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Abstract. We prove that certain Gibbs measures on subshifts of
finite type are nonsingular and ergodic for certain countable equi-
valence relations, including the orbit relation of the adic transform-
ation (the same as equality after a permutation of finitely many
coordinates). The relations we consider are defined by cocycles
taking values in groups, including some nonabelian ones. This
generalizes (half of) the identification of the invariant ergodic prob-
ability measures for the Pascal adic transformation as exactly the
Bernoulli measures—a version of de Finetti’s Theorem. General-
izing the other half, we characterize the measures on subshifts of
finite type that are invariant under both the adic and the shift as
the Gibbs measures whose potential functions depend on only a
single coordinate. There are connections with and implications for
exchangeability, ratio limit theorems for transient Markov chains,
interval splitting procedures, ‘canonical’ Gibbs states, and the tri-
viality of remote sigma-fields finer than the usual tail field.

1. Introduction

It has long been known that many Gibbs measures on (topologically
mixing) subshifts of finite type (SFT’s) are not only ergodic but are,
in fact, K (they satisfy the Kolmogorov 0-1-Law in that they have
trivial (one-sided) tail fields). In fact the two-sided tail field is also
trivial; another way to state this is to say that they are ergodic for the
homoclinic or Gibbs relation (the countable equivalence relation RA in
which two sequences are equivalent if and only if they disagree in only
finitely many coordinates, i.e. if and only if they are in the same orbit
under the action of the group Γ of finite coordinate changes). We prove
that these Gibbs measures, which include the Markov measures fully
supported on the subshift, are also nonsingular and ergodic for many
cocycle-generated subrelations of the homoclinic relation, including the
symmetric relation SA in which two sequences are equivalent if and only
if one can be obtained from the other by a permutation of finitely many
coordinates. On a one-sided SFT this orbit relation for the action of
the group Π of permutations of finitely many coordinates is the orbit
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relation of the adic transformation, and ergodicity of this equivalence
relation is the same as ergodicity of the adic transformation.

Our interest in these matters arose from the study of the dynamics
of adic transformations, which were defined by A.M. Vershik (see [55])
as a family of models in which the cutting and stacking constructions
of ergodic theory are organized in a way that makes them conveniently
accessible to combinatorial analysis, and which has certain universal-
ity properties (such as containing a uniquely ergodic version of every
ergodic, measure-preserving transformation on a Lebesgue space [54]).
‘Transversal flows’ had been investigated by Sinai [48], Kubo [28] and
Kowada [25, 26], and also by S. Ito [23], who proved ergodicity of the
adic transformation on an SFT for its measure of maximal entropy, a
particular case of our Theorem 3.3. Adic transformations for actions of
amenable groups were constructed by Lodkin and Vershik [34]. For the
Pascal adic transformation (first defined by Vershik [53]), i.e. the adic
transformation on the full shift, the ergodicity of Gibbs measures (in-
cluding Bernoulli and Markov measures) is closely related to classical
investigations of exchangeability and the triviality of remote sigma-
fields. Given a (usually finite-valued) stochastic process X0, X1, . . .
with (usually shift-invariant) distribution µ, we have the sigma-algebra
I of shift-invariant sets, the tail field F+

∞ = ∩n≥0B(Xn, Xn+1, . . . ), and
the exchangeable sigma-algebra E consisting of all sets invariant un-
der the group Π of permutations of N that move only finitely many
coordinates. (As sub-sigma-algebras of the product sigma-algebra of
countably many copies of a fixed measure algebra, I ⊂ F+

∞ ⊂ E , and
the inclusions can be proper. In the two-sided case there are also F−

∞,
the sigma-algebra generated by F+

∞ and F−
∞, and the two-sided tail

F∞ = ∩n≥1B(Xi : |i| ≥ n).) Already for the case of the full shift, invari-
ance and ergodicity under the symmetric subrelation S+

n of the Gibbs
relation R+

n of Σ+
n leads to interesting results. A. M. Vershik [private

communication] observed that the nonatomic, ergodic, invariant prob-
ability measures for the Pascal adic transformation on the 2-shift are
in one-to-one correspondence with the Bernoulli measures on Σ+

2 . By
using dyadic expansions to regard this Pascal adic transformation as an
infinite interval-exchange map on the unit interval [0, 1], one may re-
cognize it as the map studied by Arnold [3] and proved by Hajian, Ito,
and Kakutani [17] to be ergodic (with respect to Lebesgue measure)
and later used by Kakutani [24] to prove the uniform distribution of
his interval splitting procedure. (The connection was also noted in [49].
See [41] for more about interval splitting.) The Hewitt-Savage 0-1-Law
[19] says that for i.i.d. random variables E is trivial, i.e. consists only of
sets of measure 0 or 1 (Bernoulli measures are S+

n -ergodic). This was
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extended to Markov measures by Blackwell and Freedman [4]. There
are analogous statements for the two-sided case . . . X−1, X0, X1, X2, . . . ,
where there are past, future, and two-sided tail fields to deal with. It
took some time to sort out the relationships among the various tail
fields [16, 21, 22, 32, 36, 37, 39, 38], to understand the representation
of measures as mixtures in terms of the theory of Choquet simplices
and ergodic decompositions [8, 7, 9, 42, 44, 56], and to investigate ex-
changeability in more general contexts [8, 7, 13, 20, 30, 42, 51]. For
a survey of exchangeability, see [2]. Diaconis and Freedman [7] gave
a necessary and sufficient condition for a measure to be a mixture
of Markov measures, in terms of ‘partial exchangeability’—invariance
under the subgroup of Π that preserves transition counts (as well as
symbol counts). They also gave a general theory of ‘sufficient statis-
tics’, describing how to present the (in some sense) most general sym-
metric measure as a mixture of extremal ones [8]. Several workers in
statistical mechanics considered ‘canonical’ or ‘microcanonical’ Gibbs
states, in the construction of which symbol counts, or the values of
some other ‘energy function’, are fixed in finite regions. The point was
to find the extremal measures in at least some classes of examples and
thereby obtain a mixture-representation theorem for the most general
such measures. Georgii [13, 14] found that certain Markov measures
qualify. Similar results were obtained by Lauritzen [30], Höglund [20],
and Thompson [51].

We prove (Theorem 3.3) that many Gibbs measures, including all
mixing Markov measures, are ergodic under certain subrelations of RA

which include the equivalence relation SA that corresponds to permuta-
tion of finitely many coordinates (or, equivalently, eventual equality of
accumulated symbol counts). As a corollary, (letting k = 2 for sim-
plicity) taking φ(x) = ψ(x) = cx0 in Theorem 3.3, we find measures
µφ that are ergodic and invariant under the adic on the SFT ΣA, i.e.
symmetric or exchangeable, when sequences are constrained to lie in
the SFT ΣA (see Examples 5.1, 5.3, and 5.4). Similar results hold when
ψ is a function of only finitely many coordinates of x. Using a well-
known formula (see [40, p. 22]), one can recover explicit expressions
for these Gibbs states (cf. [13, 14, 20, 30, 51]). As a consequence of
the ergodicity of Markov measures for S+

A we obtain some pointwise ra-
tio limit theorems for adic transformations whose direct combinatorial
proofs appear to be quite difficult (Section 7.4). Further, we identify all
the probability measures on SFT’s that are invariant simultaneously for
the shift and the symmetric relation SA (Theorem 6.2). More generally,

we prove ergodicity of certain Gibbs measures under subrelations SψA
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of RA defined by cocycles generated by functions ψ : ΣA 7−→ G, where
G is a ‘nearly abelian’ countable discrete group—see 3.13 and Theorem
3.3; the symmetric relation SA is of this kind for a particular ψ. The
dynamical and abstract approach provides a common framework for
the diverse questions and results scattered through the literature and
also leads to some interesting problems, mentioned in the final section
of the paper, for example whether these measures are weakly mixing
and whether there are some implications for various kinds of interval
splitting or for the statistical mechanics of materials.

The authors thank C. Ji, U. Krengel, and A. M. Vershik for their
suggestions that contributed significantly to the progress of this work
and the referee for several improvements in the presentation.

2. Background

In this section we review the elements that we will need from the
general theory of Borel equivalence relations, define adic transforma-
tions, and recall what is known about ergodic invariant measures for
the Pascal adic transformation on the 2-shift.

2.1. Borel equivalence relations. First we establish the basic ter-
minology and notation concerning Borel equivalence relations that will
be needed later (cf. [10, 11, 47]).

Let (X,B) be a standard Borel space, and letR ⊂ X×X be a discrete
Borel equivalence relation, i.e. a Borel subset which is an equivalence
relation, and which satisfies in addition that the equivalence class

R(x) = {x′ ∈ X : (x, x′) ∈ R}
of every point x ∈ X is countable. Under this hypothesis the saturation

R(B) =
⋃
x∈B

R(x)

of every Borel set B ∈ B is again a Borel set. The full group [R] of R
is the group of all Borel automorphisms W of X with Wx ∈ R(x) for
every x ∈ X. There exists a countable subgroup G ⊂ [R] such that

Gx = {gx : g ∈ G} = R(x)

for every x ∈ X. A sigma-finite measure µ on B is quasi-invariant
under R if µ(R(B)) = 0 for every B ∈ B with µ(B) = 0; it is ergodic if,
in addition, either µ(R(B)) = 0 or µ(X rR(B)) = 0 for every B ∈ B.

Let µ be a probability measure on B which is quasi-invariant under
R. Then µ is also quasi-invariant under every W ∈ [R]. In particular, if
G ⊂ [R] is a countable subgroup with Gx = R(x) for every x ∈ X, then
one can patch together the Radon-Nikodym derivatives dµg/dµ, g ∈ G,
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and define a Borel map ρµ : R 7−→ (0,∞) ⊂ R with the following
properties:

(1) ρµ(Wx, x) = (dµW/dµ)(x) µ-a.e., for every W ∈ [R],
(2) ρµ(x, x

′)ρµ(x
′, x′′) = ρµ(x, x

′′) whenever (x, x′), (x, x′′) ∈ R.

The map ρµ is the Radon-Nikodym derivative of µ under R, and µ is
(R-)invariant if ρµ(x, x

′) = 1 for all (x, x′) ∈ Rr ((X×N)∪ (N ×X)),
where N ∈ B is a µ-null set.

