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Abstract

We present a uni�ed approach to the Darling-Kac theorem and the
arcsine laws for occupation times and waiting times for ergodic transfor-
mations preserving an in�nite measure. Our method is based on control
of the transfer operator up to the �rst entrance to a suitable reference
set rather than on the full asymptotics of the operator. We illustrate our
abstract results by showing that they easily apply to a signi�cant class
of in�nite measure preserving interval maps. We also show that some of
the tools introduced here are useful in the setup of pointwise dual ergodic
transformations.

Mathematics Subject Classi�cation 2000: Primary 37A40, 60F05; Sec-
ondary 28D05, 37C30.

1 Introduction

The study of ergodic and probabilistic properties of dynamical systems with
an in�nite invariant measure has recently led to a number of interesting re-
sults which generalize classical theorems for null-recurrent Markov chains to
the weakly dependent processes generated by certain types of in�nite measure
preserving transformations. In the present paper we shall focus on three distri-
butional limit theorems, the Darling-Kac theorem for ergodic sums of integrable
functions, the arcsine law for occupation times of sets of in�nite measure, and
the (Dynkin-Lamperti) arcsine law for waiting times, and present a natural uni-
�ed approach to them. The following example illustrates the limit theorems we
are going to consider by specializing them to the case of Boole�s transformation
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on R, where we obtain results analogous to well known classical facts about the
coin tossing random walk (cf. chapter III of [Fe1]).

Example 1 (Distributional limit theorems for Boole�s transformation)
The map T : R! R given by Tx := x� 1

x preserves Lebesgue measure � and is
conservative ergodic, cf. [AW] or [Sch]. For measurable functions f : R! R let
Sn(f) :=

Pn�1
j=0 f � T j, n 2 N. Fix any Borel probability measure � � �. The

Darling-Kac theorem shows that for the occupation times of any Borel subset
E � R of �nite positive measure, as n!1,

�

��
�p
2n
Sn(1E) � �(E) t

��
�! 2

�

Z t

0

e�
y2

� dy, t � 0.

(Here 1E may be replaced by any integrable function f with
R
R f d� > 0.) The

arcsine law for occupation times implies that the proportion of time spent on a
half-line converges to the classical arcsine distribution,

�

��
1

n
Sn(1A) � t

��
�! 2

�
arcsin

p
t, t 2 [0; 1],

where A is any Borel set with �(A4 (0;1)) <1. The arcsine law for waiting
times �nally provides us with a similar result for Zn(E)(x), the time of the last
visit of the orbit (T kx)k�0 to the set E up to step n (and 0 if there was no visit
at all), showing that

�

��
1

n
Zn(E) � t

��
�! 2

�
arcsin

p
t, t 2 [0; 1],

for every bounded E � R with �(E) > 0.

For the speci�c transformation T of the example, these statements follow
from earlier work in [A2], [T6], and [T4] respectively. The purpose of the present
paper is to develop an approach to these limit theorems in a general abstract
setup, based on, and improving, ideas from [T6]. Our assumptions are of a dif-
ferent type than those used in [A2], [T4], and constitute a generalization of the
abstract condition which can be extracted from [T6]. They allow simple direct
veri�cation for a signi�cant class of examples. Moreover, the proofs themselves
have a very clear and natural common structure. In the appendix we show that
some of the ideas employed here are also of interest in the setup of [A2] and
[T4] (pointwise dual ergodic transformations).

2 Preliminaries

In order to formulate our results, we need to �x some notation and recall a
number of important concepts. Throughout the paper, all measures are un-
derstood to be �-�nite, and we won�t repeat this each time. The key to an
understanding of the stochastic properties of a nonsingular transformation T
on a measure space (X;A;m), i.e. of a measurable map T : X ! X for which
m � T�1 � m, often lies in the study of the long-term behaviour of its trans-
fer operator bT : L1(m) ! L1(m) describing the evolution of measures under
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the action of T on the level of densties: bTu := d(� � T�1)=dm, where � has
density u w.r.t. m. Equivalently,

R
X
u � (v � T ) dm =

R
X
bTu � v dm for all

u 2 L1(m) and v 2 L1(m), i.e. v 7�! v � T is the dual of bT . bT naturally
extends to fu : X ! [0;1) measurable Ag. It is a linear Markov operator,R
X
bTu dm =

R
X
u dm for u � 0. The system is conservative and ergodic i¤P

k�0
bT ku = 1 a.e. for all u 2 L+1 (m) := fu 2 L1(m) : u � 0 and m(u) > 0g.

Invariance of m under T means that bT1 = 1, and we will denote the measure
by � in this case. When dealing with L1-functions, uniform convergence will al-
ways be understood mod m. Similarly, we will simply write inf for the essential
in�mum etc.

If, for some measurable function H � 0 supported on Y 2 A, there is some
K 2 N0 such that infY

PK
k=0

bT kH > 0, then H will be called uniformly sweep-
ing (in K steps) for Y .

If � is a probability measure on (X;A), (Rn)n�1 is a sequence of measur-
able real-valued functions on X, and R is a random variable taking values in
R, then distributional convergence of (Rn)n�1 to R w.r.t. � will be denoted by
Rn

�
=) R. Strong distributional convergence Rn

L(m)
=) R on (X;A;m) means

that Rn
�
=) R for all probability measures � � m.

A function a : (L;1)! (0;1) is regularly varying of index � 2 R at in�nity,
written a 2 R�, if a is measurable and a(ct)=a(t)! c� as t!1 for any c > 0,
and we shall interpret sequences (an) as functions on R+ via t 7�! a[t]. Slow
variation means regular variation of index 0. R�(0) is the family of functions
r : (0; ") ! R+ regularly varying of index � at zero (same condition as above,
but for t& 0). We refer to chapter 1 of [BGT] for a collection of basic results.

Let T be a conservative ergodic measure preserving transformation (c.e.m.p.t.)
on (X;A; �). For any Y 2 A, �(Y ) > 0, the �rst entrance (resp. return) time
of Y is1 ' : X ! N, given by '(x) := minfn � 1 : Tnx 2 Y g, x 2 X, and we let
TY x := T'(x)x, x 2 X. The restricted measure � jY \A is invariant under the
�rst return map, TY restricted to Y . On the level of densities this means thatX

k�1

bT k1Y \f'=kg = 1 a.e. on Y . (1)

If �(Y ) <1, it is natural to regard ' as a random variable on the probability
space (X;A; �Y ), where �Y (E) := �(Y )�1�(Y \ E), and �(X) = 1 is equiva-
lent to

R
'd�Y =1 by Kac�formula, see (3) below.

If �(X) =1, a good understanding of T frequently depends on its behaviour
relative to a suitable reference set Y of �nite measure, de�ned through some
distinctive property. Speci�cally, the asymptotic behaviour of the return distri-
bution of Y , i.e. that of the (�rst) return probabilities fk(Y ) := �Y (f' = kg),
k 2 N, is a crucial feature determining the stochastic properties of the sys-
tem. For distributional limit theorems to hold, regular variation of fk(Y ) or,

1We suppress the dependence of ' on the usually �xed set Y in our notation.
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more generally, of the tail probabilities qn(Y ) :=
P

k>n fk(Y ) = �Y (f' > ng),
n 2 N0, or the wandering rate of Y , given by wN (Y ) := �(Y )

PN�1
n=0 qn(Y ) =PN�1

n=0 �(Y \ f' > ng), N � 1, is decisive.

To formulate the key assumption characterizing our reference sets Y 2 A,
0 < �(Y ) <1, we de�ne

Y0 := Y and Yn := Y
c \ f' = ng, n � 1.

The standard proof of TY -invariance of � jY \A shows that �(Yn) = �(Y ) qn(Y )
for n � 0. We will need a pointwise version of this. Notice that for any A 2 A
we have 1A = bT1T�1A a.e., and hence

1Yn =
bT1Y \f'=n+1g + bT1Yn+1 a.e. for n 2 N0, (2)

repeated application of which (due to �(Yn)& 0) implies

1Yn =
X
k>n

bT k�n1Y \f'=kg a.e. for n 2 N0, (3)

generalizing (1). Observing that
SN�1
n=0 T

�nY =
SN�1
n=0 Yn (pairwise disjoint),

we see

wN (Y ) = �

 
N�1[
n=0

T�nY

!
=

Z
Y

 
N�1X
n=0

bTn1Yn
!
d� for N � 1. (4)

The condition we are going to impose on the reference set Y is that

1

wN (Y )

N�1X
n=0

bTn1Yn converges uniformly on Y as N !1. (5)

The limit function H : Y ! [0;1), the asymptotic entrance density of Y , au-
tomatically is a bounded probability density w.r.t. �. (It is the uniform limit
of a sequence of bounded functions.) In addition, we will assume that H is
uniformly sweeping for Y .

The examples discussed in section 9 actually have the property that

1

fk(Y )
� bT k1Y \f'=kg converges uniformly on Y as k !1, (6)

which, by (3), implies uniform convergence of 1
qn(Y )

� bTn1Yn , n � 1, which in
turn entails (5).

3 Main results

We are now ready to state the abstract distributional limit theorems which are
the main results of the present paper.
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Perhaps the most basic question about some c.e.m.p.t. T on (X;A; �) is
that for the asymptotic behaviour of ergodic sums Sn(f) :=

Pn�1
k=0 f � T k,

n � 1, of measurable functions f . If � is �nite (and w.l.o.g. normalized),
Birkho¤�s ergodic theorem provides us with a strong law of large numbers as-
serting that n�1Sn(f) �! �(f) a.e. for any f 2 L1(�). The picture is funda-
mentally di¤erent if T preserves an in�nite measure �: Not only will we have
n�1Sn(f) �! 0 a.e. for any f 2 L1(�), but it is in fact impossible to �nd any
sequence (an) of normalizing constants for which a�1n Sn(f) has nontrivial a.e.
limits for f 2 L+1 (�), cf. section 2.4 of [A0]. However, the Darling-Kac theorem
shows that there may still be (an) such that a�1n Sn(f) converges in distribution.

We let M�, � 2 [0; 1], denote a non-negative real random variable distrib-
uted according to the (normalized) Mittag-Le er distribution of order �, which
can be characterized by its moments

E [Mr
�] = r!

(�(1 + �))r

�(1 + r�)
, r 2 N0.

Our Darling-Kac theorem for in�nite m.p.t.s reads as follows:

Theorem 1 (Darling-Kac theorem) Let T be a c.e.m.p.t. on the �-�nite
measure space (X;A; �), and assume there is some Y 2 A, 0 < �(Y ) < 1,
such that

1

wN (Y )

N�1X
n=0

bTn1Yn ! H
uniformly on Y as N !1, with
H : Y ! [0;1) uniformly sweeping, (7)

and that
(wN (Y )) 2 R1�� for some � 2 [0; 1]. (8)

Then
1

an
Sn(f)

L(�)
=) �(f) � M� for all f 2 L1(�) s.t. �(f) 6= 0, (9)

where
an :=

1

�(1 + �)�(2� �) �
n

wn(Y )
, n � 1,

which is regularly varying of index �.

Remark 1 Notice thatM1 = 1, so that for � = 1 the result provides us with a
generalized weak law of large numbers. For � 2 (0; 1) the conclusion (9) of the
theorem is equivalent to distributional convergence of the j-th return time (suit-
ably normalized) of an arbitrary E 2 A, 0 < �(E) < 1, to a random variable
G� distributed according to the one-sided stable law of index �, characterized by

E
�
e�sG�

�
= e�s

�

, s > 0.

