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Abstract. We study conservative ergodic infinite measure preserving
transformations satisfying a compact regeneration property introduced
in [Z4]. Assuming regular variation of the wandering rate, we clarify
the asymptotic distributional behaviour of the random vector (Zn, Sn),
where Zn and Sn respectively are the time of the last visit before time
n to, and the occupation time of, a suitable set Y of finite measure.

1. Introduction

Various interesting classes of conservative (i.e. recurrent) ergodic infinite

measure preserving dynamical systems, cf. [A0], exhibit stochastic proper-

ties which parallel phenomena known from the probability theory of null-

recurrent Markov chains. In fact, systems containing (as an induced map,

say) some hyperbolic mechanism generalize these classical processes, while

still being closely related to them on a structural level, cf. [Z6]. Lacking the

clear-cut dependence structure of Markov chains, their probabilistic anal-

ysis depends on identifying ergodic properties which (can be verified and)

still entail the desired stochastic features.

Let T be a measure preserving transformation (m.p.t.) on the σ-finite

measure space (X,A, µ) with µ(X) = ∞. It is conservative and ergodic

(c.e.) if Sn(f) → ∞ a.e. whenever f ≥ 0 and µ(f) =
∫
f dµ > 0, where

Sn(f) :=
∑n−1

k=0 f ◦ T k, n ≥ 0, cf. Proposition 1.2.2 of [A0]. For specific

types of such systems, distributional limit theorems for ergodic sums Sn(f)

with f ∈ L1(µ) (in Darling-Kac type theorems, cf. [DK]) and for renewal-

theoretic variables like Zn(Y ) := max{k 1Y ◦ T k : 0 ≤ k ≤ n}, n ≥ 0 (in

Dynkin-Lamperti type arcsine laws, cf. [D], [L]), are available, see [A0]-[A2],

[T2], [TZ], [Z4]. The limit distributions, which depend on a single parameter

α ∈ [0, 1] encoding a characteristic return rate of the system, are given in

terms of (normalized) Mittag-Leffler variables Mα characterized by their
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moments E[Mr
α] = r!(Γ(1 + α))r/Γ(1 + rα), r ≥ 0, and by variables Zα

with generalized arcsine laws,

Pr ({0 ≤ Zα ≤ t}) =
sin πα

π

∫ t

0

dx

x1−α(1− x)α
, t ∈ [0, 1],

respectively. We recall that E[Zrα] = (−1)r
(−α
r

)
, r ≥ 0.

To fix notations, let ν be a probability measure on (X,A) and (Rn)n≥1

a sequence of measurable real functions on X. Then distributional con-

vergence of (Rn)n≥1 w.r.t. ν to some random variable R will be denoted

by Rn
ν

=⇒ R. Strong distributional convergence Rn
L(µ)
=⇒ R on the σ-finite

measure space (X,A, µ) means that Rn
ν

=⇒ R for all probability measures

ν � µ.

An approach which only relies on fairly weak conditions regarding the

dynamics up to the first visit to a suitable reference set, has been developed

in [T3], [TZ], and [Z4]. The purpose of the present note is to show that

the same method can be used to improve on individual limit theorems by

establishing convergence of their joint distributions, thus clarifying the as-

ymptotic dependencies between them. Applied to a prominent system, our

main result takes the following form:

Example 1.1 (A joint limit theorem for Boole’s transformation).

The map T : R → R given by Tx := x − 1
x

preserves Lebesgue measure λ

and is conservative ergodic, cf. [AW]. Let Y ⊆ R be some fixed bounded

interval. By [A1] and [T2] (or, alternatively, [TZ]),

(1.1)
Zn(Y )

n

L(λ)
=⇒ Z and

Sn(1Y )√
2n/π

L(λ)
=⇒ λ(Y )M,

with Z := Z 1
2

and M :=M 1
2

having densities

z(s) :=
1

π
√
s(1− s)

, s ∈ (0, 1), and m(t) :=
2

π
e−

t2

π , t > 0.