2.2. The main examples. In order to describe a class of adic trans-
formations of particular interest to us we assume that V = (Vk, k ≥ 0)
is a sequence of finite, nonempty sets and put XV =

∏
k≥0 Vk, with the

product of the discrete topologies. Two elements x = (xk), x
′ = (x′k)

in XV are comparable (in symbols: x ∼ x′) if xk = x′k for all sufficiently
large k ≥ 0. The set

RV = {(x, x′) ∈ XV ×XV : x ∼ x′} (2.1)

is a Borel set and an equivalence relation, and each equivalence class

RV (x) = {x′ ∈ XV : x′ ∼ x} (2.2)

of RV is countable. In other words, RV is a discrete, standard equival-
ence relation in the sense of [10]; it is called the homoclinic equivalence
relation or Gibbs relation of XV . More generally, if Y ⊂ XV is a
nonempty closed set, we denote by

RY = RV ∩ (Y × Y ) (2.3)

the Gibbs relation of Y and observe that RY (y) = RV (y) ∩ Y and
RY (B) = RV (B) ∩ Y for every y ∈ Y and B ⊂ Y . The following
conditions on Y are easily seen to be equivalent:

(T1) the equivalence relation RY on Y is topologically transitive, i.e.
there exists a y ∈ Y whose equivalence class RY (y) is dense in
Y ,

(T2) for every pair O1,O2 of nonempty open subsets of Y there exists
a point y ∈ Y with RY (y) ∩ Oi 6= ∅ for i = 1, 2.

If Y fulfills (either of) these conditions we shall simply say that Y
satisfies condition (T).

Now assume that each of the sets Vk is totally ordered with an order
<k. The sequence < of orders (<k, k ≥ 0) on the sets V = (Vk, k ≥ 0)
induces a total order ≺ on each equivalence class RV (x), x ∈ XV , and
thus a partial order on the space XV : if x′, x′′ ∈ RV (x) then x′ ≺ x′′

whenever x′n <n x
′′
n with n = max{k ≥ 0 : x′k 6= x′′k}. In this partial

order XV has a unique maximal element x+ and a unique minimal
element x−; furthermore, if x ∈ XV , x 6= x+, then there exists a unique
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smallest element succ(x) ∈ {x′ ∈ RV (x) : x ≺ x′}, called the successor
of x. Put

CV = RV (x−) ∪RV (x+).

The restriction of the map x 7→ succ(x) to XV rCV is a homeomorph-
ism of XV r CV ; in order to extend this homeomorphism to a Borel
automorphism of the entire space XV we set

T<
V (x) =

{
succ(x) if x ∈ XV r CV ,

x if x ∈ CV ,

and call TV = T<
V the adic transformation of XV determined by the

orders < of the sets V .
In contrast to the space XV , a nonempty, closed subset Y ⊂ XV

may have many minimal and maximal elements with respect to the
partial order ≺; however, if y ∈ Y is not maximal, then there still
exists a unique smallest element succ(y) ∈ {y′ ∈ RV (y) ∩ Y : y ≺ y′}.
If RY = RV ∩ (Y × Y ), and if Y − and Y + are the sets of minimal and
maximal elements of Y and CY = RY (Y −) ∪ RY (Y −), then the map
y 7→ succ(y) again induces a Borel automorphism TY : Y 7−→ Y , given
by

TY y =

{
succ(y) if y ∈ Y r CY ,

y if y ∈ CY ,

which is called the adic transformation of Y . Note that

{T nY (y) : n ∈ Z} = {y′ ∈ Y : y′ ∼ y} (2.4)

for every y ∈ Y r CY .
We could have tried to define the adic transformation TY a little

more elegantly on the set CY of exceptional points (cf. [15]). However,
the definition of TY on CY will not really matter, since we shall only
consider nonatomic measures and adic transformations TY on closed,
nonempty subsets Y ⊂ XV which satisfy the following condition:

(M) the sets Y − and Y + of minimal and maximal elements of Y in
the partial order ≺ are both countable.

Example 2.1. (The Pascal adic transformation(Vershik [53])) Let n ≥
2, and let

V
(n)
k = {(j(0), . . . , j(n−1)) ∈ Nn : j(0) + · · ·+ j(n−1) = k}
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for every k ≥ 0. We put V (n) = (V
(n)
k , k ≥ 0), furnish each V

(n)
k with

the reverse lexicographic order, and set

Y (n) = {y = (yk) ∈ XV (n) : yk = (y
(0)
k , . . . , y

(n−1)
k ) ∈ V (n)

k and

y
(i)
k ≤ y

(i)
k+1 for every k ≥ 0 and i = 0, . . . , n− 1}. (2.5)

The equivalence relation RY (n) and the adic transformation Tn = TY (n)

are called the n-dimensional Pascal Gibbs relation and n-dimensional
Pascal adic transformation on the space Y (n). It is easy to see that
Y (n) satisfies the conditions (T) and (M).

We picture Y (n) as a graded graph. At level k there are as vertices the

elements of V
(n)
k . There is a connection from yk ∈ V (n)

k to yk+1 ∈ V (n)
k+1

if and only if y
(i)
k ≤ y

(i)
k+1 for all i = 0, . . . , n−1. In fact then y

(i)
k = y

(i)
k+1

for all i except one, i = i0, for which yi0k = yi0k+1 − 1. We think of the
edge from yk to yk+1 as labeled with the symbol i0 ∈ {0, . . . , n − 1};
denote this i0 by φk(y). Then y

(j)
k is equal to the number of appearances

of symbol j on the edges of the path y from level 0 to level k.
This allows us to define a continuous bijection

Φ: Y (n) 7−→ Σ+
n = (Z/nZ)N

by setting, for every y = (yk) ∈ Y (n),

Φ(y)k = φk(y).

If we put W (n) = (W
(n)
k , k ≥ 0) with W

(n)
k = Z/nZ for every k ≥ 0, and

if we furnish each W
(n)
k with its natural order, then Σ+

n = XW (n) , and
we define the partial order ≺′ on Σ+

n = XW (n) as above. It is clear that
the map Φ: Y (n) 7−→ Σ+

n is order-preserving, i.e. that Φ(y) ≺′ Φ(y′) if
and only if y ≺ y′. However, if R+

n = RW (n) is the Gibbs relation on
Σ+
n , then

(Φ× Φ)(RY (n)) = S+
n ( R+

n . (2.6)

Indeed, S+
n is the subrelation of R+

n in which two points (z, z′) ∈ R+
n

are equivalent if and only if the coordinates of z′ differ from those of z
by a finite permutation.

There exists a unique Borel automorphism T ∗Σn
of Σ+

n satisfying

T ∗
Σ+

n
· Φ(y) = Φ · TY (n)

for every y ∈ Y (n). The map T ∗
Σ+

n
satisfies that

{(T ∗
Σ+

n
)k(x) : k ∈ Z} = S+

n (x)
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for all but countably many x ∈ Σ+
n . It is important to note the dis-

tinction between the map T ∗
Σ+

n
just defined and the adic transforma-

tion TΣ+
n

arising from the partial order ≺′ on Σ+
n = XW (n) , the famil-

iar adding machine or odometer, most of whose orbits are equal to
the equivalence classes of the Gibbs relation R+

n ; in the case n = 2,
T ∗

Σ+
2

(0p1q10 . . . ) = 1q0p01 . . . for each p, q ≥ 0. We shall abuse termin-

ology to some extent and call the transformation T ∗
Σ+

n
the adic trans-

formation on the full shift Σ+
n .

Example 2.2. (The adic transformation of an SFT ) Define V (n) =

(V
(n)
k , k ≥ 0) and XV (n) for n ≥ 1 as in Example 2.1, and let A =

(A(i, j), 0 ≤ i, j ≤ n−1) be an irreducible, aperiodic transition matrix
with entries in {0, 1}. We denote by

Σ+
A = {x = (xk) ∈ Σ+

n : A(xk, xk+1) = 1 for every k ∈ N}
the one-sided SFT defined by A and write

R+
A = R+

n ∩ (Σ+
A × Σ+

A) (2.7)

for the Gibbs relation of Σ+
A. Put

YA = Φ−1(Σ+
A) ⊂ XV (n) . (2.8)

Then YA satisfies the conditions (T) and (M) above (since any maximal
path in the associated graph, when traced backwards, must always
follow the allowed edge with the largest possible label, and hence the
labelling has to be eventually periodic).

Let S+
A ⊂ R+

A be the equivalence relation in which two points (z, z′) ∈
R+
A are equivalent if there is K such that zk = zk′ for k ≥ K while for

k < K the coordinates zk of z are permutations of those of z′. Then
(Φ × Φ)(RYA

) = S+
A . The Borel automorphism T ∗

Σ+
A

: Σ+
A r CΣ+

A
7−→

Σ+
A rCΣ+

A
satisfying T ∗

Σ+
A

·Φ(y) = Φ · TYA
(y) for every y ∈ YA rCA can

again be determined explicitly. For example, if n = 2 and A =
(

1 1
1 0 ),

then Σ+
A ⊂ Σ+

2 is the golden mean SFT, and T ∗
Σ+

A

(0p(10)q100 . . . ) =

(10)q0p010 . . . for every p ≥ 0, q ≥ 1.
In analogy with Example 2.1 we call the transformation T ∗

Σ+
A

the adic

transformation of the SFT Σ+
A, but emphasize that T ∗

Σ+
A

differs from the

transformation TΣ+
A
, the corresponding stationary adic transformation

(in the case of the full shift, the odometer), whose orbits generate the
equivalence classes of R+

A for all but countably many points in Σ+
A.

Example 2.3. (The Gibbs relation and adic transformation of a graph)
Let V = (Vk, k ≥ 0) be a sequence of finite, nonempty sets, and let,
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for every k ≥ 0, Ek ⊂ Vk × Vk+1 be a subset whose projection on each
of the two sets Vk and Vk+1 is surjective. We set E = (Ek, k ≥ 0) and
put

YV,E = {x = (xk) ∈ XV : [xk, xk+1] ∈ Ek for every k ≥ 0}.
(2.9)

If V̄k = {(k, v) : v ∈ Vk}, Ēk = {(k, v) → (k + 1, v′) : [v, v′] ∈ Ek},
V̄ =

⋃
k≥0 V̄k, Ē =

⋃
k≥0Ek, and if Γ = ΓV,E is the directed graph

with vertices V̄ and edges Ē, then there is a bijective correspondence
between the elements of YV,E and the infinite paths in Γ which start
at an element of V̄0. The space YV,E satisfies the conditions (T) if and
only if there exist, for every pair of vertices v̄, v̄′ ∈ V̄ , a vertex w̄ ∈ V̄
and paths v̄ → v̄1 → · · · → v̄m → w̄, v̄′ → v̄′1 → · · · → v̄′m′ → w̄. The
relation RV,E is called the Gibbs relation of the directed graph Γ; if the
sets Vk, k ≥ 0, are totally ordered, and if Y = YV,E satisfies (M) then
the adic transformation TY is the adic transformation of the graph Γ.

