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The present notes contain material presented during a course on In�nite Er-
godic Theory at the LMS Graduate school on Ergodic Theory at the University
of Surrey, 16th-19th March 2009, plus a few additional bits of information.

A short course like this can hardly o¤er more than a glimpse through the
keyhole. So, I have tried to arrange a little tableau, conveniently positioned
behind the door, and to focus the lights on it. Needless to say, the choice
of topics re�ects my personal preferences and my view of the �eld. Let me
assure you that beyond this little exposition, there is in�nite space behind that
door, inhabited by interesting (sometimes scary) creatures, and o¤ering many
mathematical challenges. Have fun!
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1 What�s up ?
(basic examples and concepts)

Our setup and a very basic question. A (deterministic, discrete time)
dynamical system is simply given by a map T : X ! X acting on a phase space
X. The consecutive images Tnx of an initial state x 2 X represent the states of
the system at later times n � 0, and our basic goal is to predict the long-term
behaviour of such orbits (Tnx)n�0. Saying that a certain event occurs at time
n means that Tnx belongs to a speci�c subset A � X, and we will refer to A
itself as the event.
It has become common knowledge that even apparently trivial maps T can

lead to very complicated (chaotic) dynamics. Ergodic theory1 can be seen as
a quantitative theory of dynamical systems, enabling us to rigorously deal with
such situations, where it is impossible to predict when exactly some relevant
event A is going to take place. It still can, for example, tell us quite precisely
how often A will occur for typical initial states, or for how big a percentage of
them this event is going to take place at some de�nite instant n.
The canonical mathematical framework for such a quantitative approach is

that of measure theory, and results of this �avour are most naturally interpreted
in terms of probability. The state space will therefore come with a �-algebra
A of measurable subsets, and all sets, functions, and maps to appear below are
understood to be measurable.

A rich quantitative theory is available for systems possessing an invariant
measure � : A ! [0;1], meaning that � � T�1 = �. In fact, relevant systems
often live on spaces so rich that they support many invariant measures for T ,
but these may live on parts of X we are not really interested in (e.g. on some
countable subset). So, we usually focus on measures which are meaningful if we
regard T as a model of some real-world system. For example, if X is part of a
Euclidean space, measures absolutely continuous w.r.t. Lebesgue (i.e. possessing
a density h such that �(A) =

R
A
h(x) dx) are a prime choice.

To exclude pathological situations, all measures � considered here will be
�-�nite, that is, X can be represented as a countable union X =

S
n�1Xn of

subsets Xn 2 A+ := fA 2 A : 0 < �(A) <1g of �nite positive measure2 .

On opening a textbook on ergodic theory, one often �nds another standing
assumption: invariant measures should be �nite (and then w.l.o.g. normalized,
�(X) = 1). In this framework a rich theory with many connections to other
�elds of mathematics has been developed over the years. (And, no doubt, this
is where one should start learning ergodic theory.)
However, there do exist systems of interest (not necessarily too exotic), which

happen to have an in�nite invariant measure, �(X) =1. In�nite Ergodic The-
ory focuses on such creatures. As we will see in this course, they often behave
in very strange ways, and fail to comply with rules forming the very basis of
�nite ergodic theory. But I also hope to convince you that despite their weird
habits they are worth studying. And, there still are beautiful results waiting to
be discovered, and interesting mathematical challenges to be met.

1More precisely, the facet we will be looking at.
2Most natural measures have this property.
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In what follows, I will only focus on the simplest quantitative question
of understanding the long-term behaviour of occupation times

Sn(A) :=
n�1X
k=0

1A � T k, n � 1,

of sets A 2 A, which simply count the number of visits an orbit pays to
A before time n. (Slightly more general, we can also look at ergodic sums
Sn(f) :=

Pn�1
k=0 f � T k of measurable functions f .) We will soon see that at-

tempts to answer this reveal strange phenomena and lead to unexpected results.
Welcome to in�nite ergodic theory!

Some nice examples. As the name suggests, the ergodic theory of dynamical
systems has two faces. One (the ergodic theory bit) is pretty abstract, but
naturally so, as it aims at understanding basic structures which govern the
dynamics of many types of systems. The other (the dynamical systems bit)
concentrates on speci�c classes of systems, and scrutinizes them, trying to unveil
hidden structures which the abstract theory applies to. Of course, there are no
sharp borders between the two, and indeed their interplay sometimes is the most
exciting aspect.
This course will be more on the abstract side, but as a theory without con-

vincing examples is (in my opinion) rather pointless, we �rst have a look at
some very simple systems. (We just don�t have enough time to discuss more
impressive classes of examples. The point really is that even for the simple ones
I�ll present, matters already are fairly di¢ cult.)

As a warm-up, THE most important �nite measure preserving system:

Example 1 (Coin-tossing and Doubling map) Well, in its favorite suit,
it doesn�t really look like a dynamical system. The fair coin-tossing process
is an independent sequence (Cn)n�0 of random variables on some proba space
(
;B;Pr) with Pr[Cn = 1] = Pr[Cn = �1] = 1

2 . If you have had a course
on advanced probability, you know that there is a canonical way of constructing
such a thing, by letting 
 := f�1; 1gN = f! = (!n)n�0 : !n = �1g be the space
of all possible outcomes of the whole process, equipped with product �-�eld B and
product measure Pr :=

N
n�0

1
2 (��1+�1). Then set Cn := C �Sn, n � 0, where

C(!) := !0 and S : 
! 
 is the shift, (S!)n = !n+1. The fact that the process
is stationary (i.e. (Cn)n�0 and (Cn+m)n�0 have the same distribution for all
m � 0) is equivalent to saying that S preserves the probability measure Pr. The
formal model can thus be seen as a dynamical system, and the projection Pr �C
of the invariant measure to the space f�1; 1g of coin-states assigns the same
mass 1

2 to all of them.
Another well-known representation, with (
;B;Pr) := ([0; 1];B[0;1]; �) (the

unit interval with Lebesgue measure), looks even more dynamical: Let C :=
2 � 1[1=2;0] � 1, and Cn := C � Sn where Sx := 2x mod 1, which preserves �.
This is a uniformly expanding piecewise smooth interval map, and there is a
large folklore class of such maps which form a very prominent family of �nite-
measure preserving systems which exhibit highly chaotic (i.e. as random as the
coin-tossing game) behaviour.
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But then almost every mathematician also knows at least one in�nite mea-
sure preserving system. Often without being aware of this fact. Here it is:

Example 2 (Coin-tossing Random Walk) This is the random process (�n)
you obtain from (Cn) above as �n :=

Pn
k=1 Cn, i.e. starting at �0 = 0, we toss

a coin every second an hop, according to the outcome, one step to the left or
to the right on the integer lattice Z. Again, a canonical model is given by a
shift transformation on the appropriate sequence space. (Do construct it as an
exercise if you haven�t seen it done.) This time, however, the invariant measure
is not the proba measure describing our process, but an in�nite measure � which
is the sum of all translates (to initial positions di¤erent from the origin 0 2 Z)
of the latter! Projected to the lattice Z it simply gives the same mass (one,
say) to all lattice points, which is, of course, most natural for a system with a
translational symmetry.

But now for something which really doesn�t come from classical probability.

Example 3 (Boole�s transformation) is a simple map T on X := R,

T : X ! X, Tx := x� 1

x
.

We claim that it preserves (the in�nite) Lebesgue measure � =: �. To check this,
it su¢ ces to consider intervals A = [a; b]. Note that their preimages consist of
two other intervals, T�1[a; b] = [a1; b1] [ [a2; b2], one on the negative and one
on the positive half-line. To compare the measure (i.e. length) of T�1[a; b]
and [a; b] we do not even have to explicitly calculate the preimages in this case!
Simply note that a1 and a2 solve Tx = a, meaning that they are the roots of
x2�ax�1 = 0. Due to Vieta�s formula (i.e. equating coe¢ cients in x2�ax�1 =
(x � a1)(x � a2)) we have a1 + a2 = a. Analogously, b1 + b2 = b. But then
�(T�1[a; b]) = (b1 � a1) + (b2 � a2) = b� a = �([a; b]), as required. Cute, eh?
Be warned that the reason for the invariant measure to be in�nite is not

that T is de�ned on an in�nite space in the �rst place. This is an illusion which
depends on your choice of coordinates. Let us perform a change of variables,
using the di¤eomorphism  : (0; 1)! R given by  (y) := 1

1�y �
1
y , and consider

the representation of T in y-coordinates, eT :=  �1 � T �  : (0; 1) ! (0; 1).
Explicit calculation gives

eTy = ( y(1�y)
1�y�y2 for y 2 (0; 12 ),
1� eT (1� y) for y 2 ( 12 ; 1).