The result of the present paper determines the asymptotics of the joint

distributions, showing that

(1.2)

(
Zn(Y )

n
,
Sn(1Y )√

2n/π

)
L(λ)
=⇒

(
Z, λ(Y )M∗ ·

√
Z
)

,

where Z and M∗ are two independent random variables, Z as above, and

M∗ having density

m∗(t) :=
2t

π
e−

t2

π , t > 0.

Remark 1.2. Statements (1.1) and (1.2) show, in particular, that M∗ ·√
Z d

= M (in distribution). We briefly indicate how to check this directly:

As Z has the classical arcsine distribution, we have Pr({0 ≤
√
Z ≤ t}) =
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2
π

arcsin t, so that
√
Z has density z̃(s) := 2

π
1√
1−s2 , s ∈ (0, 1). To explicitly

compute the density d of M∗ ·
√
Z, that is,

d(t) :=

∫ ∞
t

m∗(s) z̃

(
t

s

)
ds

s
=

∫ ∞
t

2

π

sm(s)√
s2 − t2

ds, t > 0,

let M(t) :=
∫ t
0
m(s) ds, t > 0, and observe that

d

ds
M
(√

s2 − t2
)

=
2

π

s√
s2 − t2

m(s)

m(t)
for 0 < t < s.

Use this to evaluate the definite integral to obtain d(t) = m(t)(M(∞) −
M(0)) = m(t) for t > 0, as required.

2. A joint limit theorem

Let T be a c.e.m.p.t. on the σ-finite measure space (X,A, µ). For Y ∈ A
with µ(Y ) > 0 the first return (entrance) time of Y is ϕ(x) := min{n ≥
1 : T nx ∈ Y }, x ∈ X. For suitably chosen Y , the asymptotics of the return

probabilities fk(Y ) := µY (Y ∩ {ϕ = k}), k ≥ 1, determines the stochastic

properties of the system. Here, µY (A) := µ(Y )−1µ(Y ∩ A). Distributional

limit theorems frequently depend on regular variation of the tail probabilities

qn(Y ) :=
∑

k>n fk(Y ) = µY (Y ∩ {ϕ > n}), or (slightly more general) of

the wandering rate of Y given by wN(Y ) := µ(Y )
∑N−1

n=0 qn(Y ) = µ(Y N),

where Y N :=
⋃N−1
n=0 T

−nY , N ≥ 1. For background material about regular

variation we refer to Chapter 1 of [BGT]. We will follow the convention that

for an, bn ≥ 0 and ϑ ∈ [0,∞), an ∼ ϑ·bn as n→∞means limn→∞ an/bn = ϑ,

even in case ϑ = 0, where it is interpreted as the usual an = o(bn) as n→∞.

Analogously for f(s) ∼ ϑ · g(s) as s↘ 0 etc.

The transfer operator T̂ : L1(µ) → L1(µ) of T is the positive linear

operator characterized by
∫
X

(g ◦ T ) · u dµ =
∫
X
g · T̂ u dµ for all u ∈ L1(µ)

and g ∈ L∞(µ).

A good understanding of the long-term behaviour of T̂ when acting on

D(µ) := {u ∈ L1(µ) : u ≥ 0, µ(u) = 1} is often crucial for probabilis-

tic studies. In the course of [T3], [TZ], and [Z4], an approach which only

assumes information on T̂ up to the first entrance into a suitable refer-

nce set Y has been developed. Let Y0 := Y and Yn := Y c ∩ {ϕ = n}
for n ≥ 1. We require some control of how large a collection of densi-

ties on Y we see when considering (averaged and normalized versions of)∑
k>n T̂

k1Y ∩{ϕ=k} = T̂ n1Yn for n ≥ 1. (Note that if our system starts
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with initial distribution µY , then fk(Y )−1T̂ k1Y ∩{ϕ=k} is its conditional den-

sity at time k, given that {ϕ = k}.) This can easily be verified for sev-

eral relevant classes of examples. We’ll say that a collection H of den-

sities on Y , is uniformly sweeping if there is some K ∈ N0 such that

infu∈H infY
∑K

k=0 T̂
ku > 0.