In general, if Y ⊂ XV is a nonempty, closed subset, we denote by
πS : Y 7−→

∏
k∈S Vk the restriction to Y of the coordinate projection∏

k≥0 Vk 7−→
∏

k∈S Vk. Then Y is of the form Y = YV,E described above
if and only if

π{0,...,n}(R
(n)
Y (y)) = π{0,...,n}(R

(n)
Y (y′)) (2.10)

whenever y = (yk), y
′ = (y′k) ∈ Y and yn = y′n, where R

(n)
Y is defined in

(2.12). The Gibbs relation in Example 1.1 satisfies (2.10) and is thus
the Gibbs relation of a graph, but the relation RA in Example 1.2 need
not satisfy (2.10).

2.3. Adic-invariant sets and measures. Throughout this section
we assume that V = (Vk, k ≥ 0) is a sequence of finite, nonempty,
totally ordered sets, put XV =

∏
k≥0 Vk, define the equivalence relation

RV as in Section 2.1, and assume that Y ⊂ XV is a closed subset and
RY = R ∩ (Y × Y ).

Let BY be the Borel field of Y , and let µ be a nonatomic probability
measure on BY . If Y satisfies the condition (M), and if TY is the
adic transformation on Y , then µ is quasi-invariant (or ergodic) under
RY if and only if it is quasi-invariant (or ergodic) under TY , and the
sigma-algebras

BRY
Y = {RY (B) : B ∈ BY },

BTY
Y = {B ∈ BY : TYB = B}

(2.11)

of RY -saturated and TY -invariant Borel sets in Y coincide (mod µ).
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We denote by Tn ⊂ BY the sigma-field generated by all cylinder sets
of the form [vn, . . . , vn+k]n = {y = (yi) ∈ Y : yn = vn, . . . , yn+k = vn+k}
and define the tail sigma-field of Y as TY =

⋂
n≥0 Tn.

Lemma 2.4. For every closed, nonempty subset Y ⊂ XV , TY = BRY
Y .

In particular, if µ is a nonatomic probability measure on Y which is
quasi-invariant under RY (or, if Y satisfies the hypothesis (M) under
the adic transformation TY ), then

TY = BRY
Y = BTY

Y (mod µ).

Proof. For every m ≥ 0 we set

R
(m)
Y = {(y, y′) ∈ Y × Y : yk = y′k for all k ≥ m}

(2.12)

and note that RY =
⋃
n≥0R

(n)
Y and hence BRY

Y =
⋂
n≥0 BR

(n)
Y . As

Tn = BR
(n)
Y

Y for every n ≥ 0, we conclude that TY = BRY
Y . �

The m-weight wm(y) of an element y ∈ Y ⊂ XV , m ≥ 0, is defined
as

wm(y) = |R(m)
Y (y)| (2.13)

where |F | denotes the cardinality of a set F . Similarly, if C ⊂ Y is a
Borel set and m ≥ 0, then

wm(C, y) = |R(m)
Y (y) ∩ C|. (2.14)

(This corresponds to the dimension of a vertex in a Bratteli diagram,
the number of paths into a vertex in a graph as in Example 2.3, or
the height of a column in an ergodic-theoretic cutting and stacking
construction.) For example, if Y (n) ⊂ XV (n) is defined as in Example
2.1, then the m-weight wm(y) of an element y = (yk) ∈ Y (n) is given as

follows: if ym = (y
(0)
m , . . . , y

(n−1)
m ) ∈ V (n)

m , then

wm(y) =
m!

y
(0)
m ! · · · y(n−1)

m !
.

Theorem 2.5 (Vershik [52]). Let Y ⊂ XV be a closed, nonempty
subset, and let µ be a nonatomic probability measure on BY which is
invariant and ergodic under RY . For every Borel set B ⊂ Y ,

µ(B) = lim
n→∞

wn(B, y)

wn(y)
for µ-a.e. y ∈ Y,

where the weights wn(·) and wn(B, ·) are defined in (2.13) and (2.14).



SYMMETRIC GIBBS MEASURES 11

Proof. If f ∈ L1(Y,BY , µ), then

Eµ(f |Tn)(y) = Eµ(f |B
R

(n)
Y

Y )(y) =
1

|R(n)
Y |

∑
z∈R(n)

Y

f(z)

for µ-a.e. y ∈ Y . The reverse martingale theorem and Lemma 2.4
imply that

lim
n→∞

1

|R(n)
Y (y)|

∑
z∈R(n)

Y (y)

f(z) = Eµ(f |TY )(y) = Eµ(f |BRY
Y )(y)

µ-a.e., and by setting f equal to the indicator function 1B of B we have
proved the theorem. �

Remark 2.6. If µ is invariant but not necessarily ergodic, then

wn(B, y)

wn(y)
→ Eµ(1B|T )(y) µ-a.e.

for every Borel set B ⊂ Y .

Theorem 2.7 (Hajian-Ito-Kakutani [17]). Let Y (2) be as in (2.5), and
denote by Φ: Y (2) 7−→ Σ+

2 = {0, 1}N the map described in Example 2.1,
so that S+

2 = (Φ×Φ)(RY (2)) is the equivalence relation on Σ+
2 in which

two points are equivalent if and only if their coordinates differ by a finite
permutation. For any α with 0 < α < 1 we set να(0) = α, να(1) =
1 − α, write µα = νN

α for the corresponding Bernoulli measure on Σ+
2 ,

and put µ̄α = µα ·Φ. Then the following equivalent statements are true:

(1) µ̄α is invariant and ergodic under the Pascal adic transforma-
tion T2,

(2) µ̄α is invariant and ergodic under RY2,
(3) µα is invariant and ergodic under the adic transformation T ∗

Σ+
2

of the full shift Σ+
2 (or, equivalently, under the equivalence re-

lation S+
2 ).

Proof. The equivalence of (1), (2), and (3) is obvious; we prove (2).
We write C(m,n) for the binomial coefficient

(
m
n

)
= m!/(n!(m− n)!).

For each cylinder set C = [v0, . . . , vm] = {y ∈ Y2 : yi = vi for i =

0, . . . ,m} ⊂ Y2 ending in a coordinate vm = (j
(0)
m , j

(1)
m ) ∈ V

(1)
m with

j
(0)
m + j

(1)
m = m, and for every y = (yk) ∈ Y2, n > m and yn = (y

(0)
n , y

(1)
n )
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with j
(i)
n ≥ j

(i)
m , i = 0, 1,

wn(C, y)

wn(y)
=
C(n−m, y

(0)
n − j

(0)
m )

C(n, y
(0)
n )

=
(n−m)!y

(0)
n !y

(1)
n !

(y
(0)
n − j

(0)
m )!(y

(1)
n − j

(1)
m )!n!

=
(y

(0)
n − j

(0)
m + 1) · · · y(0)

n · (y(1)
n − j

(1)
m + 1) · · · y(1)

n

(n−m+ 1) · · ·n

=

(
y

(0)
n

n

)j(0)m
(
y

(1)
n

n

)j(1)m

·
j
(0)
m −1∏
j=1

(
1− j

y
(0)
n

)
·
j
(1)
m −1∏
j=1

(
1− j

y
(1)
n

)

·
m−1∏
j=1

(
1− j

n

)−1

→ αj
(0)
m (1− α)(j

(1)
m )

for µ̄α-a.e. y ∈ Y2 as n → ∞. In particular, µ̄α(C) only depends
on the last coordinate vm of C, which guarantees the invariance of µ̄α
under RY2 , and µ̄α is ergodic because limn→∞wn(C, ·)/wn(·) is constant
µ̄α-a.e. (cf. Remark 2.6). �

Remark 2.8. Since the measures µ̄α, α ∈ (0, 1), in Theorem 2.7 are ob-
tained from the Bernoulli measures µα on Σ+

2 via the map Φ, they are
called the Bernoulli measures on Y2. If we also consider the degenerate
Bernoulli measures µ0, µ1 on Σ+

2 defined as above, but with α ∈ {0, 1},
then the measures µ̄0, µ̄1 are again invariant and trivially ergodic un-
der RY2 : each of them is concentrated on an equivalence class of RY2

consisting of a single point.

Theorem 2.9 (de Finetti, Vershik). The only nonatomic probability
measures
which are invariant and ergodic for the Pascal adic transformation T2

are the measures µ̄α, α ∈ (0, 1), described in Theorem 2.7.

Proof. Let C = [v0, . . . , vm] = {y ∈ Y2 : yi = vi for i = 0, . . . ,m} be

a cylinder set with vm = (j
(0)
m , j

(1)
m ) ∈ V

(2)
m , let vm+1 = (j

(0)
m+1, j

(1)
m+1) ∈

V
(2)
m+1 with j

(i)
m+1 ≥ j

(i)
m for i = 0, 1, and put C ′ = [v0, . . . , vm+1] ⊂ Y2

(we are using the same notation as in Example 2.1 and Theorem 2.7).
If µ is a nonatomic, ergodic, invariant probability measure for T2, then
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Theorems 2.5 and 2.7 imply that

µ(C)

µ(C ′)
= lim

n→∞

wn(C, y)/wn(y)

wn(C ′, y)/wn(y)

= lim
n→∞

C(n−m, y
(0)
n − v

(0)
m )

C(n−m− 1, y
(0)
n − v

(0)
m+1)

= 1− lim
n→∞

y
(0)
n

n
.

