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Abstract. Absolutely continuous invariant measures (acims) for general in-
duced transformations are shown to be related, in a natural way, to popular
tower constructions regardless of any particulars of the latter. When combined
with (an appropriate generalization of) the known integrability criterion for
the existence of such acims, this leads to necessary and sufficient conditions
under which acims can be lifted to, or projected from, nonsingular extensions.

1. Introduction

One basic idea in ergodic theory, of great importance both for abstract considera-
tions and for the analysis of specific examples, is to study a dynamical system S

acting on a space X by means of some closely related auxiliary system. A classical
example [9] in this regard is the system SY obtained by passing to the first return
(or induced) map on a suitable subset Y of X . In this case, the new system faith-
fully reflects many relevant properties of S, and hence establishing these properties
for SY often is equivalent to, yet simpler than proving them for S directly — see
subsequent sections for precise statements. A more flexible variant of first return
maps, a general induced system S

τ allows for an inducing time τ more general than
the first return time. General induced systems have become an extensively used
tool in measurable dynamics. While they also act on appropriate subsets Y of X ,
a different, equally fundamental type of auxiliary construction enlarges rather than
reduces the space X , resulting in an extension S

∗ of S that acts on a different set
X∗ but projects onto X .

The present article focuses on questions regarding absolutely continuous invari-
ant measures (acims) for nonsingular systems. While (under mild assumptions)
there is a one-to-one correspondence between the σ-finite acims for S and those for
SY , the situation is more complicated for general induced systems and extensions,
that is, for S

τ and S
∗. In either case, a σ-finite acim of the auxiliary system au-

tomatically yields an acim for S, but one needs to check separately whether that
acim is σ-finite. Conversely, given a σ-finite acim for S, it is a nontrivial task to
decide whether this acim can be obtained via general inducing or extension.
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The resemblance between the constructions of S
τ and S

∗, to be recalled in
detail in Section 2 below, is not a coincidence: Very often general induced systems
S

τ correspond to first return systems S
∗
Y ∗ in extensions. This basic correspondence

principle, to be made precise in the next section also, has been observed and used
by many authors (see, in particular, [3, 4]). However, the principle has rarely
been made explicit, and even when it has, this has so far been done solely in the
context of fairly specific (tower) constructions. It seems worthwhile to isolate the
essence of this correspondence, and to provide results that are general enough to
apply directly to a wide variety of concrete constructions. The purpose of the
present paper, therefore, is to fully capture this correspondence principle within
the abstract framework of nonsingular ergodic theory.
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Motivated by [3] and [4] the first main result, Theorem 3.1 below, clarifies the nat-
ural relation between the acims of S

τ and the acims of S
∗. Several generalizations

of classical facts about induced maps which are of independent interest are required
for the proof of Theorem 3.1. Aided by this theorem, it is possible to improve a
key result of [21] about general induced systems. This in turn leads to the note’s
second main result, Theorem 3.3 below. The latter can be utilized in the context of
many different types of extensions and yields, for instance, criteria for the liftability
of acims to towers (Corollary 3.5) and for projections of acims from towers to be
σ-finite (Corollary 3.8). Importantly, these criteria do not depend on any further
particulars of the tower construction.

2. Induced maps and towers

With regard to the statements, explanations and proofs of the main results in
subsequent sections, this preparatory section briefly reviews all the relevant aspects
of (general) inducing and extensions.

Nonsingular and measure preserving systems. Recurrence. The appro-
priate basic notion for this article is that of a nonsingular transformation T on
a measure space (X,A, λ), meaning that T : X → X is a measurable map (not
necessarily invertible) for which the image measure Tλ := λ ◦ T−1 is absolutely
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continuous w.r.t. λ, in symbols Tλ ≪ λ. While many interesting dynamical sys-
tems first present themselves in the form of a nonsingular system S = (X,A, λ, T ),
one usually aims at equipping them with an invariant measure which is absolutely
continuous w.r.t. λ, i.e., one aims at finding µ ≪ λ such that Tµ = µ. In this
situation, both T and the (special nonsingular) system (X,A, µ, T ) are referred to
as measure preserving (mp, for short).

Given S = (X,A, λ, T ) and any set Y ∈ A+ := {A ∈ A : λ(A) > 0}, the
first entrance time ϕY (x) := inf{n ≥ 1 : T nx ∈ Y } of Y defines a measurable
function ϕY : X → N := {1, 2, . . . ,∞}, with the usual convention that inf ∅ := ∞.
When restricted to Y , the function ϕY is referred to as the first return time of
Y . If ϕY < ∞ λ-a.e. on Y , that is, if Y ⊆

⋃
n≥1 T

−nY mod λ, then Y is a

recurrent set ; it is a sweep-out set if
⋃

n≥0 T
−nY = X mod λ. Call S conservative

if every A ∈ A+ is recurrent, and ergodic if λ(A) = 0 or λ(Ac) = 0 holds whenever
A ∈ A is T -invariant, i.e., whenever T−1A = A mod λ. For each recurrent Y , the
smallest invariant set containing Y mod λ is Y∞ :=

⋂
n≥0

⋃
j≥n T

−jY ; note that

Y∞ =
⋃

n≥0 T
−nY mod λ.

First return maps. Every recurrent set Y comes with a first return (or induced)
map TY : Y → Y , defined as TY x := TϕY (x)x whenever ϕY (x) <∞, and TY x := x

otherwise, which is nonsingular on (Y,A∩Y, λ|Y ),1 thus defining a new system SY .
The great importance of this classical construction is due to the fact that the two
nonsingular systems SY and S|Y∞

:= (Y∞,A ∩ Y∞, λ|Y∞

, T |Y∞

) are intimately

related. (The following statements are all contained in [1, Sec.1.5].) For instance,

(2.1) SY is ergodic ⇐⇒ S|Y∞

is ergodic.

Moreover, there is a well-known correspondence between absolutely continuous in-
variant measures (abbreviated henceforth as acim) associated with SY and S|Y∞

,
respectively:

(2.2)
If ν ≪ λ|Y is TY -invariant, then ν = µ|Y for the T -invariant

measure µ≪ λ|Y∞

given by µ(A) :=
∑

n≥0 ν(Y ∩ {ϕY > n} ∩ T−nA);

and a partial converse of (2.2) reads:

(2.3)
If µ≪ λ is T -invariant, and µ(Y ) <∞,

then ν := µ|Y ≪ λ|Y is TY -invariant.

This correspondence can be used in either direction to find acims. In the situation
of (2.3), µ is clearly σ-finite on Y∞. Notice also that

(2.4) in (2.2) the measure µ is σ-finite iff ν is σ-finite.

Indeed, ν is σ-finite whenever µ is, and for the converse assume that Y =
⋃

j≥1 Z
0
j

with ν(Z0
j ) < ∞, note that µ(Y c

∞) = 0, and cover Y∞\Y mod λ by the sets

Zn
j := (Y∞\Y ) ∩ {ϕY = n} ∩ T−nZ0

j which satisfy µ(Zn
j ) ≤ ν(Z0

j ) < ∞ for all
j, n ≥ 1.

