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Abstract. We prove stable limit theorems and one-sided laws of the iterated logarithm for a class of positive, mixing, stationary,
stochastic processes which contains those obtained from nonintegrable observables over certain piecewise expanding maps. This
is done by extending Darling–Kac theory to a suitable family of infinite measure preserving transformations.

Résumé. Nous prouvons des théorèmes limites et des lois du logarithme itéré unilatérales pour une classe de processus stochas-
tiques positifs, mélangeants et stationnaires. Cette classe contient en particulier les processus obtenus par des observables noninté-
grables de certaines applications dilatantes. Ceci est obtenu en généralisant la théorie de Darling–Kac à une famille appropriée de
transformations préservant la mesure.
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Overview

We prove limit theorems for positive, stationary, processes with infinite mean satisfying mixing conditions which
occur naturally in certain dynamical systems: stable limit theorems for certain ϑμ-mixing processes and one-sided
laws of the iterated logarithm for certain ψ∗-mixing processes (definitions below).

The method of proof is by inversion which is done by first building a Kakutani tower over the generating probability
preserving transformation, using the time zero observation as height function.

The mixing properties of the stationary process ensure that the resulting infinite measure preserving transformation
is weakly pointwise dual ergodic, which allows us to develop a generalized Darling–Kac theory for ergodic sums of
this system. The results for the original stochastic process then follow by a standard inversion argument.

We illustrate both the finite-measure and the infinite-measure results by applying them to certain one-dimensional
dynamical systems.
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1. Definitions and preliminaries

Stationary processes

We are going to consider partial sums of ergodic R+-valued stationary processes (ξn)n≥0 with E(ξn) =∞. Such a
process can always be represented as ξn = ϕ ◦ Sn, where S is a measure preserving transformation on a probability
space (Ω, A,P ), and ϕ :Ω→R+ is measurable with E(ϕ)=∞ (and w.l.o.g. A= σ {ϕ ◦ Sn: n≥ 0}). Due to nonin-
tegrability, it will suffice to restrict attention to the N-valued case, as by the ergodic theorem the partial sums of the
fractional parts are asymptotically negligible compared to the partial sums of the process. Henceforth, ϕ :Ω→N, and
we let α = αϕ = {[ϕ = l]: l ∈N}. This gives a probability preserving fibred system (Ω, A,P ,S,α) in the sense of the
following definition.

Nonsingular transformations and fibred systems

A measurable map S on a σ -finite space (Ω, A,m) is called nonsingular if m ◦ S−1�m. Its transfer operator (with
respect to m) is the positive linear map Ŝ :L1(m)→ L1(m) defined by∫

A

Ŝf dm=
∫

S−1A

f dm
(
f ∈ L1(m),A ∈A

)
.

A fibred or piecewise invertible system is a quintuple (Ω, A,m,S,α) where S is a nonsingular transformation on
(Ω, A,m), and α ⊂A is a countable, unilateral generator so that the restriction S :a→ Sa is invertible, nonsingular
on each a ∈ α. In this case, for every k ≥ 1, (Ω, A,m,Sk,αk) is a fibred system, where αk :=∨k−1

j=0 S−jα.
The transfer operator of (Ω, A,m,S,α) can be represented as

Ŝf =
∑
a∈α

1Sav
′
a(f ◦ va),

where va :Sa→ a denotes the inverse of S :a→ Sa, and v′a := dm◦va

dm
.

If m actually is an S-invariant probability measure, the system is called probability preserving, and we write
P :=m.

Mixing

Let P (Ω, A) denote the collection of probability measures on (Ω, A), and call μ ∈ P (Ω, A) equivalent to P , μ∼ P ,
if μ� P � μ. Various mixing conditions for a probability preserving fibred system (Ω, A,P ,S,α) are defined in
terms of the asymptotics of certain mixing coefficients, all defined for n ≥ 1 (and only using pairs of sets for which
the denominator is nonzero). The system is called

• ϑμ-mixing (for some μ ∈ P (Ω, A) with μ∼ P ) if ϑμ(n)→ 0, where

ϑμ(n) := sup

{ |P(A∩ S−(n+k)B)− P(A)P (B)|
μ(B)

: k ≥ 1,A ∈ σ(αk),B ∈A
}
;

• ψ∗-mixing if ψ∗(n)→ 1, where

ψ∗(n) := sup

{
P(A∩ S−(n+k)B)

P (A)P (B)
: k ≥ 1,A ∈ σ(αk),B ∈A

}
;

• ψ -mixing if ψ(n)→ 0, where

ψ(n) := sup

{ |P(A∩ S−(n+k)B)− P(A)P (B)|
P(A)P (B)

: k ≥ 1,A ∈ σ(αk),B ∈A
}
;

and continued fraction mixing if, in addition to ψ -mixing, ψ(1) <∞.
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Remark 1. (a) The notion of ϑμ-mixing generalizes that of reverse φ-mixing which requires that φ−(n)→ 0, where

φ−(n) := sup

{ |P(A∩ S−(n+k)B)− P(A)P (B)|
P(B)

: k ≥ 1,A ∈ σ(αk),B ∈A
}
,

so that ϑP (n)= φ−(n) for all n.
(b) As shown in [11], ψ∗(1) <∞ implies ψ∗-mixing. Elementary computation shows that φ−(n) ≤ ψ∗(n) − 1,

hence ψ∗-mixing entails reverse φ-mixing, that is, ϑP -mixing.
(c) It is immediate that ψ -mixing implies ψ∗-mixing. Moreover, note that ψ∗(1)≤ 1+ψ(1). In view of (a), ψ(1) <

∞ also implies ψ∗-mixing.
(d) For examples with ψ∗(1) <∞ which are not ψ -mixing, see chapter 5 in [12].
(e) In Section 7 below, we consider a class of interval maps (weakly mixing Rychlik-maps) for which ϑμ(n)→

0 exponentially fast (as shown in [8]). We prove that, under some natural extra assumptions, ψ∗(1) <∞ implies
continued fraction mixing in this setup.

Strong distributional convergence and limit laws

For (X, B,m) a σ -finite measure space, Fn :X→[0,∞]measurable, and Y a random variable taking values in [0,∞],
we say that (Fn) converges strongly in distribution to Y , written

Fn
d−→

n→∞Y,

if it converges in law with respect to all absolutely continuous probabilities, that is, if for all continuous (hence
bounded) g : [0,∞]→R and all P ∈P (X, B) with P �m,∫

X

g(Fn)dP −→
n→∞E

(
g(Y )

)
.

For γ ∈ [0,1] we let Yγ ≥ 0 denote a random variable which has the normalized Mittag-Leffler distribution of

order γ , that is, E(Y
p
γ )= p!(�(1+γ ))p

�(1+pγ )
for p ≥ 0. Evidently Y1 ≡ 1, and Y0 has exponential distribution. Also, Y1/2 is

the absolute value of a centered Gaussian random variable.
For γ ∈ (0,1], the variable Zγ := Y−1/γ then has a positive γ -stable distribution with E(e−tZγ ) = exp(−�(1+

γ )tγ ) for t > 0.

2. Results on stationary processes

Recall that a function a : (L,∞)→ (0,∞) is regularly varying of index ρ ∈R if it is measurable and a(ct)/a(t)→ cρ

as t→∞ for all c > 0. In case ρ > 0, such an a has an asymptotically inverse function b (uniquely determined up
to asymptotic equivalence), meaning that a(b(t)) ∼ b(a(t)) ∼ t as t→∞, and b is regularly varying of index 1/ρ.
These concepts are extended to sequences (a(n)) by interpreting them as functions on R+ via t �−→ a(�t�) (which
we shall do without further mention).

In the statements below, (Ω, A,P ,S,α) is a probability preserving fibred system, and ϕ :Ω→N is α-measurable.
We let

ϕn :=
n−1∑
k=0

ϕ ◦ Sk, n≥ 0,

denote the partial sums of the stationary process (ξn)n≥0 = (ϕ ◦ Sn)n≥0, and define

aϕ(n) :=
n∑

k=1

P
([ϕk ≤ n]), n≥ 0.
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In order to establish our results, we will need to assume that the growth of aϕ(n) is adapted to the decay of the
mixing coefficients of the process. The main condition is as follows although we will use a stronger version (2.6) in
Theorem 2.3.

Definition of adaptedness

Let τ(n) ↓ 0. We will say that the sequence (a(n))n∈N in (0,∞) is adapted to (τ (n))n∈N if

nτ(δa(n))

a(n)
−→
n→∞0 for all δ > 0. (2.1)

Observe that in this case any sequence asymptotically equivalent to (a(n)) is adapted, too. Note also that if (a(n)) is
regularly varying with positive index, then it is adapted to (τ (n)) as soon as (2.1) holds for one δ > 0.

Our first result is a distributional limit theorem. In the barely infinite measure case (γ = 1) it comes with an
associated a.e. result. For γ ∈ (0,1), corresponding statements will be established under stronger assumptions in
Theorem 2.3 below.

Theorem 2.1. Suppose that (Ω, A,P ,S,α) is a ϑμ-mixing probability preserving fibred system, and that ϕ :Ω→N

is α-measurable.
(a) (Stable limit theorem) Let (a(n)) = (aϕ(n)) be γ -regularly varying for some γ ∈ (0,1], and assume that it is

adapted to (ϑμ(n)). Then,

ϕn

b(n)

d−→
n→∞Zγ , (2.2)

where b is asymptotically inverse to a, b(a(n))∼ a(b(n))∼ n.
(b) (One-sided law of the iterated logarithm for γ = 1) If, in addition, γ = 1 and b(n/ log logn) log logn∼ b(n),

then

lim
n→∞

ϕn

b(n)
= 1 a.s. (2.3)

Remark 2. (a) The conclusion of Theorem 2.1(a) was established for certain φ-mixing processes in ([17], Corol-
lary 5.10) and for continued fraction mixing processes in [13] (see also [3]).

(b) A functional version of (a) is also valid, and can be proved using a straightforward, appropriate adaptation
of [9].

(c) An analogue of Theorem 2.1(b) for ψ -mixing processes was established in [4].

The results mentioned in Remark 2(a) also compute the aϕ(n) from the marginal distributions, for which additional
“close correlation” assumptions such as ψ∗(1) <∞ are required. We now show how to determine the asymptotics of
aϕ(n) from the marginal distributions under the weaker close correlation condition (2.4) (but we still use the stronger
ψ∗(1) <∞ in Theorem 2.3 below).