By Theorem 2.5 this limit exists µ-a.e. and is µ-a.e. equal to a constant
α ∈ (0, 1), so we conclude that µ = µ̄α. �

Remark 2.10. In order to make the connection between Theorem 2.9
and de Finetti’s theorem more explicit, let n ≥ 2, and let µ̄ be a
nonatomic, ergodic, invariant probability measure for the adic trans-
formation Tn on Y (n) (cf. Example 2.1).Then µ = µ̄Φ−1 is invariant
under the relation S+

n of finite coordinate changes, and de Finetti’s
theorem shows that µ is a Bernoulli measure on Σ+

n . More generally,
every nonatomic invariant probability measure for Tn is a mixture of
such Bernoulli measures.

If Σ+
A is an arbitrary, irreducible, aperiodic SFT, then the explicit

determination of all S+
A -invariant and ergodic probability measures is

not so obvious. In Section 6 we will answer this question for shift-
invariant measures. In some special cases, de Finetti’s theorem already
gives a complete answer.

Theorem 2.11. Let A = ( 1 1
1 0 ). Then the only nonatomic probability

measures on Σ+
A ⊂ Σ+

2 which are ergodic and invariant under S+
A (or,

equivalently, under the adic transformation T ∗
Σ+

A

) are the Markov meas-

ures µ′α, α ∈ (0, 1), where µ′α has transition matrix ( α 1−α
1 0 ) and initial

distribution p(0) = α, p(1) = 1− α (cf. (3.1)).

Proof. We define a continuous, bijective map Ψ: Σ+
A 7−→ {a, b}N ∼= Σ+

2

by replacing each occurrence of the string 10 in an element x ∈ Σ+
A

with a b and the remaining 0’s with a’s. Although the map Ψ is not
shift-commuting, it satisfies that (Ψ × Ψ)(S+

A ) = S+
2 ; in particular, Ψ

sends the set of nonatomic S+
A -invariant and ergodic probability meas-

ures on Σ+
A bijectively onto the set of nonatomic R+

2 -invariant, ergodic
probability measures on Σ+

2 .
The latter measures are characterized by de Finetti’s theorem as the

Bernoulli measures on Σ+
2 , and the measures µ′α, α ∈ (0, 1), are just

their images under Ψ−1. �
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3. Gibbs measures and subrelations of Gibbs equivalence
relations on two-sided shift spaces

As we saw in Theorems 2.5, 2.7 and 2.9, the ergodicity of Bernoulli
measures under the equivalence relation R+

n on the full n-shift has dy-
namical implications for the n-dimensional Pascal Gibbs relation RY (n)

and the n-dimensional Pascal adic transformation T ∗
Σ+

n
on Y (n). In this

section we generalize our discussion of ergodicity of Bernoulli measures
under the Pascal adic transformation by showing that certain Gibbs
measures on SFT’s are ergodic under a natural class of subrelations
of the Gibbs relation of the subshift. However, since the discussion of
ergodicity of these subrelations is in some sense more natural on two-
sided shift spaces, we first discuss equivalence relations on two-sided
SFT’s before turning to one-sided SFT’s in the next section.

Assume that A = (A(i, j), 0 ≤ i, j ≤ n− 1) is an irreducible, aperi-
odic n× n transition matrix with entries in {0, 1}, denote by

ΣA = {x = (xk) ∈ Σn = (Z/nZ)Z :

A(xk, xk+1) = 1 for every k ∈ Z}

the two-sided SFT defined by A, and write σ = σA for the shift

σ(x)k = xk+1

and

RA = {(x, x′) ∈ ΣA × ΣA : xk 6= x′k for only finitely many k ∈ Z}

for the Gibbs relation on ΣA.
A one-step Markov measure µP on ΣA is determined by a stochastic

matrix P = (P (i, j), 0 ≤ i, j ≤ n − 1) with P (i, j) > 0 if and only
if A(i, j) = 1 (such a matrix is said to be compatible with A): if p̄ =
(p̄(0), . . . , p̄(n− 1)) is the unique probability vector with p̄P = p̄, then
the measure of every cylinder set

C = [v0, . . . , vl]m = {x = (xk) ∈ ΣA : xm+i = vi for i = 0, . . . , l}

is given by

µP (C) = p̄(v0)P (v0, v1) · · ·P (vl−1, vl). (3.1)

Any such Markov measure µP is easily seen to be quasi-invariant
under the Gibbs relation RA: its Radon-Nikodym derivative is given
by

ρµP
(x, x′) =

∞∏
k=−∞

P (xk, xk+1)

P (x′k, x
′
k+1)

(3.2)
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for every (x, x′) ∈ RA (note that the infinite product in (3.2) consists
mostly of 1’s).

More generally, let φ : ΣA 7−→ R be a continuous function and put,
for every k ≥ 0,

ω0(φ) = max{|φ(x)− φ(x′)| : x, x′ ∈ ΣA},
ωk(φ) = max{|φ(x)− φ(x′)| : xl = x′l for |l| < k}, k ≥ 1.

The function φ has summable variation if

ω(φ) =
∑
k≥0

ωk(φ) <∞. (3.3)

We denote by M1(ΣA) the set of Borel probability measures on ΣA,
furnished with the weak∗ topology. A measure µ ∈ M1(ΣA) is a Gibbs
measure of a map φ : ΣA 7−→ R with summable variation if

log ρµ(x, x
′) =

∑
k∈Z

(φ · σk(x)− φ · σk(x′)) (3.4)

for every (x, x′) ∈ RAr (N ×N), where N ⊂ ΣA is a µ-null set; the set

of all such measures is denoted by Mφ
1 (ΣA). By definition, any Gibbs

measure of φ is quasi-invariant under RA. The Markov measure µP in
(3.1) is a Gibbs measure of the map φ(x) = logP (x0, x1). Conversely,
if the function φ depends only on the coordinates x0, x1, then there is
only one Gibbs measure for φ, and it is Markov: Mφ

1 (ΣA) = {µP} for
some Markov matrix P compatible with A (see [40]). The following
generalization of this fact is part of the lore of the theory of Gibbs
measures; see, for example, [5, 31, 43, 57].

Theorem 3.1. Let A = (A(i, j), 0 ≤ i, j ≤ n−1) be an irreducible and
aperiodic 0-1-matrix, ΣA ⊂ Σn the associated shift of finite type, and
RA the Gibbs equivalence relation of ΣA described above. If φ : ΣA 7−→
R is a function with summable variation, then there exists a unique
Gibbs measure µφ ∈ Mφ

1 (ΣA). Moreover, µφ is ergodic under RA, and
invariant and K under the shift σ = σA.

Proof. First we show that Mφ
1 (ΣA) is nonempty. For every K ≥ 0 we

set
RA

(K) = {(x, x′) ∈ ΣA × ΣA : xk = x′k for |k| ≥ K}.
We claim that the set

M(φ,K) = {µ ∈M1(ΣA) : µ satisfies (3.4) for every (x, x′) ∈ RA
(K)}

is nonempty for everyK ≥ 0. Indeed, fix L > 1 such that every entry of
AL is positive, take K ≥ L, and group the cylinder sets determined by
central (2K + 1)-blocks into n2 classes according to their first and last
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entries. We pick a member from each class and define µ on it arbitrarily,
for example as a Markov measure consistent with the transition matrix
A. Now we can use (3.4) to carry µ over to each of the other cylinder
sets in the same class. Thus if C is one of our chosen cylinder sets
and γ is the finite coordinate change that carries C to C ′ by changing
its central (2K + 1)-block (of course the endpoints of the block do
not change), then the summable variation property of φ shows that∑

m∈Z[φ · σm(x)− φ · σm(γx)] is a continuous function of x ∈ C, so for
E ⊂ C ′ we can define

µ(E) =

∫
γ−1E

exp
∑
m∈Z

[φ · σmγx)− φ · σm(x)] dµ(x).

Since each M(φ,K) is also convex, compact, and nonincreasing in K,
it follows that

Mφ
1 (ΣA) =

⋂
K≥0

M(φ,K) 6= ∅.

Next we show that Mφ
1 (ΣA) consists of a single measure which is

ergodic under RA; for this we require a little bit of notation and a
lemma. Since the matrix A is irreducible and aperiodic there exists
an integer L ≥ 1 such that AL(i, j) > 0 for every (i, j) ∈ (Z/nZ)2. A
string s = s0 . . . sr in {0, . . . , n−1}r+1 is allowed if A(sj, sj+1) = 1 for all
j = 0, . . . , r− 1. If s′ = s′0 . . . s

′
r′ is a second allowed string, then s and

s′ can be concatenated if sr = s′0, and the string ss′ = s0 . . . srs
′
1 . . . s

′
r′

is the concatenation of s and s′. Finally, if s = s0 . . . sr is an allowed
string and m ∈ Z, then

[s]m = {x ∈ ΣA : xm = s0, . . . , xm+r = sr}.
Lemma 3.2. Suppose that φ : ΣA 7−→ R has summable variation and
µ ∈Mφ

1 (ΣA). Given M ≥ 0 and disjoint cylinder sets

C = [i−M . . . iM ]−M = {x ∈ ΣA : xl = il for |l| ≤M}
D = [j−M . . . jM ]−M = {x ∈ ΣA : xl = jl for |l| ≤M},

there is a homeomorphism V ∈ [RA] and a cylinder set C ′ ⊂ C such
that

(1) V 2 = identity,
(2) D′ = V (C ′) ⊂ D,
(3) µ(C ′) ≥ µ(C)n−2L,
(4) µ(D′) ≥ n−4Le−16ω(φ)−8Lω0(φ)µ(D)
(5) | log(dµV/dµ)(x)− log(dµV/dµ)(x′)| < 8ω(φ) for all x, x′ ∈ C ′.

Proof. For every (i, j) ∈ {0, . . . n− 1}2 we denote by

S(i, j) ⊂ (Z/nZ)L+1
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the set of allowed strings of the form s = is1 . . . sL−1j, and we write
c = i−M . . . iM and d = j−M . . . jM for the strings defining the cylinders
C andD. If (i, j) ∈ (Z/nZ)2, s ∈ S(i, i−M), s′ ∈ S(iM , j), t ∈ S(i, j−M)
and t′ ∈ S(jM , j), we consider the concatenations scs′, tdt′ of length
2L+2M+1 and denote by [scs′]−M−L and [tdt′]−M−L the corresponding
cylinder sets. For every x ∈ [scs′]−M−L we define x′ ∈ [tdt′]−M−L by

x′k =


xk if |k| ≥M + L,

tl if k = −L−M + l, l = 0, . . . , L,

jk if |k| ≥M,

t′l if k = M + l, l = 0, . . . , L,

and observe that the map x → x′ is a homeomorphism of [scs′]−L−M
onto [tdt′]−L−M . As the cylinders C,D are disjoint this allows us to

define an element V t,t′

s,s′ ∈ [RA] by setting

V t,t′

s,s′ (x) =


x if x ∈ ΣA r ([scs′]−L−M ∪ [tdt′]−L−M),

x′ if x ∈ [scs′]−L−M ,

(V t,t′

s,s′ )
−1(x) if x ∈ [tdt′]−L−M .

