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Abstract

Assume that T is a conservative ergodic measure preserving trans-
formation of the infinite measure space (X,A, µ). We study the asymp-
totic behaviour of occupation times of certain subsets of infinite measure.
Specifically, we prove a Darling-Kac type distributional limit theorem for
occupation times of barely infinite components which are separated from
the rest of the space by a set of finite measure with c.f.-mixing return
process. In the same setup we show that the ratios of occupation times of
two components separated in this way diverge almost everywhere. These
abstract results are illustrated by applications to interval maps with in-
different fixed points.
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1 Introduction

Let T be a conservative ergodic measure preserving transformation (c.e.m.p.t.)
of the σ-finite measure space (X,A, µ) with µ(X) = ∞. We are interested in
the long term statistical behaviour of occupation times Sn(A) :=

∑n−1
k=0 1A ◦T k,

n ≥ 1, of suitable sets A with µ(A) = ∞. The results we are going to prove
in the subsequent sections apply in particular to infinite measure preserving
interval maps with indifferent fixed points, and we now illustrate them in this
setup. For simplicity we restrict our attention to the prototypical situation of
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transformations with two full branches (for a more general framework see e.g.
[Z1]). As in [T5] we shall consider maps T : [0, 1] → [0, 1] which fulfil the
following conditions for some c ∈ (0, 1):

(1) The restrictions T |(0,c), T |(c,1) are C2-diffeomorphisms onto (0, 1), ad-
mitting C2-extensions to the respective closed intervals;

(2) T ′ > 1 on (0, c] ∪ [c, 1) and T ′(0) = T ′(1) = 1;

(3) T is convex (concave) on some neighbourhood of 0 (1).

Let A denote the Borel-σ-field on [0, 1] and let λ be Lebesgue measure on
A. As proved in [T1], [T2], T is conservative and exact w.r.t. λ and preserves
a σ-finite measure µ equivalent to λ. The density dµ/dλ has a version h of the
form

h(x) = h0(x)
x(1− x)

(x− f0(x))(f1(x)− x)
, x ∈ (0, 1),

where f0 := (T |(0,c))−1, f1 := (T |(c,1))−1, and h0 is continuous and positive on
[0, 1]. In particular, µ assigns infinite measure to neighbourhoods of 0 and of 1.
Maps of this type are known to have further strong ergodic properties, see e.g.
[A0], [A2], [T3].

We will be interested in occupation times of δ-neighbourhoods A,B of the
indifferent fixed points x = 0, 1. As the invariant measure of [0, 1] \ (A ∪ B) is
finite, almost all orbits spend most of their time in A∪B (i.e. n−1Sn(A∪B) →
1 a.e.), and we investigate the asymptotic behaviour of Sn(A) (respectively
Sn(A)/Sn(B)). When taken sufficiently small, the δ-neighbourhoods A,B of
the cusps are, in the sense of the following definition, dynamically separated by
the interval Y := [f0(c), f1(c)] which has finite measure.

Dynamical separation. Let T be a map onX. Two disjoint sets A,B ⊂ X
are said to be dynamically separated by Y ⊂ X if x ∈ A (resp. B) and Tnx ∈ B
(resp. A) imply the existence of some k = k(x) ∈ {0, . . . , n} for which T kx ∈ Y
(i.e. T -orbits can’t pass from one set to the other without visiting Y ).

If T is measure preserving on the σ-finite measure space (X,A, µ), a com-
ponent of X (w.r.t. T ) is a set A ∈ A dynamically separated from Ac by some
set Y ∈ A of finite measure.

Remark 1 a) Intuitively, the most natural situation is that A,B, and Y are
pairwise disjoint, or even a partition of X. It is, however, more convenient not
to impose such a restriction. The crucial point for us will be that, when dealing
with components, the finite measure set Y (and hence also the overlap) is small
in an infinite measure space.

b) If the sets A,B are dynamically separated by Y , then so are any subsets
A′ ⊆ A, B′ ⊆ B, and we may also replace Y by any Y ′ ⊇ Y .
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If T is some c.e.m.p.t. of the σ-finite measure space (X,A, µ) and M ∈ A,
µ(M) > 0, the return time function ofM under T , defined as ϕM (x) := min{n ≥
1 : Tnx ∈ M}, x ∈ M , is finite a.e., and the induced map TM : M → M ,
TMx := TϕM (x)x, is a c.e.m.p.t. on (M,A ∩M,µ |A∩M ).

If µ(X) = ∞ and 0 < µ(Y ) < ∞, we let µY (E) := µ(Y ∩ E)/µ(Y ) denote
the normalized restriction of µ to Y . We have

∫
Y
ϕY dµ =

∑
n≥0 µ(Y ∩ {ϕY >

n}) = ∞ by Kac’ formula, and the speed at which the wandering rate wn(Y ) :=∫
Y

(ϕY ∧ n) dµ =
∑n−1
k=0 µ(Y ∩ {ϕY > k}) diverges plays an important role.

Let Rα denote the collection of measurable real functions regularly vary-
ing of index α at infinity (see [BGT]). On several occasions we will tacitly
interpret sequences (an)n≥0 as functions on R+ via t 7−→ a[t]. Most positive
probabilistic results for infinite measure preserving transformations depend on
the existence of a suitable reference set Y with (wn(Y )) ∈ R1−α for some
α ∈ [0, 1], the return index of T . The case α = 1 marking the borderline
to finite measures is of particular importance. We will call µ a barely infi-
nite invariant measure in this case. Similarly, if A is a component of X with
µ(A) = ∞, separated from Ac by Y for which the return times through A satisfy
(
∫
Y ∩T−1A

(ϕY ∧n) dµ)n≥1 = (
∑n−1
k=0 µ(Y ∩T−1A∩{ϕY > k}))n≥1 ∈ R0, we will

call A a barely infinite component.

Distributional convergence. If ν is a probability measure on the mea-
surable space (X,A) and (Rn)n≥1 is a sequence of measurable real functions on
X, distributional convergence of (Rn)n≥1 w.r.t. ν to some random variable R

will be denoted by Rn
ν=⇒ R. Strong distributional convergence Rn

L(µ)
=⇒ R on

the σ-finite measure space (X,A, µ) means that Rn
ν=⇒ R for all probability

measures ν � µ. If T is a nonsingular ergodic transformation on (X,A, µ), a
compactness argument shows that if Rn ◦T −Rn → 0 in measure w.r.t. µ, then

Rn
L(µ)
=⇒ R as soon as Rn

ν=⇒ R for some ν � µ (cf. §3.6 of [A0] or [A1]).
For α ∈ (0, 1), we let Gα denote a random variable distributed according

to the one-sided stable law of order α, characterized by its Laplace transform
E[exp(−tGα)] = e−t

α

, t > 0, and G1 := 1. Then the distribution of the variable
Yα := Γ(1 +α)G−αα , α ∈ (0, 1], is the normalized Mittag-Leffler law of order α.