Ergodic sums of non-integrable functions will exhibit a di¤erent behaviour.
We shall content ourselves with occupation times Sn(1A) of sets with �(A) =1.
The situation �(Ac) < 1 being trivial, we are going to compare pairs A1, A2
of disjoint sets of in�nite measure. The additional structure enabling us to
derive a strong result again involves the dynamics relative to a reference set
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Y : We say that two disjoint sets A1; A2 � X are dynamically separated by
Y � X (under the action of T ) if x 2 A1 and Tnx 2 A2 (resp. x 2 A2
and Tnx 2 A1) imply the existence of some k = k(x) 2 f0; : : : ; ng for which
T kx 2 Y (i.e. T -orbits can�t pass from one set to the other without visiting Y ).
This condition prevents, for example, trivial periodicities between components
of in�nite measure (like A1 = 2Z and A2 = 2Z + 1 in the case of the simple
random walk on the integer lattice). If the sets are measurable, we de�ne
wN (Y;Ai) :=

PN�1
n=0 �(Y \ T�1Ai \ f' > ng), N � 1. We will see (cf. (50)

below) that if X = A1 [ Y [A2 (disjoint),

wN (Y;Ai) = �(Y \ T�1Ai) +
N�1X
n=1

�(Yn \Ai). (10)

For �; � 2 (0; 1) we let L�;� denote a random variable with (values in [0; 1]
and) distribution given by

Pr(fL�;� � tg) =
b sin��

�

Z t

0

x��1(1� x)��1
b2x2� + 2bx�(1� x)� cos��+ (1� x)2� dx

=
1

��
arccot

�
((1� t)=t)�
b sin��

+ cot��

�
, t 2 (0; 1],

where b := (1� �)=�. Continuously extending this family, we let L�;1 := 1 and
L�;0 := 0, � 2 [0; 1], and L1;� := �, Pr(L0;� = 1) = � = 1 � Pr(L0;� = 0).
These variables satisfy E[L�;� ] = � and Var[L�;� ] = (1��)�(1��), cf. section
3 of [T6], where the relation to one-sided stable variables G� is discussed, too.

Theorem 2 (Arcsine law for occupation times) Let T be a c.e.m.p.t. on
the �-�nite measure space (X;A; �), �(X) = 1, and Y be as in Theorem 1,
satisfying (7) and (8). Assume further that X = A1 [ Y [ A2 (measurable and
pairwise disjoint), where �(A1) > 0 and Y dynamically separates A1 and A2,
and that

1

wN (Y;A1)

N�1X
n=0

bTn1A1\Yn ! H1
uniformly on Y as N !1, with
H1 : Y ! [0;1) uniformly sweeping,

(11)
and

wN (Y;A1)

wN (Y )
�! � 2 [0; 1] as N !1. (12)

Then
1

n
Sn(1A)

L(�)
=) L�;� (13)

for all A 2 A satisfying �(A4A1) <1.

Remark 2 In the � = 1, � 2 (0; 1) case this gives a non-trivial weak law
of large numbers for the occupation times of the in�nite measure set A. The
question of the pointwise (a.e.) behaviour in such situations has been discussed
in [ATZ].

The following observations are very useful in applying the theorems, cf. Sec-
tion 9 below. The �rst enables us to deduce our conditions if we know about
smaller components partitioning Y c.
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Remark 3 Let T be a c.e.m.p.t. on (X;A; �), �(X) = 1, X = Y [
S
j2J Bj

(measurable and pairwise disjoint), where 0 < �(Y ) < 1, J is �nite, and
�(Bj) > 0 for all j 2 J . Suppose that Y dynamically separates Bi and Bj
whenever i 6= j. If, for all j 2 J ,

1

wN (Y;Bj)

N�1X
n=0

bTn1Bj\Yn ! Dj
uniformly on Y as N !1, with
Dj : Y ! [0;1) uniformly sweeping,

(14)
and

wN (Y;Bj)

wN (Y )
�! �j 2 [0; 1] as N !1, (15)

then T satis�es (7) with H =
P

j2J �jDj. Moreover, for any partition J = J1[
J2, the sets Ai :=

S
j2Ji Bj are dynamically separated by Y , and if

P
j2J1 �j >

0, then A1 satis�es (11) and (12) with � =
P

j2J1 �j and H1 = �
�1P

j2J1 �jDj.

The second provides us with an important way to �nd or recognize good
components Ai in systems known to have property (7).

Remark 4 Let T be a c.e.m.p.t. on the �-�nite measure space (X;A; �),
�(X) = 1, and Y be as in Theorem 1, satisfying (7). Assume further that
X = A1[Y [A2 (measurable and pairwise disjoint), and that there are disjoint
sets E1; E2 2 A \ Y with TAj nAj � Ej, j 2 f1; 2g. Then Y separates A1 and
A2, and if 1E1 �H is uniformly sweeping for Y , then (11) and (12) are satis�ed
with � =

R
E1
H d� > 0 and H1 = �

�11E1H. Moreover, Aj =
S
n�1 Yn \T�nEj

(mod �), j 2 f1; 2g, which indicates how to construct dynamically separated
pairs starting from subsets of Y . (To see this, verify that Aj \Yn = Yn\T�nEj
and hence bTn1Aj\Yn = 1Ej

bTn1Yn for n � 1.)
In many situations (see Example 1 and Section 9) there are natural candi-

dates Ai which can be shown to ful�ll the conditions of Theorem 2. Still we
will show, using the preceding remark, that in the situation of our Darling-Kac
theorem there are always sets satisfying the arcsine law:

Proposition 1 (Existence of sets satisfying the arcsine law) Let T be a
c.e.m.p.t. on the nonatomic �-�nite measure space (X;A; �), �(X) = 1, and
Y be as in Theorem 1, satisfying (7) and (8). Then, for any � 2 (0; 1), there
are pairs (A1; A2) satisfying the assumptions of Theorem 2.

The second arcsine limit theorem we discuss involves the times at which
orbits visit a good set. For Y 2 A, 0 < �(Y ) < 1, we de�ne the N0-valued
variables Zn(Y ), n 2 N0, on X by Zn(Y )(x) := max(f0g [ f1 � k � n : T kx 2
Y g). In the language of renewal theory, n� Zn(Y ) is the spent waiting time if
the process is inspected at time n. If � is a probability measure, the ergodic
theorem immediately shows2 that

n�1Zn(Y ) �! 1 a.e.

2Since Zn(Y ) =
PSn�1
i=0 ' � T iY with Sn :=

Pn
j=1 1Y � T j .
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The Dynkin-Lamperti arcsine theorem describes the asymptotic behaviour of
these renewal-theoretic random variables in in�nite measure preserving situa-
tions: For � 2 (0; 1) we let Z� denote a random variable (with values in [0; 1])
distributed according to the B(�; 1��)-distribution (sometimes called the gen-
eralized arcsine distribution), i.e.

Pr (fZ� � tg) =
sin��

�

Z t

0

dx

x1��(1� x)� , t 2 [0; 1].

Continuously extending this family to � 2 [0; 1] we let Z0 := 0 and Z1 := 1. We
are going to prove the following version of the Dynkin-Lamperti theorem for the
reference set Y . (For more speci�c maps, like the one in Example 1, it is easy
to extend the result to a large family of sets, see Proposition 6 and Remark 9
below.)

Theorem 3 (Arcsine law for waiting times) Let (X;A; �), T , and Y be as
in Theorem 1, satisfying (7) and (8). Then

1

n
Zn(Y )

L(�)
=) Z�. (16)

Remark 5 (Alternative formulations) Statement (16) is equivalent to as-
sertions about other renewal theoretic variables (cf. [Dy], [T4]): Let T be a
c.e.m.p.t. on (X;A; �), and for Y 2 A, 0 < �(Y ) < 1, de�ne Yn(Y )(x) :=
minfk > n : T kx 2 Y g = '(Tnx) + n, x 2 X, n � 0, so that Yn(Y )� n is the
residual waiting time. Due to fZn(Y ) � kg = fYk(Y ) > ng, (16) holds i¤

Yn(Y )

n

L(�)
=) Z�1� ; (17)

or, equivalently, ('�Tn)=n L(�)
=) Z�1� �1. Moreover, letting Vn(Y ) := Yn(Y )�

Zn(Y ) denote the total waiting time, (16) and (17) imply

Vn(Y )

n

L(�)
=) V�; (18)

where V0 :=1, V1 := 0, and V�, � 2 (0; 1), has distribution given by

Pr (fV� � tg) =
sin��

�

Z t

0

1� (max(1� x; 0))�
x1+�

dx, t � 0.

(In the situation of [T4] the converse implication holds as well.)

Having chosen (7) as our starting point, a natural question is how this con-
dition relates to other concepts in in�nite ergodic theory. Let us �rst see what
can be said about the all-important wandering rate (wN (Y )). For a c.e.m.p.t. T
on (X;A; �) the asymptotics of (wN (Y )) in general depends on the set Y , and
there are no sets with maximal rate, provided � is non-atomic (cf. Proposition
3.8.2 of [A0]). Still, there may be sets Y 2 A, 0 < �(Y ) < 1, with mini-
mal wandering rate, meaning that limN!1 wN (Z)=wN (Y ) � 1 for all Z 2 A,
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0 < �(Z) < 1. If such sets Y exist, wN (T ) := wN (Y ), N � 1, de�nes the
wandering rate of T (up to asymptotic equivalence), whose asymptotic propor-
tionality class is an isomorphism invariant (cf. [T2]). The following result can
be seen as an abstract version of Theorem 3 in [T2]. It shows, in particular,
that (wN (Y )) may be replaced by (wN (T )) in the assumptions of Theorems 1,
2, and 3.

Proposition 2 (Minimal wandering rates) Let T be a c.e.m.p.t. on the �-
�nite measure space (X;A; �), �(X) = 1. If Y 2 A, 0 < �(Y ) < 1, satis�es
(7), then Y has minimal wandering rate.

The c.e.m.p.t. T on (X;A; �) is called rationally ergodic if there exists some
Y 2 A, 0 < �(Y ) < 1, satisfying a Rényi inequality, i.e. there is some M > 0
such that Z

Y

Sn(1Y )
2 d� �M �

�Z
Y

Sn(1Y ) d�

�2
for all n � 1,

see Section 3.3 of [A0] and [A1]. We will prove

Proposition 3 (Rational ergodicity) Let T be a c.e.m.p.t. on the �-�nite
measure space (X;A; �), �(X) = 1. If Y 2 A, 0 < �(Y ) < 1, satis�es (7),
then it also satis�es a Rényi inequality, and T is rationally ergodic.

We �nally emphasize the di¤erence to earlier work on Darling-Kac- and
Dynkin-Lamperti-type results for m.p.t.s: The original proof (cf. [A0], [A2])
of the dynamical Darling-Kac theorem applies to c.e.m.p.t.s T on (X;A; �),
which are pointwise dual ergodic (p.d.e.), meaning that there exists a sequence
(an) = (an(T )) in R+ (the return sequence of T ) such that

1

an

n�1X
k=0

bT ku �! �(u) a.e. on X for each u 2 L1(�). (19)

The same is true for the Dynkin-Lamperti theorem (cf. [T4]) which in addition
requires the sets under consideration to be uniform sets, i.e. the convergence
in (19) has to be uniform on Y for some u 2 L+1 (�). (We shall revisit the
arguments in the appendix.) These are conditions about the full asymptotics
of the transfer operator. Checking them for speci�c systems like interval maps
with indi¤erent �xed points is a nontrivial matter, cf. [A3], [T3], and [Z2].
In [T6] a di¤erent approach, based on property (6), has been used to derive

a version of the arcsine law for occupation times for certain in�nite measure pre-
serving interval maps (including Boole�s transformation). Here, we will develop
this method more systematically, showing that the (much weaker) entrance con-
dition (5) is a suitable starting point for all three limit theorems. On the other
hand, we demonstrate that for a large class of in�nite measure preserving in-
terval maps these conditions which only concern the dynamics up to the �rst
entrance to Y can be veri�ed with less e¤ort than (19).

