr = bir
− K ≥ 1

we use a specific one-to-one coding. We are going to employ a binary prefix
code, replacing each block (V̂ , Ẑlr ) in ω̃ by the binary self-delimiting version of
n−1
2 (lr), i.e. by (1l2(n

−1
2 (lr)), 0, n−1

2 (lr)). That is, we define a map Ψ into {0, 1}∗
by letting

Ψ(ω̃) :=
(
n−1
2 (l1), . . . , n−1

2 (lL)
)

.

Since there is an easy algorithm which, for every ω ∈ (Y ∩ ξ)× ξ∗, reconstructs
ω̃ from Ψ(ω̃), the usual argument shows that there is some constant κ′′K such
that for all ω ∈ (Y ∩ ξ)× ξ∗,

C
(
Θ(4)

K (ω)
)
≤ C

(
Ψ(Θ(4)

K (ω))
)

+ κ′′K ≤ bl2

(
Ψ(Θ(4)

K (ω))
)

+ κ′′K + κ. (3.22)

(Note that we again encounter complexity functions on different domains here.)
Moreover, it is straightforward to check (cf. (6) in [BG]) that the length of the
encoded string Ψ(Θ(4)

K (ω)) ∈ {0, 1}∗ is given by

bl2(Ψ(ω̃)) =
L∑

r=1

(2 blog2(lr + 1)c+ 1) .

Recalling, for ω = ξn(x), the dynamical meaning of the quantities in ques-
tion, we see that {i1, . . . , iL} is the (ordered) set of those indices i ∈ {1, . . . , j}
for which T i−1

Y x ∈ Y ∩ {ϕ > K + 1}, and lk = bik
− K = ϕ(T ik−1

Y x) − K.
Therefore,

bl2

(
Ψ(Θ(4)

K (ξn(x)))
)

=
Sn(x)−1∑

i=1

FK ◦ T i−1
Y (x),
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with FK : Y → [0,∞), K ∈ N, defined by

FK := 1Y ∩{ϕ>K+1} ·
(
2

⌊
log2((ϕ−K)+)

⌋
+ 1

)
.

By integrability of log ◦ϕ and 0 ≤ FK ≤ const · (log ◦ϕ) + 1, we know that
FK ∈ L1(µ |A∩Y ). Applying the ergodic theorem to TY and FK , we thus see
that

lim
n→∞

bl2

(
Ψ(Θ(4)

K (ξn(x)))
)

Sn(x)
=

∫
Y

FK dµ for a.e. x ∈ Y .

In view of (3.22), we therefore obtain

lim
n→∞

C
(
Θ(4)

K (ξn(x))
)

Sn(x)
≤

∫
Y

FK dµ for a.e. x ∈ Y .

But K ≥ 1 was arbitrary, and since FK ↘ 0 a.e. as K → ∞, we have∫
Y
FK dµ↘ 0, and (3.10) follows.

Proof of (3.10) for i = 2. By the type of argument met before, we can
represent Θ(2)

K (ω) = (Vj+1, Z
d
j+1) by (Vj+1, Zj+1, n

−1
M (d)), with

C(Vj+1, Z
d
j+1) ≤ C(Vj+1, Zj+1, n

−1
M (d)) + κ ≤ C(n−1

M (d)) + κ̃

≤ blM (n−1
M (d)) + ˜̃κ ≤ C · log d+ ˜̃κ.

Since d = d(ω) < n we therefore have

C
(
Θ(2)

K (ξn(x))
)

Sn(x)
≤ C · log n+ ˜̃κ

Sn(x)
.

Due to
∫

Y
log ◦ϕdµY < ∞, however, we can apply Theorem 2.4.1 of [A0] with

a(t) := log t, t > 1, to finally see that for all f ∈ L1(µ) with
∫

X
f dµ > 0,

lim
n→∞

Sn(f)
log n

= ∞ a.e. on X, (3.23)

and our assertion follows.