There is a natural duality between the occupation times Sn(M) of an ar-
bitrary set M of positive measure and its successive return times ϕM,n :=∑n−1
k=0 ϕM ◦ T kM , n ≥ 1, in that

Sk(M)(x) > n⇐⇒ ϕM,n(x) < k for x ∈M . (1)

If a ∈ Rα, α > 0, then a has an asymptotic inverse b ∈ R1/α, i.e. a measurable
function such that a(b(t)) ∼ b(a(t)) ∼ t as t→∞, cf. Theorem 1.5.12 of [BGT].
In case α ∈ (0, 1], the duality (1) then shows that for any probability measure
ν on (M,A ∩M),

1
an

Sn(M) ν=⇒ Yα iff
1
bn
ϕM,n

ν=⇒ G̃α := Γ(1 + α)−
1
α · Gα. (2)
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By the Darling-Kac theorem for measure preserving transformations (cf. [A0],
[A1]), this is what happens if T : [0, 1] → [0, 1] satisfies (1)-(3) with Tx =
x+ x1+p0`0(x) and 1− T (1− x) = x+ x1+p1`1(x) near 0+ with p0, p1 ≥ 1 and
`0, `1 slowly varying, and α := max(p0, p1)−1, provided that µ(M) < ∞. We
show that this behaviour may persist for certain infinite measure sets M :

Theorem 1 (Distributional limits for barely infinite cusps) Let the map
T : [0, 1] → [0, 1] satisfy (1)-(3), and assume that Tx = x + x1+p0`0(x) and
1−T (1−x) = x+x2`1(x) near 0+ with p0 ≥ 1 and `0, `1 slowly varying. Then

1
c(n)

n−1∑
k=0

1M ◦ T k L(µ)
=⇒ Yα

for any M ∈ A with µ(M 4 (c, 1)) <∞, where α := p−1
0 , and c ∈ Rα is defined

as

c(t) := ã−1

 t

Γ(2− α)Γ(1 + α)

[
t∑

k=0

(θ+fk0 (1) + θ−(1− fk1 (0)))

]−1


with ã−1 asymptotically inverse to ã(t) := t/[θ−
∑t
k=0(1 − fk1 (0))], t ≥ 1, and

θ± := 1/(T ′(c±)).

Weak law of large numbers for cusp visits. Notice that in case p0 =
α = 1 we have Yα = 1 and the theorem therefore provides us with a weak law of
large numbers for this situation. In the balanced case (i.e. if 1−x−T (1−x) ∼
a(Tx− x) as x→ 0+ for some a ∈ (0,∞)), this weak law is contained in [T5].

Example 1 (The standard examples of indifferent fixed points) If Tx =
x+a0x

1+p0 +o(x1+p0) and 1−T (1−x) = x+a1x
2 +o(x2) near 0+ with p0 ≥ 1,

then (again writing α := p−1
0 ) we find that

c(n) ∼

 θ−

a1

(
θ+

a0
+ θ−

a1

)−1

· n if p0 = 1
α1−α(1−α)

Γ(2−α)Γ(1+α)
θ− aα0
θ+ a1

· nα log n if p0 > 1.

To see this, recall (cf. [T2]) that as n→∞,
∑n−1
k=0(1−fk1 (0)) ∼ a−1

1 · log n, and

n−1∑
k=0

fk0 (1) ∼

{
a−1
0 · log n if p0 = 1
1

1−α

(
α
a0

)α
· n1−α if p0 > 1.

Our second result concerns the pointwise behaviour of the ratios Sn(A)/Sn(B)
where A,B are neighbourhoods of the two fixed points. It shows e.g. that the
weak law of large numbers for cusp visits has no strong version (unless both com-
ponents have finite measure) and extends some earlier results in this direction
(compare [In1], [In2] and [AN]).
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Theorem 2 (Almost sure divergence of occupation time ratios) Let T :
[0, 1] → [0, 1] satisfy (1)-(3), and consider A := [0, δA), B := (1 − δB , 1],
δA, δB ∈ (0, 1).

a) In any case,

lim
n→∞

Sn(A)
Sn(B)

= 0 a.e. or lim
n→∞

Sn(A)
Sn(B)

= ∞ a.e. (or both).

b) If Tx− x = O(1− x− T (1− x)) as x→ 0+, then

lim
n→∞

Sn(A)
Sn(B)

= ∞ a.e.

In particular, if Tx− x � 1− x− T (1− x) as x→ 0+, then

lim
n→∞

Sn(A)
Sn(B)

= 0 a.e. and lim
n→∞

Sn(A)
Sn(B)

= ∞ a.e.

c) If Tx = x + x1+p0`0(x) and 1 − T (1 − x) = x + x1+p1`1(x) near 0+ with
p0 > p1 > 1 and `0, `1 slowly varying, then

lim
n→∞

Sn(A)
Sn(B)

= ∞ a.e.

In fact, the abstract result of Section 4 below covers a few more subtle situ-
ations, we refer to the examples given there.

Physical measures. For x ∈ [0, 1] let VT (x) denote the set of accumulation
points (in the space of Borel probability measures on [0, 1] equipped with weak
convergence) of the empirical measures νn(x) := n−1

∑n−1
k=0 δTkx, n ≥ 1. A Borel

probability ν on [0, 1] is called a physical measure (for T ) if λ({x : ν ∈ VT (x)}) >
0. By the ergodic theorem, since µ((ε, 1 − ε)) < ∞, we have νn((ε, 1 − ε)) →
0 for any ε ∈ (0, 1/2). Therefore, limn→∞Sn(A)/Sn(B) = ∞ a.e. implies
δ0 ∈ VT (x) for a.e. x ∈ [0, 1], so that δ0 is a physical measure. If in addition
limn→∞Sn(A)/Sn(B) = 0 a.e., then δ1 is a physical measure, too, and we
have VT (x) = {ρδ0 + (1 − ρ)δ1 : ρ ∈ [0, 1]} for a.e. x ∈ [0, 1]. (As shown
in [Z2], there are maps T satisfying (1)-(3) which exhibit similar behaviour
even for νn := n−1

∑n−1
k=0 ν̃ ◦ T k, n ≥ 1, whenever ν̃ is a Borel probability

absolutely continuous w.r.t. λ.) Finally, if limn→∞ Sn(A)/Sn(B) = 0 a.e., then
λ({x : VT (x) = {δ0}}) = 1.