General induced transformations. The concept of first return maps for a non-
singular system (X,A, λ, T ) has a far-reaching generalisation which allows for other

1For the sake of brevity, for any A ∈ A denote by λ|
A

the restriction of λ to A∩ A; also say
that λ has some property on A if λ|

A
has that property. For example, λ = λ′ on A means that

λ|
A

= λ′|
A

, etc. Similarly, if A ⊂ T−1A then the system (X,A, λ, T ) is said to have a certain

property, e.g. ergodicity, on A whenever (A,A ∩ A, λ|
A

, T |
A

) has that property.
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accelerated versions of T , and thus provides a very flexible method of constructing
convenient auxiliary transformations associated with T . As in [21], call a measur-
able function τ : X → N a (general) inducing time for T on Y ∈ A+ if it is finite
a.e. on Y , with T τx := T τ(x)x ∈ Y for a.e. x ∈ Y . (Note that Y necessarily is re-
current in this case.) The map T τ : Y → Y then is a nonsingular transformation on
(Y,A∩ Y, λ|Y ), referred to as the transformation which T and τ induce on Y . The
new system thus obtained will be denoted S

τ . With this, first return maps simply
constitute the special case τ = ϕY with any recurrent set Y , that is, SY = S

ϕY .
Section 5 below reviews basic features of general induced systems, and also

records several new observations which are of independent interest. As a rule, S

still inherits many important properties from S
τ , but the opposite direction is more

difficult than in the classical case of SY outlined earlier. For example, while one
implication of (2.1) generalizes (see [17, Sec.1]) to

S
τ is ergodic =⇒ S|Y∞

is ergodic ,

the converse implication breaks down for general τ . Similarly, an acim for S
τ always

yields an acim for S via the following canonical construction which generalizes that
of (2.2): Given any general inducing time τ on Y and any measure ν ≪ λ|Y on
(Y,A∩ Y ), define a new measure τ ×T ν on (X,A) according to

τ ×T ν(A) :=
∑

n≥0
ν
(
Y ∩ {τ > n} ∩ T−nA

)
, ∀A ∈ A .

Then, τ ×T ν ≪ λ|Y∞

, and (again according to [17, Sec.1])

(2.5) if ν is T τ -invariant, then µ := τ ×T ν is T -invariant,

but µ need not be σ-finite even if ν is. In contrast to the converse (2.3) in the
case of first return maps, there is no simple, let alone canonical way of turning a
T -invariant µ into some T τ -invariant ν that satisfies τ ×T ν = µ. (For ergodic finite
invariant measures µ this matter has been discussed in [21], where necessary and
sufficient conditions for the existence of ν are given.)

Nonsingular extensions. Passing from S to an induced system S
τ means com-

bining several iterations of T into into a single iteration of a new map, and possibly
also passing to a smaller space. However, studying finer properties of S sometimes
is facilitated by going in the opposite direction and constructing a larger system
S

∗ that provides enough space for the unfolding of complicated bits by keeping
orbits of different types separated. Specifically, a nonsingular extension of S is a
nonsingular system S

∗ = (X∗,A∗, λ∗, T ∗) together with a nonsingular factor map
π : X∗ → X , that is, π is a measurable map with πλ∗ equivalent to λ, such that
π ◦ T ∗ = T ◦ π holds λ∗-a.e. on X∗. Again, such auxiliary systems S

∗ are useful
because their ergodic properties are often passed on to S. For example, it is easily
seen that

S
∗ is ergodic =⇒ S is ergodic.

The reverse implication, however, trivially fails. Regarding measures, since π is
nonsingular, one has πµ∗ ≪ λ whenever µ∗ ≪ λ∗. In this case, it is immediate that

(2.6) if µ∗ is T ∗-invariant, then µ := πµ∗ is T -invariant,

but µ need not be σ-finite even if µ∗ is. Again the converse presents difficulties, and
a frequently encountered question is whether or not a T -invariant measure µ ≪ λ
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on X can be lifted to an acim on X∗, that is, whether there is some T ∗-invariant
µ∗ ≪ λ∗ for which πµ∗ = µ.

Relation between general induced maps and towers. The discussion of S
τ

and S
∗ above highlights some analogies between these concepts that were men-

tioned informally already in the introduction. Why would one want to more for-
mally study the relation between the two concepts ? A most compelling reason may
be seen in the fact that quite often either concept is applied in situations of the
following type: Let S

∗ be a nonsingular extension of S, and assume Y ∗ ∈ A∗ is
such that, for some Y ∈ A, the restricted factor map π|Y ∗ : Y ∗ → Y is invertible as
a nonsingular map. Then Y ∗ is a copy of Y embedded in X∗. The term tower over
S is often used for particular types of nonsingular extensions S

∗ where X∗ is a
countable union of embedded subsets Y ∗ as above. Many specific constructions are
of this type, for example the canonical Markov extensions of [10, 11] and variants
thereof, but also the Young towers in [18, 19].

Now, the abstract considerations of this article apply to every extension S
∗

with a nontrivial embedded set Y ∗ that is recurrent. Fix any such Y ∗, and denote
by Y ∗

∞ the smallest invariant set containing Y ∗. According to the discussion earlier
in this section, passing from S

∗|Y ∗

∞
to the first return system S

∗
Y ∗ preserves crucial

features of that part of the system S
∗. Observe then that this first return system

in the extension is isomorphic as a nonsingular system to a general induced system
S

τ for S, that is, there is an invertible nonsingular factor map from one system

onto the other. Indeed, the function τ : Y → N given by τ := ϕ∗
Y ∗ ◦ π|

−1
Y ∗ , with ϕ∗

Y ∗

denoting the first entrance time of Y ∗ under T ∗, is easily seen to be an inducing
time for T , and

T τ = π ◦ T ∗
Y ∗ ◦ π|

−1
Y ∗ λ-a.e. on Y .

Thus, first return systems S
∗
Y ∗ on recurrent embedded sets Y ∗ in an extension

S
∗ always correspond to generalized induced systems S

τ for S. Conversely, as
pointed out in [21], every S

τ is isomorphic (as a nonsingular system) to a first
return system S

∗
Y ∗ in a suitable extension S

∗ of S. Any extension S
∗ related in

this way to a given induced system S
τ will be called τ-trivialising, as it allows to

represent the general induced transformation T τ as a first return map. In view of
the preceding discussion, this definition is crucial for all that follows.

Definition 2.1. Let S
∗ = (X∗,A∗, λ∗, T ∗) be a nonsingular extension of S =

(X,A, λ, T ) with factor map π : X∗ → X , and τ an inducing time for T on
Y ∈ A+. The extension S

∗ is τ-trivialising, with τ-base Y ∗ ∈ A∗, provided that
π|Y ∗ : Y ∗ → Y is invertible (as a nonsingular map) and, with ϕ∗

Y ∗ : X∗ → N

denoting the first entrance time of Y ∗ under T ∗,

(2.7) τ ◦ π = ϕ∗
Y ∗ λ∗-a.e. on Y ∗ .

Remark 2.2. Implicit in this definition is the requirement that Y ∗ be a recur-
rent set in the extension S

∗.