Theorem 2.2 (Identifying the normalization). Let (Ω, A,P ,S,α) be a ϑμ-mixing probability preserving fibred
system. Assume that ϕ :Ω→N is α-measurable, and that there exists some Φ ∈ L1(P )+ such that

Ŝ(ϕ ∧ n)≤ E(ϕ ∧ n)Φ ∀n≥ 1. (2.4)

Assume that (ã(n)) is regularly varying with index γ ∈ (0,1], and adapted to (ϑμ(n)), then

E(ϕ ∧ n) ∼
n→∞

n

�(2− γ )�(1+ γ )ã(n)
(2.5)

implies

aϕ(n) ∼
n→∞ ã(n).
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Finally, replacing adaptedness (2.1) to (ϑμ(n)) by the stronger assumption (2.6) involving a(a(n)) below, we
establish the following pointwise result.

Theorem 2.3 (The one-sided law of the iterated logarithm). Suppose that (Ω, A,P ,S,α) is a ψ∗-mixing proba-
bility preserving fibred system with ψ∗(1) <∞, and that ϕ :Ω→N is α-measurable.

If (a(n))= (aϕ(n)) is γ -regularly varying for some γ ∈ (0,1) with asymptotic inverse b(n), and if

nϑP (δa(a(n)))

a(n)
−→
n→∞0 for some δ > 0, (2.6)

then, letting Cγ :=K
−1/γ
γ with Kγ := �(1+γ )

γ γ (1−γ )1−γ , we have

lim
n→∞

ϕn

b(n/ log log(n)) log log(n)
= Cγ a.s. (2.7)

Moreover, if (τ (n)) is any sequence in (0,∞) with τ(n) ↑ and τ(n)/n ↓, let κτ be the unique number in [0,∞] such
that

∑
n≥1 e−κτ(n)/n converges for κ > κτ and diverges for κ < κτ . Then

lim
n→∞

ϕn

b(n/κτ(n))κτ(n)
≥ Cγ a.s. if κ ∈ [κτ ,∞), (2.8)

and

lim
n→∞

ϕn

b(n/κτ(n))κτ(n)
≤ Cγ a.s. if κ ∈ (0, κτ ]. (2.9)

Remark 3. (a) The conclusion of Theorem 2.3 was established for iid processes in [21], and for ψ -mixing processes in
[5]. Our proof of Theorem 2.3 is by establishing the conditions needed for the methods of [5]. Therefore the functional
version also follows as in [6].

(b) Recall that ϑP (n)= φ−(n), see Remark 1(a).

Inversion: Kakutani towers and return time processes

Our results will be established using the well-known technique of “inverting” corresponding results for infinite mea-
sure preserving transformations, the connection being established via the following concept. Given a probability pre-
serving transformation (Ω, A,P ,S) and a measurable function ϕ :Ω→N, the Kakutani tower of (Ω, A,P ,S,ϕ) is
the object (X, B,m,T ) with (X, B,m) the σ -finite space defined by

• X :=⋃
n≥1[ϕ ≥ n] × {n},

• B := {⋃n≥1 Bn × {n}: Bn ∈A∩ [ϕ ≥ n] ∀n≥ 1},
• m(A× {n}) := P(A),

and T :X→X is the map given by

• T (x,n) :=
{

(x,n+ 1), ϕ(x) > n,
(Sx,1), ϕ(x)= n.

It follows that (X, B,m,T ) is a conservative, measure preserving transformation which is ergodic iff (Ω, A,P ,S) is
ergodic.

This “tower building process” is reversible. Given a conservative ergodic σ -finite measure preserving system
(X, B,m,T ), we define the return time process of T on Ω ∈ F := {B ∈ B: 0 < m(B) <∞} as the N-valued sta-
tionary process (ϕΩ ◦ T n

Ω)n≥0 on (Ω, B ∩Ω,mΩ, ), where

• ϕ(x)= ϕΩ(x) :=min{n≥ 1: T nx ∈Ω},
• TΩ(x) := T ϕ(x)(x), and
• mΩ(A) :=m(A∩Ω)/m(Ω).
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It follows that the Kakutani tower of (Ω, B ∩Ω,mΩ,TΩ,ϕΩ) is a factor of (X, B,m′, T ) where m′ = 1
m(Ω)

m (and
an isomorph in case T is invertible).

Now set ϕj :=∑j−1
i=0 ϕΩ ◦T i

Ω , which is the time of the nth return to Ω . It is straightforward to check that these are

dual to the occupation times of Ω , Sn(1Ω) :=∑n−1
k=0 1Ω ◦ T k in that

Sn(1Ω)≤ j iff ϕj ≥ n. (2.10)

This entails, via routine arguments, that various properties of (ϕj )j≥1 are equivalent to corresponding properties of
(Sn(1Ω))n≥1. Specifically, suppose that a(n) is γ -regularly varying with γ ∈ (0,1], and let b be asymptotically inverse
to a. Then, for Y a [0,∞]-valued random variable,

1

a(n)
Sn(1Ω)

d−→m(Ω)Y iff
ϕn

b(n)

d−→
(

1

m(Ω)Y

)1/γ

, (2.11)

and

lim
n→∞

1

a(n)
Sn(1Ω)

a.e.= m(Ω) iff lim
n→∞

ϕn

b(n)

a.e.=
(

1

m(Ω)

)1/γ

. (2.12)

3. Weak pointwise dual ergodic measure preserving transformations

In this section, we consider the properties of infinite ergodic systems to be used in the proofs of the above results.

Weak pointwise dual ergodicity

Let T be a conservative, ergodic, measure preserving transformation (not necessarily invertible) on the σ -finite space
(X, B,m), and T̂ :L1(m)→L1(m) its transfer operator, which naturally extends to all nonnegative measurable func-
tions. Invariance of m means that T̂ 1X = 1X , and since T is conservative ergodic, any measurable g :X→ [0,∞)

which is subinvariant, T̂ g ≤ g, is, in fact, constant. Hurewicz’s ratio ergodic theorem (Theorem 2.2.1 of [1]), guaran-
tees that∑n−1

k=0 T̂ kf∑n−1
k=0 T̂ kg

−→
n→∞

m(f )

m(g)
a.e. on X (3.1)

for all f,g ∈ L1+(m) := {f ∈ L1(m): f ≥ 0 and m(f ) > 0}. (Due to conservativity,
∑n−1

k=0 T̂ kf →∞ a.e. for such
f .)

Throughout, convergence in measure,
m−→, for our σ -finite measure m, is understood to mean convergence in

measure,
ν−→, for every finite ν�m (or, equivalently, for all ν =mA with A ∈F ).

The conservative ergodic measure preserving transformation T on the σ -finite space (X, B,m) will be called
weakly pointwise dual ergodic if there exist constants a(n) > 0, n≥ 1, such that

1

a(n)

n−1∑
k=0

T̂ kf
m−→

n→∞

∫
X

f dm for f ∈L1+(m), (3.2)

and

lim
n→∞

1

a(n)

n−1∑
k=0

T̂ kf =
∫

X

f dm a.e. on X for f ∈ L1+(m). (3.3)

This generalizes the notion of pointwise dual ergodicity (cf. Section 3.7 of [1], or [2]), which requires a(n) > 0 such
that

1

a(n)

n−1∑
k=0

T̂ kf −→
n→∞

∫
X

f dm a.e. on X for f ∈L1+(m). (3.4)
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In either case the return sequence (a(n))n≥1, which is determined up to asymptotic equivalence and satisfies
a(n+ 1)∼ a(n)→∞, can (and will) be taken nondecreasing. It is usually denoted (an(T ))n≥1.

Remark 4. No invertible conservative ergodic measure preserving transformation (X, B,m,T ) with m(X) =∞ is
pointwise dual ergodic. (Since in this case T̂ f = f ◦ T −1, so that (3.4) would give a pointwise ergodic theorem with
normalizing constants a(n) for T −1, which is impossible, see Section 2.4 of [1].) However, invertible systems can still
be weakly pointwise dual ergodic.

Example 1. For a concrete example, let T : (0,1)→ (0,1) be given by T x := x
1−x

for x < 1
2 and T x := 2x − 1 for

x > 1
2 , which is conservative ergodic with invariant measure m having density 1

x
, and define a(n) := n/ logn. By the

Darling–Kac theorem for pointwise dual ergodic transformations, (see [2,14], Section 3.7 of [1], or [24]),

1

a(n)

n−1∑
k=0

f ◦ T k m−→
n→∞

∫
X

f dm for f ∈ L1+(m),

and according to Proposition 2 of [4],

lim
n→∞

1

a(n)

n−1∑
k=0

f ◦ T k =
∫

X

f dm a.e. on X for f ∈ L1+(m).

These carry over to the natural extension T∗ of T : This is immediate for functions of the form f∗ = f ◦ π , with π

denoting the factor map. Then use the ratio ergodic theorem to pass to general f∗ ∈ L1+(m∗). Therefore, the invertible
conservative ergodic measure preserving transformation T −1∗ , with transfer operator f �→ f ◦ T∗ is weakly pointwise
dual ergodic, and hence so is T∗, with an(T∗)∼ an(T

−1∗ )∼ a(n).

Conditions of this flavour can be exploited most efficiently if one succeeds in identifying special sets on which
there is additional control on the convergence. Recall (cf. [1,19]) that A ∈ F = {B ∈ B: 0 < m(B) <∞} is called a
uniform set (for f ∈ L1+(m)) if there are a(n) > 0, such that

ess sup
A

∣∣∣∣∣ 1

a(n)

n−1∑
k=0

T̂ kf −m(f )

∣∣∣∣∣ −→n→∞0,

and, more specifically, a Darling–Kac set if

ess sup
A

∣∣∣∣∣ 1

a(n)

n−1∑
k=0

T̂ k1A −m(A)

∣∣∣∣∣ −→n→∞0.

We now define A ∈F to be a limited set if there exist constants a(n) > 0 such that

1

a(n)

n−1∑
k=0

T̂ k1A
mA−→

n→∞m(A), (3.5)

and

ess sup
A

1

a(n)

n−1∑
k=0

T̂ k1A −→
n→∞m(A). (3.6)

Due to (3.1) the asymptotics of (a(n)) does not depend on f or A. It is not hard to see that defining

aA(n) :=
n−1∑
k=0

m(A∩ T −kA)

m(A)2
for A ∈F ,
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we have

a(n) ∼
n→∞aA(n) in (3.5) and (3.6) for every limited set A. (3.7)

The existence of uniform sets is equivalent to pointwise dual ergodicity, and a(n)∼ an(T ) in this case. (But we do not
know if every pointwise dual ergodic transformation has a Darling–Kac set.) Similarly, weak pointwise dual ergodicity
is equivalent to the existence of limited sets, as we have

Proposition 3.1 (Limited sets and weak pointwise dual ergodicity from local behaviour). Let T be a conservative
ergodic measure preserving transformation on the σ -finite space (X, B,m).