9



4 Outline of the approach and analytic tools

We give a brief sketch of our method and provide a few auxiliary results which
will be used in the sequel. To begin with, we recall the most important single
observation concerning strong distributional convergence: Given distributional
convergence w.r.t. some probability measure � � m, strong distributional con-
vergence is automatic if the random variables are asymptotically invariant in
measure3 under an ergodic nonsingular transformation T on (X;A;m).

Proposition 4 (Strong distributional convergence) Let T be a nonsingu-
lar ergodic transformation on the �-�nite measure space (X;A;m). Assume
that Rn : X ! R, n � 1, are measurable functions satisfying

Rn � T �Rn
m�! 0 or

Rn � T
Rn

m�! 1. (20)

If Rn
�
=) R for some probability measure � � m and some random variable R

taking values in R, then Rn
L(m)
=) R.

(See [Ea] for the probability preserving case, and [A2] or section 3.6 of [A0]
for the case of nonsingular T and ergodic sums Rn = a�1n Sn(f). As pointed
out in [T4], the argument given in the latter reference actually applies to the
more general situation considered here.) This remarkable observation shows
that many distributional limit theorems for dynamical systems, which are usu-
ally formulated in terms of the invariant measure, extend at once to arbitrary
absolutely continuous initial distributions �. Moreover, we shall see that it also
is a strong tool for establishing distributional limit theorems in the �rst place.

The random variables occurring in our results all satisfy the asymptotic
invariance condition Rn � T �Rn

��! 0. Therefore it is enough to prove distri-
butional convergence w.r.t. one particular initial distribution � � �, which we
will choose to be concentrated on the reference set Y . Since in each case the
distribution of the limiting variable R is determined by its moments, Rn

�
=) R

follows as soon as the moments of the Rn converge, i.e.
R
X
Rrn d� ! E[Rr]

as n ! 1 for all r � 1. All variables Rn we are going to consider here are
non-negative.

To establish convergence of moments, we are essentially going to use the
following scheme: We dissect trajectories of points in the reference set Y at their
�rst return to Y , thus obtaining a recursion formula which, on each Y \f' = kg,
expresses Rn in terms of Rn�k � T k, and automatically gives corresponding
formulae for the Rrn. These dissection identities being convolution-like, we pass
to Laplace transforms, turning them into product form. The implicit recursive
relations for the Laplace transforms of the moments involve the bT k1Y \f'=kg
and bTn1Yn . Our condition (5) together with regular variation now enables us to
derive explicit asymptotic recursions for the transforms. Technically, this step
is taken care of by Lemmas 2 and 3 below.

3On a �-�nite measure space (X;A;m) convergence in measure w.r.t. m, Vn m�! V , means
convergence in measure, Vn

��! V , for all probability measures � � m.
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We will, however, encounter a problem with the asymptotic recursions thus
obtained: They involve a change of measure, and express the moments of the
Rn w.r.t. one probability measure in terms of its lower-order moments w.r.t. a
di¤erent measure. This will be resolved by means of an important consequence
of Proposition 4, the equivalent moments principle, Lemma 4 below. Employing
this we end up with a proper asymptotic recursion formula for the transforms
of the moments w.r.t. one particular measure. Completing the proofs then is a
matter of asymptotic analysis.

We supply a number of important analytic tools. Throughout we use the
convention that for an; bn � 0 and C 2 [0;1),

an � C � bn as n!1 means bn > 0 for n � n0 and lim
n!1

an
bn
= C,

even if C = 0 (and analogously for functions and f(s) � C � g(s) as s & 0).
We shall heavily depend on Karamata�s Tauberian theorem for discrete Laplace
transforms and the Monotone Density theorem for regularly varying functions,
cf. corollary 1.7.3 of [BGT]. We will need the following version:

Proposition 5 (Karamata�s Tauberian Theorem, KTT) Let (bn) be a se-
quence in [0;1) such that for all s > 0, B(s) :=

P
n�0 bn e

�ns <1. Let ` 2 R0

and �; # 2 [0;1). Then

B(s) � #
�
1

s

��
`

�
1

s

�
as s& 0, (21)

i¤
n�1X
k=0

bk �
#

�(�+ 1)
n�`(n) as n!1. (22)

If (bn) is eventually monotone and � > 0, then both are equivalent to

bn �
#�

�(�+ 1)
n��1`(n) as n!1. (23)

Remark 6 In corollary 1.7.3 of [BGT], the last equivalence is stated under the
additional assumption # > 0. This is, however, an unnecessary restriction. The
way we have written the constant in (23), the implication (22))(23) remains
true even for � = 0 (but to conclude that (bn) 2 R��1 one clearly needs #� >
0). The implication (23))(22) requires � > 0, but does not depend on the
monotonicity condition.

We will also exploit the Monotone Density theorem in the form of the fol-
lowing di¤erentiation rules. To formulate them, de�ne

c�;r := �(�+ 1) : : : (�+ r � 1) = (�1)rr!
�
��
r

�
for � 2 R and r 2 N0, and let c�;�1 := 0. Notice that

c�;r � r c�;r�1 = c��1;r for all r 2 N0. (24)

11



Lemma 1 (Di¤erentiation lemma) a) Let f : (0; �) ! (0;1) be continu-
ously di¤erentiable, g 2 R0(0), and let � 2 R, # 2 [0;1). If f 0 is monotone,
then

f(s) � # � s�g(s) as s& 0

implies
f 0(s) � #� � s��1g(s) as s& 0.

b) Consequently, if bn � 0, n � 0, are such that B(s) :=
P

n�0 bne
�ns <1 for

s > 0, and if
B(s) � # �G(s) as s& 0

with G 2 R��(0), and �; # 2 [0;1), then, for r 2 N0,

(�1)rB(r)(s) =
X
n�0

nrbn e
�ns � # � c�;r

�
1

s

�r
G(s) as s& 0. (25)

(Unless explicitely stated otherwise, we agree that 00 := 1 in coe¢ cients of
power series.) Next, we provide the two lemmas mentioned above.

Lemma 2 (Integrating transforms I) Let T be a nonsingular transforma-
tion on the �-�nite measure space (X;A;m), Y 2 A with 0 < m(Y ) <1, and
H a nonnegative measurable function, supported on and uniformly sweeping in
K 2 N0 steps for Y . Suppose that Rn : X ! [0;1), n � 0, are measurable
satisfying

0 <
X
n�0

�Z
Y

Rn �H dm
�
e�ns <1 for all s > 0,

and that for all k 2 f0; : : : ;Kg,Z
Y

Rn � T k �H dm = O

�Z
Y

Rn+k �H dm
�

as n!1.

Let vn : Y ! [0;1), n � 0, be bounded measurable functions such that for all
s > 0 we have 0 <

P
n�0(

R
Y
vn dm) e

�ns <1. IfPn
k=0 vkPn

k=0

R
Y
vn dm

�! H uniformly on Y as n!1, (26)

then Z
Y

0@X
n�0

vn e
�ns

1A �
0@X
n�0

Rn e
�ns

1A dm

�
X
n�0

�Z
Y

vn dm

�
e�ns �

X
n�0

�Z
Y

Rn �H dm
�
e�ns as s& 0.

Condition (26) obviously holds if
R
Y
vn dm is eventually positive andX

n�0

Z
Y

vn dm =1 and
vnR

Y
vn dm

�! H uniformly on Y . (27)
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Proof. We have to show thatZ
Y

Hs �
X
n�0

Rn e
�ns dm �

X
n�0

�Z
Y

Rn �H dm
�
e�ns as s& 0,

where

Hs :=

P
n�0 vn e

�nsP
n�0(

R
Y
vn dm) e�ns

=

P
n�0 (

Pn
k=0 vk) e

�nsP
n�0

�Pn
k=0

R
Y
vk dm

�
e�ns

.

Recalling that the functions vn (and hence also H) are bounded, it is straight-
forward to verify that

Hs �! H uniformly on Y as s& 0.

Therefore, given " > 0 there is some s" > 0 such that for s 2 (0; s"),������
Z
Y

Hs �
X
n�0

Rn e
�ns dm�

X
n�0

�Z
Y

Rn �H dm
�
e�ns

������ � "
X
n�0

�Z
Y

Rn dm

�
e�ns,

and the proof will be complete if we show that

X
n�0

�Z
Y

Rn dm

�
e�ns = O

0@X
n�0

�Z
Y

Rn �H dm
�
e�ns

1A as s& 0.

Since H is uniformly sweeping in K steps for Y , we have C
PK

k=0
bT kH � 1 a.e.

on Y for some C > 0. Therefore, for all n � 0,Z
Y

Rn dm � C
KX
k=0

Z
Y

(Rn � T k) �H dm � eC KX
k=0

Z
Y

Rn+k �H dm,

which implies

X
n�0

�Z
Y

Rn dm

�
e�ns �

 eC KX
k=0

eks

!X
n�0

�Z
Y

Rn �H dm
�
e�ns for s > 0.

Besides this elementary observation, we will also make use of a more sophis-
ticated version which covers derivatives and also provides us with a monotone
density result. This result also turns out to be useful in other situations, cf. the
appendix. We state it as a separate lemma since it is worth pointing out that
the easy Lemma 2 su¢ ces if we content ourselves with the stronger assumption
(6) instead of (5) in the arcsine theorems.

Lemma 3 (Integrating transforms II) Let (X;A;m), T , Y , H, and (Rn)
be as in Lemma 2, and let vn : Y ! [0;1), n � 0, be bounded measurable
functions with

R
Y

P
n�0 vn dm > 0, and bn � 0, n � 0, be constants such that

13



B(s) :=
P

n�0 bn e
�ns 2 R��(0) for some � 2 [0;1).

a) Assume that Pn
k=0 vkPn

k=0

R
Y
vk dm

�! H
uniformly on Y
as n!1, (28)

and that for some # 2 [0;1),
nX
k=0

Z
Y

vk dm � # �
nX
k=0

bk as n!1. (29)

Then, for all r 2 N0,Z
Y

0@X
n�1

nrvn e
�ns

1A �
0@X
n�0

Rn e
�ns

1A dm (30)

� # � (�1)rr!
�
��
r

��
1

s

�r
B(s)

X
n�0

�Z
Y

Rn �H dm
�
e�ns as s& 0.

b) If, moreover, vn & 0 a.e. on Y as n ! 1, so that vn =
P

k>n uk with
un � 0, n � 1, measurable, then, for all r � 1,Z

Y

0@X
n�1

nrun e
�ns

1A �
0@X
n�0

Rn e
�ns

1A dm (31)

� # � (�1)r�1r!
�
1� �
r

��
1

s

�r�1
B(s)

X
n�0

�Z
Y

Rn �H dm
�
e�ns as s& 0.

Proof. a) Suppose �rst that r = 0. By Lemma 2 and (29) we �nd

Z
Y

0@X
n�0

vn e
�ns

1A �
0@X
n�0

Rn e
�ns

1A dm

�

0@X
n�0

�Z
Y

vn dm

�
e�ns

1AX
n�0

�Z
Y

Rn �H dm
�
e�ns

� # �B(s)
X
n�0

�Z
Y

Rn �H dm
�
e�ns as s& 0.

If r � 1 we let Vn :=
Pn

k=0 vk, Bn :=
Pn

k=0 bk, n � 0. On Y we have, for s > 0,X
n�1

nrvn e
�ns = (1� e�s)

X
n�0

(n+ 1)rVn e
�ns �

X
n�0

((n+ 1)r � nr)Vn e�ns.