We are going to prove the following limit theorem. The assumptions on

Y are exactly those of Theorem 2.1 in [Z4].

Theorem 2.1 (Joint limit distributions for Zn and Sn). Let T be a

c.e.m.p.t. on the σ-finite measure space (X,A, µ), and assume there is some

Y ∈ A, 0 < µ(Y ) <∞, such that

(2.1) HY =

{
1

wN(Y )

N−1∑
n=0

T̂ n1Yn

}
N≥1

is precompact in L∞(µ)
and uniformly sweeping

and that there is some some α ∈ [0, 1] such that

(2.2) (wN(Y )) is regularly varying of index 1− α.

Then, for any f ∈ L1(µ) with µ(f) 6= 0, we have

(2.3)

(
Zn(Y )

n
,
Sn(f)

an

)
L(µ)
=⇒ (Zα, µ(f)M∗

α · Zαα ) ,

where

(2.4) an :=
1

µ(Y )

∫
Y

Sn(1Y ) dµY ∼
1

Γ(1 + α)Γ(2− α)
· n

wn(Y )

as n→∞. Here M∗
α is a random variable, independent of Zα, with density

m∗α(t) := tmα(t), t ≥ 0, where mα denotes the density of Mα.

The result immediately applies to the collection of examples discussed

in [Z4], that is, to a large class of infinite measure preserving interval maps

with indifferent fixed points (as in [Z1], generalizing [T1]), to S-unimodal

Misiurewicz interval maps with sufficiently flat critical points (as in [Z2]),

and to recurrent Z-extensions of Gibbs-Markov maps (as in §7.3 of [Z4]).

We refrain from re-stating the details here.

Remark 2.2. Theorem 2.1 in [Z4] asserts that a−1n Sn(f)
L(µ)
=⇒ µ(f)Mα

under the present assumptions. Hence M∗
α · Zαα

d
= Mα, compare Remark

1.2. For general α, the mα are not known explicitly, but this equality in law

be checked by calculating moments, as was pointed out in [P] (where this

observation was attributed to M.Dwass). In fact, our proof below uses the

method of moments, see [ST] for a wealth of background information.
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Remark 2.3. If E ∈ Y ∩A with n−1Zn(E)
L(µ)
=⇒ Zα, then, due to Zn(E) ≤

Zn(Y ), we necessarily have Zn(E)−Zn(Y )
µ−→ 0, so that Y can be replaced

by E in (2.3).

Remark 2.4. a) A Markov-chain version of this result can be found in [P].

b) It would be desirable to establish corresponding results including

the other random variables studied in [Z4] (occupation times of suitable

infinite-measure sets). Alas, even in a classical Markov-chain setup, no tan-

gible description of the prospective joint limit distributions appears to be

available.

3. Analytical tools

Karamata’s asymptotic theory of regularly varying functions lies at the

heart of many limit theorems for null-recurrent processes, a core result being

Lemma 3.1 (Karamata’s Tauberian Theorem, KTT). Let (bn) be a

sequence in [0,∞) such that for all s > 0, B(s) :=
∑

n≥0 bn e
−ns < ∞. Let

` be slowly varying, and ρ, ϑ ∈ [0,∞). Then

(3.1) B(s) ∼ ϑ

(
1

s

)ρ
`

(
1

s

)
as s↘ 0,

iff

(3.2)
n−1∑
k=0

bk ∼
ϑ

Γ(ρ+ 1)
nρ`(n) as n→∞.

If (bn) is eventually monotone and ρ > 0, then both are equivalent to

(3.3) bn ∼
ϑρ

Γ(ρ+ 1)
nρ−1`(n) as n→∞.