(a) Suppose there are A ∈F , f ∈ L1+(m), and constants a(n) > 0, n≥ 1, such that

1

a(n)

n−1∑
k=0

T̂ kf
mA−→

n→∞

∫
X

f dm, (3.8)

and

lim
n→∞

1

a(n)

n−1∑
k=0

T̂ kf =
∫

X

f dm a.e. on A. (3.9)

Then, for every η > 0, T possesses a limited set A′ ∈F ∩A with return sequence (a(n))n≥1 and m(A′)≥m(A)− η.
(b) If T has a limited set, then it is weakly pointwise dual ergodic.

Proof. (a) Let B0 := A. By Hurewicz’s ratio ergodic theorem we may assume w.l.o.g. that f = 1B0 , and given any
set Bj ∈ F ∩A with m(Bj ) > m(A)− η, we also have a(n)−1 ∑n−1

k=0 T̂ k1Bj
→m(Bj ) a.e. on A. Egorov’s theorem

then provides us with some Bj+1 ∈F ∩Bj such that m(Bj+1) > m(A)− η, and

1

a(n)

n−1∑
k=0

T̂ k1Bj
−→
n→∞m(Bj ) uniformly on Bj+1.

Using this to inductively define a decreasing sequence (Bj )j≥0 in F , we obtain a set A′ :=⋂
j≥0 Bj with m(A′) ≥

m(A)− η. Given ε > 0 choose j with m(Bj ) < m(A′)+ ε/2. Then, for n≥ nj (ε),

ess sup
A′

1

a(n)

n−1∑
k=0

T̂ k1A′ ≤ ess sup
Bj+1

1

a(n)

n−1∑
k=0

T̂ k1Bj
< m(Bj )+ ε

2
.

This gives the required control from above. Since, by (3.1), (3.8) also holds with f = 1A′ , we see that A′ is indeed a
limited set.

(b) Now start from the assumption that T has a limited set A. Due to Hurewicz’s theorem, weak pointwise dual
ergodicity follows as soon as we check the defining conditions (3.2) and (3.3) for f = 1A, i.e. we have to prove

fn := 1

a(n)

n−1∑
k=0

T̂ k1A
m−→

n→∞m(A), (3.10)

and

f̄ := lim
n→∞

1

a(n)

n−1∑
k=0

T̂ k1A =m(A) a.e. on X. (3.11)
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Letting An :=A∩ [ϕA > n], n≥ 0, we have, by routine arguments,∑
n≥0

T̂ n1An = 1X, (3.12)

and decomposing, for any n ≥ 0, A according to the time of the last return before time n, A = An ∪⋃n−1
k=0 A ∩

T −(n−k)(Ak) (disjoint), we find that for N ≥ 0,

N∑
n=0

T̂ n1A =
N−1∑
k=0

T̂ k

(
1Ak

N−k∑
j=0

T̂ j 1A

)
+

N∑
n=0

T̂ n1An. (3.13)

Since A is a limited set, there is some M ∈ (0,∞) such that

1

a(n)

n−1∑
k=0

T̂ k1A ≤M on A for n≥ 1. (3.14)

With (3.14) and (3.12) providing bounds for the sums in (3.13), we get

1

a(N)

N−1∑
n=0

T̂ n1A ≤M ′ · 1X for N ≥ 1, (3.15)

where M ′ :=M + 1/a(1) ∈ (0,∞). Consequently, f̄ ≤M ′ · 1X . Now observe that |T̂ fn − fn| ≤ 2/a(n)→ 0. Com-
bined with a variant of Fatou’s lemma for T̂ , Lemma 3.1 below, this yields

T̂ f̄ ≥ lim
n→∞ T̂ fn = f̄ a.e. on X.

Hence g :=M ′ · 1X − f̄ ≥ 0 is subinvariant, T̂ g ≤ g. As T is conservative ergodic, this implies that g is constant a.e.,
and hence so is f̄ . In view of (3.5), this yields (3.11).

To finally prove convergence in measure on X, it suffices to check it on each of the sets T −lA, l ≥ 0, since these
cover X. But for each l,∫

T −lA

(
1

a(n)

n−1∑
k=0

T̂ k1A

)
dm= aA(n+ l)− aA(l)

a(n)
m(A) −→

n→∞m(A).

Together with (3.15) and (3.11) this entails a(n)−1 ∑n−1
k=0 T̂ k1A

m
T−lA−→ m(A), and hence (3.10). �

The preceding proof made use of

Lemma 3.1. Let T be measure preserving on the σ -finite space (X, A,m), with transfer operator T̂ , and let M ′ ∈
(0,∞).

(a) If g,gk :X→[0,M ′] are measurable with gk ≥ gk+1↘ g a.e., then

T̂ gk↘ T̂ g a.e. on X. (3.16)

(b) If fn :X→[0,M ′] are measurable functions, then

T̂ ( lim
n→∞fn)≥ lim

n→∞ T̂ fn a.e. on X. (3.17)

Proof. (a) By positivity of T̂ , we have T̂ M ′ ≥ T̂ g1 ≥ T̂ g2 ≥ · · · ≥ T̂ g a.e., while T̂ M ′ =M ′ by invariance of m.
Now take any A ∈A, m(A) <∞, then 1T −1Agk −→ 1T −1Ag in L1(m). Due to L1-continuity of T̂ , this entails

1AT̂ gk = T̂ (1T −1Agk)−→ T̂ (1T −1Ag)= 1AT̂ g in L1(m),

and since A was arbitrary, the latter implies (3.16).
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(b) Let gk := supn≥k fn ≥ fk , and g := limn→∞fn, then g,gk satisfy the assumptions of (a). Hence, T̂ gk ↘ T̂ g

a.e. By positivity, however, we have T̂ gk ≥ T̂ fk a.e. for all k ≥ 1. Together, these observations give (3.17). �

The notion of return sequences has originally been introduced in the context of rationally ergodic transformations
(cf. Section 3.3 of [1]). The present use of the term is justified by

Proposition 3.2 (Weak pointwise dual ergodicity implies rational ergodicity). Let T be a weakly pointwise dual
ergodic measure preserving transformation on the σ -finite space (X, B,m). Then every limited set A satisfies a Rényi
inequality, meaning that there is some M =M(A) ∈ (0,∞) such that∫

A

(
Sn(1A)

)2 dm≤M

(∫
A

Sn(1A)dm

)2

for n≥ 1.

In particular, T is rationally ergodic with (an(T ))n≥1 a return sequence in the sense of [1].

Proof. Same as the proof of Proposition 3.7.1 in [1], using (3.7) and the existence of limited sets established above.
�

(Weak) pointwise dual ergodicity and special sets for Kakutani towers

We are going to show that Kakutani towers above ϑμ-mixing systems satisfying our adaptedness conditions are weakly
pointwise dual ergodic. Moreover, in the presence of regular variation, ϑμ-mixing with sufficiently fast rate implies
pointwise dual ergodicity.

Note first that if (X, B,m,T ) is a conservative ergodic measure preserving transformation and Ω ∈ B,m(Ω)= 1,
has return time ϕ = ϕΩ , and ϕj :=∑j−1

i=0 ϕ ◦ T i
Ω , then, in view of (2.11),

aΩ(n)∼
n∑

k=1

m
(
Ω ∩ T −kΩ

)= n∑
j=1

m
(
Ω ∩ [ϕj ≤ n])= aϕ(n). (3.18)

Via (3.7) this links (aϕ(n)) to the asymptotic type of a weakly pointwise dual ergodic system.

Theorem 3.1 ((Weak) pointwise dual ergodicity via ϑμ-mixing return processes). Let (X, B,m,T ) be a conser-
vative ergodic measure preserving transformation on a σ -finite space, and suppose that Ω ∈ B,m(Ω) = 1, has a
countable partition α ⊂ B ∩Ω such that ϕ = ϕΩ is α-measurable and that (Ω, B ∩Ω,P,TΩ,α) is ϑμ-mixing for
some μ equivalent to P :=mΩ .

(a) If (a(n)) := (aΩ(n)) is adapted to (ϑμ(n)), then T is weakly pointwise dual ergodic with an(T ) ∼ a(n). In
addition, ∀ε > 0 ∃Nε s.t. ∀n≥Nε,

1

a(n)

n∑
k=1

T̂ k1Ω − 1≤ ε

(
1+ dμ

dP

)
a.e. on Ω. (3.19)

In particular, if ‖ dμ
dP
‖∞ <∞, then Ω is a limited set.

(b) If (a(n))n≥1 is γ -regularly varying for some γ ∈ (0,1] and

ϑμ(n)=O

(
1

nr

)
for some r >

1

γ
− 1,

then (a(n)) is adapted to (ϑμ(n)), and T is pointwise dual ergodic with an(T )∼ a(n).
(c) If (a(n))n≥1 is γ -regularly varying for some γ ∈ (0,1], and ψ∗(1) <∞, and

nϑμ(δa(a(n)))

a(n)
−→
n→∞0 for all δ > 0, (3.20)
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then (a(n)) is adapted to (ϑμ(n)), and T is pointwise dual ergodic with an(T )∼ a(n). Moreover, ∀ε > 0 ∃Nε such
that ∀n≥Nε∣∣∣∣∣ 1

a(n)

n∑
k=1

T̂ k1Ω − 1

∣∣∣∣∣≤ ε

(
1+ dμ

dP

)
a.e. on Ω. (3.21)

In particular, if ‖ dμ
dP
‖∞ <∞, then Ω is a Darling–Kac set.