This completes the proof of the theorem.

4 Proof of Theorem 1

Proof. Let (X,T, ξ) be as in the statement of the theorem. We apply the
abstract Theorem 2. If W ⊆ Z ∈ ξn, we let fW := (Tn |W )−1 be the inverse
of the branch Tn |W . To ensure that different cylinders of infinite measure are
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separated by some reference set of finite measure, we first pass to a refinement
ξ′ of ξ. For Z ∈ ζ we let Z ′ := fZ(Z) ⊆ Z, Z(1) := Z \Z ′, and use this to define
ζ ′ := {Z ′ : Z ∈ ζ} and ξ′ := (ξ \ ζ) ∪ ζ ′ ∪ {Z(1) : Z ∈ ζ}. Then (X,T, ξ′) is
a basic AFN system with indifferent cylinders Z ′ ∈ ζ ′, and Y :=

⋃
V ∈ξ′\ζ′ V is

a ξ′-measurable set with 0 < µ(Y ) < ∞ which dynamically separates different
members of ζ ′. For the proof of the theorem we may consider ξ′ instead of ξ,
since ξ2 refines ξ′, so that ξ′n(x) ⊆ ξn(x) ⊆ ξ′n−1(x) for n ≥ 2 and a.e. x ∈ X.

By the same type of argument we may assume w.l.o.g. that for any V ∈ ξ′Y
the image TY V only intersects one of the finitely many connected components
of Y . In this case, our definition of ξ′Y coincides with the one used in [Z2], and
Remark 13 there guarantees that hµ(T ) < ∞ implies HµY

(ξ′Y ) < ∞, verifying
the first condition of (1.13).

It remains to check integrability of log ◦ϕ. We claim that for AFN-maps
this, too, is automatic when hµ(T ) < ∞. Extend ϕ to all of X by letting
ϕ(x) := min{j ≥ 1 : T jx ∈ Y }, x ∈ X. Fix any Z ′ ∈ ζ ′, and observe that
since Z ′ ∩ {ϕ = k + 1} = fZ′(Z ′ ∩ {ϕ = k}) with |f ′Z′ | ≤ 1, λ(Z ′ ∩ {ϕ = k}) is
decreasing with

∑
k≥1 λ(Z ′ ∩ {ϕ = k}) = λ(Z ′) <∞. Therefore,

λ(Z ′ ∩ {ϕ = k}) = o(1/k) as k →∞. (4.1)

A fortiori, λ(Y ∩T−1(Z ′∩{ϕ = k})) = λ(Y ∩T−1Z ′∩{ϕ = k+1})) = o(1/k) for
V ∈ Y ∩ ξ′, and since the density h |Y = dµY /dλ is of bounded variation ([Z2],
Corollary 1), hence bounded, we also have µY (V ∩ T−1Z ′ ∩ {ϕ = k}) = o(1/k)
as k →∞, and therefore

log k < − logµY (V ∩ T−1Z ′ ∩ {ϕ = k}) for k ≥ k0(V,Z ′).

Recalling that ξ′ and ζ ′ are finite, and using (3.15) for ξ′Y , we thus see that
summability of

HµY
(ξ′Y ) =

∑
V ∈ξ′\ζ′

µY (V ∩ {ϕ = 1}) · (− logµY (V ∩ {ϕ = 1}))+

∑
V ∈ξ′\ζ′,

Z′∈ζ′, k≥2

µY (V ∩ T−1Z ′ ∩ {ϕ = k}) · (− logµY (V ∩ T−1Z ′ ∩ {ϕ = k}))

implies finiteness of∫
Y

log ◦ϕdµY =
∑

V ∈ξ′\ζ′
µY (V ∩{ϕ = 1})+

∑
V ∈ξ′\ζ′,

Z′∈ζ′, k≥2

µY (V ∩T−1Z ′∩{ϕ = k})·k,

as required. This completes the proof of the theorem.
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