We will also rely on parts of the somewhat technical Propositions 3.2 and

3.3 of [Z4]. For the reader’s convenience, we re-state the relevant assertions

as

Lemma 3.2. Let T be a c.e.m.p.t. on the σ-finite measure space (X,A, µ)

and Y ∈ A, 0 < µ(Y ) <∞. Suppose that (Rn)n≥0 is a sequence of measur-

able functions Rn : X → [0,∞) such that

(3.4) Rn ≤ Rn−m ◦ Tm on Ym for n ≥ m ≥ 0,

and

(3.5) ‖(Rn ◦ T −Rn) · u‖1 −→ 0
for all u ∈ L∞(µ) supported
on Y M for some M = M(u),

and

(3.6) {1YM ·Rn}n≥0 is weakly precompact in L1(µ) for each M ≥ 1.
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Moreover, let vn : Y → [0,∞), n ≥ 0, be bounded measurable functions with∫
Y
vn dµ > 0, and (bn)n≥0 be a sequence in [0,∞) such that

∑
n≥0 bn e

−ns =:

B(s) ∈ (0,∞) for s > 0. Assume that

(3.7)

{ ∑n
k=0 vk∑n

k=0

∫
Y
vk dµ

}
n≥0

is precompact in L∞(µ),

and that for some ϑ ∈ [0,∞),

(3.8)
n∑
k=0

∫
Y

vk dµ ∼ ϑ ·
n∑
k=0

bk as n→∞.

Let (γn)n≥0 be a sequence in [0,∞) with
∑

n≥0 γn = ∞ and such that

G(s) :=
∑

n≥0 γn e
−ns ∈ (0,∞) for s > 0, and consider the weighed Laplace

transform Rγ(s) :=
∑

n≥0Rn γne
−ns.

a) Suppose that for some κ ∈ [0,∞),

(3.9)

∫
Y

(∑
n≥0

vn e
−ns

)
·Rγ(s) dµ ∼ κϑ ·B(s)G(s) as s↘ 0.

If ϑ > 0, then, for any u ∈ D(µ) ∩ L∞(µ) with
∫
Y
u dµ = 1,

(3.10)

∫
X

Rγ(s) · u dµ ∼ κ · G(s) as s↘ 0.

b) Assume that r = 0, or that r ∈ N and B ∈ R−ρ(0) for some ρ ∈ [0,∞).

Suppose also that for some κ ∈ [0,∞) and some u ∈ D(µ) ∩ L∞(µ) with∫
Y
u dµ = 1,

(3.11)

∫
X

Rγ(s) · u dµ ∼ κ ·G(s) as s↘ 0,

then, as s↘ 0,

(3.12)∫
Y

(∑
n≥0

nrvn e
−ns

)
·Rγ(s) dµ ∼ κϑ · (−1)rr!

(
−ρ
r

)(
1

s

)r
B(s)G(s).

c) If, in the situation of b), vn ↘ 0 a.e. on Y as n → ∞, so that vn =∑
k>nwk with wn ≥ 0, n ≥ 1, measurable, then, for all r ≥ 1, as s↘ 0,

(3.13)∫
Y

(∑
n≥1

nrwn e
−ns

)
·Rγ(s) dµ ∼ κϑ · (−1)r−1r!

(
1− ρ
r

)(
1

s

)r−1
B(s)G(s).

4. Proof of the Theorem

The argument to follow uses the machinery developed in [TZ] and [Z4],

and determines the asymptotic behaviour of mixed moments of the variables

under consideration.
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Proof of Theorem 2.1. We assume w.l.o.g. that µ(Y ) = 1.