Proof. We write (Ω, A,P ,S,α) := (Ω, B ∩Ω,mΩ,TΩ,α). Note first that by definition of ϑμ, we have for j,p ≥ 1
and A ∈ αj ,∫

B

Ŝj+p1A dP ≤
∫

B

(
P(A)+ ϑμ(p)

dμ

dP

)
dP

for arbitrary B ∈A, and hence

Ŝj+p1A ≤ P(A)+ ϑμ(p)
dμ

dP
a.e. on Ω. (3.22)

We claim that for n,p ≥ 1,

T̂n :=
n∑

k=1

T̂ k1Ω ≤ p+ a(n)+ nϑμ(p)
dμ

dP
a.e. on Ω. (3.23)

To see this, observe that T̂ k1Ω =∑
j≥1 Ŝj 1[ϕj=k] a.e. on Ω , and hence

T̂n =
n∑

j=1

Ŝj 1[ϕj≤n] ≤
n+p∑
j=1

Ŝj 1[ϕj≤n]

≤ p+
n∑

j=1

Ŝj+p1[ϕj+p≤n] ≤ p+
n∑

j=1

Ŝj+p1[ϕj≤n]

≤ p+
n∑

j=1

(
P

([ϕj ≤ n])+ ϑμ(p)
dμ

dP

)

= p+ a(n)+ nϑμ(p)
dμ

dP
a.e. on Ω,

since [ϕj ≤ n] ∈ αj .
Proof of (a): To establish (3.19), we let p = pn,ε := �εa(n)� for ε > 0. By adaptedness we can choose Nε such

that nϑμ(pn,ε) < εa(n) whenever n≥Nε . Then by (3.23),

T̂n ≤ a(n)

(
1+ ε

(
1+ dμ

dP

))
a.e. on Ω for n≥Nε, (3.24)

as required.
To prove weak pointwise dual ergodicity, we will use part (a) of Proposition 3.1. Write Rn := T̂n/a(n) and observe

first that by (3.19),

lim
n→∞Rn ≤ 1 a.e. on Ω. (3.25)

In fact, (3.19) shows that for any M > 0, the estimate (3.25) holds uniformly on Ω ∩ [ dμ
dP
≤M]. Consequently,

P
([

Rn ≥ 1+ ε′
]) −→

n→∞0 for every ε′ > 0. (3.26)
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To obtain the analogous statement for convergence from below, we observe that for t ∈ (0,1),

Rn ≤ 1+ ε

(
1+ dμ

dP

)
a.e. on Ω �⇒ P

([Rn ≤ t])≤ 2ε

1+ ε− t
, (3.27)

since (E denoting expectation with respect to P )

1 = E(Rn)= E(Rn1[Rn>t])+E(Rn1[Rn≤t])

≤ (1+ ε)P
([Rn > t])+ εμ

([Rn > t])+ tP
([Rn ≤ t])

≤ 1+ 2ε− (1+ ε− t)P
([Rn ≤ t]).

Now fix ε ∈ (0,1) and take Nε as in (3.24). For t := 1−√ε ∈ (0,1), observation (3.27) then yields

P
([Rn ≤ 1−√ε])≤ 2

√
ε for n≥Nε.

This readily implies

P
([

Rn ≤ 1− ε′
]) −→

n→∞0 for every ε′ > 0,

which, together with (3.26), gives (3.8). Combined with (3.25) the latter yields (3.9). (There is some subsequence
nk↗∞ such that Rnk

→ 1 a.e. for P .)
Proof of (b): Computation of the indices of regular variation shows that the assumptions of (b) entail adaptedness.

As in part (a) this implies (3.25).
To check pointwise dual ergodicity, it remains to show that

lim
n→∞

Rn ≥ 1 a.e. on Ω. (3.28)

(Proposition 3.7.5 of [1] ensures that a.e. convergence on some A ∈ F suffices.) To this end, choose c ≥ 1 such that
ϑμ(n)≤ c/nr for all n≥ 1. There exist s > 0 and N0 so that

a(n) > n1/(r+1)+2s ∀n > N0.

Choosing p = n1/(r+1) in (3.23) we have

Rn = T̂n

a(n)
≤ 1+ 1

n2s

(
1+ dμ

dP

)
on Ω ∀n≥N0.

Due to (3.27), we then see that for t ∈ (0,1),

qt (n) := P
([Rn ≤ t])≤ 2c

ns
·
(

1− t + c

ns

)−1

≤ 2c

(1− t)ns
for n≥N0.

Since, for all t and λ > 1,
∑

n≥1 qt (�λn�) <∞, the Borel–Cantelli Lemma now implies

lim
n→∞

R�λn� ≥ 1 a.s. on Ω for all λ > 1. (3.29)

To finally prove convergence (3.28) of the full sequence, fix any λ > 1 and choose integers κn(λ)↗∞ so that
�λκn(λ)� ≤ n≤ �λκn(λ)+1�. Then regular variation of (a(n))n≥1 yields

T̂n

a(n)
≥ T̂�λκn(λ)�

a(�λκn(λ)+1�) ∼n→∞
1

λγ

T̂�λκn(λ)�
a(�λκn(λ)�) a.e. on Ω.

In view of (3.29), we thus have limn→∞Rn ≥ λ−γ a.s. on Ω for all λ > 1, and (3.28) follows.
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Proof of (c): Note first that adaptedness, and hence (3.19) holds. Thus, to prove (3.21), it suffices to check that for
n≥Nε ,

1

a(n)

n∑
k=1

T̂ k1Ω ≥ 1− ε

(
1+ dμ

dP

)
a.e. on Ω. (3.30)

We show first that ∀p,q,n ∈N with n≥ q ,

T̂n ≥ a(n)− p− nϑμ(p)
dμ

dP
−ψ∗(1)2(P ([ϕp > q])a(n)+ q

)
(3.31)

a.e. on Ω . To see this, observe that

T̂n =
n∑

j=1

Ŝj 1[ϕj≤n] ≥
n∑

j=1

Ŝj+p1[ϕj+p≤n] − p

=
n∑

j=1

Ŝj+p1[ϕj≤n] −
n∑

j=1

Ŝj+p1[ϕj≤n<ϕj+p] − p

=: Σ1 −Σ2 − p.

Now, because [ϕj ≤ n] ∈ αj , we have

Σ1 ≥
n∑

j=1

(
P

([ϕj ≤ n])− ϑμ(p)
dμ

dP

)
= a(n)− nϑμ(p)

dμ

dP
.

On the other hand,

Σ2 ≤ ψ∗(1)

n∑
j=1

P
([ϕj ≤ n < ϕj+p]

)

= ψ∗(1)

n∑
j=1

n∑
�=j

P
([

ϕj = �,ϕp ◦ Sj > n− �
])

≤ ψ∗(1)2
n∑

j=1

n∑
�=j

P
([ϕj = �])P ([ϕp > n− �])

= ψ∗(1)2(Σ ′2 +Σ ′′2
)

with

Σ ′2 :=
n∑

j=1

n−q∑
�=j

P
([ϕj = �])P ([ϕp > n− �])

≤ P
([ϕp > q]) n∑

j=1

n−q∑
�=j

P
([ϕj = �])

≤ P
([ϕp > q]) n∑

j=1

P
([ϕj ≤ n])

= P
([ϕp > q])a(n);



Limit theory for some positive stationary processes 269

and

Σ ′′2 :=
n∑

j=1

n∑
�=n−q+1

P
([ϕj = �])P ([ϕp > n− �])

≤
n∑

j=1

n∑
�=n−q+1

P
([ϕj = �])

=
n∑

j=1

P
([n− q < ϕj ≤ n])

=
n∑

k=n−q+1

m
(
Ω ∩ T −kΩ

)≤ q.

Putting this together establishes (3.31).
To finally check (3.30) for some given ε > 0, choose

δ ∈
(

0,
ε

3ψ∗(1)2

)
so small that Pr

(
Zγ >

1

δ

)
<

ε

3ψ∗(1)2
,

let b be asymptotically inverse to a, and define

pn = pn,ε :=
⌊
δ2γ a

(
a(n)

)⌋
, and qn = qn,ε :=

⌊
δa(n)

⌋
.

Then b(pn) ∼ δ2a(n), and qn/b(pn) −→ 1/δ as n→∞. Under the present assumptions, the stable limit theorem,
Theorem 2.1, applies to our (ϕn), as its proof below does not depend on part (c) of Theorem 3.1. Therefore,

P
([ϕpn > qn]

) −→
n→∞Pr

(
Zγ >

1

δ

)
<

ε

3ψ∗(1)2
.

Now choose Nε so large that, for all n≥Nε ,

pn <
ε

3
a(n), nϑμ(pn) < εa(n) and P

([ϕpn > qn]
)
<

ε

3ψ∗(1)2
.

Then, using (3.31), we find indeed that for n≥Nε ,

T̂n ≥ a(n)− pn − nϑμ(pn)
dμ

dP
−ψ∗(1)2(P ([ϕpn > qn]

)
a(n)+ qn

)
≥ a(n)− ε

3
a(n)− εa(n)

dμ

dP
− 2ε

3
a(n)

=
(

1− ε

(
1+ dμ

dP

))
a(n)

a.e. on Ω , which is (3.30). By (3.19) and (3.30),

1

a(n)

n∑
k=1

T̂ k1Ω −→
n→∞1 a.e. on Ω,

so that T is pointwise dual ergodic (Proposition 3.7.5 of [1] again). This convergence is in fact uniform on each
Ω ∩ [ dμ

dP
≤M], M > 0, whence the assertion about Darling–Kac sets. �
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4. Moment sets and the stable limit theorem

Darling–Kac theorem and stable limits

The statement of the stable limit theorem announced above is dual to a Darling–Kac type limit theorem for the
Kakutani tower, which we now establish in the setup of weakly pointwise dual ergodic systems. It quantifies “return
rates” and determines the limit distribution of occupation times Sn(1A)=∑n−1

k=0 1A ◦ T k of sets A of finite measure:

Theorem 4.1 (Darling–Kac theorem for weakly pointwise dual ergodic systems). Let T be a weakly pointwise
dual ergodic measure preserving transformation on the σ -finite space (X, B,m). If its return sequence (a(n))n≥1 is
regularly varying of index α ∈ [0,1], then

Sn(f )

a(n)

d−→
n→∞m(f )Yγ for f ∈ L1+(m),

where Yγ has the normalised Mittag-Leffler distribution of order γ .

The stable limit theorem follows from this:

Proof of Theorem 2.1(a). Let (X, B,m,T ) be the Kakutani tower of (Ω, A,P ,S,ϕ), then (X, B,m,T ) is weakly
pointwise dual ergodic with return sequence (a(n)). By the Darling–Kac Theorem,

1

a(n)
Sn(1Ω)

d−→ Yγ ,

and we need only recall (2.11) and (3.18). �

Moment sets

The proof of the Darling–Kac theorem identifies sets for which the asymptotics of the moments of the occupation
time distributions can be understood. Let (X, B,m,T ) be a conservative, ergodic, measure preserving transformation.
For A ∈F = {F ∈ B,0 < m(F) <∞}, recall that aA(n)=∑n−1

k=0 m(A∩ T −kA)/m(A)2, and set

uA(λ) :=
∞∑

n=0

e−λn m(A∩ T −nA)

m(A)2
for λ > 0.

The set A ∈F is called a moment set for T if for all p ∈N,

∞∑
n=0

e−λn

∫
A

Sn(1A)p dm ∼
λ↘0

p!m(A)p+1 uA(λ)p

λ
.