This is an expanding map with two smooth branches. Very similar to the dou-
bling map x 7! 2x mod 1. However, one little thing makes all the di¤erence:
in contrast to the doubling map, eT is not uniformly expanding. Instead, it has
indi¤erent (neutral) �xed points at x = 0 and x = 1, which slow down orbits
coming close to these points: the closer they get, the slower they move away
again. In the present example this e¤ect is so strong that orbits will spend most
of their time in arbitrarily small neighborhoods of the �xed points, and this is
what the in�nite measure re�ects: use  �1 to push the invariant measure � from
R to the interval (0; 1), i.e. consider e�( eA) := �( A) which is invariant for eT .
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Again this can be calculated explicitly (exercise), and we �nd that

e�([c; d]) = Z d

c

�
1

(1� y)2 +
1

y2

�
dy for 0 < c < d < 1.

This density has non-integrable singularities at the bad points, giving in�nite
mass to any neighborhood.
Interval maps with indi¤erent �xed points, similar to eT , form a prominent

class of in�nite measure preserving systems. While comparatively simple from
the usual dynamical systems point of view, we already need to confront very
serious issues if we wish to understand their �ner ergodic properties. See [T1],
[T2], or [Z1] for systematic studies of large classes of such maps.

Example 4 (Parry-Daniels map) Here is another nice example with X =
(0; 1). Consider

Tx :=

�
x
1�x for x 2 (0; 12 ),
1�x
x for x 2 ( 12 ; 1).

We leave it as an exercise to check that T preserves the in�nite measure given
by �([a; b]) =

R b
a
dx
x . This map has �rst been studied in [D] and [P].

Two basic properties. When studying some dynamical system, an obvious
�rst step is trying to break it up into smaller bits, each of which can be studied
separately. This is the case if we have an invariant set, that is, some A 2 A
for which T�1A = A, because then T�1Ac = Ac as well, so that TA � A and
TAc � Ac. An m.p.t. T on (X;A; �) is said to be ergodic if it does not possess
non-trivial invariant sets, i.e. if T�1A = A implies �(A) = 0 or �(Ac) = 0. For
our discussion, we will focus on such basic building blocks.

Having said at the beginning that we�d like to understand how often in large
time intervals a certain event A occurs, i.e. how often the set A will be visited
by typical orbits, we want to exclude, from the outset, systems which are trivial
in that many points from A do not return at all. A m.p.t. T on (X;A; �)
is called conservative (or recurrent) if, given any measurable set A, almost all
points of A will eventually return to this set, that is, if3

A �
S
n�1

T�nA (mod �) for all A 2 A with �(A) > 0.

The famous Poincaré Recurrence Theorem shows that in the case of a �nite
measure �, this property is automatically ful�lled. (Don�t worry, we�ll re-prove
it below.) Be warned that this is not the case if � is in�nite: The translation
map T : R ! R, Tx := x + 1 obviously preserves the Lebesgue measure � of
sets, but it is also clear that no point of W := (0; 1] will ever return to this set.
In fact, W simply wanders away under iteration of T .
We therefore need ways of checking conservativity. The following character-

ization of recurrence is very useful.

Proposition 1 (Characterizing Conservativity) Let T be an m.p.t. on the
�-�nite space (X;A; �), then each of the following conditions is equivalent to T
being conservative:

3A relation holds mod � if it is true outside a set of �-measure zero.
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(i) if W 2 A is a wandering set for T (meaning that W \ T�nW = ? for
n � 1), then necessarily �(W ) = 0;

(ii) for all A 2 A,
P

k�1 1A � T k � 1 a.e. on A;

(iii) for all A 2 A,
P

k�1 1A � T k =1 a.e. on A;

(iv) if B 2 A satis�es B � T�1B, then necessarily �(B n T�1B) = 0.

Proof. (iii))(ii): Is obvious.

(ii),conservativity:
P

k�1 1A � T k(x) counts all visits of x to A.

(ii))(i): If W is wandering, then W \
S
n�1 T

�nW = ?, whence �(W ) =
�(W n

S
n�1 T

�nW ), but this (due to (ii)) is zero.

(i))(iv): Repeatedly applying T�1 to B � T�1B, we get

B � T�1B � T�2B � T�3B � : : : . (1.1)

Therefore W := B n T�1B is a wandering set (being disjoint from T�1B, while
each T�nW � T�nB � T�1B). Hence �(B n T�1B) = 0.

(iv))(iii): This is the tricky bit. Take any A 2 A, and observe that

A n

8<:X
k�1

1A � T k =1

9=; �

8<:1 �X
k�0

1A � T k <1

9=; =: B.

We need to show that the left-hand set has measure zero. Of course, this follows
once we prove that �(B) = 0. By a curious coincidence, the letter B has already
been used in (iv), and it is easy to see that indeed B � T�1B (i.e. if Tx 2 B,
then x 2 B, since adding one step to the orbit cannot spoil the condition de�ning
B). In view of (iv), we therefore see that

�(T�kB n T�(k+1)B) = �(T�k(B n T�1B)) = 0 for k � 0.

But again we have a chain of inclusions, as in (1.1), so that, all in all,

B =
S
k�0
(T�kB n T�(k+1)B) [

T
k�0

T�kB (disjoint).

Now �(
S
k�0(T

�kB n T�(k+1)B)) =
P

k�0 �(T
�kB n T�(k+1)B) = 0, and to

verify our claim �(B) = 0, we need only observe that for our particular B,T
k�0

T�kB = ?,

since each x 2 B has a maximal k � 0 for which T kx 2 A, which means that
the orbit of T k+1x will never visit A, so that in particular x =2 T�(k+1)B.

We now see at once that conservativity is automatic if �(X) <1: If, in that
case, B 2 A satis�es B � T�1B, then �(B n T�1B) = �(B) � �(T�1B) = 0
by invariance. (Note that the di¤erence of measures does not make sense for
in�nite measure sets B.)
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Let us �nally point out that our two basic properties are also required to
ensure that we can justly call � THE invariant measure for T , i.e. that it is
essentially unique (at least among absolutely continuous measures, i.e. those
which do not hide on a set invisible to �).

Proposition 2 (Uniqueness of �) Let T be a conservative ergodic m.p.t. on
the �-�nite space (X;A; �). If � is another T -invariant measure on A, absolutely
continuous w.r.t. � (that is, �(A) = 0 implies �(A) = 0), then

� = c � � for some c 2 (0;1).

This can be established using techniques introduced in the next section.

2 Wait and see
(the powerful idea of inducing)

A simple idea ... Among the techniques which have proved useful in analyzing
recurrent in�nite m.p.t.s, one simple classical (cf. [Ka]) construction stands
out. It enables us to view the big (in�nite measure) system through a smaller
(preferably �nite measure) window. The basic idea is to �x some reference set
Y 2 A, take points x 2 Y , and just wait to see when, and where, they come
back to Y . Since we are also going to use this for �nding invariant measures
for measurable maps on some (X;A) in the �rst place, we de�ne Y to be a
sweep-out set if it is measurable and all orbits visit Y , i.e. ifS

n�1
T�nY = X. (2.1)

We can then de�ne the function

' : X ! N with '(x) := minfn � 1 : Tnx 2 Y g, (2.2)

called the hitting time of Y or, when restricted to this set, the return time of
Y . That is, '(x) is the number of steps the orbit of x needs to (re-)enter Y .
The position at which it enters Y then is T'(x)x, which de�nes the �rst-return
map (or induced map) of T on Y ,

TY : Y ! Y with TY x := T'(x)x. (2.3)

TY thus is an accelerated version of T . In passing to the induced system we
certainly lose the information what, precisely, happens during the successive
excursions from Y . However, if we keep track of their lengths ' � T jY , j � 0,
we can, for example, reconstruct the occupation times Sn(Y ) of Y (or, for that
matter, of any subset A 2 Y \ A).
In situations with a given invariant measure, it su¢ ces to assume that (2.1)

holds mod �, and we will tacitly use this version when applicable. In this case,
' and TY are de�ned a.e. on X (resp Y ), and everything works just as well4 .