(i) Let Sn :=
∑n

j=1 1Y ◦ T j, and Zn := Zn(Y ), n ≥ 0. Distributional con-

vergence

(4.1)

(
Zn
n
,
Sn
an

)
µY=⇒ (Zα,M∗

α · Zαα ) ,

with M∗
α and Zα independent, will be established by the method of mo-

ments, i.e. we prove that, for all integers l, r ≥ 0,

(4.2)

∫
Y

(
Zn
n

)r (
Sn
an

)l
dµ −→ E[Zrα (M∗

α · Zαα )l] as n→∞.

The moments on the right-hand side have been identified in Corollary 3.2

of [P] (the result being attributed to M. Dwass), where it is shown that

(4.3)

E[Zrα (M∗
α · Zαα )l] = (−1)r

r! l! (Γ(1 + α))l

Γ(1 + r + αl)

(
−α(l + 1)

r

)
for l, r ≥ 0.

It is not hard to see that these moments determine the distribution (see

[ST]) of the random vector (Zα,M∗
α · Zαα ), compare the proof of Theorem

3.1 of [P].

(ii) Due to KTT and our assumption on the wandering rate we have, for

s > 0,

QY (s) :=
∑
n≥0

qn(Y ) e−ns =

(
1

s

)1−α

`

(
1

s

)
for s > 0,(4.4)

and wn(Y ) ∼ n1−α`(n)

Γ(2− α)
as n→∞,

with some fixed slowly varying function `. Via the crucial structural as-

sumption (2.1), this information on the return distribution was exploited in

[Z4] to obtain information about the moment asymptotics for the individual

sequences (Sn) and (Zn). Indeed, the dissection identities

(4.5) Zn =

{
k + Zn−k ◦ T k on Y ∩ {ϕ = k}, 1 ≤ k ≤ n,
0 on Y ∩ {ϕ > n}, for n ≥ 0,

and

(4.6) Sn =

{
1 + Sn−k ◦ T k on Y ∩ {ϕ = k}, 1 ≤ k ≤ n,
0 on Y ∩ {ϕ > n}, for n ≥ 0,
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were used to show (see the proofs of Theorems 2.1 and 2.3 of [Z4]), that for

all r, l ≥ 0,∑
n≥0

(∫
Y

Zr
n dµ

)
e−ns ∼ (−1)r r!

(
−α
r

)(
1

s

)r+1

as s↘ 0,(♠r)

∑
n≥0

(∫
Y

Sln dµ

)
e−ns ∼ l!

(
1

s

)1+αl

`

(
1

s

)−l
as s↘ 0.(�l)

As
∫
Y
Sn dµ ∼ an is non-decreasing (since (Sn) is), KTT shows that (�1)

entails (2.4). Analogously, by KTT and monotonicity of (
∫
Y
Zr
n dµ)n≥1 and

(
∫
Y
Sln dµ)n≥0, the relations (♠r) and (�l) are equivalent to

(4.7)

∫
Y

(
Zn
n

)r
dµ −→ E[Zrα] and

∫
Y

(
Sn
an

)l
dµ −→ E[Ml

α]

as n → ∞, proving distributional convergence of each coordinate variable

in (4.1).

(iii) We are going to extend this argument to deal with the joint moments

in (4.2), observing first that (4.4) and (2.4) give

an ∼
nα

Γ(1 + α)`(n)
as n→∞.

This implies that for l, r ≥ 0,

(4.8) G(r,l)(s) :=
∑
n≥0

nraln e
−ns ∼ Γ(1 + r + αl)

Γ(1 + α)l

(
1

s

)1+r+αl

`

(
1

s

)−l
as s↘ 0. Now, since each of the sequences (nraln)n≥0 and (

∫
Y
Zr
n S

l
n dµ)n≥0

is non-decreasing, KTT now ensures that, for arbitrary l, r ≥ 0, our claim

(4.2) is equivalent to∑
n≥0

(∫
Y

Zr
n S

l
n dµ

)
e−ns ∼ E[Zrα (M∗

α · Zαα )l] ·G(r,l)(s)

as s ↘ 0. Substituting the explicit expression (4.3) for the moments, and

(4.8), we thus see that our goal is to prove, for all l, r ≥ 0, that

(†r,l)
∑
n≥0

(∫
Y

Zr
n S

l
n dµ

)
e−ns

∼ (−1)r r! l!