Since
VnR

Y
Vn dm

�! H uniformly on Y as n!1, (32)
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and (n+ 1)r � nr, Lemma 2 implies

Z
Y

0@X
n�0

(n+ 1)rVn e
�ns

1A �
0@X
n�0

Rn e
�ns

1A dm

�

0@X
n�0

nr
�Z

Y

Vn dm

�
e�ns

1AX
n�0

�Z
Y

Rn �H dm
�
e�ns as s& 0.

Now X
n�0

Bne
�ns =

1

1� e�sB(s) �
1

s
B(s) 2 R�(�+1)(0)

as s& 0, so that by (29) and part b) of Lemma 1,

X
n�0

nr
�Z

Y

Vn dm

�
e�ns � # �

X
n�0

nrBn e
�ns � # � c�+1;r

�
1

s

�r+1
B(s)

as s& 0. Consequently,

(1� e�s)
Z
Y

0@X
n�0

(n+ 1)rVn e
�ns

1A �
0@X
n�0

Rn e
�ns

1A dm

� # � c�+1;r
�
1

s

�r
B(s)

X
n�0

�Z
Y

Rn �H dm
�
e�ns as s& 0.

Due to (32) and ((n+ 1)r � nr) � r nr�1 as n ! 1, we can conclude analo-
gously that

Z
Y

0@X
n�0

((n+ 1)r � nr)Vn e�ns
1A �

0@X
n�0

Rn e
�ns

1A dm

� # � r c�+1;r�1
�
1

s

�r
B(s)

X
n�0

�Z
Y

Rn �H dm
�
e�ns as s& 0.

ThereforeR
Y

�P
n�1 n

rvn e
�ns
�
�
�P

n�0Rn e
�ns
�
dm�

1
s

�r
B(s)

P
n�0

�R
Y
Rn �H dm

�
e�ns

�! #�(c�+1;r�r c�+1;r�1) = #�c�;r

as s& 0, which completes the proof of (30).

b) We need to sharpen (30) to get (31) for r � 1. To do so, we use the
identity

X
n�1

nrun e
�ns = e�s

r�1X
j=0

�
r

j

�X
n�0

njvn e
�ns � (1� e�s)

X
n�0

nrvn e
�ns on Y ,
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which is straightforward from un = vn�1 � vn, n � 1. According to (30) we
have, as s& 0,

e�s
r�1X
j=0

�
r

j

�Z
Y

0@X
n�0

njvn e
�ns

1A �
0@X
n�0

Rn e
�ns

1A dm

� # �
r�1X
j=0

�
r

j

�
c�;j

�
1

s

�j
B(s)

X
n�0

�Z
Y

Rn �H dm
�
e�ns

� # � r c�;r�1
�
1

s

�r�1
B(s)

X
n�0

�Z
Y

Rn �H dm
�
e�ns

and

(1� e�s)
Z
Y

0@X
n�0

nrvn e
�ns

1A �
0@X
n�0

Rn e
�ns

1A dm

� # � s c�;r
�
1

s

�r
B(s)

X
n�0

�Z
Y

Rn �H dm
�
e�ns.

Combinings these observations with r c�;r�1�c�;r = �c��1;r = (�1)r�1r!
�
1��
r

�
,

our claim (31) follows.

To conclude this preparatory section we prove the crucial equivalent mo-
ments principle. As it is of some independent interest we give a version which
is somewhat more general than what we actually need below.

Lemma 4 (Equivalent moments principle) Let T be a nonsingular ergodic
transformation on the �-�nite measure space (X;A;m), and let Rn : X !
[0;1), n � 1, be measurable, satisfying (20). Suppose that �; �� � m are proba-
bility measures on (X;A) such that for all r 2 N0 the sequences (

R
X
Rrn d�

(�))n�1
are bounded, and assume that limn!1

R
X
Rn d� > 0. Then

lim
n!1

R
X
Rrn d�

�R
X
Rrn d�

= 1 for all r 2 N0.

Proof. Take some p 2 N and let (nk) be a subsequence of indices such that

� := lim
k!1

R
X
Rpnk d�

�R
X
Rpnk d�

2 [0;1]

exists. We show that necessarily � = 1. By Helly�s compactness theorem and
Proposition 4 there is some subsequence (ml) of (nk) and some random variable

R taking values in [0;1] such that Rml

L(m)
=) R. Since supn�1

R
X
Rrn d�

(�) <1
for each r 2 N0, we conclude that E[Rr] <1 and liml!1

R
X
Rrml

d�(�) = E[Rr]
for all r � 0. As limn!1

R
X
Rn d� > 0, we know that E[R] 2 (0;1), and hence

E[Rr] 2 (0;1) for all r 2 N0 (and in particular for r = p). Hence � = 1.
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5 The Darling-Kac theorem

Suppose that the assumptions of Theorem 1 are satis�ed. As a consequence
of Proposition 4 for Rn := a�1n Sn(f) and Hopf�s ratio ergodic theorem, the
conclusion of our theorem follows as soon as there is any f 2 L+1 (�) and any
� � � for which a�1n Sn(f)

�
=) �(f)M�, and we will choose f = 1Y and

� := �Y , thus considering the occupation times
4 Sn :=

Pn
j=1 1Y � T j , n � 1.

As the Mittag-Le er laws are determined by their moments, the theorem can
be proved by showing thatZ

Y

�
Sn
an

�r
d�Y �! �(Y )r E[Mr

�] = �(Y )
r r!

(�(1 + �))r

�(1 + r�)
, r 2 N0. (33)

We proceed along the lines sketched above. The dissection identity is

Sn =

�
1 + Sn�k � T k on Y \ f' = kg, 1 � k � n,
0 on Y \ f' > ng, for n � 0, (34)

which leads to

Lemma 5 (Splitting moments at the �rst return) Let T be a c.e.m.p.t.
of (X;A; �), consider Y 2 A, 0 < �(Y ) < 1, and de�ne Sn :=

Pn
j=1 1Y � T j,

n � 0. For all r � 1 and s > 0we then have

Z
Y

0@X
n�0

bTn1Yn e�ns
1A �

0@X
n�0

Srn e
�ns

1A d�

=
1

1� e�s
r�1X
j=0

�
r

j

�Z
Y

0@X
n�1

bTn1Y \f'=ng e�ns
1A �

0@X
n�0

Sjn e
�ns

1A d�:

Proof. According to the dissection identity (34) and the fact that bT k1Y \f'=kg =
0 a.e. on Y c, we obtain for n � 0 and r � 1,Z

Y

Srn d� =
nX
k=1

Z
Y \f'=kg

(1 + Sn�k)
r � T k d�

=
nX
k=1

Z
Y

bT k1Y \f'=kg � (1 + Sn�k)r d�
=

nX
k=1

Z
Y

bT k1Y \f'=kg �
0@ rX
j=0

�
r

j

�
Sjn�k

1A d�

=
rX
j=0

�
r

j

�Z
Y

nX
k=1

bT k1Y \f'=kg � Sjn�k d�:
4Working with Sn rather than Sn(1Y ) leads to slightly nicer formulae.
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Consequently, for s > 0,X
n�0

�Z
Y

Srn d�

�
e�ns

=
r�1X
j=0

�
r

j

�Z
Y

0@X
n�1

bTn1Y \f'=ng e�ns
1A �

0@X
n�0

Sjn e
�ns

1A d�

+

Z
Y

0@X
n�1

bTn1Y \f'=ng e�ns
1A �

0@X
n�0

Srn e
�ns

1A d�:

Observe that the sum on the right-hand side agrees with the one in the identity
we wish to prove. Recalling (3) we see that

1�
X
n�1

bTn1Y \f'=ng e�ns = (1� e�s)
X
n�0

 X
k>n

bT k1Y \f'=kg
!
e�ns

= (1� e�s)
X
n�0

bTn1Yn e�ns a.e. on Y , (35)

and our assertion follows.

Condition (7) now enables us to convert this implicit recursion formula into
a simpler explicit asymptotic recursion formula. The price we pay is a change
of measure.

Lemma 6 (Asymptotic recursion) If, in the situation of the previous lemma,

1

wN (Y )

N�1X
n=0

bTn1Yn ! H
uniformly on Y as N !1, with
H : Y ! [0;1) uniformly sweeping,

then, for any r � 1,X
n�0

�Z
Y

Srn �H d�
�
e�ns � r

sQY (s)

X
n�0

�Z
Y

Sr�1n d�Y

�
e�ns,

as s& 0, where QY (s) :=
P

n�0 qn(Y ) e
�ns, s > 0.

Proof. As a consequence of Lemma 2 applied to Rn := Srn and vn := bTn1Yn ,
we �nd for the left-hand side of Lemma 5 thatZ

Y

0@X
n�0

bTn1Yn e�ns
1A �

0@X
n�0

Srn e
�ns

1A d� (36)

� �(Y )QY (s)
X
n�0

�Z
Y

Srn �H d�
�
e�ns

as s& 0. To deal with the right-hand side, we use (35) and the identity

(1� e�s)QY (s) = 1� FY (s)
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for FY (s) :=
P

k�1 fk(Y ) e
�ks, s > 0, to see that on Y ,

1�
X
n�1

bTn1Y \f'=ng e�ns = (1� FY (s))Pn�0
bTn1Yn e�ns
QY (s)

.

As in the proof of Lemma 2 we haveP
n�0

bTn1Yn e�ns
QY (s)

�! �(Y ) �H uniformly on Y as s& 0,

and since 1� FY (s)! 0 as s& 0, we conclude thatX
n�1

bTn1Y \f'=ng e�ns �! 1 uniformly on Y as s& 0.

Hence, for 0 � j < r, we obtain as s& 0,

Z
Y

0@X
n�1

bTn1Y \f'=ng e�ns
1A �

0@X
n�0

Sjn e
�ns

1A d� �
Z
Y

0@X
n�0

Sjn e
�ns

1A d�.

(37)
We claim that on the right-hand side of Lemma 5 the term with j = r � 1
dominates the others, thus determining the asymptotics. To see this, notice
that for 0 � j < r � 1 we have

R
Y
Sjn d� = o(

R
Y
Sr�1n d�) as n ! 1 since

Sn !1 a.e. on X. Combining this with (36) and (37) our assertion follows.

The proof of the theorem makes use of the second of the following simple
observations (see also 2.10.2 and 2.10.3 of [BGT]).

Lemma 7 Let (bn)n�0 be a non-negative sequence and let B(s) :=
P

n�0 bn e
�ns,

s > 0. Then
N�1X
n=0

bn = O

�
B

�
1

N

��
as N !1.

If, moreover, (bn) is increasing, then

bn = O

�
1

n
B

�
1

n

��
as n!1.

Proof. For n � 1,

N�1X
n=0

bn � e
N�1X
n=0

bn e
� n
N � eB

�
1

N

�
.

If the sequence is increasing, then

n bn �
2nX
k=n

bk � e2
2nX
k=n

bk e
�k=n � e2B

�
1

n

�
.
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Proof of Theorem 1. We are going to convert the formula of Lemma 6 into
an actual recursion formula by showing that for all r � 1,Z

Y

Srn �H d� �
Z
Y

Srn d�Y as n!1. (38)

In view of Lemma 6 and the fact that trivially
P

n�0
�R
Y
S0n d�Y

�
e�ns � s�1,

this will immediately imply that for all r � 0,X
n�0

�Z
Y

Srn d�Y

�
e�ns � r!

s

�
1

sQY (s)

�r
as s& 0. (39)

To establish (38), we apply the equivalent moments principle, Lemma 4. We
�rst claim that for all r 2 N0,Z

Y

Srn �H d� �
Z
Y

Srn d�Y as n!1, (40)

i.e. that the ratio is asymptotically bounded away from zero and in�nity. Choose
K 2 N0 such that

PK
k=0

bT kH is bounded away from zero (mod �) on Y . Since
this function is also bounded above, we obviously haveZ

Y

Srn �
 

KX
k=0

bT kH! d� � Z
Y

Srn d�Y as n!1 for any r 2 N0.