The organisation of the remainder of this article is as follows. The main results
are stated in Section 3. For the reader’s convenience, Section 4 provides a worked-
out classical example illustrating the notion of τ -trivialising extension and also
contains further comments regarding this concept. Several auxiliary observations
are collected in Section 5, and complete proofs of all results are presented in the
concluding Section 6.
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3. Main results: acims for induced maps and extensions

Given a nonsingular system S = (X,A, λ, T ), consider the family of acims defined
as M(S) := {µ≪ λ : Tµ = µ, T conservative w.r.t.µ} together with the subfamily
Mσ(S) := {µ ∈ M(S) : µ σ-finite}. Also, let τ be an inducing time for T on
Y ∈ A+, and S

∗ a τ -trivialising extension with τ -base Y ∗. The following diagram
informally depicts the main results of this article, to be stated fully in the present
section; each arrow indicates a well-defined map from one family of measures into
another one.

Mσ(S∗|Y ∗

∞

) Mσ(S∗
Y ∗)

M(S |Y∞

) Mσ(Sτ )

π(�) π|Y ∗(�) π|
−1
Y ∗(�)

ϕ∗
Y ∗ ×T∗ (�)

(�)|Y ∗

τ ×T (�)

In essence, Theorem 3.1 below asserts that this diagram does indeed commute. In
the lower left corner, the subscript σ has been omitted for a reason: As it turns out,
understanding the position of Mσ(S |Y∞

) in this scheme is a main objective of the
subsequent results. Assuming ergodicity throughout for convenience, Theorem 3.3
characterizes Mσ(S |Y∞

)∩ τ ×T

(
Mσ(Sτ )

)
. Via diagram chasing, this also yields a

characterization of Mσ(S |Y∞

) ∩ πMσ(S∗|Y ∗

∞

), recorded in Corollary 3.5. Finally,

Theorem 3.7 and Corollary 3.8 describe Mσ(Sτ ) ∩
(
τ ×T (�)

)−1
Mσ(S |Y∞

) and

Mσ(S∗|Y ∗

∞

) ∩ π−1
Mσ(S |Y∞

), respectively.

As indicated above, the key to exploiting the diagram is

Theorem 3.1 (Invariant measures for induced maps and extensions).
Let (X,A, λ, T ) be nonsingular, and τ an inducing time for T on Y ∈ A+. Also,
let (X∗,A∗, λ∗, T ∗) be a τ-trivialising extension with factor map π and τ-base Y ∗,
and Y ∗

∞ :=
⋂

n≥0

⋃
j≥n(T ∗)−jY ∗.

(i) Assume that T τ preserves the σ-finite measure ν ≪ λ|Y and is conser-
vative w.r.t. ν. Then T ∗ preserves a σ-finite measure µ∗ ≪ λ∗|Y ∗

∞

that

satisfies π|Y ∗ (µ∗|Y ∗) = ν as well as πµ∗ = τ ×T ν =: µ. Moreover, T ∗

is conservative w.r.t. µ∗, and µ is T -invariant.
(ii) Conversely, assume that T ∗ preserves the σ-finite measure µ∗ ≪ λ∗|Y ∗

∞

,

and that T ∗ is conservative w.r.t. µ∗. Then T τ preserves the σ-finite mea-
sure ν := π|Y ∗ (µ∗|Y ∗) ≪ λ|Y , and is conservative w.r.t. ν. Moreover,
ν satisfies τ ×T ν = πµ∗ =: µ, and µ is T -invariant.

Remark 3.2. (i) In the situation of the theorem, T ∗ is conservative w.r.t. µ∗.
This immediately implies that T is conservative w.r.t. µ.

(ii) In part (i) of the theorem, conservativity of T τ is only required to ensure
conservativity of T ∗. All other assertions are valid without this assumption.

(iii) Since the assumptions in Theorem 3.1(i) do not stipulate any particular
further properties of T ∗, the conclusion shows that in principle one τ -trivialising
extension is as good as any other as far as the lifting of µ to such an extension is
concerned. Nevertheless, some extensions may be easier to work with than others.
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(iv) The measure µ does not have to be σ-finite.
(v) It is clear that T ∗-invariant measures supported outside the invariant set

Y ∗
∞ cannot, in general, be understood in terms of T ∗

Y ∗ or, equivalently, T τ .

Under the assumption that µ is a finite ergodic T -invariant measure, the main
result of [21] provides a necessary and sufficient condition for τ ×T ν = µ to have a
solution ν. The following theorem sharpens this criterion, and also generalizes it to
σ-finite conservative situations. To formulate it, let (X,A, λ, T ) be a nonsingular
system, and τ an inducing time for T on Y . For Z ∈ A ∩ Y let ϕτ

Z(x) := inf{n ≥

1 : (T τ)nx ∈ Z} ∈ N, the first return time of Z under T τ , and (suppressing the

dependence on τ in the notation) θZ :=
∑ϕτ

Z−1
k=0 τ ◦ (T τ)k. If Z is a recurrent set

for T τ , then θZ is an inducing time for T on Z with (T τ )Z = T θZ (compare [21,
Thm.1.2]). Define

(3.1) ϑZ :=
∑θZ−1

n=0
1Z ◦ T n on Z.

Provided that Z is recurrent for T τ , ϑZ is an inducing time for TZ on Z with
ϑZ ≤ θZ and (T τ )Z = (TZ)ϑZ .

Theorem 3.3 (Solving τ ×T ν = µ with conservative ergodic acim µ).
Let T be a conservative ergodic mp map on the σ-finite space (X,A, µ), and τ an
inducing time for T on Y ∈ A+. Then the following statements are equivalent:

(i) τ ×T ν = µ has a σ-finite solution ν ≪ µ |Y for which T τ is mp and
conservative w.r.t. ν;

(ii) There exists a set Z ∈ A ∩ Y with the property that

0 <

∫

Z

ϑZ dµ <∞ ,

where ϑZ is given by (3.1).

Remark 3.4. (i) Observe that the relation (T τ )Z = (TZ)ϑZ uniquely deter-
mines ϑZ(x) unless (T τ )Z x is a periodic point of TZ (and hence of T ). Conse-
quently, if T is aperiodic, i.e. λ({x : T nx = x for some n}) = 0, then ϑZ is uniquely
determined mod λ by (T τ)Z = (TZ)ϑZ .

(ii) In statement (ii) of the theorem, since ϑZ ≥ 1, positivity of
∫

Z
ϑZ dµ is

equivalent to µ(Z) > 0, whereas finiteness of the integral guarantees that Z is a
recurrent set for T τ w.r.t. µ.

Together, Theorems 3.1 and 3.3 identify part (ii) of Theorem 3.3 as a sharp
integrability condition for a conservative ergodic σ-finite acim of S to lift to a
particular S

∗.

Corollary 3.5 (Liftability via integrability). Let (X,A, λ, T ) be nonsin-
gular with a nonsingular extension (X∗,A∗, λ∗, T ∗), and Y ∗ ∈ A∗ a recurrent set
for T ∗ such that π|Y ∗ : Y ∗ → Y ∈ A is invertible. Assume that µ ≪ λ |Y∞

is a
σ-finite conservative ergodic acim for T . Then the following property is equivalent

to both (i) and (ii) in Theorem 3.3 with τ := ϕ∗
Y ∗ ◦ π|

−1
Y ∗ :

(iii) There exists a σ-finite measure µ∗ ≪ λ∗|Y ∗

∞

with πµ∗ = µ such that T ∗

is mp and conservative w.r.t. µ∗.

Remark 3.6. (i) Assume that µ is finite. Then integrability of τ w.r.t. the
invariant measure, i.e.