(
−α(l + 1)

r

)(
1

s

)1+r+αl

`

(
1

s

)−l
as s↘ 0.

The special cases (†0,l) and (†r,0) of this assertion coincide with (�l) and

(♠r), respectively.
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(iv) It has been shown in [Z4] that, for any l, r ≥ 0, the sequences

(4.9) (Rn) =

((
Zn
n

)r)
and (Rn) =

((
Sn
an

)l)
satisfy (3.4) - (3.6).

To prepare the analytic argument below, we need to improve on this, and

show that for any l, r ≥ 0, the sequence given by

Rn = R(r,l)
n :=

(
Zn
n

)r (
Sn
an

)l
, n ≥ 1,

also satisfies the assumptions of Lemma 3.2. Note first that 0 ≤ Zn/n ≤ 1

and

(4.10)

∣∣∣∣(Znn
)r
◦ T −

(
Zn
n

)r∣∣∣∣ ≤ r
|Zn ◦ T − Zn|

n

µ−→ 0 as n→∞

(by the mean-value theorem and Lemma 1 of [T2]). Next,

(4.11) Zn ≤ Zn−m ◦ Tm and Sn = Sn−m ◦ Tm on Ym for n ≥ m ≥ 0,

and as (an) is non-decreasing, we see that (3.4) is satisfied.

Due to (4.7), each moment sequence (
∫
Y

(Sn/an)l+1dµ)n≥1 is bounded, so

that (1Y (Sn/an)l)n≥1 is uniformly integrable for every l. Now (4.11) proves

that in fact

(4.12)

(
1YM

(
Sn
an

)l)
n≥1

is uniformly integrable for all M ≥ 1,

since indeed
∫
Ym∩{Sln>taln}

(Sn/an)l dµ ≤
∫
Y ∩{Sln−m>taln−m}

(Sn−m/an−m)l dµ.

Boundedness of the Zn/n thus guarantees that (1YM Rn)n≥1 is uniformly

integrable for all M ≥ 1, which is (3.6).

We finally have to check (3.5). Fixing M and u, we have

‖(Rn ◦ T −Rn) · u‖1 ≤

∥∥∥∥∥
((

Sn
an

)l
◦ T −

(
Sn
an

)l)
· u

∥∥∥∥∥
1

+ r ‖u‖∞
∫
YM

(
Sn
an

)l |Zn ◦ T − Zn|
n

dµ.

The first expression on the right-hand side tends to zero by (4.9). For the

second bit, note that for any δ > 0,∫
YM

(
Sn
an

)l |Zn ◦ T − Zn|
n

dµ ≤ 2

∫
YM∩{|Zn◦T−Zn|>δn}

(
Sn
an

)l
dµ

+ δ

∫
YM

(
Sn
an

)l
dµ.

Take any ε > 0. By (4.12), we have supn≥1
∫
YM

(Sn/an)l dµ < ∞, so the

rightmost expression here is is less than ε/2 for δ = δε small enough. Fixing
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such a δε, we have µ(Y M ∩ {|Zn ◦ T − Zn| > δεn}) → 0 as n → ∞ by

(4.10), and hence 2
∫
YM∩{|Zn◦T−Zn|>δεn} (Sn/an)l dµ < ε/2 for n ≥ nε, again

by uniform integrability (4.12). This proves (3.5).

It is a trivial matter to check that (3.4) - (3.6) remain valid with R
(r,l)
n

replaced by some R
∗(r,l)
n := (Zn/n)r(Φn/an)l with measurable functions Φn

satisfying Sn ≤ Φn ≤ 1 + Sn, n ≥ 1.