Remark 5. (a) If m(X) <∞ then every A ∈ B is a moment set. Indeed,
∑n

k=0 m(A ∩ T −kA) = ∫
A

Sn(1A)dm, and
by the ergodic theorem (and dominated convergence),

∫
A

Sn(1A)p dm ∼ npm(A)p+1/m(X)p , so that the assertion
follows from Karamata’s Tauberian theorem (cf. p. 116 of [1] or Theorem 1.7.1 of [10]).

(b) Any conservative, ergodic, measure preserving transformation with moment sets is rationally ergodic. Thus, for
example, a squashable conservative, ergodic, measure preserving transformation (which is not rationally ergodic, see
[1]) has no moment sets.

(c) We extend both result and method from pointwise dual ergodic systems (as in [1]) to weakly pointwise dual
ergodic situations. A similar approach was used in [19] to prove an arcsine-type limit theorem for pointwise dual
ergodic maps. We do not know if the latter result generalizes accordingly.

Theorem 4.2 (Moment set theorem). Suppose that T is weakly pointwise dual ergodic, and that A ∈F is a limited
set. Then A is a moment set for T .
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In view of Theorem 3.6.4 of [1], the existence of limited sets established in Proposition 3.1 above, and Karamata’s
Tauberian theorem, Theorem 4.1 above is an immediate consequence of this result. To prove the Moment set theorem,
we need the following observation:

Lemma 4.1 (Convergence of Laplace transforms). Suppose that T is a conservative ergodic measure preserving
transformation on the σ -finite space (X, B,m), weakly pointwise dual ergodic with A a limited set. Then

RA(λ) := 1

uA(λ)

∞∑
n=0

e−λnT̂ n1A
mA−→
λ↘0

m(A), (4.1)

and

lim
λ↘0

RA(λ)=m(A) a.e. on A, (4.2)

as well as

lim
λ↘0

ess sup
A

RA(λ)=m(A). (4.3)

Moreover, every B ∈F , B ⊂A, satisfies aA(n)∼ aB(n) as n→∞, and hence, for λ↘ 0,

uA(λ)∼ uB(λ), and
RA(λ)

RB(λ)
→ m(A)

m(B)
a.e. on X. (4.4)

Remark 6. As a consequence, each sequence λi ↘ 0 contains a subsequence λ′i ↘ 0 for which

RA

(
λ′i

)−→
i→∞m(A) a.e. on A. (4.5)

To see this, use the standard fact from integration theory that sequences which converge in probability contain a.e.-
convergent subsequences. Moreover, it is immediate from (4.4), that for any sequence (λ′i ) as in (4.5), we also have

RB

(
λ′i

)−→
i→∞m(B) a.e. on A. (4.6)

Proof of Lemma 4.1. Multiplying numerator and denominator by (1− e−λ), we get

0≤RA(λ)=
∑∞

n=0 e−λn
∑n−1

k=0 T̂ k1A∑∞
n=0 e−λnaA(n)

for λ > 0. As A is a limited set, and T̂ k1A ≤ 1X , we therefore see that (since
∑∞

k=0 T̂ k1A =∞ a.e.),

lim
λ↘0

ess sup
A

RA(λ)≤m(A). (4.7)

On the other hand, monotone convergence ensures that
∫

RA(λ)dmA =m(A) for all λ > 0. Together with (4.7) this
yields (4.1), and combining (4.7) with (4.1) proves (4.2). Together with (4.7) the latter gives (4.3).

Fix B ∈F , B ⊂A. We have aB(n)=m(B)−2aA(n)
∫
B

gn(B)dm where gn(B) := aA(n)−1 ∑n−1
k=0 T̂ k1B

mB−→m(B)

by weak pointwise dual ergodicity. Since 0≤ T k1B ≤ T k1A with A a limited set, we see that supn ess supA gn(B) <

∞. Therefore,
∫
B

gn(B)dm→ m(B)2, and hence aA(n) ∼ aB(n). It is then immediate that uA(λ) ∼ uB(λ) since∑
n≥0 aA(n)=∞. Now, expanding by (1− e−λ) as above, we get

RA(λ)

RB(λ)
= uB(λ)

uA(λ)

∑∞
n=0 e−λn

∑n−1
k=0 T̂ k1A∑∞

n=0 e−λn
∑n−1

k=0 T̂ k1B

→ 1 · m(A)

m(B)
a.e. on X

by Hurewicz’ theorem (3.1) since
∑∞

k=0 T̂ k1A =∞ a.e., hence (4.4). �
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We are now ready for the

Proof of the Moment set theorem. (i) We amend the argument given in the proof of Theorem 3.7.2 in [1], using the
same combinatorial decomposition

Sn(1A)p =
p∑

q=1

γp(q)a(q,n), (4.8)

where, for n,p ∈ N, a(p,n) :X→ Z is defined by a(0, n)(x) := 1, and a(p + 1, n)(x) :=∑n
k=1 1A(T kx)a(p,n−

k)(T kx), while γ1(q) := δ1,q , and γp+1(q) := q(γp(q)+ γp(q − 1)). In particular, γp(p)= p!.
Proving that A is a moment set reduces to showing that for p ≥ 0,

up(λ) :=
∞∑

n=0

e−λn

∫
A

a(p,n)dm ∼
λ↘0

m(A)p+1 uA(λ)p

λ
. (4.9)

This is because p!up(λ), the q = p term of the Laplace transform of the sum in (4.8), dominates the q < p terms.
Indeed, as we now check by induction on p,

up(λ)=O

(
uA(λ)p

λ

)
as λ↘ 0 ∀p ≥ 0. (4.10)

For p = 0 this is evident. More precisely, we have

u0(λ)= m(A)

1− e−λ
∼

λ↘0

m(A)

λ
. (4.11)

To pass from p− 1 to p, use the recursive relation

up(λ) =
∞∑

n=0

e−λn

n∑
k=1

∫
A

(
1Aa(p− 1, n− k)

) ◦ T k dm

=
∞∑

n=0

e−λn

n∑
k=1

∫
A

T̂ k1Aa(p− 1, n− k)dm

=
∫

A

( ∞∑
k=1

e−λkT̂ k1A

)( ∞∑
n=0

e−λna(p− 1, n)

)
dm,

and combine it with Lemma 4.1. This proves (4.10) and hence sufficiency of (4.9).
Since the p = 0 case of (4.9) is trivially fulfilled, we can establish (4.9) by proving

lim
λ↘0

λup(λ)

uA(λ)p
≥m(A)p+1 ∀p ∈N (4.12)

and

lim
λ↘0

λup(λ)

uA(λ)p
≤m(A)p+1 ∀p ∈N. (4.13)

(ii) Fix any p ≥ 1. To prove (4.12) by contradiction, suppose that it is violated. Then there are some ε > 0 and
λi ↘ 0 such that

λiup(λi) < (1− ε)p+2m(A)p+1uA(λi)
p for i ≥ 1. (4.14)
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Let (λ′i ) be a subsequence of (λi) as in Remark 6, so that

RB

(
λ′i

)−→
i→∞m(B) a.e. on A (4.15)

for all B ∈F , B ⊂A. We claim that there are measurable sets A=A0 ⊃A1 ⊃ · · · ⊃Ap with m(Aj ) > (1− ε)m(A)

and

RAj

(
λ′i

) = 1

uAj
(λ′i )

∑
k≥1

e−λ′i kT̂ k1Aj

≥ (1− ε)m(Aj ) on Aj+1 for i ≥ �j ,

with (�j )j≥1 increasing in N.
To see this, start with A0 =A and consider (4.15) with B =A0. By Egorov’s theorem, there is some A1 ∈ B ∩A0

with m(A1) > (1 − ε)m(A) such that this convergence is uniform on A1. Therefore, there exists a suitable �1. If
A= A0 ⊃ A1 ⊃ · · · ⊃ Aj have been constructed, consider (4.15) with B = Aj . By Egorov’s theorem, there is some
Aj+1 ∈ B ∩Aj with m(Aj+1) > (1− ε)m(A) such that this convergence is uniform on Aj+1. Therefore, there exists
a suitable �j+1.

We now find, for any j ∈ {0,1, . . . , p− 1} and i > �j , that

∫
Aj

( ∞∑
n=0

e−λ′ina(p− j, n)

)
dm

=
∞∑

n=0

e−λ′in
n∑

k=1

∫
Aj

(
1Aa(p− j − 1, n− k)

) ◦ T k dm

=
∞∑

n=0

e−λ′in
n∑

k=1

∫
A

T̂ k1Aj
a(p− j − 1, n− k)dm

=
∫

A

( ∞∑
k=1

e−λ′i kT̂ k1Aj

)( ∞∑
n=0

e−λ′ina(p− j − 1, n)

)
dm

≥
∫

Aj+1

( ∞∑
k=1

e−λ′i k T̂ k1Aj

)( ∞∑
n=0

e−λ′ina(p− j − 1, n)

)
dm

> (1− ε)m(A)uAj

(
λ′i

)∫
Aj+1

( ∞∑
n=0

e−λ′ina(p− j − 1, n)

)
dm.

Putting these together, we obtain that for i > �p−1,

up

(
λ′i

)
>

(
(1− ε)m(A)

)p

(
p−1∏
j=0

uAj

(
λ′i

))∫
Ap

( ∞∑
n=0

e−λ′ina(0, n)

)
dm

>
(
(1− ε)m(A)

)p+1

(
p−1∏
j=0

uAj

(
λ′i

)) 1

λ′i
,

where the last step is immediate from a(0, n)= 1. Since uAj
(λ)∼ uA(λ) by Lemma 4.1, this contradicts (4.14), and

thus establishes (4.12).
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(iii) To prove (4.13), fix any p ≥ 1, and ε > 0. In view of (4.3) there is some λ′ > 0 such that RA(λ) < (1+ ε)m(A)

on A for λ < λ′. For such λ we therefore find

up(λ) =
∫

A

uA(λ)RA(λ)

( ∞∑
n=0

e−λna(p− 1, n)

)
dm

≤ (1+ ε)m(A)uA(λ) · up−1(λ)

...

≤ (
(1+ ε)m(A)uA(λ)

)p · u0(λ),

and our claim is immediate from (4.11). �

5. Wandering rates, return sequences and tails of marginals

Wandering rates

Suppose that (X, B,m,T ) is a conservative ergodic measure preserving transformation on a σ -finite space. The wan-
dering rate of the set A ∈F is the sequence given by LA(n) :=m(

⋃n
k=0 T −kA), n≥ 1. Evidently,

A,B ∈F , A⊂ B ⇒ LA(n)≤ LB(n),

and

for N ≥ 1 fixed, L⋃N
k=0 T −kA

(n)= LA(n+N) ∼
n→∞LA(n).