4The proper formal framework suitable for either case is that of nonsingular transforma-
tions, which I have to skip here (see e.g. [A0], [T0]).
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Here comes an easy but important identity, used in various formal arguments.
As ' < 1 we have Y =

S
n�1 Y \ f' = ng (disjoint), and since TY = Tn on

Y \ f' = ng, we �nd that

T�1Y (Y \A) =
S
k�1

Y \ f' = kg \ T�1Y (Y \A) (2.4)

=
S
k�1

Y \ f' = kg \ T�kA for A � X.

... which is enormously useful. We will see various applications of this
concept during this course. One very basic and classical way of using it is as
follows: given a map T we�d like to analyze, try to �nd a good subset Y on which
it induces a map TY which we can understand more easily (often meaning that
it should belong to a class of systems which have already been studied earlier).
Then use something like

Proposition 3 (Basic properties of T via TY ) Assume that Y is a sweep-
out set for T : X ! X, for which TY is known to preserve some �nite measure
�. Then,

(i) T has an invariant measure � with � jY= �, given by

�(A) :=
X
n�0

�
�
Y \ f' > ng \ T�nA

�
, A 2 A; (2.5)

(ii) T is conservative on (X;A; �);

(iii) if TY is ergodic on (Y;A \ Y; � jA\Y ), then T is ergodic on (X;A; �).

Proof. (i) It is not hard to formally verify �(T�1A) = �(A) for A 2 A. We
use the de�nition (2.5), and decompose

Y \ f' > ng = (Y \ f' = n+ 1g) [ (Y \ f' > n+ 1g) (disjoint)

to obtain expressions of the type appearing in (2.5):

�(T�1A) =
X
n�0

�
�
Y \ f' > ng \ T�(n+1)A

�
=

X
n�0

�
�
Y \ f' = n+ 1g \ T�(n+1)A

�
+
X
n�0

�
�
Y \ f' > n+ 1g \ T�(n+1)A

�
=

X
n�1

�
�
Y \ f' = ng \ T�nA

�
+
X
n�1

�
�
Y \ f' > ng \ T�nA

�
.

Since the right-most sum is but the
P

n�1-part of (2.5), we only have to check
that the other sum equals the missing n = 0 bit �

�
Y \ f' > 0g \ T�0A

�
=

� (Y \A). But in view of (2.4), we �nd

X
n�1

�
�
Y \ f' = ng \ T�nA

�
= �

 S
n�1

Y \ f' = ng \ T�nA
!

= �(T�1Y (Y \ A)),
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and as, by assumption, � is TY -invariant, our claim follows.
Finally we observe that, �(A) = �(A) for A � Y since Y \f' > ng\T�nA =

? for n � 1 in this case.

(ii) Note �rst that the de�nition of a sweep-out set implies a certain recurrence
property for Y : applying T�N to the identity (2.1), we see that

S
n�N T

�nY =
X for any N � 1, i.e. every orbit visits Y at arbitrarily late times, and hence
in�nitely often, that is, X

k�0
1Y � T k =1 on X.

Now let W be a wandering set for T . Then T�mW \ T�(m+n)W = ? for all
n � 1 and m � 0. (Why?) Due to the disjointness of the T�nW we �nd, using
�(Y ) = �(Y ) <1 and T -invariance of �,

1 > �(Y ) = �(T�nY ) � �

�
T�nY \

nS
k=0

T�kW

�
=

nX
k=0

�
�
T�nY \ T�kW

�
=

nX
k=0

�
�
T�(n�k)Y \W

�
=

Z
W

 
nX
k=0

1Y � Tn�k
!
d�.

According to our introductory remark, 0 � gn :=
Pn

k=0 1Y �Tn�k =
Pn

k=0 1Y �
T k %1 on X as n!1. Therefore, the right-hand integrals can only remain
bounded if �(W ) = 0 (monotone convergence).

(iii) Turning to ergodicity, we observe that for any T -invariant set A = T�1A,
the intersection Y \A is invariant for TY : due to (2.4), we get

T�1Y (Y \A) =
S
k�1

Y \ f' = kg \ T�kA

=
S
k�1

Y \ f' = kg \A = Y \A.

By assumption, TY is ergodic, so that �(Y \ A) = 0 or �(Y \ Ac) = 0. In the
�rst case we can thus conclude (using A = T�1A again) that �(T�nY \ A) =
�(T�n(Y \ A)) = �(Y \ A) = 0 for all n � 1. In view of (2.1) we then get
�(A) = �(

S
n�1 T

�nY \A) = 0. Analogously, the 2nd case gives �(Ac) = 0.

There is an equally useful converse to this proposition. We omit the proof
(it is similar to the argument above).

Proposition 4 (Basic properties of TY via T ) Let T be a m.p. map on the
�-�nite space (X;A; �), and Y a sweep-out set with �(Y ) <1. Then

(i) TY is measure-preserving on (Y;A \ Y; � jA\Y );

(ii) TY is conservative (a joke, really);

(iii) if T is ergodic on (X;A; �), then TY is ergodic on (Y;A \ Y; � jA\Y ).

As an easy exercise, show that conservative ergodic m.p. systems come with
loads of sweep-out sets:
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Remark 1 Let T be a conservative ergodic m.p. map on the �-�nite space
(X;A; �). Then every Y 2 A+ is a sweep-out set.

Just how in�nite is � ? (Sounds stupid, but is very important.) Let T
be a conservative ergodic m.p. map on the �-�nite space (X;A; �), �(X) =1.
The return-time function ' of a sweep-out set Y 2 A+ enables us to make sense
of this question. We shall see in the next section that �(X) = 1 is equivalent
to non-integrability of ',

R
Y
'd� = 1. The latter means that, starting in Y

(with normalized measure �Y =
�jY
�(Y ) ), there is a high chance of having to wait

a long time for the next visit. Precisely, �(Y \f' > ng)=�(Y ) is the probability
of seeing an excursion of length larger than n, and non-integrability means thatP

n�0 �(Y \ f' > ng) = 1. Information on how fast this series diverges, or
(equivalently) on how slowly the �(Y \ f' > ng) decrease to 0 thus quanti�es
how small Y is in X (under T ), or how big X is (relative to Y ).
Sometimes the asymptotics of �(Y \ f' > ng) can be determined using

Lemma 1 If Y is a sweep-out set for the m.p. map T on the �-�nite space
(X;A; �), �(Y ) <1, then

�(Y \ f' > ng) = �(Y c \ f' = ng) for n � 1.

Proof. Observe �rst that for n � 0,

T�1(Y c \f' > ng) = (Y c \f' > n+1g)[ (Y \f' > n+1g) (disjoint). (2.6)

Now take any E 2 A. This can be written as

E = (Y \ f' > 0g \ E) [ (Y c \ f' > 0g \ E) (disjoint),

and repeated application of (2.6) yields the decomposition

T�nE =
nS
k=0

T�(n�k)(Y \f' > kg\T�kE)[(Y c\f' > ng\T�nE) (disjoint).

If E := T�1Y , this means that

T�(n+1)Y =
nS
k=0

T�(n�k)(Y \ f' = k + 1g) [ (Y c \ f' > n+ 1g) (disjoint),

which by T -invariance of � results in

�(Y ) = �(Y \ f' � n+ 1g) + �(Y \ f' = n+ 1g), n � 0,

as required.