On the other hand,Z
Y

Srn �H d� �
Z
Y

Srn �
 

KX
k=0

bT kH! d� � KX
k=0

Z
Y

Srn � T k �H d�

�
KX
k=0

Z
Y

(Sn + k)
r �H d� � Cr

Z
Y

Srn �H d�+Kr

for constants Cr and Kr, r 2 N0, and (40) follows.

Using (40) and Lemma 6 we see by induction thatX
n�0

�Z
Y

Srn d�Y

�
e�ns = O

�
1

s

�
1

sQY (s)

�r�
as s& 0

for each r 2 N0. As a consequence of the second statement of Lemma 7, thereforeZ
Y

Srn d�Y = O

��
n

QY (1=n)

�r�
as n!1 for any r 2 N0. (41)

Since (wN (Y )) is regularly varying of index 1� �, � 2 [0; 1], we have

QY (s) =

�
1

s

�1��
`

�
1

s

�
, s > 0, (42)

with ` slowly varying at in�nity. ThusZ
Y

Srn d�Y = O

��
n�

`(n)

�r�
as n!1 for any r 2 N0. (43)
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Taking r = 1 in Lemma 6 we obtain

X
n�0

�Z
Y

Sn �H d�
�
e�ns �

�
1

s

�1+�
1

`(1=s)
as s& 0,

and, since (
R
Y
SnH d�) is monotone (cf. KTT),Z

Y

Sn �H d� �
1

�(1 + �)

n�

`(n)
as n!1. (44)

In view of (40), (43), and (44) the sequence given by Rn := n��`(n)Sn, n � 1,
satis�es the conditions of Lemma 4 with respect to the probability measures in
question and we conclude that (38) holds.

According to our asymptotic recursion (39), and (42),

X
n�0

�Z
Y

Srn d�Y

�
e�ns � r!

�
1

s

�1+�r �
1

`( 1s )

�r
as s& 0

for all r � 0. Due to (42) and KTT we have

wn(Y ) �
�(Y )

�(2� �)n
1��`(n) as n!1.

By KTT and monotonicity of the sequences (
R
Y
Srn d�Y )n�1,Z

Y

�
1

an
Sn

�r
d�Y �! �(Y )r � r! �(1 + �)

r

�(1 + r�)
= �(Y )r � E[Mr

�] (45)

as n!1 for all r � 0, where

an �
n�

�(Y )�(1 + �) `(n)
� 1

�(1 + �)�(2� �) �
n

wn(Y )
as n!1.

This establishes (33) and thus completes the proof.

Remark 7 (Formulation in terms of moment sets) We brie�y review our
argument in the light of the account of the Darling-Kac theorem given in [A0].
Let T ba a c.e.m.p.t. on (X;A; �). We shall call Y 2 A, 0 < �(Y ) < 1, a
moment set (for T ), if there exists some function V : (0; �)! (0;1) such thatX

n�0

�Z
Y

Srn d�Y

�
e�ns � r!

s
V (s)r as s& 0 for all r 2 N0.

Choosing r = 1 we see that necessarily

V (s) � UY (s) :=
X
n�0

un(Y ) e
�ns, s > 0,

where un(Y ) := �Y (Y \ T�nY ), n � 0. Hence we may w.l.o.g. replace V by
UY in the de�nition of a moment set (as in section 3.6 of [A0]). By KTT one
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sees that this condition implies (33) provided that UY is regularly varying (cf.
[DK] or Theorem 3.6.4 of [A0]):

If T has a moment set Y with UY 2 R�(0), then
1
an
Sn(f)

L(�)
=) �(f)M� for all f 2 L1(�) s.t. �(f) 6= 0,
where an := �(Y )�1

Pn�1
j=0 uj(Y ), n � 1.

The main steps of the proof of the DK-theorem for pointwise dual ergodic
transformations given in [A0] are to show (cf. Theorem 3.7.2 and Proposition
3.8.7 there): If T is p.d.e. and Y 2 A, 0 < �(Y ) <1, satis�es 1an

n�1X
j=0

bT j1Y

L1(Y )

�M <1 for n � 0,

then Y is a moment set, and (wN (Y )) 2 R1�� implies UY 2 R�(0). We will
reconsider this result in the appendix.
The main step of our argument above can be summarized as follows: If

Y 2 A, 0 < �(Y ) < 1, satis�es (7), and (wN (Y )) 2 R1��, then Y is a
moment set with 1=V (s) = sQY (s) (which is the asymptotic renewal equation,
cf. [A0], 3.8.6).

6 The arcsine law for occupation times

Suppose that the assumptions of Theorem 2 are satis�ed. If �(A1) < 1, then
clearly � = 0 and the conlusion follows from the ergodic theorem. We therefore
assume that �(A1) = 1. Again appealing to the ergodic theorem we see that
it is enough to consider A := A1. Due to Proposition 4 we need only prove
distributional convergence w.r.t. the particular probability measure � � � with
density H. By boundedness of the variables under consideration, it su¢ ces to
prove convergence of the moments, i.e.Z

Y

�
Sn
n

�r
�H d� �! E[Lr�;� ] as n!1 for all r � 1. (46)

The dissection identity for Sn :=
Pn

j=1 1A � T j , n � 1, reads as follows

Sn =

8>><>>:
k � 1 + Sn�k � T k on Y \ T�1A \ f' = kg, 1 � k � n,
Sn�k � T k on Y \ T�1Ac \ f' = kg, 1 � k � n,
n on Y \ T�1A \ f' > ng,
0 on Y \ T�1Ac \ f' > ng,

for n � 0,

(47)
which results in

Lemma 8 (Splitting moments at the �rst return) Let T be a c.e.m.p.t.
of (X;A; �), and assume that X = A[Y [B (measurable and pairwise disjoint)
such that Y 2 A, 0 < �(Y ) < 1, dynamically separates A and B. Let Sn :=

22



Pn
j=1 1A � T j, n � 1, then, for r � 1 and s > 0,

(1� e�s)
Z
Y

0@X
n�0

bTn1Yn e�ns
1A0@X

n�0
Srn e

�ns

1A d�

= e�s
r�1X
j=0

�
r

j

�Z
Y

0@X
n�1

nr�j bTn+11Y \T�1A\f'=n+1g e�ns
1A0@X

n�0
Sjn e

�ns

1A d�

+
X
n�1

nr�(Y \ T�1A \ f' > ng) e�ns.

Proof. Analogous to Lemma 5, compare Lemma 1 of [T6]: For n � 0 and
r � 1,Z
Y

Srn d� =
nX
k=1

Z
Y \T�1A\f'=kg

(k � 1 + Sn�k)r � T k d�

+
nX
k=1

Z
Y \T�1Ac\f'=kg

Srn�k � T k d�+ nr�(Y \ T�1A \ f' > ng)

=
r�1X
j=0

�
r

j

�Z
Y

nX
k=1

(k � 1)r�j � bT k1Y \T�1A\f'=kg Sjn�k d�
+

Z
Y

nX
k=1

bT k1Y \f'=kg � Srn�k d�+ nr�(Y \ T�1A \ f' > ng).
Therefore, for s > 0,X

n�0

�Z
Y

Srn d�

�
e�ns

= e�s
r�1X
j=0

�
r

j

�Z
Y

0@X
n�1

nr�j bTn+11Y \T�1A\f'=n+1g e�ns
1A0@X

n�0
Sjn e

�ns

1A d�

+

Z
Y

0@X
n�1

bTn1Y \f'=ng e�ns
1A0@X

n�0
Srn e

�ns

1A d�

+
X
n�1

nr�(Y \ T�1A \ f' > ng) e�ns.

Using (35), the assertion follows.

Lemma 9 (Asymptotic recursion) Under the assumptions of Theorem 2,
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we have for r � 1, as s& 0,

1

r!

X
n�0

�Z
Y

Srn �H d�
�
e�ns

� (�1)r�

24r�1X
j=0

(�1)j+1
�
�

r � j

��
1

s

�r�j
� 1
j!

X
n�0

�Z
Y

Sjn �H1 d�
�
e�ns

+

�
�� 1
r

��
1

s

�r+1#
.

Proof. As, in particular, all assumptions of Theorem 1 are ful�lled, we �nd for
the left-hand side of Lemma 8, exactly as in the proof of Lemma 6, that

(1� e�s)
Z
Y

0@X
n�0

bTn1Yn e�ns
1A �

0@X
n�0

Srn e
�ns

1A d� (48)

� �(Y ) sQY (s)
X
n�0

�Z
Y

Srn �H d�
�
e�ns, as s& 0.

Turning to the right-hand side of Lemma 8, we consider the rightmost sum.
Letting QY;A(s) :=

P
n�0 �Y (Y \ T�1A \ f' > ng) e�ns, s > 0, we have

QY;A(s) � � �QY (s) as s& 0,

since wn(Y;A) � � � wn(Y ) as n!1. Due to (wn(Y )) 2 R1��, we have

QY (s) =

�
1

s

�1��
`

�
1

s

�
, s > 0,

with ` slowly varying at in�nity, and thus

QY;A(s) � � �
�
1

s

�1��
`

�
1

s

�
, as s& 0.

Therefore, according to Lemma 1, as s& 0,X
n�1

nr�(Y \ T�1A \ f' > ng) e�ns � (�1)r� r!
�
�� 1
r

��
1

s

�r
�(Y )QY (s).

(49)
For the other summands on the right-hand side of Lemma 8, we �x some j 2
f0; : : : ; r� 1g. We claim that we can apply part b) of Lemma 3 with Rn := Sjn,
un := bTn+11Y \T�1A\f'=n+1g, # := �, and � := 1� �, thereby obtainingZ

Y

0@X
n�1

nr�j bTn+11Y \T�1A\f'=n+1g e�ns
1A0@X

n�0
Sjn e

�ns

1A d�

� (�1)r�j�1� (r � j)!
�
�

r � j

��
1

s

�r�j�1
�(Y )QY (s)

�
X
n�0

�Z
Y

Sjn �H1 d�
�
e�ns
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as s& 0. Combining this with (48) and (49), our assertion then follows.

It remains to check that the assumptions of Lemma 3 are satis�ed. We claim
that for n � 1,

vn�1 =
X
k>n

bT k1Y \T�1A\f'=kg = bTn1A\Yn a.e. for n � 1.

To verify this, notice that for 1 � l � k � 1, k � 2, we have, due to dynamical
separation,

Y \ T�1A \ f' = kg = Y \ T�lA \ f' = kg,

and hence bT l1Y \T�1A\f'=kg = 1A bT l1Y \f'=kg a.e.. Consequently, by (3),
1A\Yn =

X
k>n

1A bT k�n1Y \f'=kg =X
k>n

bT k�n1Y \T�1A\f'=kg a.e. for n � 1,

(50)
as required (hence (10)). It is then clear from our assumption (11) thatPn

k=0 vkPn
k=0

R
Y
vk d�

=

Pn+1
k=1

bT k1A\YkPn+1
k=1 �(A \ Yk)

�! H1
uniformly on Y
as n!1.

Moreover,
Pn

k=0

R
Y
vk d� � � � wn(Y ) as n ! 1 with (wn(Y )) 2 R1��, and

B(s) = �(Y )QY (s). The remaining assumptions of Lemma 3 clearly being
ful�lled, we are done.