Wandering rates are expectations of truncated return times,

LA(n)=
∫

A

(ϕA ∧ n)dm.

Therefore, letting cA(λ) := ∫
A
(1− e−λϕA)dm, λ > 0, for A ∈F , we have

cA(λ)= (
1− e−λ

) ∞∑
n=0

e−λnm
(
A∩ [ϕA > n]) ∼

λ↘0
λ2
∞∑

n=0

e−λnLA(n).

Thus if LA(n) ∼ LB(n) as n→∞, then cA(λ) ∼ cB(λ) as λ↘ 0. In fact, since LA(n + 1) − LA(n)↘ 0 for all
A ∈ F , Korenblum’s ratio Tauberian theorem ([15], see also Theorem 2.10.1 of [10]) shows that the converse is also
true, so that

for A,B ∈F : LA(n) ∼
n→∞LB(n) ⇐⇒ cA(λ) ∼

λ↘0
cB(λ). (5.1)

The set A ∈ F is said to have minimal wandering rate if LB(n) ∼ LA(n) for all B ∈ F , B ⊆ A. In this case,
lim infn→∞ LB(n)

LA(n)
≥ 1 for all B ∈ F . Thus if A,B ∈ F both have minimal wandering rate, then LB(n) ∼ LA(n).

Therefore, if such a set A exists, LT (n) := LA(n) defines the wandering rate of T , (LT (n))n≥1 up to asymptotic
equivalence. The latter is a nontrivial structural invariant for large classes of systems, see [18] and [25].

There are sufficient conditions for A ∈ F to have minimal wandering rate. By Proposition 3.2, Remark 3.6, and
equation (2.3) of [20],

if

(
T̂A(ϕA ∧ n)

LA(n)

)
n≥1

is uniformly integrable,

then A has minimal wandering rate. (5.2)
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Also, uniform sets are known to have minimal wandering rate, provided that the return sequence is regularly varying
(Theorem 3.8.3 of [1]). In Theorem 5.1 below we remove the latter condition.

Minimal wandering rates determine the return sequence (a(n))n≥1 = (an(T ))n≥1 of a weakly pointwise dual er-
godic system (X, B,m,T ) by means of the asymptotic renewal equation. Assuming w.l.o.g. that (a(n)) is increasing,
we let

uT (λ) :=
∞∑

n=0

e−λn
(
a(n+ 1)− a(n)

)
for λ > 0.

As a consequence of (3.7) we have uT (λ)∼ uA(λ) as λ↘ 0 for all limited sets A (with uA(λ) as in Section 4).

Theorem 5.1 (Minimal wandering rates and the asymptotic renewal equation). Suppose that T is weakly point-
wise dual ergodic.

(i) If A ∈F has minimal wandering rate, then it satisfies the asymptotic renewal equation

cA(λ) ∼
λ↘0

1

uT (λ)
.

(ii) Uniform sets have minimal wandering rates.

Proof. (i) By Proposition 3.1 there is some limited set B ∈ F ∩ A. In view of statement (a) in Lemma 4.1, any
sequence decreasing to 0 contains a subsequence (λj )j≥1 along which

1

uB(λj )

∞∑
n=0

e−λj nT̂ n1B −→
j→∞m(B) a.e. on B.

Egorov’s theorem then gives us some C ∈F ∩B on which this convergence is in fact uniform, so that∫
C

(
1− e−λj ϕC

) ∞∑
n=0

e−λj nT̂ n1B dm ∼
j→∞m(B)uB(λj )cC(λj ).

On the other hand, Lemma 3.8.4 in [1] shows that∫
C

(
1− e−λϕC

) ∞∑
n=0

e−λnT̂ n1B dm=
∞∑

n=0

e−λn

∫
Cn

1B dm−→
λ↘0

1,

where C0 := C and Cn := T −nC \⋃n−1
k=0 T −kC for n≥ 1. Together, these prove cC(λj )∼ 1/uB(λj ) as j→∞. But as

A has minimal wandering rate, (5.1) ensures that cA(λ)∼ cC(λ), and we end up with cA(λj )∼ 1/uB(λj )∼ 1/uT (λj ).
Our claim follows since this can be done inside any sequence of λ’s decreasing to 0.

(ii) Suppose that A is a uniform set for f ∈ L1+(m), with return sequence (a(n))n≥1. Then, this is also true for all
B ∈F ∩A. Thus, by the asymptotic renewal equation for uniform sets (cf. 3.8.6 of [1]),

cB(λ) ∼
λ↘0

1

uT (λ)
for B ∈F ∩A,

where uT (λ) does not depend on B . In particular, cB(λ)∼ cA(λ) for all B ∈F ∩A, which, due to (5.1), shows that A

has minimal wandering rate. �

Proof of Theorem 2.2. Let (X, B,m,T ) be the Kakutani tower of (Ω, A,P ,S,ϕ), then

LΩ(n)= E(ϕ ∧ n)∼ n

(1+ γ )ã(n)
,
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whence by Theorem 3.8.1 of [1], for large n,

a(n)=
n∑

k=1

m
(
Ω ∩ Y−kΩ

)≥ n

2LΩ(n)
>

1

2
ã(n).

Thus, for all ε > 0,

nϑμ(εa(n))

a(n)
<

2nϑμ((ε/2)ã(n))

ã(n)
−→
n→∞0.

Now, by Theorem 3.1(a), T is weakly pointwise dual ergodic with return sequence a(n), and in view of (2.4) and
(5.2), Ω has minimal wandering rate. According to the asymptotic renewal equation of Theorem 5.1, cΩ(λ)∼ 1

u(λ)
as

λ↘ 0 whence, by Karamata’s theorem, we see that indeed aϕ(n)∼ ã(n). �

6. The one-sided law of the iterated logarithm

The γ = 1 version of the law of the iterated logarithm follows immediately from the previous results.

Proof of Theorem 2.1(b). It has already been pointed out in [4] that (2.3) holds for positive stationary processes
satisfying a weak law of large numbers provided that the corresponding infinite measure preserving Kakutani tower
is weakly pointwise dual ergodic. The latter is immediate from Theorem 3.1. �

We now prove Theorem 2.3 by applying [5].

Proof of Theorem 2.3. We first show that under the present assumptions

∞∑
n=1

ϑP (n)

n
<∞. (6.1)

To see this, note that ϑP (a(a(n)))≤ a(n)
n

for large n. Let b be asymptotically inverse to a in that b(a(n))∼ a(b(n))∼
n, then b is 1

γ
-regularly varying, and for large N := a(a(n)) we have

ϑP (N)= ϑP

(
a
(
a(n)

))≤ a(n)

n
≤ 2b(N)

b(b(N))
= 2

c(N)
,

where c(N) := b(b(N))
b(N)

is ( 1
γ 2 − 1

γ
)-regularly varying. Since Nc(N) is ( 1

γ 2 − 1
γ
+ 1)-regularly varying we indeed get∑∞

N=1
1

Nc(N)
<∞.

As an immediate consequence of (6.1), (Ω, A,P ,S,α) is strongly mixing from below as defined in [5]. That is, for
every B ∈A with P(B) > 0 there are η(n)↘ 0 with

∑
n≥1 η(n)/n <∞ (in our case η(n) := ϑP (n)) such that for all

k ≥ 1 and A ∈ σ(αk) we have

P
(
A∩ S−(n+k)B

)≥ P(A)P (B)− η(n) for n≥ 1.

Let (X, B,m,T ) be the Kakutani tower of (Ω, A,P ,S,ϕ). Part (c) of Theorem 3.1, with μ= P , ensures that T is
pointwise dual ergodic and that Ω is a Darling–Kac set.

The assumptions of Theorem 4 in [5] are now satisfied. Hence,

∞∑
n=1

1

n
e−βτ(n) <∞ ∀β > 1

�⇒ lim
n→∞

1

a(n/τ(n))τ (n)
Sn(f )≤Kγ

∫
X

f dμ a.e. ∀f ∈ L1+
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and

∞∑
n=1

1

n
e−βτ(n) =∞ ∀β < 1

�⇒ lim
n→∞

1

a(n/τ(n))τ (n)
Sn(f )≥Kγ

∫
X

f dμ a.e. ∀f ∈L1+.

Using the inversion technique in Section 5 of [5], statements (2.8) and (2.9) of Theorem 2.3 follow, and (2.7) is a
consequence of those. �

7. Interval maps

Throughout this section, m denotes one-dimensional Lebesgue measure. A piecewise monotonic (increasing) map
of the interval is a triple (Ω,S,α) where Ω is a bounded interval, α is a finite or countable generating partition
(modm) of Ω into open intervals, and S :Ω→ Ω is a map such that the restriction S :A→ SA is an (increasing)
homeomorphism for each A ∈ α so that both S|A :A→ SA and its inverse vA :SA→A are absolutely continuous.

In this case, each iterate (Ω,Sk,αk), k ≥ 1, is also piecewise monotonic (increasing), where αk :=∨k−1
i=0 S−iα.

Generalizing the above, we let, for A ∈ αk , vA denote the inverse of Sk|A :A→ SkA, so that the transfer operator Ŝ

of S (with respect to m) satisfies

Ŝkf =
∑
A∈αk

1SkAv′A · (f ◦ vA), where v′A :=
dm ◦ vA

dm
.

Consider the following properties for a piecewise monotonic map of the interval (Ω,S,α):

(A) Adler’s condition: for all A ∈ α, S|A extends to a C2 diffeomorphism on A, and S′′/(S′)2 is bounded on
⋃

A∈α A.
(B) Big images: infA∈α m(SA) > 0.
(R) Rychlik’s condition:

∑
A∈α ‖1SAv′A‖B̂V =:R <∞.

(U) Uniform expansion: inf |S′|> 1.

Recall that (A) ensures v′′A/v′A ≤M <∞, whence v′A = e±Mm(A)/m(SA) on SA for all A ∈ α. In (R), the space B̂V
is the subspace of those functions f in L∞(m) with a version f ∗ in BV , the space of functions of bounded variation.
With

∨
Ω(f ∗) denoting the variation of f ∗ :Ω→R, the norm ‖ · ‖B̂V is defined by

‖f ‖B̂V := ‖f ‖∞ +
∨̂
Ω

f, where
∨̂
Ω

f := inf

{∨
Ω

(
f ∗

)
:f ∗ = f m-a.e.

}
.

Piecewise monotonic maps (Ω,S,α) of the interval with properties (P1), . . . , (PN) will be called P1 · · ·PN -maps
(e.g. ABU-maps, RU-maps).