Remark 2 One important caveat: the order of (�(Y \f' > ng)) really depends
on the set Y ! We won�t discuss this in detail here, but we�ll soon see analogous
phenomena (meaning problems) on the level of occupation times. Still, under-
standing it for certain types of sets Y will be shown to be of utmost importance
in Section 4 below.

Let�s have a look at some basic examples:
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Example 5 (Simple Random Walk) For the coin-tossing random walk on
Z, with Y corresponding to the origin, probabilists have known for a long time
(see e.g. Chapter III of [F]) that

�Y (Y \ f' > ng) �
r
2

�n
as n!1.

Example 6 (Boole�s transformation) We return to the �rst "serious" in�-
nite measure preserving dynamical system we have been introduced to, Boole�s
transformation T on the real line. So far, the only thing we know is that it
preserves � = �. What about other basic properties?

Consider Y :=
h
� 1p

2
; 1p

2

i
=: [�x0; x0], the special property of x0 being that

it has period 2 for T . Obviously, �(Y ) =
p
2 < 1, and a look at the graph

of T shows that Y is a sweep-out set: De�ne xn > 0, n � 1, by requiring
that Txn = xn�1, then xn % 1 and ' = n on �(xn�1; xn]. We can thus
appeal to Prop 4 to see that TY is m.p. on (Y;A \ Y; � jA\Y ). By Prop 3 we
can then conclude that T is conservative! Further analysis shows that TY is a
uniformly expanding piecewise smooth "folklore map", and hence known to be
ergodic. Using Prop 3 again, we then see that T is ergodic.
Now, how small a set in X is Y ? By the preceding observation, we have

Y c \ f' = ng = �(xn�1; xn], hence �(Y \ f' > ng) = �(Y c \ f' = ng) =
2(xn � xn�1) by the lemma. According to the de�nition of the xn, we have
xn�1 = xn � 1

xn
, and hence

x2n � x2n�1 = 2�
1

x2n
�! 2,

so that also
x2n
n
=
x20
n
+
1

n

nX
k=1

(x2n � x2n�1) �! 2,

which means xn �
p
2n. This asymptotic relation can, in fact, be "di¤erenti-

ated" to give xn � xn�1 � 1p
2n
(exercise). Consequently,

�(Y \ f' > ng) �
r
2

n
as n!1.

We thus see that (at least for the reference sets Y we have chosen), the two
examples have asymptotically proportional tail probabilities �Y (Y \ f' > ng).
But, of course, other asymptotic orders are possible.

Example 7 (Parry-Daniels map) For this example, Y := [ 12 ; 1) is easily
seen to be a sweep-out set. As we know the invariant measure � for T , it is
clear that �(Y ) <1. By Prop 4, it follows that TY preserves the �nite measure
� jY , and Prop 3 then proves that T is conservative. Again, closer inspection
shows that TY is a folklore map and therefore ergodic. Hence so is T (Prop 3).
To understand the asymptotics of the return time tails, consider the points

xn :=
1

n+1 , n � 1, which satisfy Txn = xn�1, so that Y c\f' = ng = [xn+1; xn).
Consequently, by the lemma,

�(Y \ f' > ng) = �(Y c \ f' = ng) = �([xn+1; xn))

=

Z 1
n+1

1
n+2

dx

x
= log

�
1 +

1

n+ 1

�
� 1

n
as n!1.
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3 Pointwise matters matter
(ergodic theorems for in�nite measures)

What does Birkho¤�s Ergodic Theorem say about 1 measures? After
these preparatory sections we turn to the basic question we proposed to study,
thus focussing on occupation times Sn(A) of sets A 2 A or, more generally,
on ergodic sums Sn(f) for measurable functions f . To be de�nite, we will
consider sets of positive �nite measure, A 2 A+ := fB 2 A : 0 < �(B) < 1g,
and (generalizing 1A) f 2 L+1 (�) := fg 2 L1(�) : g � 0 and

R
g d� > 0g.

Throughout this section, T is a conservative ergodic m.p.t. on a �-�nite measure
space (X;A; �). Observe that due to these basic assumptions we have, for A
and f as above,

Sn(A)%1 resp. Sn(f)%1 a.e. on X. (3.1)

(Why not prove this as an exercise?) Recall that in the case of �nite � the
pointwise ergodic theorem identi�es the asymptotics of Sn(f)(x) for a.e. x 2 X.
We record this statement in a version which also explicates what the theorem
says about in�nite measure preserving situations:

Theorem 1 (Birkho¤�s Pointwise Ergodic Theorem) Let T be c.e.m.p.
on the �-�nite measure space (X;A; �). If �(X) < 1, then for all A 2 A+
(and f 2 L+1 (�)),

1

n
Sn(A) �!

�(A)

�(X)

�
resp.

1

n
Sn(f) �!

R
f d�

�(X)

�
a.e. on X. (3.2)

If �(X) =1, then for all A 2 A+ (and f 2 L+1 (�)),

1

n
Sn(A) �! 0

�
resp.

1

n
Sn(f) �! 0

�
a.e. on X. (3.3)

Some proofs of the ergodic theorem automatically cover the in�nite measure
case (see e.g. Thm 1.14 of [W]). Since others don�t, we will give an easy proof
of (3.3) at the end of the present section.

Note that for �nite � the theorem tells us three things: It shows that the
rate Sn(A)(x) at which the occupation times diverge is asymptotically the same
for a.e. x 2 X; it proves that this asymptotic rate depends on A only through
the measure �(A) of that set; and it explicitly identi�es this typical pointwise
rate as being proportional to n.
For in�nite �, however, the result only provides us with an upper bound for

Sn(A), but we do not know how much slower than n the occupation times really
increase to in�nity at typical points. Neither does it clarify to what extent the
asymptotics of Sn(A)(x) depends on x and A.

Trouble ahead. Can we do better? An optimal result providing the three bits
of information we had for �nite measures should explicitly identify the correct
rate, i.e. a sequence (an)n�1 of positive normalizing constants, such that for all
A 2 A+,

1

an
Sn(A) �! �(A) a.e. on X. (3.4)

12



This could then be regarded as an appropriate version of the ergodic theorem for
in�nite measure spaces. So, let�s prove it! Perhaps we should start by checking
that the asymptotics of Sn(A)(x) does not depend on x, and try to identify the
proper rate. Hmmmmm...
Don�t try too hard, you haven�t got a chance! Any attempt to �nd the

correct normalization is doomed to fail. There simply is no correct rate. The
following slightly distressing result (see e.g. Theorem 2.4.2 of [A0]) provides a
precise (but not the strongest possible) version of this statement:

Theorem 2 (Aaronson�s Ergodic Theorem) Let T be a c.e.m.p.t. on the
�-�nite measure space (X;A; �), �(X) = 1, and (an)n�1 be any sequence in
(0;1). Then for all A 2 A+ (and f 2 L+1 (�)),

lim
n!1

1

an
Sn(A) =1

�
resp. lim

n!1

1

an
Sn(f) =1

�
a.e. on X,

or

lim
n!1

1

an
Sn(A) = 0

�
resp. lim

n!1

1

an
Sn(f) = 0

�
a.e. on X.

That is, any potential normalizing sequence (an)n�1 either over- or underesti-
mates the actual size of ergodic sums of L+1 (�)-functions in�nitely often.

This shows that the pointwise behaviour of ergodic sums for L+1 (�)-functions,
even of occupation times Sn(A) of the nicest possible sets of positive �nite mea-
sure, is terribly complicated. The rate at which Sn(A)(x) diverges to1 depends
in a serious way on the point x, and there is no set B 2 A of positive measure
on which the Sn(A) share a common order of magnitude, not to mention the
same asymptotics, as n!1.

So what, if anything, can we expect? Doesn�t Aaronson�s ergodic theorem
just kill the �eld? Luckily, this is not the case. It only shows that the proper
version of the ergodic theorem for in�nite measure situations can�t provide all
the things we asked for in (3.4). In fact, the part which works was already
discovered in the early years of ergodic theory, cf. [S], [H], shortly after Birk-
ho¤�s breakthrough in [B] (see also [N] and [Zu] for the history of this brilliant
result). The ratio ergodic theorem states that (while crucially depending on the
point) the pointwise asymptotics of the ergodic sums Sn(f) hardly depends on
the function f 2 L+1 (�): it only does so through its mean value

R
X
f d�. We

are going to prove

Theorem 3 (Hopf�s Ratio Ergodic Theorem) Let T be a c.e.m.p.t. on
the �-�nite measure space (X;A; �), and A;B 2 A+ (resp f; g 2 L+1 (�)). Then

Sn(A)

Sn(B)
�! �(A)

�(B)

�
resp.