2 A distributional limit theorem
for barely infinite components

Let T be a c.e.m.p.t. of the σ-finite measure space (X,A, µ), µ(X) = ∞. For
the occupation times of sets B ∈ A under the action of m.p.t.s with sufficiently
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good mixing properties, distributional limit theorems have been obtained in the
case µ(B) < ∞, cf. [A0], [A1], and in the case µ(A) = µ(B) = ∞, where A,B
are dynamically separated by a suitable set Y and there is very good balance
between the return distributions to either side, cf. [T5]. Below we are going
to discuss the asymptotic distributional behaviour, without any assumption on
balance, but supposing that the component B is barely infinite. We show that
distributionally the occupation times of such a set still behave as in the finite
measure case as they converge (with different normalization though) to Mittag-
Leffler laws. This generalizes the Darling-Kac limit theorem to certain sets of
infinite measure.

Let S be some m.p.t. of the probability space (Ω,B, P ). A partition γ of Ω
(mod P ) will be called continued-fraction (c.f.)-mixing for S if it is generating
and if ∞ > ψγ(n) → 0 as n→∞, where the ψ-mixing coefficients ψγ(n), n ≥ 1,
of γ, are defined as

ψγ(n) := sup
k≥1

{∣∣∣∣log
P (V ∩W )
P (V )P (W )

∣∣∣∣ : V ∈ σ(
∨k−1
j=0 S

−jγ), P (V ) > 0,
W ∈ S−(n+k−1)B, P (W ) > 0

}
.

Theorem 1 for interval maps is a special case of the following abstract dis-
tributional limit theorem for occupation times of barely infinite components
dynamically separated from the rest of the space by some cyclic set with c.f.-
mixing returns.

Theorem 3 (Distributional limits for barely infinite components) Let T
be a c.e.m.p.t. of the σ-finite measure space (X,A, µ). Suppose that X = A∪B
(disjoint), µ(A) = µ(B) = ∞, and µ(Y ) < ∞ with Y := YA ∪ YB := (B ∩
T−1A) ∪ (A ∩ T−1B). Then Y dynamically separates A and B, and TY cycli-
cally interchanges YA and YB.

Assume that YA, YB, and the return time ϕY are measurable w.r.t. some
partition γ such that γ2 := γ ∨ T−1

Y γ is c.f.-mixing for T 2
Y |YA and T 2

Y |YB . Let
LA(t) :=

∫
YA

(ϕY ∧ t) dµ, and LB(t) :=
∫
YB

(ϕY ∧ t) dµ, t > 0. If LA ∈ R1−α,
α ∈ (0, 1], and LB ∈ R0, then for any E ∈ A with µ(E 4B) <∞,

1
c(n)

n−1∑
k=0

1E ◦ T k
L(µ)
=⇒ Yα,

where c ∈ Rα, c(t) := 1
Γ(2−α)Γ(1+α) · bB

(
t

LA(t)+LB(t)

)
, t ≥ 1, with bB ∈ R1

inverse to aB(t) := t/LB(t).

Again the α = 1 case provides us with weak laws of large numbers. Our
result is flexible enough to cover situations in which weak laws with rather
unusual normalization arise:

Example 2 (Weak law with oscillating normalizing sequences) There are
systems satisfying the assumptions of Theorem 3 with α = 1 for which

lim
n→∞

c(n)
n

= 0 and lim
n→∞

c(n)
n

= 1. (3)
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To see this, we construct suitable pairs of return distributions by specifying LA
and LB . For any continuous increasing concave function L > 0 with L(t)/t→ 0
as t → ∞, there is some N-valued random variable ϕ for which const · L(t) ∼
E[ϕ ∧ t] as t → ∞. It is then easy to construct a Markov chain (a two-sided
renewal chain, i.e. a piecewise affine version of the smooth map T from the
introduction) satisfying the assumptions of the theorem with prescribed LA
and LB (c.f.-mixing then being a trivial consequence of independence).

Assume LA, LB ∈ R0 are as L above and in addition satisfy LA(t), LB(t) ↗
∞, limt→∞LA(t)/LB(t) = 0, and limt→∞LA(t)/LB(t) = ∞. Define aB(t) :=
t/LB(t) and c(t) := a−1

B (t/(LA(t) + LB(t))), then (3) follows by monotonocity.
Therefore it is enough to construct LA, LB with the above properties.

We are going to take LA(t) := exp[
∫ t
1
εA(y)
y dy], t ≥ 1, with a suitable de-

creasing piecewise constant function εA : [1,∞) → (0, 1), εA(y) =
∑
n≥1KA(n)·

1[tn,tn+1)(y) with KA(n) ∈ (0, 1), KA(n) ↘ 0, 1 = t1 < t2 < . . . < tn ↗∞, and
analogously for LB . Then LA, LB are continuous, strictly increasing, and slowly
varying. The required oscillation property will imply that LA(t), LB(t) ↗ ∞.
Moreover, functions of this type are concave.

For example, we may takeKA(2n) := KA(2n+1) := (2n+2)−1 andKB(2n+
1) := KB(2n+2) := (2n+3)−1 for n ≥ 0, and inductively define the tn as follows.
If, for some n ≥ 0, t1, . . . , t2n+1 have been constructed, we choose t2n+2 > t2n+1

so large that

LA(t2n+1)
(
t2n+2

t2n+1

)KA(2n+1)

≥ n · LB(t2n+1)
(
t2n+2

t2n+1

)KB(2n+1)

which is possible since KA(2n + 1) > KB(2n + 1). Then LA(t2n+2) ≥ n ·
LB(t2n+2). Analogously, if for some n ≥ 1, t1, . . . , t2n have been constructed,
we can choose t2n+1 > t2n so large that LA(t2n+1) ≤ n−1 · LB(t2n+1).

As a preparation for the proof of the theorem, we recall a few important
facts about wandering rates.

Remark 2 (Basic properties of wandering rates) Let T be a c.e.m.p.t. of
the σ-finite measure space (X,A, µ), µ(X) = ∞. Recall (see e.g. Section 3.8
of [A0]) that the wandering rate of a set Y ∈ A, 0 < µ(Y ) < ∞, under
T is the sequence defined by wn(Y ) := µ(

⋃n−1
k=0 T

−kY ), n ≥ 1, which always
satisfies wn(Y ) ↗ ∞, wn(Y )/n ↘ 0, and wn+1(Y ) ∼ wn(Y ) as n → ∞. Its
importance for probabilistic questions is obvious from the observation that it
equals the truncated expectation of the return time ϕY of Y : wn(Y ) =

∫
Y

(ϕY ∧
n) dµ, n ≥ 1. The wandering rate depends on Y , and, given T , there are
no sets with maximal rate provided µ is non-atomic, cf. Proposition 3.8.2 of
[A0]. Still, T may have sets Y with minimal wandering rate, meaning that
limn→∞wn(Z)/wn(Y ) ≥ 1 for all Z ∈ A, 0 < µ(Z) <∞. If this is the case, we
let W(T ) ⊆ A denote the collection of sets which have minimal wandering rate
under T , and simply write (wn(T ))n≥1 for any representing sequence. Below we
shall use the easy observation that

E,F ∈ W(T ) =⇒ E ∪ F ∈ W(T ). (4)
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To verify this, notice that wn(E ∪ F ) = wn(E) + µ(
⋃n−1
k=0 T

−kF \
⋃n−1
k=0 T

−kE),
n ≥ 1. Since wn(E) ∼ wn(F ), it is enough to check that the rightmost term
is o(wn(F )) as n → ∞. Choose some K ≥ 0 for which F̃ := F ∩ T−KE has
positive measure. Then wn−K(F̃ ) ∼ wn(F̃ ) ∼ wn(F ) as F ∈ W(T ). Now
µ(
⋃n−1
k=0 T

−kF \
⋃n−1
k=0 T

−kE) ≤ µ(
⋃n−1
k=0 T

−kF \
⋃n−K−1
k=0 T−kF̃ ) = wn(F ) −

wn−K(F̃ ) = o(wn(F )).