Lemma 7.1. Any ABU-map is an RU-map.

Proof. This is similar to Proposition 2 of [22]. For any piecewise monotonic map (Ω,S,α), (A) and (B) imply (R).
Indeed,∑

A∈α

∥∥1SAv′A
∥∥

B̂V ≤ 3
∥∥v′A

∥∥∞ +∨
SA

(
v′A

)
(A)≤

∑
A∈α

(
3eM m(A)

m(SA)
+

∫
SA

∣∣v′′A∣∣dm

)

≤
∑
A∈α

(
3eM m(A)

m(SA)
+M

∫
SA

v′A dm

)
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≤
∑
A∈α

(
3eM m(A)

m(SA)
+MeMm(A)

)
(B)≤ M ′

∑
A∈α

m(A)=M ′m(Ω).
�

Ergodic properties of Rychlik’s maps

Suppose that (Ω,S,α) is an RU-map, then, according to [16],

• (Ω, B,m,S,α) is a fibred system, where B is the Borel σ -field,
• the ergodic decomposition of (Ω, B,m,S) is finite, and
• to each ergodic component there corresponds an absolutely continuous invariant probability, with density in BV

and with respect to which S is isomorphic to the product of a finite permutation and a mixing RU-map.

Moreover, if S is weakly mixing (with respect to m in the sense that f :Ω→ S
1 measurable, f ◦S = λf a.e. where

λ ∈ S
1 implies f constant), then there are constants K > 0 and θ ∈ (0,1) such that∥∥∥∥Ŝnf −

(∫
Ω

f dm

)
h

∥∥∥∥
B̂V
≤Kθn‖f ‖B̂V ,

where h is the unique T -invariant probability density. In this case, let dP := hdm and μ :=m|[h>0]. Then [8] shows
that the probability preserving fibred system

(Ω, B,P ,S,α) is exponentially ϑμ-mixing. (7.1)

We next observe that ψ∗(N) <∞ already implies continued fraction mixing in the present context, provided h has
a positive lower bound. (This shows that for such ABU-maps, the conclusions of Theorem 2.3 already follow from
earlier results for continued fraction mixing systems.)

Proposition 7.1 (Continued fraction mixing ABU-maps). Let (Ω,S,α) be a weakly mixing ABU-map with invari-
ant density h bounded away from 0. If ∃N ≥ 1 such that ψ∗(N) <∞, then (Ω,S,α) is continued fraction mixing.

Proof. Suppose that η ∈ (0,1) satisfies h= η±1, which we use to abbreviate η ≤ h≤ η−1. A standard argument then
shows that supn≥1 supΩ |(Sn)′′|/((Sn)′)2 <∞, and we can also assume that

v′A = η±1 m(A)

m(SkA)
on SkA for all A ∈ αA, k ≥ 1.

Let ŜP be the transfer operator with respect to the absolutely continuous invariant probability P , then ŜP f =
Ŝ(hf )/h, and therefore

Ŝn
P f = η±2Ŝnf for all n≥ 1, f ∈ L∞+ .

We now show that

m
(
SkA

)≥� for all A ∈ αk, k ≥ 1, where � := η6

ψ∗(N)
. (7.2)

To this end, let B ⊂Ω be measurable with m(B) > 0. Then

P(A)

m(SkA)
≤ η−1 m(A)

m(SkA)

≤ η−2 1

m(S−NB)

∫
S−NB

1SkAv′A dm
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= η−2 1

m(S−NB)

∫
S−NB

Ŝk1A dm

≤ η−6 1

P(S−N)

∫
S−NB

Ŝk
P 1A dP

= η−6 1

P(B)
P

(
A∩ S−N+kB

)
≤ η−6ψ∗(N)P (A)

whence (7.2), as claimed.
To complete the proof of the proposition, we can then proceed as in the proof of Theorem 1(b) in [8]. �

By exponential ϑμ-mixing (7.1), Theorem 2.1 implies the general

Proposition 7.2 (Stable limit theorem for RU-maps). Suppose that (Ω,S,α) is a weakly mixing RU-map with
absolutely continuous invariant probability dP = hdm. Let ϕ :Ω→N be α-measurable, and denote ϕn :=∑n−1

k=0 ϕ ◦
Sk . If a(n) := aϕ(n)=∑n

k=1 P([ϕk ≤ n]) is γ -regularly varying for γ ∈ (0,1], with asymptotic inverse b, then

ϕn

b(n)

d−→Zγ .

Remark 7. For the subfamily of those RU-maps S which satisfy (A) plus the finite image condition (F) which requires
{SA :A ∈ α} to be finite, more general stable limit theorems (for observables ϕ which need not have constant sign)
follow from [7] (see the end of Section 5 there). These AFU-maps occur as induced maps of the infinite measure
preserving AFN-maps studied in [22,23] (generalizing [18]). The final subsections below illustrate that the present
results allow us to analyse infinite measure preserving interval maps more general than those studied in [23].

The asymptotic type

Next, we turn to the asymptotic identification, via Theorem 2.2, of the normalizing constants aϕ(n) in this setup.

Proposition 7.3 (Asymptotic type of ABU-maps). Suppose that (Ω,S,α) is a weakly mixing ABU-map with abso-
lutely continuous invariant probability dP = hdm.

Suppose that ϕ :Ω→N is α-measurable and satisfies

P([ϕ ≥ n])
m([ϕ ≥ n]) −→n→∞ c ∈ (0,∞), (7.3)

as well as∫
Ω

ϕ ∧ ndm ∼
n→∞

n

�(2− γ )�(1+ γ )ã(n)
, (7.4)

where ã(t) is regularly varying with index γ ∈ (0,1]. Then

aϕ(n)=
n∑

k=1

P
([ϕk ≤ n]) ∼

n→∞ c−1ã(n).

The main point is condition (2.4) of Theorem 2.2.

Lemma 7.2. Suppose that (Ω,S,α) is a weakly mixing ABU-map with absolutely continuous invariant probability
dP = hdm. Suppose that ϕ :Ω→N is α-measurable and satisfies∫

Ω

ϕ ∧ ndm=O

(∫
Ω

ϕ ∧ ndP

)
as n→∞.



280 J. Aaronson and R. Zweimüller

Then there is some Φ ∈ L1(P )+ such that

ŜP (ϕ ∧ n)≤
(∫

Ω

ϕ ∧ ndP

)
Φ a.e. for all n≥ 1.

Proof. We first record a corresponding statement with respect to Lebesgue measure m,

∃M̃ > 0 so that Ŝ(ϕ ∧ n)≤ M̃

∫
Ω

(ϕ ∧ n)dm ∀n≥ 1. (7.5)

Letting Fn :=∑
A∈α(ϕ(A)∧ n)m(A)1SA and M ′ := (infA∈α m(SA))−1, we have indeed

Ŝ(ϕ ∧ n) =
∑
A∈α

(
ϕ(A)∧ n

)
Ŝ1A =

∑
A∈α

(
ϕ(A)∧ n

)
v′A1SA

≤ eM
∑
A∈α

(
ϕ(A)∧ n

) m(A)

m(SA)
1SA ≤M ′eMFn.

But ‖Fn‖∞ ≤∑
A∈α(ϕ(A)∧ n)m(A)= ∫

(ϕ ∧ n)dm, whence (7.5). To deduce (2.4), note that

ŜP (ϕ ∧ n) = 1[h>0]
1

h
Ŝ
(
h(ϕ ∧ n)

)
≤ 1[h>0]‖h‖∞ 1

h
Ŝ(ϕ ∧ n)

≤ 1[h>0]‖h‖∞ 1

h
M̃

∫
Ω

(ϕ ∧ n)dm by (7.5)

∼ 1[h>0]‖h‖∞ 1

h
cM̃

∫
Ω

(ϕ ∧ n)dP

=
(∫

Ω

(ϕ ∧ n)dP

)
Φ,

where Φ := 1[h>0]‖h‖∞ 1
h
cM ∈L1(P ) since h ∈L1(m). �

Proof of Proposition 7.3. We are going to verify the conditions of Theorem 2.2. Note first that adaptedness follows
from the other two by exponential ϑμ-mixing (7.1). Next, condition (2.5) is immediate from (7.3), as

∫
Ω

ϕ ∧ ndP =
n∑

k=1

P
([ϕ ≥ k]) (7.3)∼

k→∞ c

n∑
k=1

m
([ϕ ≥ k])= c

∫
Ω

ϕ ∧ ndm.

To check condition (2.4), use this and the previous lemma. �

The common image property

Typically, for interval maps, one will first obtain information on [ϕ ≥ n] in terms of Lebesgue measure m. This needs to
be combined with an analysis of h to yield information on P([ϕ ≥ n]), and hence on

∫
ϕ ∧ ndP =∑n

k=1 P([ϕ ≥ k]).
Here we discuss simple sufficient conditions which allow us to validate property (7.3) of Proposition 7.3 in this way.

Consider a piecewise increasing map (Ω,S,α), with Ω = [ωl,ωr ]. We shall say that (Ω,S,α) has the common im-
age property if

⋂
A∈α SA= (ωl,ωl + zS) where zS > 0. Evidently, this entails the big image property (B). Moreover,

we find:



Limit theory for some positive stationary processes 281

Lemma 7.3. Suppose that (Ω,S,α) is a piecewise increasing AU-map with the common image property and an
absolutely continuous invariant probability dP = hdm on Ω = [ωl,ωr ]. Then

essinf[ωl,ωl+zS ]
h > 0. (7.6)

Moreover, S is weakly mixing.

Proof. We assume w.l.o.g. that Ω = [0,1]. Fix a version h ∈ BV of the invariant density and set

J :=
{
J ⊂ [0,1]: J is a nonempty open interval with inf

J
h > 0

}
.

It is clear that J #=∅. We need to show that (0, zS) ∈ J . Observe first that

there exist J ∈ J and A ∈ α so that J ∩ ∂A #=∅. (7.7)

To see this, suppose otherwise i.e. that ∀J ∈ J ,∃AJ ∈ α: J ⊂ AJ . Then J ∈ J implies SJ ∈ J since for x ∈ SJ ⊂
SAJ ,

h(x)≥ v′AJ
(x)h(vAJ

x)≥ const ·m(AJ ) inf
J

h > 0.