Sn(f)

Sn(g)
�!

R
X
f d�R

X
g d�

�
a.e. on X.

This certainly is an interesting fact, but why call a statement di¤erent from
what we asked for in the beginning THE proper version? Well, the ratio ergodic
theorem turns out to be tremendously useful a.e. in the theory, for example
because it often allows us to replace a function f 2 L+1 (�) we need to study by
some more convenient tailor-made g which simpli�es the question. In particu-
lar, as we shall see, it is an important tool for proving further results which are
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closer to our basic question.

Proving the Ratio Ergodic Theorem. The following proof of Theorem 3 is
taken from [Z2] (see [KK] for yet another proof). It exploits the idea of inducing
in a way which enables us to apply the �nite measure ergodic theorem.

To prepare for the argument, we �x some Y 2 A+, and induce on it to obtain
a return map TY = T' : Y ! Y . According to Prop 4, TY is ergodic and m.p.
on (Y; Y \ A; � jY \A), and hence de�nes a dynamical system in its own right.
For measurable functions h : Y ! R we denote ergodic sums for the induced
system by

SYm(h) :=
m�1X
j=0

h � T jY , m � 1, on Y . (3.5)

The most important single example is given by

'm := S
Y
m(') :=

m�1X
j=0

' � T jY . (3.6)

Note that the general term inside, ' � T jY (x) = 'j(x) � 'j�1(x) (also true for
j = 1 if '0 := 0), is the length of the jth excursion from Y of the orbit (Tnx)n�0
in the big system. Hence 'm(x) is just the time at which the mth return of x
to Y takes place. Quite trivially,

SYm(Y ) = m for m � 1. (3.7)

The idea of chopping up orbits of T , to obtain pieces corresponding to separate
excursions is both simple and very useful, in particular if we collect the values
of f : X ! [0;1] observed during the �rst excursion and represent them via a
single function, the induced version of f given by

fY : Y ! [0;1], fY := S'(f) =

'�1X
j=0

f � T j . (3.8)

This new function fY is just f seen through the induced system:

Lemma 2 (Induced functions and ergodic sums) For measurable f � 0,

S'm(f) = S
Y
m(f

Y ) for m � 1 on Y , (3.9)

and Z
X

f d� =

Z
Y

fY d�. (3.10)

Proof. (i) The orbit section (T kx)k=0;:::;'m(x)�1 which determines S'm(f) con-
sists ofm complete excursions from Y . Simply chop it up into the corresponding
subsections, to obtain

S'm(f) = S'1(f) + S'2�'1(f � TY ) + : : :+ S'm�'m�1(f � T
m�1
Y )

= S'(f) + S'�TY (f � TY ) + : : :+ S'�Tm�1
Y

(f � Tm�1Y )

= S'(f) + (S'(f)) � TY + : : :+ (S'(f)) � Tm�1Y = SYm(f
Y ).
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(ii)We note that (3.10) is true for indicator functions 1A, where it is equivalent
to the magic formula (2.5) we saw earlier,

�(A) =
X
n�0

�(Y \ f' > ng \ T�nA) for A 2 A.

Simply write the bits involved as integrals, to getZ
X

1A d� =

Z
Y

0@X
n�0

1Y \f'>ng � 1A � Tn
1A d�

=

Z
Y

 
'�1X
n=0

1A � Tn
!
d� =

Z
Y

1YA d�.

A routine argument from measure theory then shows that (3.10) holds for all
measurable f : X ! [0;1]. (Easy exercise.)

As an immediate consequence, we see (taking f := 1X so that fY = ') that

�(X) =

Z
Y

'd�, (3.11)

which is usually referred to as Kac� formula. In particular, we see that the
T -invariant measure � is in�nite i¤ the return time function ' of any Y 2 A+
is non-integrable. Inducing thus leads to a duality between in�nite measure
preserving transformations and the study of non-integrable functions over �nite
measure preserving systems. An explicit illustration of this scheme can be found
at the end of the next section. We now proceed to the

Proof of Theorem 3. (i) Observe that it su¢ ces to prove that for f 2 L+1 (�),

Sn(f)

Sn(1Y )
�!

R
X
f d�

�(Y )
a.e. on Y . (3.12)

Indeed, as the set where Sn(f)=Sn(1Y ) �!
R
X
f d�=�(Y ) is T -invariant and

contains Y , we then see that by ergodicity this convergence in fact holds a.e.
on X. Applying the same to g, the assertion of the theorem follows at once.

(ii) To verify (3.12), we consider the return map TY which is an ergodic m.p.t.
on the �nite measure space (Y;A\Y; � jA\Y ). We can therefore apply Birkho¤�s
ergodic theorem to TY and fY (which is integrable by (3.10)), thus considering
the ergodic sums SYm(f

Y ) of the induced system, to see (recalling (3.7) and
(3.9)) that

S'm(f)

S'm(1Y )
=
SYm(f

Y )

m
�!

R
Y
fY d�

�(Y )
=

R
X
f d�

�(Y )
a.e. on Y . (3.13)

This proves (3.12) for a.e. x 2 Y along the subsequence of indices n = 'm(x).

(iii) To prove convergence of the full sequence, we need only observe that Sn(f)
is non-decreasing in n since f � 0. Hence, if for any n we choose m = m(n; x)
such that n 2 f'm�1 + 1; : : : ; 'mg, we �nd (again using (3.7))

m� 1
m

SYm�1(f
Y )

m� 1 � Sn(f)

Sn(1Y )
� SYm(f

Y )

m
,
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and (3.12) follows from (3.13) since m(n; x)!1 as n!1.

Having established the ratio ergodic theorem, we conclude this section with
a quick proof of (3.3): by �-�niteness of the space we have, for any m � 1, some
Bm 2 A+ with �(Bm) � m. Applying the ratio ergodic theorem to the pair
A;Bm yields (since Sn(Bm) � n)

0 � lim
n!1

Sn(A)

n
� lim

n!1

Sn(A)

Sn(Bm)
=

�(A)

�(Bm)
a.e. on X.

Since m was arbitrary, and �(Bm)!1, our claim (3.3) follows.

4 Distributions, too, do
(capturing the order of Sn(A) in a weaker sense)

Another attempt: averaging over sets. Let T be a conservative ergodic
m.p.t. on (X;A; �), and A 2 A+. We still haven�t achieved our goal of capturing
the asymptotic size of occupation times Sn(A). Recall that by the ratio ergodic
theorem the dependence of Sn(A) on the choice of A is very simple. However,
the discussion above also showed that for each A the pointwise behaviour of
the functions Sn(A) is awfully complicated, as no realization (Sn(A)(x))n�1
captures the order (let alone the exact asymptotics) of (Sn(A))n�1 on any set
of positive measure.
So, is there anything we can do? One natural approach which might help us

is to perhaps smoothen out the weird habits of individual points by averaging
Sn(A) over some set of positive measure. (Note that, after all, Theorem 2 only
tells us that a.e. Sn(A)(x) goes crazy in�nitely often, but doesn�t rule out the
possibility of this only happening on very rare occasions, which could still be
consistent with regular behaviour of an average.) We are thus lead to the idea
of considering the following quantities: Given any A 2 A+ we de�ne (using the
normalized restriction �A =

�jA
�(A) )

an(A) :=

Z
A

Sn(A) d�A, for n � 1, (4.1)

which, in probabilistic terms, is just the expectation of Sn(A) if we think of
starting our system on A (and with initial distribution �A).
Having removed the dependence on individual points in this way, we�ve now

got something which only depends on A. But then we already know by Theorem
3 that the asymptotics of Sn(A) depends on A only through �(A). So we have
found something encoding a "characteristic rate" of T , haven�t we?