Proof of Theorem 3. Assume w.l.o.g. that µ(YA) = 1. Let us first consider
the specific set E := B∪YB . We are going to prove the equivalent dual statement

1
d(n)

n−1∑
k=0

ϕE ◦ T kE
µYA=⇒ G̃α, (5)

where d(n) := b(n/LB(n)), n ≥ 1, with b ∈ R 1
α

asymptotically inverse to
n 7→ (Γ(2 − α)Γ(1 + α))−1 · n/(LA(n) + LB(n)). (Throughout, ϕM denotes
the return time function of some set M under the original map T .) Let Nn :=∑n−1
k=0 1YA ◦ T kE , n ≥ 1, then

Nn−2∑
j=0

ϕYA ◦ T
j
YA
≤
n−1∑
k=0

ϕE ◦ T kE ≤
Nn−1∑
j=0

ϕYA ◦ T
j
YA

on YA,

since
∑τj+1−1
k=τj

ϕE ◦ T kE = ϕYA ◦ T
j
YA

on YA for j ≥ 0, where τ is the return time

of YA under the action of TE , τ0 := 0, and τj :=
∑j−1
i=0 τ ◦T iYA , j ≥ 1. Therefore,

(5) follows at once if we show that for i ∈ {1, 2},

1
d(n)

Nn−i∑
j=0

ϕYA ◦ T
j
YA

µYA=⇒ G̃α. (6)

We verify (6) using
1

b(n)

n−i∑
j=0

ϕYA ◦ T
j
YA

µYA=⇒ G̃α (7)

for i ∈ {1, 2}, and
LB(n)
n

Nn
µYA=⇒ 1. (8)

For the moment, assume (7) and (8), which will be proved below. Fix ε > 0 and
take any t > 0, t /∈ {1} ∪ {1 −m−1 : m ≥ 1}. (Then t is a point of continuity
for the distribution function of each (1 −m−1)

1
α G̃α, m ≥ 1, α ∈ (0, 1], and of

G̃1.) Choose an integer m so large that Pr[(1−m−1)
1
α G̃α ≤ t] ≤ Pr[G̃α ≤ t] + ε,

and n0 = n0(ε,m) so large that for n ≥ n0,

µYA

({
1− LB(n)

n
Nn >

1
m

})
≤ ε,
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as well as

µYA

 1
b(n)

(1−m−1)n−i∑
j=0

ϕYA ◦ T
j
YA
≤ t


 ≤ Pr

[(
1− 1

m

) 1
α

G̃α ≤ t

]
+ ε.

For n ≥ n0 so large that also n/LB(n) ≥ n0, we find

µYA

 1
b(n/LB(n))

Nn−i∑
j=0

ϕYA ◦ T
j
YA
≤ t




≤ µYA

({
1− LB(n)

n
Nn >

1
m

})

+ µYA

 1
b(n/LB(n))

(1−m−1)n/LB(n)−i∑
j=0

ϕYA ◦ T
j
YA
≤ t




≤ 2ε+ Pr

[(
1− 1

m

) 1
α

G̃α ≤ t

]
≤ 3ε+ Pr[G̃α ≤ t].

The corresponding lower estimate is proved analogously, and we obtain (6).

It remains to check (7) and (8). The return time ϕYA is measurable YA ∩γ2,
which is a c.f.-mixing partition for TYA = T 2

Y |YA . Therefore the return-time
process (ϕYA ◦TYA)n≥0 of YA under T is c.f.-mixing. Hence, by Lemma 3.7.4 of
[A0], YA is a Darling-Kac set for T (and so is YB). According to the Darling-Kac
limit theorem (cf. Corollary 3.7.3 of [A0]) and the asymptotic renewal equation
(Proposition 3.8.7 of [A0]), for any f ∈ L+

1 (µ),

Γ(2− α)Γ(1 + α)
wn(YA)

n

n−1∑
k=0

f ◦ T k L(µ)
=⇒ µ(f)Yα, (9)

provided that the wandering rate (wn(YA))n≥1 of YA is regularly varying of index
1 − α, α ∈ [0, 1]. Being Darling-Kac sets for T with regularly varying return
sequences, both YA and YB have minimal wandering rates (see the corrected
version of Theorem 3.8.3 of [A0]), and hence wn(YA) ∼ wn(YB) ∼ wn(Y ) as
n → ∞, cf. Remark 2. Consequently, wn(YA) ∼ wn(Y ) = µ(

⋃n−1
k=0 T

−kY ) ∼∫
Y

(ϕY ∧ n) dµ = LA(n) + LB(n), and LA + LB ∈ R1−α by the assumptions of
our theorem. Therefore (7), which is the dual version of (9) with f := 1YA , is
established. (Since n/LB(n) →∞ we may take any fixed i ≥ 1 in (7).)

A similar argument proves (8): The induced map TE is a c.e.m.p.t. on
(E,A∩E,µ |A∩E); conservativity and ergodicity are the content of Propositions
1.5.1 and 1.5.2 of [A0], for the invariance of µ |A∩E in the general (i.e. possibly
infinite) case, see e.g. [He]. The return time τ = 1 + ϕY ◦ TY of YA under TE
is measurable γ2 and (TE)YA = TYA . Therefore, the return process of YA under
TE is c.f.-mixing which (as before) implies that YA is a Darling-Kac set for TE .
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Since µ |A∩Y is invariant under TY , the wandering rate of YA under TE is given
by

µ

(
n−1⋃
k=0

T−kE YA

)
=
n−1∑
k=0

µ (YA ∩ {τ > k})

= µ(YA) +
n−2∑
k=0

µ
(
YA ∩ T−1

Y {ϕY > k}
)

= µ(YA) +
n−2∑
k=0

µ (YB ∩ {ϕY > k})

= µ(YA) + LB(n− 1) ∼ LB(n).

Again using Proposition 3.8.7 and Corollary 3.7.3 of [A0] we obtain (8).