But then, for each k ≥ 1, SkJ ⊂Ak for some Ak ∈ α, an impossibility since this entails m(SkJ )≥ λkm(J )→∞.
Due to (7.7), there are J ∈ J and A= (u, v) ∈ α such that u ∈ J . Set J0 :=A∩ J = (u,w) with u < w. It follows

as above that I0 := SJ0 ∈ J , and the common image property implies I0 = (0, c) for some c > 0.
Note then that there exist some J ′ ∈ J and A′ ∈ α such that J ′ ⊃ A′: unless I0 contains some A′, it is contained

in a specific A′ ∈ α, and by the special structure of our map there is some k ≥ 1 for which SkI ⊂A′ ⊂ Sk+1I . By the
argument proving (7.7) we have J ′ := Sk+1I ∈ J .

But then (0, zS)⊂ SA′ ∈ J as required.
Finally, in view of Lemma 7.1 and [16], S has only finitely many ergodic acims, and these have densities hi ∈ BV ,

which can be chosen to be lower semicontinuous, so that the sets [hi > 0] are open and pairwise disjoint. However,
by the above, each [hi > 0] contains (0, zS). Hence h and P are unique, meaning that S is ergodic. Moreover, the
structural results of [16] also show that there is a finite tail decomposition h=∑p−1

j=0 gj with gj ∈ BV and the [gj > 0]
open and pairwise disjoint, such that S[gj > 0] = [gl > 0] a.e., l = j + 1 modp, and S is weakly mixing iff p = 1.
Bounded variation of the gj together with (7.6) now implies that (after renumbering the gj if necessary) there is
some y > 0 for which (0, y)⊆ [g0 > 0]. However, there is at least one cylinder A= (a, b) ∈ α with a < y, and then
(a, c) := [g0 > 0] ∩A is nonempty and open. Due to the common image property, S(a, c)⊆ [g1 > 0] has nonempty
open intersection with (0, y). Hence [g0 > 0] = [g1 > 0], as these sets overlap. Therefore p = 1. �

This immediately allows us to deal with situations in which ϕ only diverges at 0.

Example 2. Suppose that ([0,1], S,α) is a piecewise increasing AU-map with the common image property and
absolutely continuous invariant probability dP = hdm. Suppose that ϕ : [0,1] → N is α-measurable and satisfies
[ϕ ≥ n] = [0, yn] for n≥ n0, where

yn ∼ 1

�(1− γ )�(1+ γ )ã(n)

with ã regularly varying of index γ ∈ (0,1]. Then aϕ(n)∼ ã(n).
Indeed, we need only check condition (7.3) of Proposition 7.3. Fixing a version h ∈ BV of the invariant density,

Lemma 7.3 shows that limx→0+ h(x)=: h(0+) > 0. Whence P([ϕ ≥ n])= ∫
[ϕ≥n] hdm∼ h(0+)m([ϕ ≥ n]), and our

claim follows since, by Karamata’s theorem,∫
Ω

(ϕ ∧ n)dm ∼
n→∞

n

�(2− γ )�(1+ γ )ã(n)
.
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Next, we record a little preparatory observation which will enable us to also study functions ϕ which diverge at
countably many points. (This will be the case for the return time functions of the null-recurrent maps studied in the
final subsection below.)

Lemma 7.4. Let h :Ω→ [0,∞) have right-hand limits h(x+) everywhere. Let xj , yj,n ∈Ω , j, n ≥ 0, be such that
for each n the sets (xj , xj + yj,n) are pairwise disjoint, and suppose that there are sj ∈ [0,∞) with

∑
j≥0 sj <∞,

and qn↘ 0 for which yj,n/qn→ sj as n→∞, uniformly in j . If sjh(x+j ) > 0 for some j , then

∑
j≥0

∫
(xj ,xj+yj,n)

h(x)dx ∼
n→∞

(∑
j≥0

sjh
(
x+j

))
qn. (7.8)

Proof. Assume w.l.o.g. that s0h(x+0 ) > 0, and take any ε > 0. Choose n1 so large that yj,n ≤ eεsj qn for n≥ n1 and
all j . Take J ≥ 1 so large that (suph)

∑
j>J sj < ε

∑
j≥0 sjh(x+j ). Next, there is some n2 ≥ n1 such that for all

n≥ n2 and all j ≤ J ,

sup
(xj ,xj+eεsj qn)

h≤ eεh
(
x+j

)+ εs0h(x+0 )

J + 1

(here h(x+j ) need not be positive, but h(x+0 ) is). Then, for all n≥ n2,∑
j≥0

∫
(xj ,xj+yj,n)

h(x)dx ≤ eεqn

∑
j≥0

sj sup
(xj ,xj+eεsj qn)

h

≤ eεqn

(
eε

J∑
j=0

sjh
(
x+j

)+ εs0h
(
x+0

)+ suph
∑
j>J

sj

)

≤ eε
(
eε + 2ε

)(∑
j≥0

sjh
(
x+j

))
qn.

As ε > 0 was arbitrary, this proves one half of our claim. The corresponding estimate from below follows by similar
but even simpler arguments which we omit. �

We can now go beyond the scenario of Example 2 above. Situations of the following type naturally occur in the
study of interval maps with neutral fixed points, see below.

Proposition 7.4 (ϕ with countably many singularities). Let (Ω,S,α) be a weakly mixing piecewise increasing
ABU-map with absolutely continuous invariant probability dP = hdm. Suppose that ϕ :Ω → N is α-measurable
and such that for n sufficiently large, [ϕ ≥ n] is a countable disjoint union of intervals (xj , xj + yj,n) satisfying the
assumptions of Lemma 7.4, where

qn ∼
n→∞

1

�(1− γ )�(1+ γ )ã(n)

with ã regularly varying of index γ ∈ (0,1]. Then

aϕ(n)=
n∑

k=1

P
([ϕk ≤ n]) ∼

n→∞

(∑
j≥0

sjh
(
x+j

))
ã(n).

Proof. It is clear that m([ϕ ≥ n])∼ (
∑

j≥0 sj )qn. According to Lemma 7.4,

P
([ϕ ≥ n])=∑

j≥0

∫
(xj ,xj+yj,n)

h(x)dx ∼
(∑

j≥0

sjh
(
x+j

))
qn,
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so that by Karamata’s theorem∫
Ω

(ϕ ∧ n)dP ∼
n→∞

(
∑

j≥0 sjh(x+j ))n

�(2− γ )�(1+ γ )ã(n)
,

and Proposition 7.3 applies. �

Some infinite measure preserving interval maps

We conclude with a class of infinite measure preserving interval maps T with indifferent fixed point, which induce
probability preserving maps S of the above type. These T do not, in general, belong to the family of AFN-maps
studied in [23], see Example 3 below.

Proposition 7.5 (Maps with indifferent fixed points). Let (X,T ,β) be a piecewise increasing A-map on X = [0,1]
with the common image property which satisfies inf(ε,1) T

′ > 1 for every ε ∈ (0,1). Assume that T possesses a leftmost
cylinder B∗ = (0, ξ), and that zT := infB∈β m(T B) satisfies zT > ξ . Suppose that T is convex near 0, and satisfies,
for some γ ∈ (0,1),

T (x)∼ x + κx1+1/γ + o
(
x1+1/γ

)
as x↘ 0. (7.9)

Then T is conservative ergodic with an infinite invariant measure mT = hT dm, with hT bounded on each (ε,1).
Moreover, T is weakly pointwise dual ergodic and exhibits Darling–Kac asymptotics,

Sn(f )

a(n)

d−→
n→∞mT (f )Yγ for f ∈ L1+(mT ),

with return sequence satisfying a(n)∼ c/nγ for some c > 0.

Proof. Let Ω := [ξ,1], and consider the induced map S = TΩ and the corresponding return time function ϕ = ϕΩ . We
are going to show that the induced system naturally comes as a piecewise increasing map (Ω,S,α), which together
with ϕ satisfies the assumptions of Proposition 7.4. Therefore Proposition 7.2 applies, which via (2.11) entails the
Darling–Kac limit. Weak pointwise dual ergodicity is implicit in the application of these propositions.

Note first that B∗ =⋃
n≥1(τn+1, τn), where τ1 := ξ and τn+1 :=w(τn) with w := (T |B∗)−1 denoting the inverse of

the leftmost branch of T . As a consequence of (7.9) we have (see Corollary on p. 82 of [18])

qn := τn ∼
n→∞(κn/γ )γ . (7.10)

Fix any B ∈ β \ {B∗}, and let B(k) := B ∩ [ϕ = k], k ≥ 1, which defines the cylinders of S inside B . The induced
map S is trivially piecewise increasing and satisfies (U). It also satisfies (A), which is checked by the same argument
as in [18] or [22], which we do not reproduce here.

Now SB(1) = T B(1) ∩ Ω ⊃ (ξ, zT − ξ). For k ≥ 2, T B(k) = (τk−1, τk−2), and hence SB(k) = T kB(k) =
T (τ1, τ0)⊃ (ξ, zT − ξ). Therefore S has the common image property.

Enumerating β \ {B∗} = {B0,B1, . . .}, we get

[ϕ > n] ∩Bj = vBj

(
(0, τn)

)=: (xj , xj + yj,n)

for suitable xj , yj,n, where vBj
:= (T |Bj

)−1. This collection of intervals now satisfies the assumptions of Lemma 7.4
with sj := v′Bj

(βj ) where βj is the left endpoint of Bj . Uniformity of yj,n/qn→ sj in j is a consequence of the

distortion control for (the first iterate of) T provided by condition (A), which also implies
∑

sj <∞. To see that
sjh(x+j ) > 0 for some j , use the common image property of S and Lemma 7.3 to obtain some zS > 0 such that
inf(ξ,ξ+zS) h > 0. Now choose some j for which βj ∈ (ξ, ξ + zS). �
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Example 3. Fix γ ∈ (0,1) and define F(x) := x(1+x1/γ )/(1−x1/γ ), x ∈X := (0,1). Let T :X→X be of the form
T x = F(x) − F(ξn) for x ∈ (ξn, ξn+1), where 0 = ξ0 < ξ1 < · · · < ξn ↗ 1 are such that T ξ−n ≤ T ξ−n+1 ↗ 1. Then
T satisfies the assumptions of the preceding proposition, but the finite image property (F) is only fulfilled in those
exceptional cases where T ξ−n = 1 for n≥ n0.

Note that whenever ξ0, . . . , ξn satisfying the above requirements have been chosen, then the range of admissible
values for ξn+1 is the nonempty interval [F−1(2F(ξn)− F(ξn−1)),F

−1(F (ξn)+ 1)] =: Jn, which is nondegenerate
iff F(ξn)− F(ξn−1) < 1, that is, iff T ξ−n #= 1. Therefore, if one never chooses ξn+1 to be the right-hand endpoint of
Jn, all these intervals are nondegenerate, and no T constructed this way belongs to the AFN-maps of [23].
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