From the definition of ω(φ), comparing φ(σkx) to φ(σkx′) (and φ(σky)
to φ(σky′)) when |k| ≥ M + L, and φ(σkx) to φ(σky) (and φ(σkx′) to
φ(σky′)) when |k| < M + L, it follows that

max
x,y∈[scs′]

| log ρµ(V
t,t′

s,s′ (x), x)− log ρµ(V
t,t′

s,s′ (y), y)| < 8ω(φ).
(3.5)

In order to check the dependence of (3.5) on s, s′, t, t′ we fix arbitrary
points x̄ ∈ C, ȳ ∈ D and calculate that∣∣∣∣log ρµ(V

t,t′

s,s′ (x), x)−
M+L∑

k=−M−L

(φσk(ȳ)− φσk(x̄))

∣∣∣∣ < 8ω(φ) + 4Lω0(φ)
(3.6)

for every (i, j) ∈ (Z/nZ)2, s ∈ S(i, i−M), s′ ∈ S(iM , j), t ∈ S(i, j−M),
t′ ∈ S(jM , j) and x ∈ [scs′]−L−M . In other words, we have found a
constant

ξ(D,C) =
L+M∑

k=−L−M

φσk(ȳ)− φσk(x̄)
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such that the logarithm of the Radon-Nikodym derivative of each of

the maps V t,t′

s,s′ is within 8ω(φ)+4Lω0(φ) of this constant. In particular,

e−8ω(φ)−4Lω0(φ)ξ(D,C) <
µ([tdt′]−L−M)

µ([scs′]−L−M)
< e8ω(φ)+4Lω0(φ)ξ(D,C)

(3.7)

for every (i, j) ∈ (Z/nZ)2, s ∈ S(i, i−M), s′ ∈ S(iM , j), t ∈ S(i, j−M)
and t′ ∈ S(jM , j). Since µ([scs′]−L−M) ≥ µ(C)n−2L for at least one
choice of s, s′ we conclude that, for any suitable choice of t, t′,

µ(D) ≥ µ([tdt′]−L−M) ≥ µ([scs′]−L−M)e−8ω(φ)−4Lω0(φ)ξ(D,C)

≥ µ(C)n−2Le−8ω(φ)−4Lω0(φ)ξ(D,C).

Similarly we see that, for suitable choices of s, s′, t, t′,

µ(D) ≤ µ([tdt′]−L−M)n2L ≤ µ([scs′]−L−M)n2Le8ω(φ)+4Lω0(φ)ξ(D,C)

≤ µ(C)n2Le8ω(φ)+4Lω0(φ)ξ(D,C),

so that

n−2Le−8ω(φ)−4Lω0(φ)ξ(D,C) ≤ µ(D)

µ(C)
≤ n2Le8ω(φ)+4Lω0(φ)ξ(D,C).

(3.8)

We choose (i, j) ∈ (Z/nZ)2 and s ∈ S(i, i−M), s′ ∈ S(iM , j) such
that (3) holds for C ′ = [scs′]−L−M , choose t ∈ S(i, j−M), t′ ∈ S(jM , j),

and set V = V t,t′

s,s′ .
Conditions (1)–(2) follow from the definition of V with

D′ = [tdt′]−L−M ,

(4) is a consequence of (3.7)–(3.8), and (5) is (3.5). �

Completion of the proof of Theorem 3.1. Every probability measure
in Mφ

1 (ΣA) has its Radon-Nikodym derivative under RA given by (3.4).
In particular, by the chain rule any two distinct RA-ergodic elements of
Mφ

1 (ΣA) have to be mutually singular. Thus if Mφ
1 (ΣA) contains more

than one probability measure, then it must therefore also contain a
measure which is not RA-ergodic. Choose a Borel set B = RA(B) ⊂ ΣA

with 0 < µ(B) < 1 and let

ε = 1/(100n4Le24ω(φ)+8Lω0(φ)),

where L ≥ 0 is chosen so that every entry of AL is positive.
Since µ(B)µ(ΣArB) > 0, there exist an integer M ≥ 0 and cylinder

sets C = [i−M , . . . , iM ]−M , D = [j−M , . . . , jM ]−M in ΣA such that

µ(B ∩ C) > (1− ε)µ(C), µ((ΣA rB) ∩D) > (1− ε)µ(D);
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we apply Lemma 3.2 to find cylinder sets C ′ ⊂ C and D′ ⊂ D, satisfy-
ing the conditions (1)–(5) of that lemma. According to (3),

µ(C ′ ∩B) > µ(C ′)− εµ(C) ≥ µ(C ′)(1− εn2L),

and (5) guarantees that

µ(V (C ′ ∩B)) > µ(D′)e−8ω(φ)(1− εn2L)

≥ µ(D)n−4Le−24ω(φ)−8Lω0(φ)(1− εn2L)

= µ(D)
99

100n4Le24ω(φ)+8Lω0(φ)

> εµ(D) > µ(B ∩D),

which shows that B cannot be invariant under V . This contradic-
tion proves that Mφ

1 (ΣA) consists of a single RA-ergodic measure, as
claimed.

Finally, Mφ
1 (ΣA) is clearly shift-invariant, so the unique measure µφ

it contains is shift-invariant. Ergodicity of µφ under RA is equivalent to
triviality of the two-sided tail field, which implies triviality of the two
one-sided tail fields, which in turn is equivalent to the K property. �

For the remainder of this section we fix a map φ : ΣA 7−→ R with
summable variation and write µφ for the unique Gibbs measure of φ.
According to Theorem 3.1, µφ is ergodic under the Gibbs equivalence
relation RA; we shall now prove that µφ is also ergodic under a class of
shift-invariant subrelations of RA which was discussed in [47].

Let G be a countable, discrete group with finite conjugacy classes (i.e.
with |{hgh−1 : h ∈ G}| <∞ for every g ∈ G), and let ψ : ΣA 7−→ G be
a continuous map.

Following [47] we set, for every (x, x′) ∈ RA,

J ψ
+ (x, x′) = lim

K→∞
ψ(x) · · ·ψ(σK(x))

· (ψ(x′) · · ·ψ(σK(x′)))−1,

J ψ
− (x, x′) = lim

K→∞
(ψ(σ−K(x)) · · ·ψ(σ−1(x)))−1

· ψ(σ−K(x′)) · · ·ψ(σ−1(x′))

(3.9)

(since ψ(σn(x) = ψ(σnx′) for n outside a finite interval, these limits

exist). The maps J ψ
± : RA 7−→ G are cocycles of RA, i.e. satisfy that

J ψ
± (x, x′)J ψ

± (x′, x′′) = J ψ
± (x, x′′) (3.10)

whenever (x, x′), (x, x′′) ∈ RA. If h : ΣA 7−→ G is a continuous map,

ψ′(x) = h(x)ψ(x)h(σ(x))−1, (3.11)



20 KARL PETERSEN AND KLAUS SCHMIDT

and if J ψ′

± : RA 7−→ G are the cocycles defined as in (3.9), but with ψ′

replacing ψ, then

J ψ′

± (x, x′) = h(x)J ψ
± (x, x′)h(x′)−1 (3.12)

for every (x, x′) ∈ RA (this means that J ψ
± and J ψ′

± are cohomologous
cocycles of RA). The set

SψA = {(x, x′) ∈ RA : J ψ
+ (x, x′) = J ψ

− (x, x′)} (3.13)

is a subrelation of RA, and (3.12) shows that SψA is unaffected if ψ is
replaced by ψ′ in (3.13). We shall prove the following theorem.

Theorem 3.3. Let φ : ΣA 7−→ R be a function with summable vari-
ation, and let G be a countable, discrete group with finite conjugacy
classes. For every continuous map ψ : ΣA 7−→ G the Gibbs measure µφ
is ergodic under the equivalence relation SψA defined in (3.13).

The proof of Theorem 3.3 requires some preparation. Since G is
discrete there exist integers K,K ′ ≥ 0 such that ψ(x) only depends
on the coordinates x−K , . . . , xK′ of every x ∈ ΣA, and by applying a
standard recoding argument (going to a higher-block presentation of
ΣA) we may assume without loss in generality that K = 0, K ′ = 1. We
fix L ≥ 1 such that every entry of AL is positive and find allowed strings

s(i) = 0s
(i)
1 . . . s

(i)
L−1i for every i ∈ {0, . . . , n − 1}. Define a continuous

map h̄ : ΣA 7−→ G by setting

h̄(x) = ψ(0, s
(x0)
1 ) · · ·ψ(s

(x0)
L−1, x0) (3.14)

for every x = (xk) ∈ ΣA, put

ψ̄(x) = h̄(x)ψ(x)h̄(σ(x))−1 (3.15)

for every x ∈ ΣA, and denote by J ψ̄
± the cocycles defined by (3.9) with

ψ̄ replacing ψ.

Lemma 3.4. Let ∆± = {J ψ̄
± (x, x′) : (x, x′) ∈ RA}.

(1) For every (x, x′) ∈ RA there exist allowed strings s = s0 . . . sm,
s′ = s′0 . . . s

′
m, t = t0 . . . tm′, t′ = t′0 . . . t

′
m′ such that s0 = sm =

s′0 = s′m = t0 = tm′ = t′0 = t′m′ = 0 and

J ψ̄
+ (x, x′) = ψ(s0, s1) · · ·ψ(sm−1, sm)(ψ(s′0, s

′
1) · · ·ψ(s′m−1, s

′
m))−1,

J ψ̄
− (x, x′) = (ψ(t0, t1) · · ·ψ(tm−1, tm))−1ψ(t′0, t

′
1) · · ·ψ(t′m−1, t

′
m);
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(2) For every m ≥ 1 and all allowed strings s = s0 . . . sm, s′ =
s′0 . . . s

′
m with s0 = sm = s′0 = s′m = 0,

ψ(s0, s1) · · ·ψ(sm−1, sm)(ψ(s′0, s
′
1) · · ·ψ(s′m−1, s

′
m))−1 ∈ ∆+,

(ψ(s0, s1) · · ·ψ(sm−1, sm))−1ψ(s′0, s
′
1) · · ·ψ(s′m−1, s

′
m) ∈ ∆−;

(3) ∆± is a subgroup of G;
(4) For every g± ∈ ∆± and every B ∈ BΣA

with µφ(B) > 0 there
exist elements (x, x′), (y, y′) ∈ RA ∩ (B × B) with xk = x′k for
all k ≤ 0, yk = y′k for all k ≥ 0, and

g+ = J ψ̄
+ (x, x′), g− = J ψ̄

− (y, y′).