To finally pass to arbitrary sets F ∈ A with µ(F 4 B) < ∞ (equivalently
µ(F 4 E) < ∞), take f := 1E\F and f := 1F\E in (9). Since aB(t) = o(t)
implies t = o(bB(t)) as t → ∞, the normalizing sequence in (9) is o(c(n)) as
n → ∞. We therefore see that c(n)−1

∑n−1
k=0(1E − 1F ) ◦ T k → 0 in measure

w.r.t. µ as n→∞, completing the proof of the theorem.

3 Sums versus maxima
for nonintegrable c.f.-mixing processes

Our proof of almost sure divergence of the ratios in Theorem 2 and its more
general abstract version, Theorem 5 below, depends on the following result
which is of considerable interest in itself.

Theorem 4 (Sums vs maxima for nonintegrable c.f.-mixing processes)
Let γ be a c.f.-mixing partition for the m.p.t. S of the probability space (Ω,B, P ).
Suppose that ϕ,ψ : Ω → [0,∞) are measurable γ with

∫
Ω
ϕdP =

∫
Ω
ψ dP = ∞.

Let Lψ(t) :=
∫
Ω
(ψ ∧ t) dP , and aψ(t) := t/Lψ(t), t > 0.

If
∫
Ω
aψ ◦ ϕdP = ∞, then

lim
n→∞

ϕ ◦ Sn∑n−1
k=0 ψ ◦ Sk

= ∞ a.e. on Ω. (10)

Otherwise, i.e. if
∫
Ω
aψ ◦ ϕdP <∞, we have

lim
n→∞

ϕ ◦ Sn∑n−1
k=0 ψ ◦ Sk

= 0 a.e. on Ω. (11)
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Remark 3 (Non-integrability of aϕ ◦ ϕ) While it is often possible to check
directly whether the condition

∫
Ω
aψ ◦ ϕdP = ∞ is satisfied for a concrete ex-

ample, the following observation enables some general sufficient conditions: Let
ϕ ≥ 0 be a measurable function on a probability space (Ω,B, P ), then∫

Ω

ϕdP = ∞ implies
∫

Ω

aϕ ◦ ϕdP = ∞.

(For a quick proof of this claim assume w.l.o.g. that ϕ maps into N, consider the
renewal chain with return distribution ϕ, and use Theorem 2.4.1 and Lemma
3.8.5 of [A0]. Alternatively, it is possible to use an Abel-type divergence argu-
ment to give a direct analytical proof.)

Returning to our theorem, we thus see that
∫
Ω
aψ ◦ ϕdP = ∞ whenever

Lψ(t) = O(Lϕ(t)) as t→∞, since the latter entails aϕ = O(aψ). In particular,
conclusion (10) always holds for ψ := ϕ. For the special case of independent
sequences this result can be found in [Ke].

Let us look at a few specific examples for the theorem.

Example 3 Observe that in the theorem ϕ may have a strictly lighter tail
than ψ: Suppose for example that P [ψ = n] ∼ κψ · n−2 while P [ϕ = n] ∼
κϕ · (n2 log log n)−1 as n → ∞, then Lϕ(t) = o(Lψ(t)) as t → ∞, but still∫
Ω

ϕ
Lψ◦ϕ dP = ∞, as Abel’s series

∑
n≥2(n log n log log n)−1 diverges. Analo-

gous examples with heavier tails are obtained by taking P [ψ = n] ∼ κψ ·n−(1+α),
α ∈ (0, 1), and P [ϕ = n] ∼ κϕ · n−(1+α)(log n)−1 as n→∞.

We are going to use the following version of Rényi’s Borel-Cantelli lemma.

Lemma 1 (Rényi’s Borel-Cantelli Lemma) Assume that (En)n≥1 is a se-
quence of events in the probability space (Ω,B, P ) for which there is some r ∈
(0,∞) such that

P (Ej ∩ Ek)
P (Ej)P (Ek)

≤ r whenever j, k ≥ 1, j 6= k. (12)

Then P ({En infinitely often}) > 0 iff
∑
n≥1 P (En) = ∞.

Sketch of Proof. For the reader’s convenience we briefly indicate the non-
trivial bit of the argument. Let Sn :=

∑n
k=1 1Ek and an := E[Sn], n ≥ 1. By

assumption an →∞. Now P ({En i.o.}) = 0 would mean that a−1
n Sn → 0 a.e..

However, since (12) implies that (a−1
n Sn)n≥1 is uniformly integrable, this entails

1 = E[a−1
n Sn] → 0, a contradiction.

Proof of Theorem 4. Notice first that by passing to [ϕ] + 1 and [ψ] + 1 we
may assume w.l.o.g. that ϕ,ψ are integer-valued. We set ψn :=

∑n−1
k=0 ψ ◦ Sk,

n ≥ 1, and aψ(t) := t/Lψ(t), t > 0, and analogously for ϕ. It is straightforward
to check that Lψ and aψ are continuous, and that Lψ(t), aψ(t) ↗∞ (eventually
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strictly monotone) as t→∞, so that in particular aψ(s+ t) ≤ aψ(s)+aψ(t) for
s, t > 0, which shows that∫

Ω

aψ ◦ ϕ dP = ∞ iff
∫

Ω

aψ ◦ (cϕ) dP = ∞ for any c > 0.

(i) We begin by showing that the stochastic order of magnitude of ψk is
essentially given by bψ(k), where bψ denotes the inverse function of aψ, de-
fined on some (s0,∞), which satisfies bψ(s) = sLψ(bψ(s)). We claim that for t
sufficiently small, there is some η(t) > 0 such that

P

({
ψk ≤ bψ

(
k

t

)})
≥ η(t) for all k ≥ 1. (13)

To see this, note that by c.f.-mixing S is exact, and let (X,A, µ, T ) be the
conservative ergodic infinite measure preserving tower above (Ω,B, P, S) with
height function ψ, so that µ |A∩Ω= P , S = TΩ, and ψ is the return time of Ω
under T . By assumption, the return process (ψ ◦ Sn)n≥0 of Ω is c.f.-mixing, so
that (by Lemma 3.7.4 of [A0]) Ω is a Darling-Kac set for T . For n ≥ 1 we let

Nn :=
n−1∑
k=0

1Ω ◦ T k and an :=
∫

Ω

Nn dP .

The proof of Proposition 3.7.1 of [A0] shows thatK := supn≥1

∫
Ω

(
a−1
n Nn

)2
dP <

∞. Moreover, Lemma 3.8.5 there implies that r := supn≥1 aψ(n)/an <∞. For
t ∈ (0, 1) and any n ≥ 1 we therefore have

1− t ≤
∫

Ω

1{Nn>tan}
Nn
an

dP ≤
√
K ·

√
P ({Nn > tan}) ,

and hence, if t < r−1,

P ({Nn > taψ(n)}) ≥ P ({Nn > tran}) ≥
(1− rt)2

K
=: η(t) .