Proof of Theorem 2. We �rst recall that according to Proposition 1 of [T6]
(and by elementary considerations for the boundary cases), if �; � 2 [0; 1],

E[Lr�;� ] = (�1)r�

24r�1X
j=0

(�1)j+1
�
�

r � j

�
E[Lj�;� ] +

�
�� 1
r

�35 , r � 1. (51)

Taking r = 1 in the conclusion of the previous lemma, we see that

X
n�0

�Z
Y

Sn �H d�
�
e�ns � � �

�
1

s

�2
as s& 0. (52)

Due to monotonicity of (
R
Y
Sn �H d�)n�1 we can conclude (cf. KTT) thatZ

Y

Sn �H d� � � � n as n!1. (53)

For � = 0 this means n�1
R
Y
Sn �H d�! 0, and hence n�1Sn

L(�)
=) L�;� = 0, as

required.
Assume now that � > 0. To obtain a proper recursion formula from Lemma

9, we apply Lemma 4 to the sequence given by Rn := n�1Sn, n � 1. As (Rn)
is uniformly bounded and by (53) satis�es lim

n!1

R
Y
Rn �H d� > 0, we obtainZ

Y

Srn �H d� �
Z
Y

Srn �H1 d� as n!1 for r � 0. (54)
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Hence the recursion obtained in Lemma 9 becomes

1

r!

X
n�0

�Z
Y

Srn �H d�
�
e�ns � (�1)r�

"�
�� 1
r

��
1

s

�r+1

+
r�1X
j=0

(�1)j+1
�
�

r � j

��
1

s

�r�j
� 1
j!

X
n�0

�Z
Y

Sjn �H d�
�
e�ns

35 .
for r � 1 as s& 0. (This is also true in the cases � 2 f0; 1g since not all of the�
�
r

�
; : : : ;

�
�
1

�
;
�
��1
r

�
vanish simultaneously.) Starting from the trivial r = 0 case,P

n�0(
R
Y
S0n �H d�) e�ns � s�1, induction on r together with (51) then shows

that X
n�0

�Z
Y

Srn �H d�
�
e�ns � r!E[Lr�;� ]

�
1

s

�r+1
as s& 0. (55)

(Since we assumed � > 0, all the E[Lr�;� ] are positive.) KTT and monotonicity
of (
R
Y
Srn �H d�)n�1 now show that (55) implies (46) as required.

We conclude this section showing that there are many situations in which
Theorem 2 applies.

Proof of Proposition 1. Suppose that the bounded function H : Y ! [0;1)
is uniformly sweeping in K steps. Due to Remark 4, it is enough to show that
for any � 2 (0; 1) there is some set E1 � Y with

R
E1
H d� = � for which 1E1 �H

is uniformly sweeping, and since the latter property is preserved if we enlarge
the set, we need only check that

R
E1
H d� can be made arbitrarily small.

Fix " > 0 and take any C � Y with 0 <
R
C
H d� < "=2. As T is conservative

ergodic, we have
P

l�0
bT l(1C �H) =1 a.e., implying that there are L 2 N0 and

Z � Y satisfying infY nZ
PL

l=0
bT l(1C �H) > 0 and �(Z) < "=(2(K + 1) supH).

By assumption,
PK

k=0
bT k(1T�kZ �H) = 1ZPK

k=0
bT kH has positive in�mum on

Z, and hence the same is true for
PK

k=0
bT k(1F �H), where F := Y \SKk=0 T�kZ.

Since �(F ) � (K + 1)�(Z) < "=(2 supH), we see that
R
F
H d� < "=2, and

E1 := C [ F is a suitable choice.

7 The arcsine law for waiting times

Suppose that the assumptions of Theorem 3 are satis�ed. Due to our Proposition
4 and Lemma 1 in [T4], it is enough to prove that n�1Zn(Y )

�
=) Z� for one

probability measure � � �. We shall use the measure � given by the asymptotic
entrance density H of Y , and henceforth abbreviate Zn := Zn(Y ). Since for
any � 2 [0; 1], Z� is a bounded random variable, its distribution is determined
by its moments E[Zr�] = (�1)r

���
r

�
, r 2 N0, and it su¢ ces to proveZ

Y

�
Zn
n

�r
�H d� �! E[Zr�] as n!1. (56)

The dissection identity for Zn is

Zn =

�
k + Zn�k � T k on Y \ f' = kg, 1 � k � n,
0 on Y \ f' > ng, for n � 1, (57)
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leading to

Lemma 10 (Splitting moments at the �rst return) Let T be a c.e.m.p.t.
of (X;A; �), consider Y 2 A, 0 < �(Y ) <1, and de�ne Zn := Zn(Y ). For all
r � 1 and s > 0we then haveZ

Y

0@X
n�0

bTn1Yn e�ns
1A �

0@X
n�0

Zrn e
�ns

1A d�

=
1

1� e�s
r�1X
j=0

�
r

j

�Z
Y

0@X
n�1

nr�j bTn1Y \f'=ng e�ns
1A �

0@X
n�0

Zjn e
�ns

1A d�:

Proof. Due to the dissection identity (57) and the fact that bT k1Y \f'=kg = 0
a.e. on Y c, we get for n � 1 and r � 1, by the same calculation as in the proof
of Lemma 5,Z

Y

Zrn d� =
nX
k=1

Z
Y \f'=kg

(k + Zn�k)
r � T k d�

=

rX
j=0

�
r

j

�Z
Y

nX
k=1

kr�j bT k1Y \f'=kg � Zjn�k d�:
Consequently, for s > 0,X

n�0

�Z
Y

Zrn d�

�
e�ns

=
r�1X
j=0

�
r

j

�Z
Y

0@X
n�1

nr�j bTn1Y \f'=ng e�ns
1A �

0@X
n�0

Zjn e
�ns

1A d�

+

Z
Y

0@X
n�1

bTn1Y \f'=ng e�ns
1A �

0@X
n�0

Zrn e
�ns

1A d�:

Recalling identity (35), the assertion follows easily.

We now exploit our condition (7) together with regular variation of the
wandering rate to turn this implicit recursion formula into an explicit asymptotic
recursion formula (again involving a change of measure).

Lemma 11 (Asymptotic recursion) If, in the situation of the previous lemma,

1

wN (Y )

N�1X
n=0

bTn1Yn ! H
uniformly on Y as N !1, with
H : Y ! [0;1) uniformly sweeping,

and (wN (Y )) 2 R1��, � 2 [0; 1], then, for any r � 1, as s& 0,

1

r!

X
n�0

�Z
Y

Zrn �H d�
�
e�ns

�
r�1X
j=0

(�1)r�j�1
�
�

r � j

��
1

s

�r�j
� 1
j!

X
n�0

�Z
Y

Zjn �H d�
�
e�ns.
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Proof. Observe �rst that

Zn � T k � Zn+k for all n; k 2 N0. (58)

Lemma 2, with Rn := Zrn and vn := bTn1Yn as in the proof of Lemma 6, yieldsZ
Y

0@X
n�0

bTn1Yn e�ns
1A �

0@X
n�0

Zrn e
�ns

1A d� (59)

� �(Y )QY (s)
X
n�0

�Z
Y

Zrn �H d�
�
e�ns

as s & 0. Turning to the right-hand side of the preceding lemma, we �x
j 2 f0; : : : ; r � 1g and apply Lemma 3 with un := bTn1Y \f'=ng, n � 1 (so
that vn = bTn1Yn), � := 1� �, and # := 1, to see thatZ

Y

0@X
n�1

nr�j bTn1Y \f'=ng e�ns
1A �

0@X
n�0

Zjn e
�ns

1A d�

� (�1)r�j�1(r � j)!
�
�

r � j

��
1

s

�r�j�1
�(Y )QY (s) �

X
n�0

�Z
Y

Zjn �H d�
�
e�ns

as s& 0. Combining these observations with Lemma 10, our assertion follows.

Here the measure changed on both sides, and we can immediately continue
to exploit the recursion formula.

Proof of Theorem 3. Using the identity
Pr

j=0

�
�
r�j
����

j

�
= 0, r 2 N, we see

that the moments of Z� satisfy the recursion formula

E[Zr�] =
r�1X
j=0

(�1)r�j�1
�
�

r � j

�
E[Zj�] for r 2 N. (60)

An induction based on Lemma 11 therefore shows that for any r 2 N0,X
n�0

�Z
Y

Zrn �H d�
�
e�ns � r!

�
1

s

�r+1
E[Zr�] as s& 0, (61)

By KTT and monotonicity of the sequence (
R
Y
Zrn �H d�)n�1, this asymptotic

equation implies (56), as required.

To deal with subsets of our reference set Y , we will use the following obser-
vation. To formulate it, we note that TY is a nonsingular map from (X;A; �)
to (Y;A \ Y; � jY ), with transfer operator bTY : L1(�)! L1(� jY ).

Proposition 6 (Dynkin-Lamperti law for subsets) Let T be a c.e.m.p.t.
on (X;A; �), and assume that Y 2 A, 0 < �(Y ) <1 satis�es

1

n
Zn(Y )

L(�)
=) Z�
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for some � 2 [0; 1]. If there is some probability density u such that the sequence�bTY �bTnu��
n2N

is uniformly integrable, (62)

then every E 2 A \ Y with �(E) > 0 satis�es

1

n
Zn(E)

L(�)
=) Z�.

Proof. Fix any E 2 A \ Y with �(E) > 0, and let � denote its �rst entrance

(return) time. Recalling Remark 5, our assertion is equivalent to (� �Tn)=n L(�)
=)

Z�1� � 1. Since it is easy to check that (� � Tn+1 � � � Tn)=n �! 0 (notice
� � T � � = (1Y �) � T � 1), this is the same as

� � Tn
n

�
=) Z�1� � 1,

where � is the measure with density u, cf. Proposition 4. Observe that � =
'+ (1Y nE �) � TY . Since, by assumption, (' � Tn)=n

�
=) Z�1� � 1, it su¢ ces to

check that

� � Tn � ' � Tn
n

=
(1Y nE �) � TY � Tn

n

��! 0 as n!1,

or, equivalently, that for any c > 0,Z
Y \f1Y nE �>cng

bTY �bTnu� d� �! 0 as n!1.

Due to (62) this is an immediate consequence of �(Y \ f1Y nE � > cng)! 0.

8 Minimal wandering rates and rational
ergodicity

We prove the results relating our condition (7) to other ergodic properties.

Proof of Proposition 2. Take any Z 2 A, 0 < �(Z) < 1, and let Y N :=SN�1
n=0 T

�nY , ZN :=
SN�1
n=0 T

�nZ, N � 1. Then,

wN (Y ) = �(Y
N ) � �(ZN ) + �(Y N n ZN ) = wN (Z) + �(Y N n ZN ).

Taking into account that ZN � T�nZ, 0 � n < N , we get

�(Y N n ZN ) =
N�1X
n=0

�(Yn n ZN )

�
N�1X
n=0

�(Yn \ T�n(Y n Z))

=

Z
Y nZ

 
N�1X
n=0

bTn1Yn
!
d�.
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Therefore, for all N � 1,

wN (Z)

wN (Y )
� 1�

Z
Y nZ

gN d� � 1� sup
l�1

Z
Y nZ

gl d�,

where gN := wN (Y )�1
PN�1

n=0
bTn1Yn , N � 1. Applying this estimate to ZL for

�xed L � 1 and using wN (ZL) � wN (Z) + L�(Z), we obtain

wN (Z)

wN (Y )
� 1� sup

l�1

Z
Y nZL

gl d��
L�(Z)

wN (Y )
for N � 1,

and thus

lim
N!1

wN (Z)

wN (Y )
� 1� sup

l�1

Z
Y nZL

gl d�.