∫
Y
τ dµ <∞, is sufficient for liftability. Indeed, take Z = Y
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in statement (ii) of Theorem 3.3, then ϑZ is integrable since ϑZ ≤ τ . However,
even for finite µ this condition is not necessary, see [21, Ex.2.3].

(ii) For the case µ(X) = ∞ and µ(Y ) <∞, Kac’ formula shows that
∫

Y
ϕY dµ =

∞. A fortiori,
∫

Y
τ dµ = ∞ for every inducing time τ for T on Y . Nonetheless,

the relativised integrability criterion of Theorem 3.3 in terms of ϑZ remains mean-
ingful in this situation. For example, when applied to τ = ϕY and Z = Y , one
obtains ϑZ = 1, which is integrable, so that the theorem simply asserts solvability
of ϕY ×T ν = µ, a fact already contained in (2.2) and (2.3).

(iii) While µ(X) = ∞ and µ(Y ) < ∞ together preclude µ-integrability of
τ , severe restrictions on the degree of nonintegrability of τ , as captured by the
asymptotic behaviour of its tail µ(Y ∩ {τ > n}), often have to be imposed in order
for µ to lift to a τ -trivialising extension of a specific type. For example, [4, Cor.2.7]
contains the following observation: Let S = (X,A, µ, T ) be ergodic and mp with
µ(X) = ∞. Assume that S

∗
i = (X∗

i ,A
∗
i , µ

∗
i , T

∗
i ), i ∈ {1, 2}, are two mp Young

towers over S with πiµ
∗
i = µ, so that, in particular, each S

∗
i is a τi-trivialising

extension of S for a suitable inducing time τi : Yi → N on µ(Yi) < ∞. Then
regular variation of µ(Y1∩{τ1 > n}) with some index −α, where α ∈ (0, 1), implies
that µ(Y1 ∩ {τ1 > n}) ∼ const · µ(Y2 ∩ {τ2 > n}) as n → ∞. Thus µ can only
be lifted to a Young tower with a corresponding τ that has a very specific tail
behaviour. It may be worth noting that the latter observation also follows (via a
Tauberian theorem) from [22, Thm.1] which asserts that minimal wandering rates
(i.e. equivalence classes of the asymptotics of averaged tails, see [1] for authoritative
definitions) are invariant under mp factor maps.

The remaining two results address the question of σ-finiteness of µ, which is
of importance in infinite-measure situations such as those considered in [1, 4, 20],
recall also Remark 3.2.(iv). The first result offers an alternative representation of
τ ×T ν in terms of ν, which in turn leads to an integrability criterion intimately
related to that of Theorem 3.3.

Theorem 3.7 (Alternative representation and σ-finiteness of µ=τ×T ν).
Let (X,A, λ, T ) be nonsingular, τ an inducing time for T on Y ∈ A+, and as-
sume that there is a σ-finite conservative ergodic invariant measure ν ≪ λ |Y
for T τ . Then for every Z ∈ A ∩ Y the conservative ergodic T -invariant measure
µ := τ ×T ν ≪ λ satisfies

µ(Z) =

∫

Z

ϑZ dν ,

where ϑZ is given by (3.1). Hence, µ is σ-finite iff there exists Z ∈ A∩ Y with the
property that

0 <

∫

Z

ϑZ dν <∞ .

By virtue of Theorem 3.1, there is a corresponding criterion for an ergodic
σ-finite acim µ∗ of an extension to project onto a σ-finite acim µ for the factor.

Corollary 3.8 (Projectability via integrability). Let (X,A, λ, T ) be non-
singular with a nonsingular extension (X∗,A∗, λ∗, T ∗), and Y ∗ ∈ A∗ a recurrent
set for T ∗ with π|Y ∗ : Y ∗ → Y ∈ A invertible. Assume that T ∗ preserves a σ-
finite measure µ∗ ≪ λ∗|Y ∗

∞

, and that T ∗ is conservative ergodic w.r.t. µ∗. Let

τ := ϕ∗
Y ∗ ◦ π|

−1
Y ∗ , and define ν := π|Y ∗ (µ∗|Y ∗). Then the conservative ergodic



GENERAL INDUCED MAPS AND TOWERS 9

invariant measure µ := πµ∗ ≪ λ of T is σ-finite iff there exists a set Z ∈ A ∩ Y
with 0 <

∫
Z
ϑZ dν <∞.

Remark 3.9. (i) Viewing an induced map T τ through a τ -trivialising extension
as in this corollary, one finds that the formula for µ(Z) in Theorem 3.7 is the classical
Kac formula in disguise. Indeed, in the situation of the corollary one has

ϑZ ◦ π = ψ∗
Z∗ a.e. on Z∗,

where ψ∗
Z∗(x∗) := inf{n ≥ 1 : (T ∗

π−1Z
)nx∗ ∈ Z∗} denotes the first return time of

Z∗ := Y ∗ ∩ π−1Z for the µ∗ |π−1Z -preserving conservative ergodic map T ∗
π−1Z

on
π−1Z ⊆ X∗, so that

∫
Z
ϑZ dν =

∫
Z∗
ψ∗

Z∗ dµ∗ = µ∗(π−1Z) = µ(Z) by Kac’ formula.

(ii) Corollary 3.8 was motivated by [4, Thm.2.1] which starts from somewhat
more restrictive assumptions. (Specifically, the extension is assumed to be a Young
tower.) Under these assumptions, (Y,A∩Y, λ|Y , T

τ) is ergodic and has a finite acim

ν for which log dν
dλ

is bounded, hence
∫

Z
ϑZ dν is finite iff

∫
Z
ϑZ dλ is. Consequently,

[4, Thm.2.1], which states that µ is σ-finite iff
∫

Z
ϑZ dλ < ∞, is a special case of

Corollary 3.8.

4. A classical example: β-transformations

First steps towards the proofs of the main results will not be taken until Section
5 below. Strictly speaking, therefore, the present section is not essential for the
development of this article. Its sole purpose is to illustrate the natural relation
between general induced maps and extensions in the context of a truly classical
example, namely the β-transformation. For the reader’s convenience the discussion
outlines, in this classical setup, the following typical scenario for an application of
either construction: Given S = (X,A, λ, T ), try to find an induced system S

τ or
an extension S

∗ which is simpler than S in that it is known to possess an acim
with certain desirable properties. Then use (2.5) or (2.6) to explicitly obtain a
T -invariant measure which inherits some of these properties.

Recall that S is piecewise invertible if it comes with a countable measurable
partition ζ (mod λ) of X such that the restriction T |Z : Z → TZ to each cylinder
Z ∈ ζ is invertible. The partition is (one-sided) Markov if each TZ is measurable
w.r.t. ζ. In that case, if ν ≪ λ is either zero or equivalent to λ on each Z ∈ ζ, then
so is Tν. This property enables consistent and effective coarse-graining through ζ.

The classical examples herein are piecewise affine interval maps on X := [0, 1),
i.e. maps that are nonsingular w.r.t. Lebesgue measure λ and piecewise invertible
with every cylinder Z a non-degenerate interval, and each T |Z : Z → TZ affine. If,
for such a map T , every cylinder is full, meaning that TZ = X for every Z ∈ ζ (so
that, in particular, the partition is Markov), then T is easily seen to be λ-preserving
and ergodic. However, within the family of β-transformations, those whose natural
partition is Markov are exceptional, and one strives to regain the very convenient
Markov property by constructing a suitable auxiliary system. Inducing provides
one way of achieving this.