However, Nn > taψ(n) implies ψtaψ(n) ≤ n, which proves (13).

(ii) Assume now that
∫
Ω
aψ ◦ ϕdP = ∞ and fix any N ≥ 1. In order to

prove lim
n→∞

ϕ◦Sn
ψn

≥ N a.s., we take any t ∈ (0, r−1) and define

An :=
{
ϕ ◦ Sn

ψn
≥ N

}
⊆ Ω,

and

Bn := {ϕ ◦ Sn ≥ N bψ(n/t)} ⊆ Ω, Cn := {ψn ≤ bψ(n/t)} ⊆ Ω.
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For arbitrary n ≥ 1 we then have

An := Bn ∩ Cn ⊆ An.

Let R := ψγ(1), the first ψ-mixing coefficient of γ. By c.f.-mixing, R < ∞,
and e−R ≤ P (An)/(P (Bn)P (Cn)) ≤ eR. According to (13), we have P (Cn) ≥
η(t) =: η > 0. We are going to show that

P

∑
n≥1

1An = ∞


 > 0 , (14)

which immediately implies lim
n→∞

ϕ◦Sn
ψn

≥ N a.e. on Ω (since this limit function

is S-invariant), thus completing the proof of the ”if”-part of our theorem. To
do so, we use Lemma 1. Notice first that if j 6= k, then

P
(
Aj ∩Ak

)
≤ P (Bj ∩Bk) ≤ eRP (Bj)P (Bk)

≤ e3R
P (Aj)P (Ak)
P (Cj)P (Ck)

≤ η−2e3RP (Aj)P (Ak) ,

so that we are in fact in the situation of Rényi’s Borel-Cantelli lemma, and it
remains to check that

∑
n≥1 P (An) = ∞. By our previous observations and

S-invariance of P ,∑
n≥1

P (An) ≥ η e−R
∑
n≥1

P (Bn)

= η e−R
∑
n≥1

P
({
t aψ

( ϕ
N

)
≥ n

})
≥ η e−R ·

(
t

∫
Ω

aψ

( ϕ
N

)
dP − 1

)
= ∞,

proving (10).

(iii) To prove the converse, assume that
∫
Ω
aψ◦ϕ dP <∞, then

∑
j≥1 P ({ϕ =

j}) · aj < ∞ as well (use Lemma 3.8.5 of [A0] again). Observe also that
aj =

∑
n≥0 P ({ψn < j}). Now

P ({ϕ ◦ Sn > ψn}) =
∑
j≥1

P ({ϕ ◦ Sn = j and ψn < j})

≤ eR
∑
j≥1

P ({ϕ = j}) · P ({ψn < j}),

and hence∑
n≥1

P ({ϕ ◦ Sn > ψn}) ≤ eR
∑
j≥1

P ({ϕ = j}) ·
∑
n≥1

P ({ψn < j})

≤ eR
∑
j≥1

P ({ϕ = j}) · aj <∞.
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By Borel-Cantelli we therefore see that lim
n→∞

ϕ ◦ Sn/
∑n−1
k=0 ψ ◦ Sk ≤ 1 a.e., and

since the same argument also applies to cϕ for any c > 0, our claim follows.

4 Almost sure divergence of the ratios

Again, let T be a c.e.m.p.t. of the σ-finite measure space (X,A, µ). The ratios
Sn(A)/Sn(B) of occupation times of disjoint sets of infinite measure may well
converge almost surely. This obviously happens in cyclic situations, take for
example the sets A,B of even and odd integers for the (null-recurrent) coin-
tossing random walk. In the examples we are mainly interested in (interval
maps with indifferent fixed points) this trivial case cannot occur since the sets
A,B are dynamically separated by some set Y ∈ A with 0 < µ(Y ) < ∞. Still,
this condition is not enough to enforce almost sure divergence of the ratios, as
the following Markov-chain example illustrates.

Example 4 (A renewal chain for which pointwise ratio limits do exist)
Let (fk)k≥1 be a probability distribution such that

∑
kfk <∞ but

∑
k2fk = ∞.

Consider the renewal chain (Xn)n≥0 associated to (fk), i.e. the Markov chain
with state space S := {0, 1, . . .} and transition probabilities p0,k−1 = fk and
pk,k−1 = 1 for k ≥ 1. This irreducible chain has an invariant probability dis-
tribution µ given by µk = µ0

∑
j>k fj, k ≥ 0. According to our moment as-

sumption, Eµ[Xn] = ∞, that is, (Xn) is a stationary (under µ) sequence of
nonnegative random variables with infinite expectation. Nevertheless,

lim
n→∞

Xn

n
= 0 a.s., (15)

compare [Ta], Example a). Let us then construct a tower above (Xn), i.e. a new
chain (X̃n) with state space S̃ := {(0, 0)} ∪ {(k, j) : k ≥ 1, 0 ≤ j ≤ 2k + 1} and
transition probabilities p(0,0),(k−1,0) = fk, p(k,j−1),(k,j) = 1 if 1 ≤ j ≤ 2k + 1,
and p(k,2k+1),(k−1,0) = 1, k ≥ 1. This again is a renewal chain. The stationary
measure µ̃, given by µ̃(k,j) := µk is infinite, i.e. (X̃n) is null-recurrent. Let
Y := {(k, j) ∈ S̃ : j = 0 or j = k+1}, which has finite measure and dynamically
separates the two components A := {(k, j) ∈ S̃ : 0 < j ≤ k} and B := {(k, j) ∈
S̃ : j > k + 1} of its complement. We claim that

lim
n→∞

Sn(A)
Sn(B)

= lim
n→∞

∑n−1
k=0 1A(X̃k)∑n−1
k=0 1B(X̃k)

= 1 a.s.

We identify S with S × {0} ⊆ S̃, and assume w.l.o.g. that X̃0 = (0, 0). Then
| Sn(A)−Sn(B) |≤ XNn , where Nn :=

∑n−1
k=1 1S(X̃k), n ≥ 1. By (15), however,

we have XNn = o(Nn) a.s., and since Nn = O(Sn(B)) a.s. (in fact o(Sn(B))),
the claim follows.

The proof of a.s. convergence in this example uses the very strong depen-
dence between the respective durations of excursions to A and B. Below we
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show that a.s. convergence in fact can no longer happen if there is enough
independence between the excursions.