By (7), however,

lim
L!1

sup
l�1

Z
Y nZL

gl d� = 0,

and our result follows.

Remark 8 This argument shows in fact that uniform integrability of the se-
quence (wN (Y )�1

PN�1
n=1

bTn1Yn)N�1 is su¢ cient for Y to have minimal wan-
dering rate.

Proof of Proposition 3. We exploit an observation made in the proof of
Theorem 1. Without using regular variation, we had found thatZ

Y

S2n d� = O

 �
n

QY (1=n)

�2!
as n!1,

cf. (41). To show that Y satis�es a Rényi inequality, it therefore su¢ ces to
check that

n

QY (1=n)
= O

�Z
Y

Sn d�

�
as n!1. (63)

Due to the �rst bit of Lemma 7, we have wN (Y ) = O(QY (1=N)) as N ! 1,
and it is enough to verify

n

wn(Y )
= O

�Z
Y

Sn d�

�
as n!1,

which is immediate from the stronger statement in Theorem 3.8.1 of [A0].

9 Application to interval maps with indi¤erent
�xed points

An important family of in�nite measure preserving dynamical systems is given
by piecewise C2 interval maps with indi¤erent (neutral) �xed points. We are
going to show that the approach developed above applies to them in a very
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natural way. The following class of transformations has been studied in [Z1],
[Z2] generalizing earlier work from [A0], [A3], [ADU], and [T1]-[T3]. Notations
and terminology below are the same as in [Z1], [Z2], except that (as above)bT denotes the transfer operator w.r.t. the invariant measure �. Throughout
this section � will denote one-dimensional Lebesgue measure, and B will be the
Borel-�-�eld of the space under consideration. If E � R is a �nite union of
intervals, we let BV(E) denote the space of real-valued functions of bounded
variation on E.

A piecewise monotonic system is a triple (X;T; �), where X is the union
of some �nite family of disjoint bounded open intervals, � is a collection of
nonempty pairwise disjoint open subintervals with �(Xn

S
�) = 0, and T : X !

X is a map such that T jZ is continuous and strictly monotonic for each Z 2 �.
We let �n denote the family of cylinders of rank n, that is, the nonempty sets
of the form

Tn�1
i=0 T

�iZi with Zi 2 �. If W � Z 2 �n, we let fW := (Tn jW )�1
be the inverse of the branch Tn jW . Our maps will be C2 on each Z 2 � and
satisfy Adler�s condition

T 00=(T 0)2 is bounded on
[
�, (64)

as well as the �nite image condition

T� = fTZ : Z 2 �g is �nite. (65)

There is a �nite set � � � of cylinders Z having an indi¤erent �xed point xZ
as an endpoint (i.e. limx!xZ ;x2Z Tx = xZ and limx!xZ ;x2Z T

0x = 1), and each
xZ is a one-sided regular source, i.e.

for x 2 Z, Z 2 �, we have (x� xZ)T 00(x) � 0. (66)

The second endpoint of Z 2 � will be denoted by yZ . Our maps are uniformly
expanding on sets bounded away from fxZ : Z 2 �g, in the sense that letting
X" := Xn

S
Z2� ((xZ � "; xZ + ") \ Z) we have

jT 0j � �(") > 1 on X" for each " > 0. (67)

Following [Z1], [Z2], we call (X;T; �) an AFN-system if it satis�es (64)-(67).

Henceforth we assume that T is conservative ergodic and � 6= ? (a basic
AFN-system in the sense of [Z2]). (See Theorem 1 in [Z1] for ergodic decom-
positions.) The system then has an invariant measure � � � with �(X) = 1
whose density d�=d� has a version h(x) = h0(x)G(x), where

G(x) :=

� x�xZ
x�fZ(x) for x 2 Z 2 �
1 for x 2 X n

S
�,

and 0 < infX h0 � supX h0 < 1, and h0 has bounded variation on each X",
" > 0. For Z 2 � we let BZ := fZ(Z), Z 2 �, and Z(1) := Z nBZ . We are going
to show that

Y = Y (T ) := X n
[
Z2�

BZ =
[

W2�n�

W [
[
Z2�

Z(1) (mod �), (68)
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is a suitable reference set for T . It is clear that Y dynamically separates the
(in�nite measure) components BZ = Y c \ Z, Z 2 �, of its complement, so that
we are in the situation of Remark 3 with X = Y [

S
Z2� BZ . Our aim is to

check the su¢ cient conditions (14) and (15) given there.
The �rst one is taken care of by the following stronger result. For B 2 B\Y c

we de�ne fk(Y;B) := �Y (Y \ T�1B \ f' = kg), k � 1.

Theorem 4 (Return properties of AFN maps) Let (X;T; �) be a basic AFN-
system, and Y as in (68). Then for each Z 2 � there is some probability density
DZ 2 BV(Y ), positive on Z(1), such that

1

fk(Y;BZ)
� bT k �1Y \T�1BZ\f'=kg

�
�! �(Y ) DZ

uniformly on Y
as k !1, (69)

and any D 2 BV(Y ) with D � 0 and
R
Y
Dd� > 0 is uniformly sweeping for Y .

The key to this theorem is a lemma about the asymptotic behaviour of high
iterates of (the inverse branch of) T near an indi¤erent �xed point, cf. Lemma
2 of [T6], or Theorem 17 of [Z3].

Lemma 12 (Asymptotic shape of high iterates at a regular source) Let
f : [0; y]! R be C1, satisfying 0 < f(x) < x, f 0(x) > 0 on (0; y], f 0(0) = 1, and
let f be concave on [0; �] for some � > 0. Then there exists a positive continuous
function g on (0; y], non-increasing on (0; �], such that

(i) (fn)0 � (fn(y)� fn+1(y)) � g as n!1 uniformly on each ("; y], " > 0,

(ii) f 0(x)
x�f(x) � g(x) �

1
x�f(x) on (0; �], and

(iii)
R x
f(x)

g(t) dt = 1 for all x 2 (0; y].

Proof of Theorem 4. Instead of directly using bT it will be convenient to deal
with the dual operator P of T w.r.t. Lebesgue measure � (the Perron Frobenius
operator). The two are related via bTnu = Pn(hu)=h, n 2 N0, and Pn has an
explicit representation Pnu =

P
Z2�n(u � fZ)� j f

0
Z j. We shall henceforth use

the version given by the expression on the right-hand side. Fix any Z 2 �.

a) By the �nite image condition (65), there are L 2 N (w.l.o.g. L � 2) and
; 6= � � � such that if l � L, then T (W \ Y ) � Z \ f' � lg for W 2 �, while
T (W \Y )\(Z\f' � lg) = ; forW 2 �n�. Clearly, Z\f' � lg = BZ\f' � lg
if l � 2. For k > L therefore

P
�
1Y \T�1BZ\f'�kg � h

�
= 1Z\f'�k�1g

X
W2�

P (1W h)

= 1Z\f'�k�1g
X
W2�

(h � fW )� j f 0W j

(for all W 2 � we have 1Z\f'�k�1gP (1W\Y h) = 1Z\f'�k�1gP (1W h)). Ob-
serve that the restriction to Z \ f' � k � 1g of each h � fW , W 2 �, is of
bounded variation with positive in�mum. Adler�s condition (64) implies that
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the same is true for the restriction of the sum V :=
P

W2�(h�fW )� j f 0W j on the
right-hand side. (As sup j f 0W j� e��(X)a inf j f 0W j with a := sup j T 00=(T 0)2 j,
and

R
TW

j f 0W j d� = �(W ).) Now, on Y ,

bT k �1Y \T�1BZ\f'=kg
�
= h�1 �Pk

�
1Y \T�1BZ\f'�kg � h

�
= h�1 �Pk�1

�
P
�
1Y \T�1BZ\f'�kg � h

��
= h�1 �Pk�1

�
1Z\f'�k�1g � V

�
= 1Z(1) h

�1 �
�
V � fk�1Z

� �
fk�1Z

�0
Notice that the limit V (xZ) := limx!xZ ;x2Z V (x) 2 (0;1) exists since V 2
BV(Z \ f' � k � 1g), and recall that h is bounded on Y . By Lemma 12,
there is some positive continuous function gZ on Z(1) such that

�
fk�1Z

�0 ���fkZ(yZ)� fk+1Z (yZ)
�� � gZ uniformly on Z(1) as k ! 1. Consequently, we also

have bT k �1Y \T�1BZ\f'=kg
�
� 1Z(1) h�1 � V (xZ)

��fkZ(yZ)� fk+1Z (yZ)
�� � gZ

uniformly on Y as k ! 1, and letting DZ := 1Z(1) (gZ=h)=
R
Z(1)

(gZ=h) d� 2
BV(Y ) completes the proof of (69).

b) We check that D is uniformly sweeping for Y , by showing that there is
some K 2 N0 such that infY

PK
k=0P

kD > 0, which su¢ ces since 0 < infY h �
supY h <1. Due to our assumptions onD, there is some nondegenerate interval
I � Y such that infI D > 0 (by bounded variation, D is lower semicontinuous
mod �). As T has bounded derivative on each cylinder and satis�es (65), we
have infTk(I)PkD > 0 for all k 2 N0. Our claim therefore follows once we prove
that

for any interval I � Y there is some K = K(I) 2 N0 s.t.
K[
k=0

T kI � Y . (70)

Standard arguments (compare e.g. Lemma 10 of [Z1]) show that the induced
map TY on Y is uniformly expanding and satis�es (64) and (65), implying that
for any interval I � Y there is some L 2 N s.t.

SL�1
l=0 T

l
Y I � Y . However, as T

satis�es (65), we see that given any interval I � Y , we have TY I �
SM
m=1 T

mI
for some M = M(I) 2 N, and that T jI and TY I are �nite unions of intervals.
Together, these observations yield (70).

Given a basic AFN system (X;T; �) we take Y as in (68). To ensure regular
variation of wandering rates and condition (15), we assume that for each Z 2 �
there are aZ 6= 0 and pZ 2 [1;1) such that

Tx = x+ aZ jx� xZ j1+pZ + o
�
jx� xZ j1+pZ

�
as x! xZ in Z, (71)

and let p := maxfpZ : Z 2 �g. Then (as in [T2] or Theorem 3 of [Z2]), as
n!1,

wN (Y;BZ) �
h0(Z)

jaZ j1=pZ
�
(
logN if pZ = 1,
p
�1=pZ
Z

pZ
pZ�1 �N

1�1=pZ if pZ > 1,
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where h0(Z) := limx!xZ ;x2Z h0(x) = jaZ j limx!xZ ;x2Z jx� xZ j
pZ h(x) 2 (0;1)

exists, cf. [Z2], p. 1534. Of course, wN (Y ) �
P

Z2� wN (Y;BZ). (For the as-
ymptotics of fk(Y;BZ) see e.g. Remark 1 in [Z4].) In particular, condition (15)
is satis�ed, and we can apply our abstract Theorem 1 to obtain a Darling-Kac
theorem for AFN-systems (compare Theorem 5 of [Z2]).

Corollary 1 (Darling-Kac theorem for AFN maps) Let (X;T; �) be a ba-
sic AFN-system satisfying (71), and � := 1=p. Then

1

an
Sn(f)

L(�)
=) �(f) � M� for all f 2 L1(�) s.t. �(f) 6= 0,

where an := 1
�(1+�)�(2��) �

n
wn(Y )

, n � 1, which is regularly varying of index �.