Example 4.1 (β-transformations induced). For every real β > 1, consider
the β-transformation Tβ : x 7→ βx− ⌊βx⌋ on X = [0, 1), with associated partition

ζ :=

{[
0,

1

β

)
,

[
1

β
,
2

β

)
, . . . ,

[
⌈β⌉ − 2

β
,
⌈β⌉ − 1

β

)
,

[
⌈β⌉ − 1

β
, 1

)}
;
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here ⌊x⌋ and ⌈x⌉ denote, respectively, the largest integer not larger and the smallest
integer not smaller than x ∈ R. For every n ≥ 0, let ζn be the family of maximal
monotonicity intervals of T n

β ; thus ζ0 = {X}, ζ1 = ζ, etc. Also, for every x ∈ X and

n ∈ N, denote by ζn(x) the unique interval in ζn containing x. With this, define

τ(x) := inf{n ≥ 1 : ζn(x) is full }. For an equivalent definition of τ , let T j
β1 :=

limx↑1 T
j
βx ∈ (0, 1], j ≥ 0. Then τ(x) = n iff

∑n−1
j=1 εjβ

−j ≤ x <
∑n

j=1 εjβ
−j ,

where εj := ⌊βT j−1
β 1⌋ and, as usual, the empty sum is interpreted as zero. From∑∞

j=1 εjβ
−j ≥ 1, it follows that τ(x) < ∞ for every x ∈ X , and τ is an inducing

time for Tβ on Y := X . Moreover, T τ
β is a piecewise affine map all of whose cylinders

are full and hence is λ-preserving and ergodic. According to (2.5), the measure

µ := τ ×Tβ
λ =

∑
n≥0

T n
β (λ|{τ>n}) ≪ λ

is Tβ-invariant (and easily seen to be finite), cf. also Lemma 5.6(i) below. Fur-
thermore, due to (2.1), Tβ is ergodic. For every n ≥ 0, the iterate T n

β maps

{τ > n} =
[∑n

j=1 εjβ
−j , 1

)
affinely onto [0, T n

β 1) with slope βn, provided that

{τ > n} is not empty. Hence with Nβ := inf
{
n ∈ N : {τ > n} = ∅

}
∈ N,

(4.1) µ =
∑Nβ−1

n=0
β−n λ|[0,T n

β
1) ,

which is the Gelfond–Parry formula for the Tβ-invariant measure, see e.g. [5, 14].
Note that Tβλ = λ iff β is an integer, in which case µ = λ, or equivalently iff
Nβ = 1. Also, Nβ = ∞ holds for all but countably many β > 1.

Alternatively, an acim may be obtained via a tower construction. In fact,
various finer dynamical properties can be established this way, see e.g. [7, 8]. The
following is an example of a canonical Markov extension in the sense of [10, 11].
It separates all different images of cylinder sets.

Example 4.2 (β-transformations extended). As in Example 4.1 let ζn be
the family of maximal monotonicity intervals of T n

β , and for every n ≥ 0 consider

the family of images ηn := {T n
β Z : Z ∈ ζn}. Clearly, {X} = η0 ⊂ η1 ⊂ η2 ⊂ · · · .

Since only the right-most cylinder in ζn can have an image under T n
β that is not

already contained in ηj for some j < n, it follows that ηn+1 contains at most one
element more than ηn. Also, if ηn+1 = ηn for some n then ηj = ηn for all j ≥ n.

Consequently, define N∗
β := inf{n ∈ N : ηn = ηn−1} ∈ N, let X0 := X , and for

every 0 < n < N∗
β denote by Xn the unique interval in ηn\ηn−1. Using the notation

introduced in Example 4.1, it is not hard to see that N∗
β = Nβ, and Xn = [0, T n

β 1)

for all 0 ≤ n < Nβ . With this, let X∗ :=
⋃Nβ−1

n=0 (Xn ×{n}) ⊂ [0, 1)×N0, equipped
with the obvious version λ∗ of Lebesgue measure, i.e. λ∗ := (λ × #)|X∗ where #
is the counting measure, and π : X∗ → X the projection onto the first factor, that
is, π(x, n) := x for all (x, n) ∈ X∗. The family ζ∗ :=

{
(Z ∩Xn)× {n} : Z ∈ ζ, 0 ≤

n < Nβ

}
forms a partition of X∗. Moreover, define T ∗ : X∗ → X∗ according to

T ∗(x, n) :=

{
(Tβx, 0) if ζ(x) is full ,

(Tβx, n+ 1) otherwise .

Clearly, T ∗ is a nonsingular extension of Tβ and maps each element of ζ∗ affinely
onto a set of the form Xn × {n}. Thus (X∗, T ∗) is a Markov extension, and the

family of measures of the form
∑Nβ−1

n=0 cn λ
∗|Xn×{n} is closed under T ∗. It is readily
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confirmed that every T ∗-invariant measure in this family is proportional to µ∗ :=∑Nβ−1
n=0 β−n λ∗|Xn×{n}. Projection onto X gives the Tβ-invariant measure πµ∗ =

∑Nβ−1
n=0 β−n λ|Xn

≪ λ which again is the Gelfond–Parry formula (4.1).

By ergodicity, the finite invariant λ-a.c. measure for Tβ is unique up to a mul-
tiplicative constant. Therefore any method identifying an acim must lead to the
same result. However, the two natural constructions above are intimately related.

Example 4.3 (β-transformations, continued). The base Y ∗ := X ×{0} of
the extension of Example 4.2 is an embedded copy of the recurrent set Y = X in
Example 4.1, as π|Y ∗ : Y ∗ → Y trivially is invertible as a nonsingular map. The
iterates (T ∗)n map each point x∗ ∈ Y ∗ into copies of T nζn(πx∗) which are kept
disjoint from Y ∗ until the first time they coincide with Y ∗, that is, until ζn(πx∗) is
a full cylinder. Hence (T ∗)nx∗ first returns to Y ∗ at time τ(πx∗) or, in other words,
ϕY ∗(x∗) = τ ◦ π(x∗) holds for every x∗ ∈ Y ∗. That is, the extension of Example
4.2 trivialises the induced map of Example 4.1.

Finally, two simple variations of the above examples are considered in

Example 4.4 (β-transformations, once again). As in Examples 4.1 and 4.2
let (X,A, λ) be the interval [0, 1) equipped with its Borel σ-algebra and Lebesgue
measure, and consider the β-transformation Tβ : X → X .

(i) Pick β = 1+
√

5
2 . For this particular value of β, where Tβ1 = β − 1 coincides

with the discontinuity point β−1, consider τ̃ : X → N with

τ̃ (x) =

{
1 if 0 ≤ x < β−1 ,

3 otherwise .