In fact we can accomplish this with x = y, x′ = y′.

Proof. We shall prove the conditions (1)–(4) for ∆+ and J ψ̄
+ ; the proofs

for ∆− and J ψ̄
− are completely analogous and will be omitted.

Condition (1) follows from (3.12): if (x, x′) ∈ RA satisfy that xk = x′k
for |k| ≥ K − L, say, then

J ψ̄
+ (x, x′) = ψ̄(x0, x1) · · · ψ̄(xK−1, xK)ψ̄(x′K−1, x

′
K)−1 · · · ψ̄(x′0x

′
1)
−1

= ψ(0, s
(x0)
1 ) · · ·ψ(s

(x0)
L−1, x0)ψ(x0, x1) · · ·ψ(xK−1, xK)

· ψ(x′K−1, x
′
K)−1 · · ·ψ(x′0x

′
1)
−1ψ(s

(x′0)
L−1, x

′
0)
−1 · · ·ψ(0, s

(x′0)
1 )−1.

Choosing a string B such that xKB0 is allowed and setting

s = 0s
(x0)
1 . . . s

(x0)
L−1x0 . . . xKB0, s′ = 0s

(x′0)
1 . . . s

(x′0)
L−1x

′
0 . . . x

′
KB0

shows that J ψ̄
+ (x, x′) is of the required form.

In order to prove (4) and in the process (2) we assume that s =
s0 . . . sm, s′ = s′0 . . . s

′
m are allowed strings strings with s0 = s′0 = sm =

s′m = 0, set

g = ψ(s0, s1) · · ·ψ(sm−1, sm)(ψ(s′0, s
′
1) · · ·ψ(s′m−1, s

′
m))−1

and denote by

C(g) = {h ∈ G : hgh−1 = g}
the commutant of g. As G has finite conjugacy classes, the quotient
space H = G/C(g) is finite, and we define a homeomorphism σ̄ : ΣA ×
H 7−→ ΣA ×H by setting

σ̄(x, hC(g)) = (σ(x), ψ̄(x)−1hC(g))

for every x ∈ ΣA and h ∈ G. We denote by ν the normalized counting
measure on H and set µ̄ = µφ × ν. If B ∈ BΣA

with µφ(B) > 0,
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then the mean ergodic theorem, applied to the indicator function of
B′ = B × {C(g)} ⊂ ΣA ×H, yields that

lim
l→∞

1

l

l−1∑
k=0

1B′ · σ̄k = Eµ̄(1B′|Bσ̄ΣA×H) in L2(µ̄),

where Bσ̄ΣA×H denotes the family of σ̄-invariant Borel sets in ΣA ×H.
Hence

lim
l→∞

1

l

l−1∑
k=0

µφ(B ∩ σ−k(B) ∩ {x ∈ ΣA : ψ̄(x) · · · ψ̄(σk−1(x)) ∈ C(g)})

= |H| · lim
l→∞

1

l

l−1∑
k=0

µ̄(B′ ∩ σ̄−k(B′))

≥ |H| · µ̄(B′)2 = µφ(B)2/|H|.

In particular, there exist infinitely many l ≥ 0 with

µφ(B ∩ σ−l(B) ∩ {x ∈ ΣA : ψ̄(x) · · · ψ̄(σl−1(x)) ∈ C(g)})
≥ µφ(B)2/2|H|. (3.16)

Put C = [s]0, D = [s′]0 and define W ∈ [RA] by

Wx =


(. . . , x−1, s

′
0, . . . , s

′
m, xm+1, . . . ) if x = (xk) ∈ C,

(. . . , x−1, s0, . . . , sm, xm+1, . . . ) if x ∈ D,
x if x ∈ ΣA r (C ∪D).

Suppose that B ∈ BΣA
, B ⊂ [0]0 and µφ(B) > 0, and choose an

r ≥ 1 and an allowed string t = t0 . . . trm such that trm = 0 and the
set B̄ = B ∩ [t]0 has positive measure. We denote by s̄ = s̄0 . . . s̄rm the
r-fold concatenation of s and define W ′ ∈ [RA] by

W ′x =


(. . . , x−1, s̄0, . . . , s̄rm, xrm+1, . . . ) if x = (xk) ∈ [t]0,

(. . . , x−1, t0, . . . , trm, xrm+1, . . . ) if x ∈ [s̄]0,

x if x ∈ ΣA r ([t]0 ∪ [s̄]0).

Then, since

lim
l→∞

µφ(B̄ ∩ σ−lWσl(B̄)) = µφ(B̄),
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lim
l→∞

µφ(B̄ ∩ σ−l(B̄) ∩ σ−lWσl(B̄))

= lim
l→∞

µφ(B̄ ∩ σ−l(B̄) ∩ σ−lW ′σl(B̄))

= lim
l→∞

µφ(B̄ ∩ σ−l(B̄) ∩ σ−lWW ′σl(B̄)) = µ(B̄)2,

and (3.16) guarantees that

µφ(B̄ ∩ σ−l(B̄) ∩ σ−lW ′σl(B̄) ∩ σ−lWW ′σl(B̄)

∩ {x ∈ ΣA : ψ̄(x) · · · ψ̄(σl−1(x)) ∈ C(g)}) > 0 (3.17)

for infinitely many l ≥ 0. In particular, if x = (xk) lies in the set
occurring in (3.17), then the points

x = (. . . , x−1, x0, . . . , xl, t1, . . . , trm, xrm+1, . . . ),

x′ = (. . . , x−1, x0, . . . , xl, s̄1, . . . , s̄rm, xrm+1, . . . ),

x′′ = (. . . , x−1, x0, . . . , xl, s
′
1, . . . , s

′
m, s̄m+1, . . . , s̄rm , xrm+1, . . . )

all lie in B̄ ⊂ B, and

h = ψ̄(x) · · · ψ̄(σl−1(x)) = ψ̄(x′) · · · ψ̄(σl−1(x′))

= ψ̄(x′′) · · · ψ̄(σl−1(x′′)) ∈ C(g).

Furthermore, (x′, x′′) ∈ RA ∩ (B ×B), and

J ψ̄
+ (x′, x′′) = hgh−1 = g,

which proves (4) for any Borel set B ⊂ [0]0 with positive measure.
If B ∈ BΣA

is an arbitrary Borel set with positive measure then
there exists an allowed string t′ = t′−p . . . t

′
p with t′p = t′−p = 0 and

µφ(B ∩ [t′]−p) > 0, since µφ is K and hence mixing of every order. Put
B′ = B∩ [t′]−t and B′′ = σp(B′) ⊂ [0]p, and apply the preceding part of
this proof to find, for every g ∈ ∆+, an element (y, y′) ∈ RA∩(B′′×B′′)

with yk = y′k for all k ≤ 0 and J ψ̄
+ (y, y′) = g. From the definition of

J ψ̄
+ it is clear that there exists an h ∈ ∆+ with J ψ̄

+ (σ−p(y), σ−p(y′)) =

hJ ψ̄
+ (y, y′)h−1 for every (y, y′) ∈ RA ∩ (B′′ × B′′). Note that h does

not depend on g. We conclude that there exists, for every g ∈ ∆+, an

element (x, x′) ∈ RA∩ (B′×B′) with J ψ̄
+ (x, x′) = hgh−1, yielding what

is claimed in (4).
For the proof of (3) we assume that g, h ∈ ∆+ and apply (1) to find

allowed strings t = t0 . . . tm′ , t′ = t′0 . . . t
′
m′ , such that

h = ψ(t0, t1) · · ·ψ(tm−1, tm)(ψ(t′0, t
′
1) · · ·ψ(t′m−1, t

′
m))−1.

According to (4) there exists an element (x, x′) ∈ RA such that xk = x′k
for all k ≤ 0 and g = J ψ̄

+ (x, x′). We choose m ≥ 0 such that xk = x′k
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whenever k ≥ m, put C = [x0, . . . , xm]0, and apply(3.16) to find a
point y = (yk) ∈ C and an integer l > m such that σl(y) ∈ C and

g′ = ψ̄(y) · · · ψ̄(σl−1(y)) ∈ C(h).

Put

y′ = (. . . , y−1, x0, . . . xm, ym+1, . . . , yl−1, t0, . . . , tm′ , zl+m′+1, . . . ),

y′′ = (. . . , y−1, x
′
0, . . . x

′
m, ym+1, . . . , yl−1, t

′
0, . . . , t

′
m′ , zl+m′+1, . . . ),

where the coordinates zl+m′+1, zl+m′+2, . . . are arbitrary (but, of course,

allowed), and obtain that (y′, y′′) ∈ RA and J ψ̄
+ (y, y′) = gh. �

Lemma 3.5. Let J = (J ψ
+ ,J

ψ
− ) : RA 7−→ ∆ = ∆+×∆− be the cocycle

J (x, x′) = (J ψ
+ (x, x′),J ψ

− (x, x′)),

and let R be the equivalence relation on X̄ = ΣA ×∆ defined by

R = {((x, g, h), (x′, g′, h′)) : (x, x′) ∈ RA,

g = J ψ
+ (x, x′)g′, h = J ψ

− (x, x′)h′}.
If ν is the counting measure on ∆ and λ = µφ × ν, then λ is quasi-
invariant and ergodic under R.

Proof. The quasi-invariance of λ under R is obvious. For every (g, h) ∈
∆ we define a homeomorphism T(g,h) : X̄ 7−→ X̄ by setting

T(g,h)(x, g
′, h′) = (x, g′g, h′h)

for every (x, g′, h′) ∈ X̄. For every Borel set B ⊂ X̄ with λ(B) > 0
and (g, h) ∈ ∆ we have that

T(g,h)(R(B)) = R(T(g,h)(B)).