Theorem 5 (Almost sure divergence of occupation time ratios) Let T
be a c.e.m.p.t. of the σ-finite measure space (X,A, µ), and Y ∈ A, 0 < µ(Y ) <
∞.

a) Suppose that Y dynamically separates A,B ∈ A with X = A ∪ B ∪ Y
(disjoint) and µ(A) + µ(B) = ∞. Assume that the return time ϕY is
measurable w.r.t. some c.f.-mixing partition γ for TY , then

lim
n→∞

Sn(A)
Sn(B)

= 0 a.e. or lim
n→∞

Sn(A)
Sn(B)

= ∞ a.e. (or both).

b) Assume that X = A∪B (disjoint), µ(A) = µ(B) = ∞, and Y = YA∪YB :=
(B ∩ T−1A) ∪ (A ∩ T−1B). Assume further that YA, YB, and the return
time ϕY are measurable w.r.t. some partition γ such that γ2 := γ ∨ T−1

Y γ
is c.f.-mixing for T 2

Y |YA and T 2
Y |YB , and let LA(t) :=

∫
YA

(ϕY ∧ t) dµ, and
LB(t) :=

∫
YB

(ϕY ∧ t) dµ, t > 0.

If LB(t) = O(LA(t)), then

lim
n→∞

Sn(A)
Sn(B)

= ∞ a.e.

The same conclusion still holds if
∫
YA

ϕY
LB◦ϕY dµ = ∞ and LA(t) = O(LB(t)).

c) Under the assumptions of b), if LA ∈ R1−α, and LB ∈ R1−β, with 0 <
α < β < 1, then

lim
n→∞

Sn(A)
Sn(B)

= ∞ a.e.

The same conclusion still holds if 0 < α = β < 1 and
∫
YA
a∗B ◦ ϕY dµ <

∞, where bB is the inverse of aB, and a∗B is the asymptotic inverse of
b∗B(t) := bB(t/ log log t) · log log t, t > 0.

Example 5 To obtain an example for statement c) of the theorem with α = β,
choose return distributions with µYB [ϕY = n] ∼ κB · n−(1+α) and µYA [ϕY =
n] ∼ κA · n−(1+α)(log n)−2.

Proof of Theorem 5. For part a) of the theorem, assume w.l.o.g. that
µ(Y ) = 1, denote ϕ := ϕY , the return time of Y , ϕn :=

∑n−1
k=0 ϕ ◦ T kY for n ≥ 1,

YA := Y ∩ T−1A, YB := Y ∩ T−1B, and define

SAn :=
n−1∑
k=0

1A∪YA ◦ T k, SBn :=
n−1∑
k=0

1B∪YB ◦ T k, and Rn :=
SAn
SBn

, n ≥ 1.

Now if TnY x ∈ YA, then T j(TnY x) ∈ A for j ∈ {1, . . . , ϕ(TnY x)− 1}, so that

SAϕn+1(x)
(x) = SAϕn(x)(x) + ϕ(TnY x) and SBϕn+1(x)

(x) = SBϕn(x)(x).
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Consequently,

Rϕn+1(x)(x) = Rϕn(x)(x) +
ϕ(TnY x)
SBϕn(x)(x)

≥ ϕ(TnY x)
ϕn(x)

.

Interchanging the roles of A and B, we obtain an analogous estimate with Rn
replaced by 1/Rn if TnY x ∈ YB . Therefore,

R(x) := lim
n→∞

Rn(x) ≥ lim
n→∞,
Tn
Y
x∈YA

ϕ ◦ TnY
ϕn

(x) a.e. on Y ,

and
R(x) := lim

n→∞

1
Rn(x)

≥ lim
n→∞,
Tn
Y
x∈YB

ϕ ◦ TnY
ϕn

(x) a.e. on Y .

According to our assumption and Remark 3, Theorem 4 applies to the induced
map TY to ensure that

lim
n→∞

ϕ ◦ TnY
ϕn

= ∞ a.e. on Y . (16)

If x ∈ Y and (nk) is a subsequence for which limk→∞ ϕ ◦ TnkY (x)/ϕnk(x) = ∞,
then we have TnkY (x) ∈ YA ∪ YB for k sufficiently large, since ϕ = 1 on
Y \ (YA ∪ YB). We can thus conclude that R(x) = ∞ or R(x) = ∞. Due
to the T -invariance of these limit functions, we then see that R = ∞ or R = ∞
a.e. on X (or both), implying assertion a).

For part b), assume w.l.o.g. that µ(YA) = 1, and let ϕ := 1YA · ϕY (so that
Lϕ = LA) and ψ := 1YA(ϕY +ϕY ◦TY ). Observing that (u+v)∧t ≤ (u∧t)+(v∧t)
for any u, v, t ≥ 0, we see that

Lψ(t) =
∫
YA

(ϕY + ϕY ◦ TY ) ∧ t dµ ≤ LA(t) + LB(t).

If LB(t) = O(LA(t)), the right-hand side is O(Lϕ(t)), and hence
∫
YA

ϕY
Lψ◦ϕY dµ =

∞. The same is true if LA(t) = O(LB(t)) and
∫
YA

ϕY
LB◦ϕY dµ = ∞. According

to Theorem 4 therefore

lim
n→∞

ϕ ◦ TnYA∑n−1
k=0 ψ ◦ T kYA

= ∞ a.e. on YA.

On the other hand, if x ∈ YA, then for all n ≥ 1, Sψn(x)+ϕ◦T 2n
Y (x)(A \ YB)(x) =

Sψn(x)(A \ YB)(x) + ϕ ◦ T 2n
Y (x) while Sψn(x)+ϕ◦T 2n

Y (x)(B \ YA)(x) = Sψn(x)(B \
YA)(x) ≤ ψn(x). This implies limn→∞Sn(A \ YB)/Sn(B \ YA) = ∞ a.e. and
hence the assertion of part b).
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Proof of part c) of the theorem. For x ∈ YA, Sn(A)(x) doesn’t change during
excursions to B, and analogously for Sn(B)(x). Consequently,

lim
n→∞

Sn(A)
Sn(B)

= lim
n→∞

∑n−1
k=0 ϕY ◦ T 2k

Y∑n−1
k=0 ϕY ◦ T

2k+1
Y

onYA.

If LA ∈ R1−α, α ∈ (0, 1), then µYA({ϕY ≥ t}) ∼ (1 − α)/aA(t) as t → ∞,
and aA ∈ Rα. Let bA ∈ R1/α be the asymptotic inverse of aA. According to
Theorem 5 of [AD],

lim
n→∞

1
b∗A(n)

n−1∑
k=0

ϕY ◦ T 2k
Y = κα ∈ (0,∞) a.e. on YA, (17)

where b∗A(t) := bA(t/ log log t) · log log t (and hence b∗A ∈ R1/α). On the other
hand, Theorem 2.4.1 of [A0] implies that

lim
n→∞

1
b∗A(n)

n∑
k=0

ϕY ◦ T 2k+1
Y = 0 a.e. on YA (18)

provided that
∫
YA
a∗A ◦ ϕY ◦ TY dµ =

∫
YB
a∗A ◦ ϕY dµ < ∞, where a∗A is the

asymptotic inverse of b∗A. It is clear that (17) and (18) together give the desired
result. The condition

∫
YB
a∗A ◦ ϕY dµ <∞ is certainly satisfied if α < β.