Trivially, τ̃ is an inducing time for Tβ on Y = X . However, the nonsingular
extension provided by Example 4.2 is not τ̃ -trivialising in this case, as τ̃ ◦π(x, 0) =
3 6= 2 = ϕ∗

X×{0}(x, 0) whenever β−1 ≤ x < 1. On the other hand, choosing

X̃ := X × {0, 2} ∪ [0, β−1) × {1} and

T̃ (x, n) =

{ (
Tβ(x), 0

)
if n = 0 and 0 ≤ x < β−1 ,

(
Tβ(x), n+ 1 − 3⌊ 1

3 (n+ 1)⌋
)

otherwise ,

yields a τ̃ -trivialising extension of (X,A, λ, Tβ) that is also Markov.
(ii) Let β = 2 and (X∗,A∗, λ∗) = ⊗2

j=1(X,A, λ). With the so-called baker’s
map T ∗ : X∗ → X∗, defined as

T ∗(x, y) =

{ (
T2(x),

1
2y

)
if 0 ≤ x < β−1 ,

(
T2(x),

1
2 (1 + y)

)
otherwise ,

(X∗,A∗, λ∗, T ∗) is a version of the natural extension of (X,A, λ, T2), see e.g. [16],
and clearly constitutes a nonsingular extension as well. By Fubini’s theorem, how-
ever, X∗ does not contain any embedded set Y ∗ of positive measure. In particular,
this extension is not τ -trivialising for any inducing time τ for T2.

5. Lemmas about induced systems, and a functorial property of ×T

In preparation for the proofs of the main results in Section 6 below, this section
collects several basic facts for which no pertinent reference is known to the authors.
These facts may be of independent interest beyond their usage here.
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More on first return maps. Let S = (X,A, λ, T ) be a nonsingular system,
Y ∈ A+ some recurrent set for T , and ν ≪ λ|Y . For the first return time τ = ϕY ,
the measure τ ×T ν = ϕY ×T ν coincides with µ as defined in (2.2). Moreover,

(5.1) (ϕY ×T ν)|Y = ν on Y ,

since Y ∩ {ϕY > n} ∩ T−nA = ∅ for all n ≥ 1 whenever A ∈ A ∩ Y . It is well
known that if µ(Y ) <∞ for an invariant measure µ, then µ |Y is TY -invariant, and
µ is determined (on Y∞) by µ |Y via the above construction, see (2.2) and (2.3).
The following is a more general version of this principle.

Lemma 5.1 (Invariant measures and their restrictions). Let (X,A, µ, T )
be measure preserving, and assume that Y ∈ A+ is recurrent. Then

(5.2) µ ≥ ϕY ×T (µ|Y ) on X ,

and

(5.3) µ = ϕY ×T (µ|Y ) on Y∞ ⇐⇒ µ |Y is TY -invariant.

If µ|Y is σ-finite and T is conservative on Y∞, then µ |Y is TY -invariant, and
hence µ|Y∞

is uniquely determined by µ|Y .

Proof. An inductive argument based on the decomposition T−1(Y c ∩ {ϕY >

n}) = (Y ∩ {ϕY > n+ 1})∪ (Y c ∩ {ϕY > n+ 1}), n ≥ 0, shows that, for all A ∈ A
and N ≥ 0,

µ(A) =
∑N

n=0
µ(Y ∩ {ϕY > n} ∩ T−nA) + µ(Y c ∩ {ϕY > N} ∩ T−NA) .

Letting N → ∞ gives µ ≥ ϕY ×T (µ|Y ).
To verify (5.3), assume first that µ = ϕY ×T (µ|Y ) on Y∞, and take A ∈ A∩Y .

Then

µ(A) = µ(T−1A) =
(
ϕY ×T (µ|Y )

)
(T−1A)

=
∑

n≥0
µ

(
Y ∩ {ϕY > n} ∩ T−(n+1)A

)

=
∑

n≥0
µ

(
Y ∩ {ϕY = n+ 1} ∩ T−(n+1)A

)

= µ(T−1
Y A) .

For the reverse implication, assume that µ |Y is TY -invariant. Then (2.2) shows
that µ̃ := ϕY ×T (µ|Y ) ≪ λ|Y∞

is T -invariant with µ̃|Y = µ|Y . In view of (5.2),
the measure η := µ − µ̃ ≪ λ|Y∞

is T -invariant and vanishes on Y . Due to the
definition of Y∞, this implies η = 0, as claimed.

The statement about conservative maps is contained in [6, Satz 8]. �

Remark 5.2. (i) If T is not conservative on Y∞, then µ|Y may not be TY -
invariant, as is illustrated by the map T : x 7→ x + 1 on X := Z with the σ-finite
µ := #, and Y := N (a recurrent set). For further information regarding acims of
systems which are not conservative see e.g. [2].

(ii) Conservativity is not always necessary for µ |Y to be TY -invariant: To see
this, let X := Z × {−1, 1}, µ := #, and T (x, y) := (x + 1,−y) which is clearly
not conservative. Nonetheless, the set Y := Z × {1} is recurrent, and µ|Y is TY -
invariant. In fact, the proof of the lemma shows that µ |Y is TY -invariant whenever
ϕY is bounded.
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The following result shows that in σ-finite measure preserving situations, con-
servativity can be checked using first return maps. Maharam’s classical recurrence
theorem [1, Thm.1.1.7] states that if S = (X,A, µ, T ) is mp and Y ∈ A+ is
a recurrent set with µ(Y ) < ∞, then S|Y∞

is conservative. Since, under these

assumptions, SY is automatically conservative (being a finite-measure preserving
system), the next lemma is a generalization of the classical result.

Lemma 5.3 (Conservativity via first return maps). Let S = (X,A, µ, T )
be measure preserving, and assume that µ is σ-finite on the recurrent set Y ∈ A+.
Then SY is conservative iff S|Y∞

is conservative.

Proof. Assume that SY is conservative. To prove that T is conservative on
Y∞ it suffices to show that Y∞ =

⋃
j≥1 Zj,∞ mod µ, where, for every j, Zj,∞ ∈ A is

T -invariant and T is conservative on Zj,∞. Now Y =
⋃

j≥1 Zj for suitable Zj ∈ A

satisfying 0 < µ(Zj) < ∞. As TY is conservative, each Zj is a recurrent set for
TY , and hence also for T . Therefore, each Zj,∞ :=

⋃
n≥0 T

−nZj is T -invariant, and

it is clear that Y∞ =
⋃

n≥0 T
−nY =

⋃
j≥1 Zj,∞ holds mod µ. Observe then that

Zj is a sweep-out set of finite measure for the µ|Zj,∞
-preserving map T |Zj,∞

. By

Maharam’s recurrence theorem, T is indeed conservative on each Zj,∞, as required.
The reverse implication is standard, see e.g. [1, Prop.1.5.1]. �

Remark 5.4. If T is only assumed to be nonsingular, rather than mp, then
conservativity of TY no longer implies conservativity of T , as is illustrated by T :
x 7→ max(1, x − 1) on X := N with σ-finite µ := #, and Y := {1}. A similarly
simple example shows that σ-finiteness of µ is essential here too. Indeed, take X ,
Y and T as before, and let µ(A) := ∞ unless A = ∅. Then T preserves µ, Y is
recurrent, and TY is conservative, whereas clearly T is not conservative on Y∞ = X .

More on general induced transformations. Let S = (X,A, λ, T ) be a non-
singular system, and τ an inducing time for T on Y ∈ A+. Note that τ can always
be represented in terms of the successive return times ϕY,1 < ϕY,2 < ϕY,3 < . . .

of Y , given by ϕY,n :=
∑n−1

j=0 ϕY ◦ T j
Y , n ≥ 1. In fact, there exists a measurable

function ρ : Y → N, finite a.e., such that τ(x) = ϕY,ρ(x)(x) for a.e. x ∈ Y , and
hence T τ = (TY )ρ, see [21, Rem.4.2].