Observe also that due to Sn ↗ ∞ and 1 + Sn ∼ Sn a.e. we have∫
Y
Zj
nΦl

n dµ ∼
∫
Y
Zj
n S

l
n dµ as n → ∞ for such Φn. The Laplace transforms

of these sequences then satisfy

(4.13)

∫
Y

(∑
n≥0

Zj
nΦl

n e
−ns

)
dµ ∼

∫
Y

(∑
n≥0

Zj
n S

l
n e
−ns

)
dµ as s↘ 0.

(v) To validate (†r,l), we are going to use an inductive argument. Since the

statements (†0,l), l ≥ 0, and (†r,0), r ≥ 0, are already contained in (�l),

l ≥ 0, and (♠r), r ≥ 0, respectively, we need only justify the inductive step.

Proving that for any pair (r, l) with r, l ≥ 1,

(4.14)
(†k,i) for 0 ≤ i < l and k ≥ 0, and
(†j,l) for 0 ≤ j < r,

}
together imply (†r,l),

will therefore complete the proof of (4.1).

To this end, we need to understand the relationship between mixed mo-

ments of different orders. The dissection identities (4.5) and (4.6) imply that

for any l and r, and any n ≥ 1,

1Y Z
r
n S

l
n =

n∑
k=1

1Y ∩{ϕ=k}((1 + Sn−k)
l ◦ T k)

r∑
j=0

(
r

j

)
kr−j · (Zj

n−k ◦ T
k).

Integrating and taking the j = r terms to the left-hand side, we obtain∫
Y

(
Zr
n S

l
n −

n∑
k=1

T̂ k1Y ∩{ϕ=k}(1 + Sn−k)
lZr

n−k

)
dµ(4.15)

=
r−1∑
j=0

(
r

j

)∫
Y

n∑
k=1

kr−j T̂ k1Y ∩{ϕ=k} · (1 + Sn−k)
lZj

n−k dµ.

(vi) To tackle (4.14), we now consider the Laplace transform
∑

n≥0 . . . e
−ns

of the expression in (4.15), regarded as a sequence in n. Starting from the

bit on the right-hand side of (4.15), we obtain the transform

(4.16)
r−1∑
j=0

(
r

j

)∫
Y

(∑
n≥1

nr−j T̂ n1Y ∩{ϕ=n} e
−ns

)(∑
n≥0

(1 + Sn)lZj
n e
−ns

)
dµ.
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Take any j ∈ {0, 1, . . . , r − 1}. From (4.13) we see (taking Φn := 1 + Sn)

that

(4.17)∫
Y

(∑
n≥0

(1 + Sn)lZj
n e
−ns

)
dµ ∼

∫
Y

(∑
n≥0

Zj
n S

l
n e
−ns

)
dµ as s↘ 0,

the asymptotics of which is given by (†j,l). We can now apply Lemma 3.2.c

with Rn := R
∗(j,l)
n obtained from Φn := 1 + Sn, γn := alnn

j (which, by step

(iv) above satisfies all assumptions), and wn := T̂ n1Y ∩{ϕ=n} (which due to

(2.1) has the required properties), bn := qn(Y ), ϑ := 1, B := QY , ρ := 1−α,

and G := G(j,l), to obtain

(
r

j

)∫
Y

(∑
n≥1

nr−j T̂ n1Y ∩{ϕ=n} e
−ns

)(∑
n≥0

(1 + Sn)lZj
n e
−ns

)
dµ

∼ (−1)r+1r! l!

(
−α(l + 1)

j

)(
α

r − j

)
·
(

1

s

)1+r+α(l−1)

`

(
1

s

)1−l

as s ↘ 0. Summing over j, we see that the expression in (4.16) is asymp-

totically equivalent, as s↘ 0, to

(4.18) (−1)rr! l!

[(
−α(l + 1)

r

)
−
(
−αl
r

)]
·
(

1

s

)1+r+α(l−1)

`

(
1

s

)1−l

.