5 Application to interval maps
with indifferent fixed points

We show how Theorems 3 and 5 apply to the interval maps to yield Theorems
1 and 2 advertized in the introduction.

Proof of Theorem 1. We are going to apply Theorem 3 with A := (0, c)
and B := (c, 1). Standard arguments (compare [T1]) show that TY is a uni-
formly expanding piecewise monotone map satisfying ”Adler’s condition”, i.e.
T ′′Y /(T

′
Y )2 is bounded. The return time function ϕY is measurable w.r.t. the

natural fundamental partition γ for TY . The image of any W ∈ γ contained in
YA equals YB and vice versa. Therefore γ2 is c.f.-mixing for the restrictions of
T 2
Y to YA and YB .

We have LA(n) =
∑n−1
k=0 µ(YA ∩ {ϕY > k}), and inspection of the map T

and continuity of h show that µ(YA ∩ {ϕY > k}) ∼ h(c)λ(YA ∩ {ϕY > k}) ∼
(h(c)/T ′(c+)) · fk0 (1). According to Lemma 3 (b) of [T4], Tx = x+ x1+p0`0(x)
near 0+ thus implies regular variation,

LA(n) ∼ (h(c)/T ′(c+)) ·
n−1∑
k=0

fk0 (1) ∈ R1−α.
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Analogously, LB(n) ∼ (h(c)/T ′(c−)) ·
∑n−1
k=0(1 − fk1 (0)) is slowly varying, and

the explicit form of c in Theorem 1 follows from the preceding calculations.

The proof of Theorem 2 uses the following observation.

Lemma 2 (Comparing different indifferent fixed points) Let f, g : [0, κ] →
[0,∞) be increasing C1-functions with 0 ≤ f(x), g(x) < x for x ∈ (0, κ] and
f ′(0) = g′(0) = 1. If x− f(x) = O(x− g(x)) as x→ 0+, then

n∑
j=0

gj(κ) = O

 n∑
j=0

f j(κ)

 as n→∞.

Proof. Let C := supx∈(0,κ](x− f(x))/(x− g(x)) and choose an integer N > C.
We compare x− f(x) and x− gN (x) using

x− f(x)
x− gN (x)

≤ C · x− g(x)
x− gN (x)

, x ∈ (0, κ].

Since

x− gN (x) =
N−1∑
j=0

(
gj(x)− gj+1(x)

)
=
N−1∑
j=0

(
gj
)′

(ξj) · (x− g(x))

for suitable ξj ∈ (g(x), x), j ∈ {0, 1, . . . , N − 1}, and
(
gj
)′ (0) = 1 for j ≥ 1, we

have

lim
x→0+

C · x− g(x)
x− gN (x)

=
C

N
< 1 .

Therefore there is some η ∈ (0, κ) such that x − f(x) ≤ x − gN (x), and hence
gN (x) ≤ f(x), for x ∈ (0, η]. Consequently,

gjN (η) ≤ f j(η) for j ≥ 0.

Given any n ∈ N we now choose k ≥ 0 so that kN ≤ n < (k + 1)N . We find
that

n∑
j=0

gj(η) ≤
(k+1)N−1∑

j=0

gj(η) =
k∑
i=0

N−1∑
l=0

giN+l(η) ≤
k∑
i=0

N−1∑
l=0

giN (η)

= N
k∑
i=0

giN (η) ≤ N
k∑
i=0

f i(η) ≤ N
n∑
i=0

f i(κ),

and our assertion follows since gj(η) ∼ gj(κ) as j →∞.

Proof of Theorem 2. For the first assertion we may w.l.o.g. take A := [0, x2),
B := (x̃2, 1], where x2 is the unique point of period 2 in (0, c), and x̃2 := Tx2.
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Let Y := [x2, x̃2], then TY is a uniformly expanding piecewise onto map with
countable fundamental partition γ, ϕY is measurable γ, and standard arguments
(compare [T1]) show that TY satisfies ”Adler’s condition”, i.e. T ′′/(T ′)2 is
bounded. Therefore γ is c.f.-mixing for TY , and part a) of Theorem 5 applies.

Turning to part b) and c), we choose A := (0, c) and B := (c, 1) as in the
proof of Theorem 1, where we found that this partition satisfies the assumptions
of parts b) and c) of Theorem 5, and that LA(n) ∼ const

∑n−1
k=0 f

k
0 (1) and

LB(n) ∼ const
∑n−1
k=0(1 − fk1 (0)). Assertion b) therefore follows from Lemma

2. For part c) it is enough to recall that (as in the proof of Theorem 1) Tx =
x+ x1+p`(x) at 0+ implies LA ∈ R1−p−1 . Therefore Theorem 5 c) applies.

Remark 4 Let us stress that the more subtle situations of nonequivalent rates
LA and LB with the same index of regular variation as in Examples 3 and 5 also
occur in the present setup. Indeed, by arguments analogous to those of Theorem
4.8.7 of [A0], given any Li ∈ Rγi , γi ∈ (0, 1), i ∈ {0, 1}, there is some map T
satisfying (1)-(3) for which LA(t) ∼ L0(t) and LB(t) ∼ L1(t) as t→∞.
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[Re] A. Rényi: Probability theory. North-Holland, Amsterdam 1970.

[Ta] D. Tanny: A zero-one law for stationary sequences. Z. Wahrscheinlichkeit-
stheorie verw. Geb. 30 (1974), 139-148.

[T1] M. Thaler: Estimates of the invariant densities of endomorphisms with
indifferent fixed points. Israel J. Math. 37 (1980), 303-314.

[T2] M. Thaler: Transformations on [0,1] with infinite invariant measures.
Israel J. Math. 46 (1983), 67-96.

[T3] M. Thaler: A limit theorem for the Perron-Frobenius operator of transfor-
mations on [0,1] with indifferent fixed points. Israel J. Math. 91 (1995),
111-127.

[T4] M. Thaler: The Dynkin-Lamperti Arc-Sine Laws for Measure Preserving
Transformations. Trans. Amer. Math. Soc. 350 (1998), 4593-4607.

[T5] M. Thaler: A limit theorem for sojourns near indifferent fixed points of
one-dimensional maps. Ergod. Th. & Dynam. Sys. 22 (2002), 1289-1312.

[Z1] R. Zweimüller: Ergodic properties of infinite measure preserving interval
maps with indifferent fixed points. Ergod. Th. & Dynam. Sys. 20 (2000),
1519-1549.

[Z2] R. Zweimüller: Exact C∞ covering maps of the circle without (weak) limit
measure. Colloq. Math. 93 (2002), 295-302.

20