Weeeeell ... again it isn�t true. We�ve hit another wall! In general we don�t
have good control of integrals of function sequences which we can control a.e.,
unless we have some extra information (e.g. monotone or dominated conver-
gence). And, in fact, this inevitably causes problems in the present situation
(cf. Thm 6.2 of [A2]):
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Proposition 5 (Non-universality of an(A)) Let T be a conservative ergodic
m.p.t. on (X;A; �), �(X) =1. Then for every A 2 A+ there is some B 2 A+
for which

an(A) = o(an(B)) as n!1.

This is getting pretty annoying! Why did I present something which still
doesn�t work? Of course, one aim was to emphasize once again that apparently
simple things can become very tricky in the presence of an in�nite invariant
measure. (Note that in case �(X) <1 we have an(A)=�(A) � an(B)=�(B) � n
for all A;B 2 A+ by the L1-version of the ergodic thm.) However, there is
another, even better reason: We�ll see that for special sets Y , and special systems
T , the an(Y ) can really do what we want them to, but only in a still weaker sense.

Transfer operator and very good sets. One extra assumption we need in
order to really make sense of the an(A) is formulated in terms of the transfer
operator P : L1(�) ! L1(�) of the m.p. system (X;A; �; T ). Recall that P
describes the evolution of (proba-) densities under the action of T , that is, if u
is the density of some proba measure � w.r.t. �, then Pu is the density of the
image measure � � T�1. Formally, this is re�ected in the duality5 relationZ

X

f �Pu d� =
Z
X

(f � T ) � u d� for f 2 L1(�), u 2 L1(�), (4.2)

which immediately explains the relevance of P for our present situation, as

an(A) =
1

�(A)

n�1X
k=0

Z
(1A � T ) � 1A d� =

Z
A

 
n�1X
k=0

Pk1A

!
d�A. (4.3)

For transformations which locally expand on the state space X, P tends to
locally smear out densities u by stretching their support. In such situations, P
(in marked contrast to Uf := f � T ) has a regularizing e¤ect on u. For some
classes of �nite measure preserving dynamical systems, this makes P behave
much better than U and enables an e¢ cient analysis.

The last sentence remains true with "�nite" replaced by "in�nite". Here is
a condition which turns out to be satis�ed by all our examples. It asks for the
existence of a particularly nice set: Y 2 A+ is a Darling-Kac (DK) set if6

1

an(Y )

n�1X
k=0

Pk1Y �! 1 uniformly (mod �) on Y . (4.4)

Note that the existence of such sets de�nes a particular class of systems. In
general DK-sets need not exist, but for some T they do. In this case the system
automatically satis�es a pointwise ergodic theorem for the "dual" operator P,
of the form (3.4) we could not achieve for U: the c.e.m.p.t. T then is pointwise
dual ergodic, meaning that there are an(T ) > 0 for which

1

an(T )

n�1X
k=0

Pku �!
Z
X

u d� � 1X a.e. on X for u 2 L1(�). (4.5)

5Traditionally, Uf := f � T is referred to as the Koopman operator, and P is often just
referred to as its dual. Note, however, that L1(�) is the dual of L1(�), but not vice versa.

6Uniform convergence (mod �) on Y means that there is some Y 0 � Y with �(Y n Y 0) = 0
on which the convergence is uniform.

17



This follows, with

an(T ) :=
an(Y )

�(Y )
, (4.6)

since P, too, satis�es a ratio ergodic theorem parallel to Thm 3:

Theorem 4 (Hurewicz�Ratio Ergodic Theorem) Let T be a c.e.m.p.t. on
the �-�nite measure space (X;A; �), and A;B 2 A+ (resp f; g 2 L+1 (�)). ThenPn�1

k=0 P
k1APn�1

k=0 P
k1B

�! �(A)

�(B)

"
resp.

Pn�1
k=0 P

kuPn�1
k=0 P

kv
�!

R
X
u d�R

X
v d�

#
a.e. on X.

We don�t include a proof here, see e.g. §2.2 of [A0]. (Theorems 1, 3, and 4
are but special cases of a marvelously general ratio ergodic theorem for opera-
tors, known as the Chacon-Ornstein Theorem, cf. [Kr].) Finally, we can o¤er
some good news about averaged occupation times. The following is an easy
consequence of the de�nition of DK-sets and of Theorem 4:

Proposition 6 (Universality of an(Y ) for DK-sets Y ) Let T be a c.e.m.p.t.
on the �-�nite measure space (X;A; �), and assume that Y; Y 0 are DK-sets.
Then

an(T ) =
an(Y )

�(Y )
� an(Y

0)

�(Y 0)
as n!1. (4.7)

That is, at least the growth rare of averaged occupation times of DK-sets,
encoded in the asymptotics of an(T ) is a meaningful concept. While, as pointed
out earlier, (4.7) doesn�t generalize to all A 2 A+, we will see that it does
capture the size of all Sn(A) in a weaker sense.

Calculating the asymptotics of an(T ). Regular variation. Before do-
ing so, we �rst indicate how the asymptotics of an(T ) can be analyzed in our
examples. The key to this is a non-trivial relation between the an(T ) and the
tails �(Y \ f' > ng) of the return distribution of Y , which will enter the
discussion via their partial sums wn(Y ) :=

Pn�1
k=0 �(Y \ f' > ng), n � 1.

(The sequence (wn(Y )) is called the wandering rate of Y .) Observing that
wn(Y ) =

R
Y
min(n; ') d� is the expectation of the excursion length ' truncated

at n, suggests that its product with an(Y ), the expected number of visits to,
and hence of excursions from Y , should be of order n.
This is made precise in the next proposition which we prove in order to

illustrate the �avour of some arguments which are frequently used in the �eld.
Determining the exact asymptotics of an(Y ) actually requires the wn(Y ) to be
regularly varying, meaning that there is some � 2 R (the index ) such that

wn(Y ) = n� � `(n),

with ` slowly varying, i.e. satisfying `(cn)=`(n)! 1 as n!1 for all c > 0. (For
example, ` could be convergent in (0;1), but also the logarithm is a suitable
function.) The importance of this concept is due to the fact that it not only
enables precise asymptotic analysis, but also turn out to be necessary for various
desirable conclusions to hold. However, we don�t have enough time to discuss
this in detail here. (See Chapter 1 of the 490 pages treatise [BGT] for what,
according to the authors, the "mathematician in the street" ought to know
about regular variation.)

18



Proposition 7 (Asymptotics of an(Y ) via wn(Y )) Let T be a c.e.m.p.t. on
the �-�nite measure space (X;A; �), and assume that Y is a DK-set. Then7

n

wn(Y )
. an(Y )

�(Y )
. 2n

wn(Y )
as n!1. (4.8)

Moreover, if (wn(Y )) is regularly varying of index 1�� for some � (necessarily
in [0; 1]), then

an(Y )

�(Y )
� 1

�(2� �)�(1 + �) �
n

wn(Y )
as n!1. (4.9)

Proof. (i) We are going to relate the two quantities to each other by taking
orbit sections consisting of a certain number (the occupation time) of consecutive
excursions and splitting o¤ the last of these excursions (the distribution of which
is encoded in the �(Y \ f' > ng)). Formally, we decompose, for any n � 0,

Y n :=
nS
k=0

T�kY =
nS
k=0

T�k(Y \ f' > n� kg) (disjoint)

(a point from Y n belongs to the kth set on the right-hand side if k is the last
instant � n at which its orbit visits Y ). Passing to indicator functions and
integrating this identity over Y then gives (since Y \ Y n = Y )

�(Y ) =
nX
k=0

Z
X

1Y � 1Y \f'>n�kg � T k d� (4.10)

=
nX
k=0

Z
X

Pk1Y � 1Y \f'>n�kg d�

=

Z
Y

 
nX
k=0

Pk1Y � 1Y \f'>n�kg

!
d�.