(vii) Turning to the left-hand side of (4.15), we again take the Laplace

transform, which equals

∫
Y

(∑
n≥0

Zr
nS

l
n e
−ns −

(∑
n≥1

T̂ n1Y ∩{ϕ=n} e
−ns

)(∑
n≥0

(1 + Sn)lZr
n e
−ns

))
dµ

=

∫
Y

(
1−

∑
n≥1

T̂ n1Y ∩{ϕ=n} e
−ns

)(∑
n≥0

Zr
nS

l
n e
−ns

)
dµ

−l
∫
Y

(∑
n≥0

Zr
nΦl−1

l,n e−ns

)(∑
n≥1

T̂ n1Y ∩{ϕ=n} e
−ns

)
dµ.(4.19)

Here, for any l, n ≥ 1, we let Φl,n : X → [0,∞) denote the measurable

function with (1 + Sn)l − Sln = lΦl−1
l,n and Sn ≤ Φl,n ≤ Sn + 1, which is

provided by the mean-value theorem. Focusing on the rightmost term, we
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find that

l

∫
Y

(∑
n≥0

Zr
n Φl−1

l,n e−ns

)(∑
n≥1

T̂ n1Y ∩{ϕ=n} e
−ns

)
dµ(4.20)

∼ l

∫
Y

(∑
n≥0

Zr
n Φl−1

l,n e−ns

)
dµ

∼ l

∫
Y

(∑
n≥0

Zr
n S

l−1
n e−ns

)
dµ

∼ (−1)rr! l!

(
−αl
r

)
·
(

1

s

)1+r+α(l−1)

`

(
1

s

)1−l

as s↘ 0,

where we first use the fact that∑
n≥1

T̂ n1Y ∩{ϕ=n} e
−ns ↗ 1Y uniformly as s↘ 0

(which, under the present assumptions, has been proved as statement (4.5)

in [Z4]), and then (4.13) above. The third step uses (†r,l−1), which holds by

assumption.

(viii) Recall that (4.16) and (4.19) coincide (being the Laplace transforms

of the two expressions in (4.15)). Since (4.20) is of the same order as (4.18),

we can combine these two observations to conclude that

s

∫
Y

(∑
n≥1

T̂ n1Yn e
−ns

)(∑
n≥0

Zr
n S

l
n e
−ns

)
dµ(4.21)

∼ (−1)rr! l!

(
−α(l + 1)

r

)
·
(

1

s

)1+r+α(l−1)

`

(
1

s

)1−l

as s↘ 0.

Here we have used identity (5.3) of [TZ] which states that

1Y −
∑
n≥1

T̂ n1Y ∩{ϕ=n} e
−ns = (1− e−s)

∑
n≥0

T̂ n1Yn e
−ns a.e.

Letting Rn := R
(r,l)
n = (Zn/n)r(Sn/an)l, γn := nraln, G := G(r,l), vn :=

T̂ n1Yn , and bn, B, ϑ, ρ as before, we can now apply Lemma 3.2.a to the

integral on the left-hand side of (4.21) to obtain (†r,l). This completes the

proof of (4.1).

(ix) As a straightforward consequence of Hopf’s ratio ergodic theorem (see

[A0] or [Z3]), we may replace Sn by µ(f)−1Sn(f) in (4.1) whenever f ∈ L1(µ)

and µ(f) 6= 0.
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According to Theorem 1 of [Z5], the now established distributional con-

vergence
µY=⇒ w.r.t. µY entails strong distributional convergence

L(µ)
=⇒ if∣∣∣∣(Znn ,

Sn(f)

an

)
◦ T −

(
Zn
n
,
Sn(f)

an

)∣∣∣∣ µ−→ 0,

and the latter is immediate from the corresponding asymptotic invariance

statements for (Zn) and (Sn) already recorded in [Z4], cf. (4.9). This com-

pletes the proof of the theorem. �
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