By straightforward calculation one obtains a generalised Kac formula for the
total mass of τ ×T ν since, for every measure ν ≪ λ|Y on (Y,A∩ Y ),

(5.4) τ ×T ν(X) =
∑

n≥0
ν
(
Y ∩ {τ > n}

)
=

∫

Y

τ dν .

A useful counterpart to (5.4) is contained in

Lemma 5.5 (Weight of Y under τ ×T ν). Let (X,A, λ, T ) be nonsingular,
and τ an inducing time for T on Y ∈ A+ with T τ = (TY )ρ. If ν is a measure on
(Y,A∩ Y ) with ν ≪ λ|Y , then

(5.5) τ ×T ν(Y ) =

∫

Y

ρ dν .

Proof. Start from the definition of τ×T ν, decompose Y according to the value
of ρ, and then according to the values of the successive return-times ϕY,1 < ϕY,2 <

. . . < ϕY,ρ. Observe that, given r ∈ N and natural numbers k1 < k2 < . . . < kr,
the set

Y ∩ {ρ = r} ∩ {ϕY,1 = k1} ∩ . . . ∩ {ϕY,r = kr} ∩ T
−nY



14 ARNO BERGER AND ROLAND ZWEIMÜLLER

can, for n < kr, only be non-empty if n ∈ {0, k1, . . . , kr−1}, in which case it equals
Y ∩ {ρ = r} ∩ {ϕY,1 = k1} ∩ . . . ∩ {ϕY,r = kr} and is contained in {τ = kr}.
Consequently,

τ ×T ν(Y ) =
∑

n≥0
ν

(
Y ∩ {τ > n} ∩ T−nY

)

=
∑

r≥1

∑

k1<...<kr

kr−1∑

n=0

ν
(
Y ∩ {ρ = r} ∩

r⋂

j=1

{ϕY,j = kj} ∩ T
−nY

)

=
∑

r≥1

∑

k1<...<kr

r · ν
(
Y ∩ {ρ = r} ∩

r⋂

j=1

{ϕY,j = kj}
)

=
∑

r≥1
r · ν (Y ∩ {ρ = r}) ,

which proves (5.5). �

As far as absolutely continuous invariant measures are concerned, it is most
important that (2.2) and (2.3) extend, in a natural way, to general inducing times.

Lemma 5.6 (T τ -invariance of ν vs. T -invariance of τ×T ν). Let (X,A, λ, T )
be nonsingular, τ an inducing time for T on Y ∈ A+, and ν ≪ λ|Y any measure
on (Y,A ∩ Y ). Then the following implications hold with µ := τ ×T ν ≪ λ|Y∞

:

(i) If ν is T τ -invariant, then µ is T -invariant;
(ii) If µ is T -invariant and σ-finite, then ν is T τ -invariant and σ-finite.

Proof. Assertion (i) is well-known, see e.g. [17, Eqn.(1.3)]; it follows imme-
diately from the fact that, for every A ∈ A,

(5.6) (τ ×T ν)(T
−1A) = ν

(
(T τ )−1(Y ∩A)

)
+

∑
n≥1

ν(Y ∩ {τ > n} ∩ T−nA) .

To prove (ii), denote by η(A) the right-most sum in (5.6), and assume that
τ ×T ν is T -invariant. In this case, for every A ∈ A,

(τ ×T ν)(A) = ν
(
(T τ )−1(Y ∩A)

)
+ η(A) = ν(Y ∩A) + η(A),

by the very definition of τ ×T ν. Since η ≤ (τ ×T ν), the equality

(5.7) ν
(
(T τ )−1A

)
= ν(A)

holds for all A ∈ A∩Y with (τ ×T ν)(A) <∞. In case τ ×T ν is merely σ-finite on
A ∈ A ∩ Y , write A =

⋃
j≥1 Aj , where the Aj are disjoint and (τ ×T ν)(Aj) < ∞

for every j. Since, for each j, (5.7) holds with A replaced by Aj , it also holds for
A itself. Thus ν is T τ -invariant, and σ-finiteness of ν is clear as ν ≤ µ. �

Remark 5.7. Without σ-finiteness of τ ×T ν, Lemma 5.6(ii) is false in general.
To see this, consider for instance the map T : x 7→ 2 min(x, 1 − x) on X := [0, 1]
with Lebesgue measure λ, and choose any ν ≪ λ such that log dν

dλ
is bounded. For

every n ∈ N, let In := (2−n, 21−n], and define τ(x) := 2n for all x ∈ In. Trivially,
τ is an inducing time for T on Y := X , and it is readily confirmed that τ ×T ν(A)
equals ∞ or 0 if, respectively, λ(A) > 0 or λ(A) = 0. Thus τ ×T ν is T -invariant
but, as T τ is ergodic w.r.t. λ, the measure ν is T τ -invariant only if dν

dλ
is constant.2

2
Two corrections to [21]: The folklore fact (2.3) was misrepresented in [21] in that the con-

dition µ(Y ) < ∞ was left out. Similarly, Lemma 5.6(ii) was quoted incorrectly in [21, Prop.1.1],
with the assumption of σ-finiteness missing.
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Measure construction and towers. A natural functorial property of the mea-
sure extending operation ×T provides the final crucial link between the two types
of auxiliary constructions studied in this article.

Lemma 5.8 (Factor maps and ×T ). Let (X,A, λ, T ) be nonsingular, and τ

an inducing time for T on Y ∈ A+. Assume that (X∗,A∗, λ∗, T ∗) is a τ-trivialising
extension with factor map π and τ-base Y ∗. Then, for every measure η ≪ λ|Y on
A∩ Y ,

(5.8) τ ×T η = π
(
(τ ◦ π) ×T∗ (π|

−1
Y ∗ η)

)
.

Proof. By (2.7), τ ◦ π is an inducing time for T ∗ on Y ∗, which implies that
the right-hand expression in (5.8) does make sense. Pick any A ∈ A, and use the
definition of ×T∗ as well as the factor property of π to see that indeed

π
(
(τ ◦ π) ×T∗ (π|−1

Y ∗ η)
)
(A) =

∑
n≥0

π|−1
Y ∗ η

(
Y ∗ ∩ {τ ◦ π > n} ∩ (T ∗)−nπ−1A

)

=
∑

n≥0
π|−1

Y ∗ η
(
Y ∗ ∩ π−1({τ > n} ∩ T−nA)

)

=
∑

n≥0
η(Y ∩ {τ > n} ∩ T−nA)

= τ ×T η(A) .

�

6. Proofs of the main results

With the classical facts recalled in Section 2 and the specific lemmas provided in
Section 5, all the required ingredients have been assembled for a

Proof of Theorem 3.1. To prove (i), assume that T τ preserves the σ-finite
measure ν ≪ λ|Y . As π|Y ∗ is invertible, (2.7) implies that the first return map

T ∗
Y ∗ of T ∗ on Y ∗ preserves the σ-finite measure π|

−1
Y ∗ ν ≪ λ∗|Y ∗ , since

T ∗
Y ∗(π|

−1
Y ∗ ν) = π|

−1
Y ∗ (T τ ν) = π|

−1
Y ∗ ν on Y ∗ .