Lemma 3.4(4) is easily seen to imply that every R-saturated set is in-
variant under the transformations T(g,h), (g, h) ∈ ∆, and the ergodicity

of RA guarantees that λ(X̄ r R(B)) = 0 for every Borel set B ⊂ X̄
with λ(B) > 0 (cf. e.g. [58, 59, 45]). �

Proof of Theorem 3.3. We use the notation of Lemmas 3.4–3.5 and de-
note by 1G the identity element in G. Define a map η : ∆ 7−→ G by

η(g, h) = gh−1 and set Ξ = η(∆). We denote by R
′
the equivalence

relation on X̄ ′ = ΣA × Ξ given by

R
′
= {((x, g), (x′, g′)) : (x, x′) ∈ R, g = J ψ

+ (x, x′)g′J ψ
− (x, x′)−1}

and denote by ξ̄ : X̄ 7−→ X̄ ′ the map ξ̄(x, g, h) = (x, gh−1). If ν ′

is the counting measure on Ξ and λ′ = µ × ν ′, then ξ̄ : (X̄, µ̄) 7−→
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(X̄ ′, λ′) is a nonsingular map which sends R-equivalence classes to R
′
-

equivalence classes, and Lemma 3.5 implies that λ′ is ergodic under R
′
.

In particular, the equivalence relation R
′∩ ((ΣA×{1G})× (ΣA×{1G}))

induced by R
′
on ΣA × {1G} is ergodic. Since ((x, 1G), (x

′, 1G)) ∈ R
′
if

and only if (x, x′) ∈ SψA = SψA
′
we have proved Theorem 3.3. �

Remark 3.6. As a special case of the fact that the equivalence relation
SψA in (3.13) is unaffected if ψ is replaced by a function of the form ψ′ =

hψ(h·σ)−1 in (3.11) we obtain that SψA is shift-invariant: (σ(x), σ(x′)) ∈
SψA if and only if (x, x′) ∈ SψA. These properties of SψA are particularly
transparent if G is abelian. Define a map J ψ : RA 7−→ G by

J ψ(x, x′) =
∞∏

k=−∞

(ψ(σk(x)ψ(σk(x′)−1) = J ψ
+ (x, x′)J ψ

− (x, x′)−1

(3.18)

for every (x, x′) ∈ RA. Then J ψ is a cocycle, i.e. satisfies the equation

(3.10) with J ψ replacing J ψ
± , and

SψA = {(x, x′) ∈ RA : J ψ(x, x′) = 0}.

As J ψ = J ψ′ whenever ψ, ψ′ : ΣA 7−→ G are related via the equation

(3.11), we obtain once again that SψA = SψA
′
. However, the individual

cocycles J ψ
± are obviously changed if we replace ψ by ψ′.

4. Gibbs measures and subrelations of Gibbs equivalence
relations on one-sided shift spaces

As in the preceding section we assume that A = (A(i, j), 0 ≤ i, j ≤
n − 1) is an irreducible, aperiodic transition matrix with entries in
{0, 1}. We define the one-sided SFT Σ+

A and the Gibbs relation R+
A as

in Example 2.2 and write σ = σ+
A for the one-sided shift

σ(x)k = xk+1

on Σ+
A. If φ : Σ+

A 7−→ R is a continuous map we define ωk(φ), k ≥ 0,
as in the two-sided case and say that φ has summable variation if∑

k≥0 ωk(φ) <∞. A probability measure µ on Σ+
A is a Gibbs measure

of a continuous map φ : ΣA 7−→ R if µ is quasi-invariant under R+
A and

log ρµ(x, x
′) =

∑
k≥0

(φσk(x)− φσk(x′)) (4.1)

for every (x, x′) ∈ R+
A (cf. (3.4); in the one-sided case this definition

makes sense even if φ does not have summable variation). The same

argument as in Theorem 3.1 shows that the set Mφ
1 (Σ+

A) ⊂M1(Σ
+
A) of
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Gibbs measures of φ is nonempty, weak∗-closed, and convex. Further-
more, since every function φ : Σ+

A 7−→ R with summable variation can
be viewed as a function on ΣA which again has summable variation,
Mφ

1 (Σ+
A) contains a single measure µφ which is ergodic under the Gibbs

relation R+
A. In contrast to the two-sided case the measure µφ need not

be shift-invariant, although Theorem 3.1 guarantees that it is equival-
ent to a shift-invariant and exact probability measure µ̄φ on Σ+

A. For
example if P = (P (i, j), 0 ≤ i, j ≤ n− 1) is a stochastic matrix which
is compatible with A in the sense of Section 3, and if p̄ is the unique
probability vector satisfying p̄P = p̄ and p(i) = 1/n for i = 0, . . . , n−1,
then

µlogP (C) = p(v0)P (v0, v1) · · ·P (vl−1, vl) (4.2)

for every cylinder set

C = [v0, . . . , vl]m = {x = (xk) ∈ Σ+
A : xm+i = vi for i = 0, . . . , l},

whereas the shift-invariant measure µ̄logP , given by

µ̄logP (C) = p̄(v0)P (v0, v1) · · ·P (vk−1, xk), (4.3)

is the Gibbs measure of the function φ(x) = logP (x0, x1) + log p̄(x0)−
log p̄(x1) (cf. [40]). [The reason for the difference between the one- and
two-sided cases is the following. If φ is changed to a cohomologous
function, the Radon-Nikodym derivative of the two-sided measure un-
der the finite coordinate changes is unaffected, but this is no longer true
in the one-sided case. The uniqueness in the one-sided case is proved
exactly as in the two-sided case; however, since the Radon-Nikodym
derivative changes on the one-sided shift if φ is changed by a cohomo-
logous function, the one-sided measure changes as well. The condition
of shift-invariance in the one-sided case singles out a particular element
in the cohomology class of φ.] For easier reference we summarize this
discussion in a theorem.

Theorem 4.1. Let A = (A(i, j), 0 ≤ i, j ≤ n − 1) be an irreducible,
aperiodic 0-1-matrix, Σ+

A the associated one-sided shift of finite type,
and R+

A the Gibbs relation of Σ+
A. If φ : Σ+

A 7−→ R is a function with
summable variation, then there exists a unique Gibbs measure µφ of φ
which is ergodic under RA. Furthermore, µφ is equivalent to a probab-
ility measure µ̄φ which is invariant, ergodic and exact under the shift
σ on Σ+

A.

Remark 4.2. According to [57], the measure µ̄φ is actually Bernoulli
for the shift σ.
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We encounter a similar phenomenon when dealing with cocycle-
generated subrelations of the Gibbs relation R+

A on the one-sided SFT
Σ+
A. Fix a function φ : Σ+

A 7−→ R with summable variation, denote by
µφ the Gibbs measure of φ, and consider a continuous map ψ : Σ+

A 7−→
G, where G is a countable, discrete group with finite conjugacy classes.
We define a cocycle J ψ

+ by the first equation in (3.9) and put

Sψ+
A = {(x, x′) ∈ R+

A : J ψ
+ (x, x′) = 1G}, (4.4)

where 1G is the identity element in G. In contrast to the situation
described in Remark 3.6, the equivalence relation Sψ+

A is changed if
ψ is replaced by a function ψ′ = hψ(h · σ)−1, where h : Σ+

A 7−→ G is
continuous. In particular, if h̄ : Σ+

A 7−→ G is the function defined in
(3.14) and ψ̄ : Σ+

A 7−→ G is given by (3.15), then essentially the same
proof as that of Theorem 3.3 yields the following result.

Theorem 4.3. Let φ : Σ+
A 7−→ R be a function with summable vari-

ation, and let G be a countable, discrete group with finite conjugacy
classes. For every continuous map ψ : Σ+

A 7−→ G there exists a continu-
ous map h : Σ+

A 7−→ G such that the Gibbs measure µφ is ergodic under

the equivalence relation Sψ
′+

A defined by (4.4) with

ψ′ = hψ(h · σ)−1

replacing ψ.
The measure µφ is ergodic under the original relation Sψ+

A if and only

if Sψ+
A is topologically transitive.

Proof. The proof of Theorem 3.3 shows that the first assertion is a
consequence of Lemma 3.5. The topological transitivity of Sψ+

A is ob-

viously necessary for the ergodicity of µφ under Sψ+
A , since every open

subset of ΣA has positive µφ-measure. In order to see that topological
transitivity is also sufficient for ergodicity we observe that there ex-
ists a finite partition O1, . . . ,Om of Σ+

A into closed and open subsets
on each of which the continuous map h : Σ+

A 7−→ G is constant, and

that Sψ
′+

A ∩ (Oi ×Oi) = Sψ+
A ∩ (Oi ×Oi) for i = 1, . . . ,m (cf. (3.12)).

The ergodicity of µφ under Sψ
′+

A guarantees that the restriction of µ to

Oi is ergodic under Sψ+
A ∩ (Oi × Oi), and the topological transitivity

of Sψ+
A implies that Sψ+

A (Oi) is a dense, open subset of Σ+
A for every

i = 1, . . . ,m (note that there exists a countable group G of homeo-

morphisms of Σ+
A with Sψ+

A = Gx = {gx : g ∈ G} for every x ∈ ΣA).

In particular, Sψ+
A (O1) meets each Oi in a set of positive measure, so

that Sψ+
A is ergodic. �
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Remark 4.4. Assume for simplicity that ψ is a function of the two
variables (x0, x1), and call two symbols a, b ∈ {0, . . . , n− 1} equivalent
if there exist allowed strings s, t of equal length and a symbol i ∈ Z/nZ
such that the strings asi and bti are allowed and are permutations of
each other. Then it is easy to see that Sψ+

A is topologically transitive
if and only if all symbols in Z/nZ are equivalent (cf. [7, 8]). Thus

ergodicity of µφ under Sψ+
A depends only on A, and not on φ or ψ.