Again appealing to Remark 3, we can also apply Theorem 2 to extend the
arcsine law of [T6] to a considerably larger family of AFN-systems. Given
? $ � � � we let A� :=

S
Z2� BZ .

Corollary 2 (Arcsine law for neighbourhoods of neutral �xed points)
Let (X;T; �) be a basic AFN-system satisfying (71) and let � := 1=p. Suppose
that ? $ � � �. Then

wN (Y;A�)

wN (Y )
�! � :=

P
Z2�;pZ=p h0(Z) jaZ j

�1=pP
Z2�;pZ=p h0(Z) jaZ j

�1=p 2 [0; 1] as N !1,

and
1

n
Sn(1A)

L(�)
=) L�;�

for all A 2 B with �(A4 A�) < 1. Here � =2 f0; 1g i¤ maxfpZ : Z 2 �g =
maxfpZ : Z 2 � n �g = p.

While unions of neighbourhoods of di¤erent xZ , Z 2 �, are the most obvious
candidates for components of in�nite measure in the regime of the arcsine law
for occupation times, Remark 4 provides us with a very general method for
�nding further examples. In fact, Proposition 1 promises sets satisfying the
arcsine law even for maps with a single indi¤erent �xed point, and our general
construction amounts to splitting neighbourhoods in this case. We illustrate
this in the simplest setup:

Example 2 (Arcsine law for split neighbourhoods) For �xed p � 1 let

Tx :=

�
x+ 2px1+p for x 2 (0; 1=2)
2x� 1 for x 2 (1=2; 1),

which de�nes a basic AFN map satisfying (71) for its single indi¤erent �xed
point at x = 0. For  2 (0; 1) we let z := 1� =2 2 (1=2; 1), denote the inverse
of T j(0;1=2) by f , and consider the set

A :=
[
n�0

fn(z; 1).
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Employing Remark 4, we see that

1

n
Sn(1A)

L(�)
=) L�;�

where � := 1=p and � = �() with � an increasing homeomorphism of (0; 1)
onto itself. To obtain examples with � = 0 and arbitrary � 2 (0; 1), play the
same game using the map

Tx :=

�
x+ 2x2e2�1=x for x 2 (0; 1=2)
2x� 1 for x 2 (1=2; 1).

We �nally turn to the arcsine theorem for waiting times of AFN-maps. Our
abstract Theorem 3 immediately implies

Corollary 3 (Dynkin-Lamperti law for AFN reference sets) Let (X;T; �)
be a basic AFN-system satisfying (71) and let � := 1=p. Then

1

n
Zn(Y )

L(�)
=) Z�.

Remark 9 (Extension to a larger class of sets) It is known that in the con-
clusion of the theorem Y can be replaced by any set E 2 E(T ) := fE 2 B : E �
X" for some " > 0g with �(E) > 0, cf. [T4] and Theorem 11 of [Z2]. We brie�y
sketch how this stronger statement can also be derived from our result, at least
for the case of Markov systems (which covers Example 1 from the introduction,
cf. [T6], pp. 1293): Fix " > 0. Re�ning the partition � by declaring �nitely
many sets of the type f iZZ, Z 2 � and j � 1, to be separate cylinders, we may
assume w.l.o.g. that X" � Y . It remains to consider subsets of Y .
Observe that the �rst-return map TY (restricted to Y ) is a uniformly ex-

panding Markov map with a �nite number of di¤erent image sets, and satis�es
(64). By standard arguments, the derivatives v of all its (higher-order) inverse
branches have uniformly bounded regularity RY (v) := supY \fv>0g j v0=v j�
M < 1, and we claim that the same is true for the bTY bTn1Y (which implies
uniform boundedness and hence the su¢ cient condition (62) of Proposition 6).
To see this, observe �rst that for any n � 1, bTY bTn1Y = PW2Wn

bT jW j
Y 1W for

some partition Wn � W :=
S
j�1 �Y;j of Y into cylinders for TY , jW j denot-

ing the order of W . By standard results about TY , there is some r 2 R such
that RY ( bT jW j

Y 1W ) � r for all W 2 W, and this estimate is passed on to any
convergent nonnegative series.
(It is possible to use Markov extensions to deal with the general non-Markov

situation. However, the argument is not too pleasant.)

10 Appendix: Distributional limit theorems for
pointwise dual ergodic transformations

We outline how some of the tools developed above are also useful for the study
of pointwise dual ergodic (p.d.e.) systems. Let us �rst consider the Darling-Kac
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theorem for p.d.e. transformations, cf. [A0], [A2]. Its proof is quite demanding
and technical unless one assumes the existence of a Darling-Kac set (i.e. a set
Y 2 A of positive �nite measure for which the convergence (19) is uniform on
Y for u := 1Y ). Our aim is to point out that the equivalent moments principle
o¤ers a way to overcome the main di¢ culty.

Theorem 5 (Darling-Kac theorem for p.d.e. transformations) Let T be
a c.e.m.p.t. on the �-�nite measure space (X;A; �). If T is pointwise dual er-
godic with return sequence (an) 2 R�, � 2 [0; 1], then

1

an
Sn(f)

L(�)
=) �(f) � M� for all f 2 L1(�) s.t. �(f) 6= 0.

Proof. A straightforward Egorov-type argument shows that there is some set
Y 2 A, 0 < �(Y ) <1, with

1

an

n�1X
k=0

bT ku �! 1 uniformly on Y as n!1 (72)

for some probability density u satisfying infY u > 0. Let Sn :=
Pn

k=1 1Y � T k,
n � 0. We are going to prove that Y is a moment set (cf. Remark 7).

a) The �rst step is to �nd a recursion formula for Srn in terms of the S
j
n�k�T k.

It has to be of a di¤erent type than the dissection identities we used before, since
we plan to exploit pointwise dual ergodicity and hence wish to count every visit
to Y . We use the elementary fact that for any r 2 N there are real numbers
ar�1;j , 1 � j < r, such that

m�1X
k=0

kr�1 =
1

r
mr +

r�1X
j=1

ar�1;jm
j for m 2 N0,

which entails

nX
k=1

(1Y S
r�1
n�k) � T

k =
1

r
Srn +

r�1X
j=1

ar�1;j S
j
n for n 2 N0, r 2 N. (73)

(Take x 2 X and m := Sn(x). For m = 0 the statement is obvious. If m � 1,
we let 1 � j1 < : : : < jm � n denote the times where T jx 2 Y . Then
(1Y S

r�1
n�k)(T

kx) = (m� l)r�1 for k = jl and = 0 otherwise.)

b) We integrate (73) w.r.t. u d� in order to obtain an implicit recursion
formula for the moments. Since

R
X
Sjn � u d� = o

�R
X
Srn � u d�

�
as n ! 1 for

1 � j < r, we getZ
Y

nX
k=1

bT ku � Sr�1n�k d� �
1

r

Z
X

Srn � u d� as n!1, (74)

and hence, passing to Laplace transforms,

X
n�1

�Z
X

Srn � u d�
�
e�ns � r

Z
Y

0@X
n�1

bTnu e�ns
1A0@X

n�1
Sr�1n e�ns

1A d� as s& 0.
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Because of (72), Lemma 2 applies (with Rn := Sr�1n and vn := bTnu, which
satisfy

Pn
k=0

R
Y
vn d� =

Pn
k=0

R
T�nY

u d� � �(Y )an) to give, for r � 1,X
n�1

�Z
X

Srn � u d�
�
e�ns � r U(s)

X
n�1

�Z
Y

Sr�1n d�Y

�
e�ns as s& 0, (75)

where U(s) :=
P

n�0
�R
T�nY

u d�
�
e�ns, s > 0, thus providing us with an ex-

plicit recursion involving a change of measure (unless Y is a Darling-Kac set,
meaning that we can take u = 1Y in the �rst place).

c) We are going to use the equivalent moments principle to deal with this
problem. Due to infY u > 0, there is some C > 0 such that

R
Y
Srn d�Y �

C
R
X
Srn � u d� for all n; r � 0. Combining this with (75), an induction shows

that X
n�1

�Z
X

Srn d�
(�)
�
e�ns = O

�
1

s
U(s)r

�
as s& 0, for r 2 N0,

both for d� := u � d� and d�� := d�Y . Consequently, for either measure,Z
X

Srn d�
(�) = O

��
U

�
1

n

��r�
as n!1, for r 2 N0,

see Lemma 7. Therefore the Rn := (U(1=n))�1Sn, n � 1, satisfy the mo-
ment conditions of Lemma 4. We can thus apply the latter once we check that
limn!1

R
X
Rn � u d� > 0. Due to (an) 2 R� we have

U(s) =

�
1

s

��
`

�
1

s

�
, s > 0, with ` 2 R0,

and our claim is immediate fromZ
X

Sn � u d� =
nX
k=1

Z
T�kY

u d� � n�`(n)

�(1 + �)
=

U
�
1
n

�
�(1 + �)

as n!1. (76)

The equivalent moments principle thus enables us to replace u � d� by d�Y in
(75), and we end up with

X
n�1

�Z
Y

Srn d�Y

�
e�ns � r!

s
U(s)r = r!

�
1

s

�1+r��
`

�
1

s

��r
as s& 0,

showing that Y is a moment set with UY 2 R�(0), and the assertion of the
theorem follows in the usual way by KTT.

Remark 10 Instead of working with (73), we could just as well start from�
Sn
r

�
=

nX
k=1

�
1Y

�
Sn�k
r � 1

��
� T k, r; n 2 N (cf. [A0], [A2]),

and use
R
X
Srn � u d� � r!

R
X

�
Sn
r

�
� u d� as n!1.
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We �nally show that our Lemma 3 enables a very e¢ cient direct proof of
the following result from [T4]. Recall that a uniform set Y 2 A is one for which
(72) holds for some u 2 L+1 (�).

Theorem 6 (Arcsine law for waiting times of p.d.e. transformations)
Let T be a c.e.m.p.t. on the �-�nite measure space (X;A; �). If T is point-
wise dual ergodic with return sequence (an) 2 R�, � 2 [0; 1], and Y 2 A,
0 < �(Y ) <1, is a uniform set, then

1

n
Zn(Y )

L(�)
=) Z�.

Proof. Let u be a probability density satisfying (72), U as in the preceding
proof, and QY (s) :=

P
n�0 qn(Y ) e

�ns as usual. Considering Zn := Zn(Y ) we
are going to prove Z

X

�
Zn
n

�r
� u d� �! E[Zr�] as n!1. (77)

For n 2 N0 and k 2 N we have fZn = kg = T�k(Y \f' > n�kg), and thereforeZ
X

Zrn � u d� =
nX
k=0

kr
Z
T�k(Y \f'>n�kg)

u d�

=

Z
Y

nX
k=0

kr bT ku � 1Y \f'>n�kg d�,
for r 2 N0, with the convention that Z0n = 1Sn

j=0 T
�jY , n 2 N. Consequently,

for r 2 N0, the Laplace transforms satisfyX
n�0

�Z
X

Zrn � u d�
�
e�ns (78)

=

Z
Y

0@X
n�0

nr bTnu e�ns
1A0@X

n�0
1Y \f'>ng e

�ns

1A d�.

The r = 0 case of this identity implies (via Lemma 2) that

U(s)QY (s) � 1=s as s& 0.

For arbitrary r 2 N0 we can apply part a) of Lemma 3 (with Rn = 1Y \f'>ng,
vn = bTnu, and H = �(Y )�11Y so that K = 0) to (78), obtainingX

n�0

�Z
X

Zrn � u d�
�
e�ns � (�1)rr!

�
��
r

��
1

s

�r
U(s)QY (s)

� r!E[Zr�]
�
1

s

�r+1
as s& 0,

and (77) follows via KTT.
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