According to (2.2), the T ∗
Y ∗ -invariant measure π|

−1
Y ∗ ν is the restriction to A∗ ∩ Y ∗

of the T ∗-invariant measure

µ∗ := ϕ∗
Y ∗ ×T∗ (π|

−1
Y ∗ ν) = (τ ◦ π) ×T∗ (π|

−1
Y ∗ ν) ≪ λ∗|Y ∗

∞

.

But then πµ∗ = τ ×T ν is immediate from Lemma 5.8, applied to η = ν, and

π|Y ∗ µ∗ = ν is clear since µ∗|Y ∗ = π|
−1
Y ∗ ν. Also, by (2.4), the measure µ∗ is σ-

finite. Finally, T τ is conservative w.r.t. ν iff T ∗
Y ∗ is conservative w.r.t. π|−1

Y ∗ ν, and
due to Lemma 5.3 the latter implies that T ∗ is conservative w.r.t. µ∗.

To show (ii), assume that T ∗ preserves the conservative σ-finite measure µ∗ ≪
λ∗|Y ∗

∞

. According to Lemma 5.1 this implies that T ∗
Y ∗ preserves µ∗|Y ∗ , and that

µ∗ = ϕ∗
Y ∗ ×T∗ (µ∗|Y ∗). Define ν := π|Y ∗ (µ∗|Y ∗), the π-image of µ∗|Y ∗ on A ∩ Y ,

and observe that (2.7) implies that ν is T τ -invariant, as

T τ ν = T τ (π|Y ∗ µ
∗) = π|Y ∗ (T ∗

Y ∗ µ∗|Y ∗) = π|Y ∗ µ∗|Y ∗ = ν on Y .

By Lemma 5.8, µ∗ satisfies π ν∗ = τ ×T ν, with µ := πµ∗ ≪ λ obviously being
T -invariant. �

Combining several observations from [21] quite directly leads to a
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Proof of Theorem 3.3. Assume first that (i) holds. By σ-finiteness of the
two measures µ, ν, there exists Y ′ ∈ A ∩ Y such that µ(Y ′), ν(Y ′) ∈ (0,∞),
and µ, ν are equivalent on Y ′. By conservativity of T τ w.r.t. ν, the first return
map (T τ )Y ′ is defined a.e. on Y ′. Therefore there is a (unique) inducing time
ϑY ′ for TY ′ on Y ′ for which (T τ)Y ′ = (TY ′)ϑY ′ a.e. on Y ′. Now [21, Prop.4.1]
applies to show that ϑY ′ ×TY ′

ν′ = µ |Y ′ has a solution ν′. On the other hand,
(2.3) and (2.1) ensure that TY ′ is ergodic and mp for the finite measure µ |Y ′ .
Consequently, [21, Thm.1.2] applies to TY ′ and the inducing time ϑY ′ , proving
that it is possible to choose Z ∈ A ∩ Y ′ with the property that 0 < µ(Z) < ∞
and

∫
Z
θZ dµ < ∞, where θZ is such that (TY ′)θZ =

(
(TY ′)ϑY ′

)
Z

a.e. on Z. Now

recall the definition of ϑY ′ to see that (TY ′)θZ =
(
(T τ)Y ′

)
Z

= (T τ )Z . Therefore,

(TY ′)θZ = (TZ)ϑZ a.e. on Z, and since Z ⊆ Y ′, the latter implies that ϑZ ≤ θZ a.e.
Hence,

∫
Z
ϑZ dµ ≤

∫
Z
θZ dµ <∞, establishing (ii).

Assume in turn that (ii) is satisfied. As µ is conservative, Z is a recurrent set
for T w.r.t. µ. Assumption (ii) means, in particular, that ϑZ < ∞ µ-a.e. on Z,
whence Z is a recurrent set for the nonsingular map T τ on (Y,A ∩ Y, µ |Y ). By
(2.3) and (2.1), TZ is ergodic and mp on the finite measure space (Z,A ∩ Z, µ |Z).
Now ϑZ is an inducing time for TZ on Z with

∫
Z
θZ dµ <∞. Hence, in view of [21,

Thm.1.1], ϑZ ×TZ
ν̃ = µ |Z has a solution ν̃, which is necessarily a finite absolutely

continuous measure since ν̃ ≤ µ |Z . Moreover, ν̃ is invariant under (TZ)ϑZ = (T τ )Z ,
see part (ii) of Lemma 5.6. Let ϕτ

Z(x) := inf{j ≥ 1 : (T τ)jx ∈ Z} and observe that
[21, Prop.4.1] applies to show that ν := ϕτ

Z ×T τ ν̃ solves µ = τ ×T ν. Use part
(ii) of Lemma 5.6 again to see that ν is indeed a σ-finite acim for T τ on Y . By
construction of ν, Y ⊆ Zτ

∞ :=
⋃

n≥1(T
τ )−nZ mod ν, and since ν(Z) = ν̃(Z) <∞,

Maharam’s recurrence theorem [1, Thm.1.1.7] now shows that T τ is conservative
w.r.t. its invariant measure ν. This proves (i). �

As indicated earlier, a first corollary now follows immediately.

Proof of Corollary 3.5. Simply observe that the nonsingular extension
(, X∗,A∗, λ∗, T ∗) is τ -trivialising with base Y ∗. Theorem 3.1 thus shows that (iii)
is equivalent to statement (i) of Theorem 3.3. Equivalence to Theorem 3.3(ii) is
immediate, as all assumptions of Theorem 3.3 are met. �

The question of σ-finiteness of µ = τ ×T ν is clarified by the

Proof of Theorem 3.7. In view of the preceding arguments, it only remains
to verify the formula for µ. Note first that for Z = Y , Lemma 5.5 gives µ(Y ) =∫

Y
ϑY dν. In general, given Z ∈ A ∩ Y with µ(Z) > 0, let σ, ϑZ : X → N be such

that T σ = (T τ )Z = (TZ)ϑZ holds λ-a.e. on Z. Applying Lemma 5.5 to T with
inducing time σ and set Z yields

σ ×T (ν|Z) (Z) =

∫

Z

ϑZ dν .

From the T τ -invariance of ν, it follows that ϕτ
Z ×T τ ν|Z = ν, where ϕτ

Z(x) :=
inf{n ≥ 1 : (T τ )nx ∈ Z} whenever x ∈ Z, and ϕτ

Z(x) := 0 otherwise; in particular,

therefore, T σ = (T τ )ϕτ
Z . Now apply the chain rule of [21, Lem.4.1] to obtain

σ ×T ν|Z (Z) = τ ×T (ϕτ
Z ×T τ ν|Z)(Z) = τ ×T ν(Z) = µ(Z) .

Finally, being conservative ergodic, µ is σ-finite iff Y contains some measurable Z
with 0 < µ(Z) <∞. �
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The article concludes by providing a

Proof of Corollary 3.8. By the factor property, the measure preserving
system (X,A, µ, T ) inherits conservativity and ergodicity from (X∗,A∗, µ∗, T ∗).

Due to (2.1) and Lemmas 5.1 and 5.3, T ∗
Y ∗ preserves µ∗|Y ∗ ≪ λ∗|Y ∗ , and

is conservative ergodic w.r.t. this σ-finite measure. Note also that the extension
is τ -trivialising with base Y ∗. By the second part of Theorem 3.1, T τ preserves
ν ≪ λ|Y , is conservative ergodic w.r.t. ν, and the measures satisfy µ = τ ×T ν.
Therefore the assertion follows from Theorem 3.7. �
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