The expression in brackets is a somewhat unhandy convolution. Still, we can use
an elementary argument to validate the estimates (4.8). If we sum the identities
(4.10) over n 2 f0; : : : ; Ng, we obtain the �rst and the last statement of

(N + 1)�(Y ) =

Z
Y

 
NX
n=0

nX
k=0

Pk1Y � 1Y \f'>n�kg

!
d�

�
Z
Y

 
NX
k=0

Pk1Y

!0@ NX
j=0

1Y \f'>jg

1A d�

�
Z
Y

 
2NX
n=0

nX
k=0

Pk1Y � 1Y \f'>n�kg

!
d� = (2N + 1)�(Y ),

while the two estimates in the middle are obtained by simply comparing for
which pairs (k; j) the expression Pk1Y �1Y \f'>jg shows up in the respective ex-
pressions. As, by assumption, Y is a DK-set, we can understand the mysterious

7Here, cn . dn means that lim cn=dn � 1.
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bit in the middle, observing that

Z
Y

 
NX
k=0

Pk1Y

!0@ NX
j=0

1Y \f'>jg

1A d� � aN+1(Y ) �
Z
Y

0@ nX
j=0

1Y \f'>jg

1A d�

= aN+1(Y ) � wN+1(Y ),

and (4.8) follows.

(ii) The sharp asymptotic relation (4.9) requires some advanced analytic tools.
To e¢ ciently deal with the convolution in (4.10), we pass to the discrete Laplace
transforms8 (generating functions) of the sequences (in n) in that equation. This
gives, for s > 0,

�(Y )
X
n�0

e�ns =

Z
Y

X
n�0

 
nX
k=0

Pk1Y � 1Y \f'>n�kg

!
e�ns d� (4.11)

=

Z
Y

0@X
n�0

Pn1Y e
�ns

1A0@X
n�0

1Y \f'>ng e
�ns

1A
(all terms being non-negative, we are free to interchange summation and inte-
gration). Our assumption that Y should be DK provides good control of sumsPn�1

k=0 P
k1Y , but here we�ve got the transform

P
n�0P

n1Y e
�ns of the individ-

ual Pn1Y which are (really !!!) hard to understand. However, there is a neat
little trick: note thatX

n�0
Pn1Y e

�ns = (1� e�s) �
X
n�0

 
nX
k=0

Pk1Y

!
e�ns

� s �
X
n�0

an(Y ) e
�ns uniformly on Y as s& 0.

Substituting this, (4.11) becomes

�(Y )

s
� s �

Z
Y

0@X
n�0

an(Y ) e
�ns

1A0@X
n�0

1Y \f'>ng e
�ns

1A
= s

0@X
n�0

an(Y ) e
�ns

1A0@X
n�0

�(Y \ f' > ng) e�ns
1A .

We have thus obtained an explicit asymptotic relation between the Laplace
transforms of (an(Y )) and (�(Y \ f' > ng)). Now the condition of regular
variation is exactly what we need in order to (twice) apply the following deep
analytic result, which completes the proof.

Detailed studies of in�nite measure preserving systems often require plenty of
serious asymptotic (real) analysis. A cornerstone of this theory is the following
result (cf. §1.7 of [BGT]).

8That is, (bn)n�0 is encoded in B(s) :=
P
n�0 bn e

�ns, s > 0. The rate at whichPn
k=0 bk !1 is re�ected in the behaviour of B(s) as s& 0.
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Proposition 8 (Karamata�s Tauberian Theorem for power series) Let
(bn) be a sequence in [0;1) such that for all s > 0, B(s) :=

P
n�0 bn e

�ns <1.
Let ` be slowly varying and �; # 2 [0;1). Then

B(s) � #

�
1

s

��
`

�
1

s

�
as s& 0, (4.12)

i¤
n�1X
k=0

bk �
#

�(�+ 1)
n�`(n) as n!1. (4.13)

If (bn) is eventually monotone and � > 0, then both are equivalent to

bn �
#�

�(�+ 1)
n��1`(n) as n!1. (4.14)

The Darling-Kac Theorem for in�nite m.p. T . We are �nally in a position
to state the main result of this section (generalizing [DK]). It states that in
the presence of regular variation, an(Y ) (for Y a DK-set) exactly captures the
asymptotics of all Sn(A) if we consider their distributions.

Theorem 5 (Aaronson�s Darling-Kac Theorem) Let T be a c.e.m.p.t. on
the �-�nite measure space (X;A; �). Assume there is some DK-set Y 2 A+. If

(wn(Y )) is regularly varying of index 1� � (4.15)

(for some � 2 [0; 1]), then for all f 2 L+1 (�) and all t > 0,

�Y

�
1

an(T )
Sn(f) � t

�
�! Pr [�(f) � M� � t] as n!1. (4.16)

(In fact, �Y may be replaced by any proba measure Q with Q� �.)

In here,M�, � 2 [0; 1], denotes a non-negative real random variable distrib-
uted according to the (normalized) Mittag-Le­ er distribution of order �, which
can be characterized by its moments

E [Mr
�] = r!

(�(1 + �))r

�(1 + r�)
, r � 0.

For speci�c parameter values, there is a more explicit description: M1 = 1
(a constant random variable), M1=2 = jN j (the absolute value of a standard
Gaussian variable), andM0 = E (an exponentially distributed variable).

Example 8 For both the coin-tossing random walk and Boole�s transformation
considered above, it can be checked that the reference sets Y given there are are
DK, and we have observed that �(Y \ f' > ng) � const=

p
n. Hence wn �

const �
p
n, and we are in the � = 1=2 situation of the theorem. We thus see

that, say for Boole�s transformation,

Q

�
�p
2n
Sn(A) � �(A) t

�
�! 2

�

Z t

0

e�
y2

� dy, t � 0,

for 0 < �(A) <1, and Q any proba measure absolutely continuous w.r.t. �.
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Remark 3 The existence of DK-sets is not a necessary condition for the con-
clusion of the theorem to hold. There are weaker conditions of the same �avour
which su¢ ce (e.g. in [A0] and [AZ]), and it is also possible to use other types
of assumptions (see e.g. [TZ], [Z3]).

Remark 4 Still, some structural assumptions have to be made: There are con-
servative ergodic m.p.t.s for which

1

an(Y )
Sn(A)

��! 0 for all A; Y 2 A+,

meaning that the averages an(Y ) fail to capture the size of occupation times for
any set A, even in the distributional sense (cf. Prop 3.3.4 of [A0]).

Duality. We �nally mention what the duality between in�nite spaces and non-
integrable functions amounts to in the case of the DK-theorem. For simplicity
we focus on the case � = 1. This can be thought of as the threshold value,
where the measure "has just become in�nite". In fact, some properties of �nite
measure preserving systems remain true, in a weaker sense, for these barely
in�nite invariant measures. Speci�cally, while we know that an a.e. ergodic
theorem of the form 1

an
Sn(A) ! �(A) is impossible, the � = 1 case of the

DK-theorem gives (in particular)

1

an(T )
Sn(Y )

��! �(Y ), (4.17)

i.e. a weak law of large numbers for T . We now claim that this is equivalent to

1

bm(T )
'm

��! 1

�(Y )
, (4.18)

where (bm(T )) is asymptotically inverse to (an(T )) (i.e. a(b(m)) � b(a(m)) �
m) and regularly varying of index 1. In fact, this is a nice exercise, where you
should assume the existence of such bm(T ), which is guaranteed by the general
theory of regular variation, and exploit the duality rule

Sn(Y ) � m i¤ 'm � n (4.19)

(which is pretty obvious once you read it aloud: the number of visits (including
time 0) to Y before time n does not exceed m i¤ the mth return does not take
place before time n.)

5 Back to Gauss
(inducing used the other way)

A very simple map and its invariant measure. This section is devoted to
a single example, T : X ! X where X := (0;1). It looks innocent enough:

Tx :=

�
1
x � 1 for x 2 (0; 1) =: Y ,
x� 1 for x 2 (1;1) = Y c.

(5.1)
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Let�s see if we can �nd a suitable measure � which has a density h w.r.t. �,
i.e. can be expressed as �(0; x] =

R x
0
h(t) dt =: H(x). Such a � is T -invariant

i¤ �(0; x] = �(T�1(0; x]) for all x > 0. Straightforward calculation shows that
T�1(0; x] = ( 1

1+x ; 1 + x], so that the condition for invariance can be expressed
in terms of the distribution function H as

H(1 + x)�H(x) = H

�
1

1 + x

�
for all x > 0. (5.2)

It is not hard to �nd solutions to this functional equation, if we observe that
an additive operation outside should correspond to a multiplicative operation
inside. As a �rst attempt we might try log x, which does not solve (5.2), but
already leads to something similar. Playing around a bit one �nds that

H(x) = Hc(x) := c � log(1 + x) solves (5.2)

(where c > 0 is any constant). Choosing c := 1
log 2 , so that H(1) = 1, we

have therefore found an invariant measure � for T with �(Y ) = 1, �(X) =
limx!1H(x) =1, and density

h(x) =
1

log 2

1

1 + x
, x > 0.

Well, we have seen this density before9 ! Its restriction to Y is the famous
invariant density for the continued fraction (CF) map found by Gauss! In fact,
it is easily seen that Y is a sweep-out set for T , so that we can induce on this
subset and consider the return map TY = T'. By Prop 4 we know at once
that � jY (resp. h jY ) is invariant for TY . This restriction being �nite, we can
conclude via Prop 3 that T is conservative.

Continuing with continued fractions. Let�s have a closer look at the in-
duced system. We �nd that ' = n on ( 1

n+1 ;
1
n ), that is, ' coincides with the

CF digit function d on Y ! Moreover, TY turns out to be the CF-map,

TY x =
1

x
�
�
1

x

�
. (5.3)

We have thus found Gauss�density by simple considerations about the in�nite
measure preserving map T ! Note that T is not just some arbitrary m.p. trans-
formation containing the CF-map, but that it has a very simple interpretation
from the CF point of view, as it simply means to determine the fractional part
of 1x by successively subtracting 1 until we end up with a number in (0; 1),

x =
1
1
x

=
1

1 +
�
1
x � 1

� = 1

2 +
�
1
x � 2

� = : : : =
1

d +
�
1
x � d

�
=

1

1 + Tx
=

1

2 + T 2x
= : : : =

1

d + T dx
=

1

d + TY x
.

As TY is known to be ergodic, we can use Prop 3 to see that T is ergodic
as well (which is equivalent to saying that the Hc are the only distribution
functions solving (5.2), which can also be proven directly). But we can learn

9 In Cor Kraaikamp�s lectures on Ergodic Theory of Numbers.
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even more about the CF-map TY by studying T : recall that the consecutive
digits dk of the CF-expansion of x 2 Y ,

x =
1

d1 +
1

d2+:::

are given by dj := d � Tj�1Y , j � 1, and hence d1+: : :+dm = 'm. As �(X) =1
we know that

R
Y
'd� =

R
Y
d d� = 1 (cf. Kac� formula (3.11) above). As a

consequence,

d1 + : : :+ dm
m

=
'm
m

=
SYm(')

m
�!1 a.e. on Y (5.4)

(exercise!). We can, however, easily compute the tail behaviour of the return
distribution. Since Y \ f' > ng = (0; 1

n+1 ), we �nd that

�(Y \ f' > ng) = H

�
1

n+ 1

�
=

1

log 2
log

�
1 +

1

n+ 1

�
� 1

log 2

1

n
,

and therefore wn(Y ) =
Pn�1

k=0 �(Y \ f' > ng) � 1
log 2 log n, which is slowly

varying. As Y can be shown to be a DK-set for T , we are in the situation of
Theorem 5, with � = 1, and conclude (computing the an(T ) via Prop 7) that

1

log 2

log n

n
Sn(Y )

��! 1.

Dually (cf. the end of the preceding section), we have

log 2

m logm
'm

��! 1.

Stated in terms of CF-digits, this gives a famous classical result (cf. [Kh]):

Proposition 9 (Khinchin�s Weak Law for CF-digits) The CF-digits (dj)
satisfy

d1 + : : :+ dm
m logm

��! 1

log 2
. (5.5)

Remark 5 Well, you may not like it, but I can admit it now: We have seen T
before. It is exactly the Parry-Daniels map we studied earlier, but in di¤erent
coordinates (cf. [P]).

6 Thinking big
(is even harder)

Welcome to the jungle! We have seen that something as basic as the be-
haviour of occupation times Sn(A) of sets A 2 A+ is astonishingly complicated
as soon as we are in the realm of in�nite ergodic theory. Perhaps you are even
willing to regard it as interesting, and some of the results as beautiful. But
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then, you may ask, perhaps we have just been looking at the wrong sort of sets.
The space is in�nite after all, so why bother about tiny sets which our orbits
are hardly ever going to visit? Shouldn�t we really focus on occupation times of
in�nite measure sets A? Perhaps these behave in a more satisfactory way?
The opposite is true. There seem to be no limits to the ways in which

in�nite measure sets can fool our intuition! We conclude these notes with a few
examples.

Example 9 A very silly one is this: Take your favorite c.e.m.p. T on a �-�nite
measure space (X;A; �), with �(X) =1. Fix any Y 2 A+, and consider A :=
Y c which has in�nite measure. Theorem 1 immediately shows that 1nSn(A)! 1
a.e. since the small set Y is only visited with zero frequency as n ! 1. Still,
this convergence need not be uniform, for example if T is continuous near some
�xed point x in the interior of Y which has �-positive neighborhoods.

A minimal requirement will be to ask for �(A) = �(Ac) =1.

Example 10 But then, we could e.g. look at the coin-tossing random walk on
the integers, and take A to be the in�nite-measure set corresponding to the even
integers. There is an obvious cyclic structure, by which even states are always
followed by odd ones, and vice versa. Hence j Sn(A)� n

2 j� 1, i.e. in this proper
in�nite measure situation we get 1

nSn(A)!
1
2 uniformly on X.

That�s not so bad, is it? But consider this beautiful example:

Example 11 Take the coin-tossing random walk again, and A the set corre-
sponding to the positive integers. In fact, we can also consider Boole�s transfor-
mation and A the positive half-line. A pretty symmetric situation, right? So we
are tempted to bet that again 1

nSn(A)!
1
2 in some sense, and it is trivially true

(by symmetry) that the expectation
R
Y
1
nSn(A) d�Y !

1
2 (where Y corresponds

to the origin or the reference set we used for Boole). However, the pointwise
behaviour once again is terrible, in that

lim
n!1

1

n
Sn(A) = 0 and lim

n!1

1

n
Sn(A) = 1 a.e. on X. (6.1)

Still, this could be due to very rarely occurring deviations. But it isn�t. This
"negative" result is accompanied by a very neat and counterintuitive distribu-
tional limit theorem, showing that, for a given large time horizon n, orbits are
very likely to signi�cantly favour one side. It is called the arcsine law,

Q

��
1

n
Sn(A) � t

��
�! 2

�
arcsin

p
t, t 2 [0; 1], (6.2)

where Q is any proba measure absolutely continuous w.r.t. �.

Both statements (6.1) and (6.2) are but special cases of abstract limit the-
orems. The distinctive structure of this example is the following: the in�nite
measure sets A and Ac are dynamically separated by some (special !) �nite mea-
sure set Y , i.e. T -orbits can�t pass from one set to the other without visiting
Y . In the case of the random walk, (6.2) is a classical result (cf. Chapter III of
[F]). The �rst dynamical-systems version (which covers Boole�s transformation)
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has been given in [T3]. Further generalizations can be found in [TZ] and [Z3].
In view of the Darling-Kac theorem above, you won�t be surprised to learn that
regular variation again plays a crucial role.
As for the pointwise statement (6.1), one might hope for a fairly general re-

sult like Theorem 2. However, the situation is quite delicate, and this conclusion
depends on strong (!) mixing conditions for the return map TY . See [ATZ], where
we also give a Markov-chain counterexample in which (6.1) fails, and another
funny example which satis�es a weak law of large numbers, Sn(A)=cn

��! 1=2,
but with lim cn=n = 0 and lim cn=n = 1.
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