Remark 4.5. The results in sections 3–4 are largely unaffected if we
drop the assumption of aperiodicity of A. If A is irreducible, but no
longer aperiodic, then the alphabet {0, . . . , n−1} decomposes into peri-
odic components C0, . . . , Cm−1, m ≥ 2, such that xi+k ∈ Cj+k (mod m)

whenever x = (xk) ∈ ΣA, xi ∈ Cj, and k ∈ Z. If Xj = {x ∈ ΣA :
x0 ∈ Cj}, j = 0, . . . ,m − 1, then each Xj is invariant under σm, and
a standard recoding argument allows us to regard Xj as an irreducible
and aperiodic SFT with regards to the shift σm. By applying Theorem
3.1 to each Xj we see that there exists, for every function φ : ΣA 7−→ R
with summable variation, and for every j = 0, . . . ,m − 1, a unique

Gibbs probability measure µ
(j)
φ for φ on Xj. In particular, there is no

longer a unique probability measure on ΣA satisfying (3.4).

The orbit-average of the Gibbs measure µ
(0)
φ , say, under σ is the

unique shift-invariant Gibbs measure µφ of φ on ΣA (it coincides,

of course, with the orbit-averages of the other measures µ
(j)
φ , j =

1, . . . ,m − 1). If we define the Gibbs relation RA exactly as in the
aperiodic case, then RA(Xj) = Xj, and the analogue of Theorem 3.3

holds for each of the measures µ
(j)
φ on Xj. However, µφ will no longer

be SψA-invariant for any ψ. Similarly one obtains the corresponding
statements on one-sided SFT’s.

5. Examples

Throughout this section we assume that A = (A(i, j), 0 ≤ i, j ≤
n− 1) is an irreducible and aperiodic 0-1-matrix, write ΣA ⊂ (Z/nZ)Z

and Σ+
A ⊂ (Z/nZ)N for the two- and one-sided SFT’s defined by A, and

denote by RA and R+
A the Gibbs relations on ΣA and Σ+

A.

Example 5.1. Invariant measures for equivalence relations. Let φ : ΣA

7−→ R be a continuous map which takes only finitely many values, and
let G ⊂ R be the countable subgroup generated by the values of φ,
furnished with the discrete topology. We put ψ = φ : ΣA 7−→ G and
apply Theorem 3.3 to obtain that the Gibbs measure µφ is ergodic, and

obviously invariant, under the equivalence relation SψA ⊂ RA. Note that
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the full group [SψA] satisfies that

[SψA] = {W ∈ [RA] : W preserves µφ}.

One special case of this construction is obtained by taking a stochas-
tic matrix P = (P (i, j), 0 ≤ i, j ≤ n − 1) compatible with A and set-
ting φ(x) = logP (x0, x1) for every x ∈ ΣA. As noted in the discussion
preceding Theorem 3.1, in this case µφ is the shift-invariant Markov
probability measure determined by P . (So every Markov measure is a
µφ in this way.)

Another special case arises from φ = ψ = constant. Then µφ is the
unique measure of maximal entropy on ΣA. In the one-sided case, it is
equivalent to the unique invariant measure for the stationary adic on
Σ+
A.

Example 5.2. Failure of ergodicity. In order to illustrate Theorem 4.1
and Remark 4.4, consider the one-sided two-shift Σ+

A = (Z/2Z)N and
the map ψ : Σ+

A 7−→ Z defined by

ψ(x) = x0 − x1

for every x = (xk) ∈ Σ+
A. Then

J ψ
+ (x, x′) = x0 − x′0

for every (x, x′) ∈ R+
A (cf. (3.9)), and the relation Sψ+

A is obviously not
topologically transitive. In particular, if φ : Σ+

A 7−→ R is a function
with summable variation, then the Gibbs measure µφ is nonergodic

under Sψ+
A .

Example 5.3. Ergodicity of Gibbs measures on one-sided SFT’s under
finite permutations. Suppose that S+

A ⊂ R+
A is the equivalence relation

in which two points x = (xk), x
′ = (x′k) in Σ+

A are equivalent if and only
if the coordinates xk, k ≥ 0, and x′k, k ≥ 0, are finite permutations of
each other (cf. Examples 2.1–2.2). If ψ0 : Σ+

A 7−→ ZZ/nZ is the map
defined by

ψ0(x) = e(x0)

for every x = (xk) ∈ Σ+
A, where e(0) = (1, 0, . . . , 0), . . . , e(n−1) =

(0, . . . , 0, 1) are the unit vectors in ZZ/nZ ∼= Zn, then it is clear that

S+
A = Sψ0+

A .
If

A = ( 1 1
1 1 ) ,
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then S+
A is obviously topologically transitive, since the strings 010 and

100 are allowed and permutations of each other (cf. Remark 4.4). How-
ever, if

A =
(

1 1 0
0 0 1
1 1 0

)
,

then S+
A is not topologically transitive. Indeed, if s = s0s1 . . . sm is any

cycle (i.e. any allowed string with s0 = sm), then the numbers of 1’s
and 2’s among the entries s0, . . . , sm−1 must be equal. In particular,
if the symbols 1 and 2 were equivalent in the sense of Remark 4.4,
we could find allowed strings s and t of equal length and a symbol
i ∈ {0, 1, 2} such that 1si and 2ti are allowed and permutations of
each other. We may obviously assume that i = 1; then the number
of 1’s in 1s1 exceeds the number of 2’s by 1, whereas the number of
1’s and 2’s in 2t1 is equal. This shows that 1s1 and 2t1 cannot be
permutations of each other, so that 1 and 2 are not equivalent and Sψ+

A

is not topologically transitive (cf. Theorem 4.3 and Remark 4.4).
If φ : Σ+

A 7−→ R is a function with summable variation, then the
Gibbs measure µφ on Σ+

A is ergodic under S+
A only if S+

A is topologically
transitive (Theorem 4.3). All these statements have, of course, obvious
translations into properties of the adic transformations T ∗A on Σ+

A and
TYA

on YA (cf. Example 2.2).

Example 5.4. Exchangeability and partial exchangeability. The preced-
ing example is a special case of a general problem: given some group
of symmetries of a one- or two-sided SFT, what are the Gibbs meas-
ures which are invariant (or symmetric) under this group of symmet-
ries? The most elementary examples of such symmetry groups are the
group of all finite permutations of the coordinates xk, k ≥ 0, and the
group of all finite permutations of the transitions [xk, xk+1] of the points
x = (xk) in ΣA. We have met the first of these groups in the context
of adic transformations in the Examples 2.1–2.2 and in Section 2, and
our analysis of them depends on the fact that they generate the orbits
(= equivalence classes) of certain subrelations of RA and R+

A defined
by cocycles. In order to describe these cocycles we consider the group
Gl+1 = Z{0,...,n−1}l+1

, denote by e(i0,...,il) ∈ Z(Z/nZ)l+1
the unit vector

e
(i0,...,il)
(j0,...,jl)

=

{
1 if (i0, . . . , il) = (j0, . . . , jl),

0 otherwise,

and observe that the orbits of the group of all permutations of the l-fold
transitions [xk, . . . , xk+l], k ≥ 0, of the points in ΣA and Σ+

A are the

equivalence classes of the relations Sψl

A and Sψl+
A , where ψl is defined
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by

ψl(x) = e(x0,...,xl) ∈ Gl+1

for every x in ΣA or Σ+
A.

Theorem 3.3 shows, for a two-sided SFT ΣA, the invariance and er-
godicity of every fully supported Markov measure under the group
of all finite permutations of the l-fold transitions described above.
Conversely, Theorem 6.2 implies that every shift-invariant probabil-
ity measure on ΣA which is invariant and ergodic under the group of
finite permutations of the l-fold transitions must be an l-step Markov
measure (where we are referring to the Bernoulli measures as zero-step
Markov measures).

These results carry over to the one-sided case with the precaution
described in Remarks 4.4 and 4.5 and Examples 5.1 and 5.3. The adic
version of the statement of ergodicity and invariance of Markov meas-
ures under the groups of all finite permutations of the l-fold transitions
is the Hewitt-Savage 0-1-Law as extended to Markov chains by Diaconis
and Freedman [7].

Example 5.5. Derangement-equivalent sequences. In all the examples
so far the group G has been abelian. An elementary example where
G is nonabelian is obtained by setting G equal to the group Sn of
permutations of the symbols Z/nZ, and by putting

ψ(x) = (x0x1)

for every x = (xk) ∈ ΣA, where (ij) ∈ Sn is the transposition of i
and j. Since Sn is finite, Theorem 3.3 implies that, for every func-
tion φ : ΣA 7−→ R with summable variation, the Gibbs measure µφ ∈
M1(ΣA) is ergodic under the relation S = SψA. In Examples 5.3 and
5.4, two sequences are equivalent if they eventually accumulate the
same symbol counts (or perhaps the same transition counts). Here two
sequences are equivalent if they eventually accumulate the same de-
rangement effects, when their symbols act as permutations on a fixed
set of n letters.

The equivalence relation S defined here is not comparable with the
relation Sψ1

A arising from the finite permutations of the transitions
[xk, xk+1] appearing in the Examples 5.3–5.4. However, since every fi-
nite Cartesian product of groups with finite conjugacy classes is again
a group with finite conjugacy classes, Theorem 3.3 guarantees the fol-
lowing: if φ : ΣA 7−→ R is a function with summable variation and
ψ(i) : ΣA 7−→ G(i) are continuous maps taking values in countable, dis-
crete groups with finite conjugacy classes G(i), i = 1, . . . , l, then the

Gibbs measure µφ is ergodic under the equivalence relation
⋂l
i=1 S

ψ(i)

A .
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In particular, µφ is ergodic under Sψ1

A ∩S, the relation that keeps track
of both accumulated symbol accounts and accumulated derangement
effects.

As a concrete example, consider the case where n = 4 and

A =

(
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1

)
,

so that ΣA = Σ4 is the full 4-shift. The points

. . . x−10123020x7 . . . , . . . x−10230120x7 . . .

are Sψ1

A -equivalent, but S-inequivalent, whereas the points

. . . x−1010x3 . . . , . . . x−1000x3 . . .

are S-equivalent, but Sψ1

A -inequivalent.

6. Symmetric Measures on SFT’s

We continue to let A = (A(i, j), 0 ≤ i, j ≤ n − 1) be an irreducible
and aperiodic 0-1-matrix, ΣA and Σ+

A the associated two- and one-sided
SFT’s, and SA ⊂ RA the equivalence relation generated by the finite
coordinate permutations (cf. Example 2.2). As is well known, the only
probability measure µ on ΣA which is invariant under the Gibbs relation
RA is the measure of maximal entropy. However, if R ⊂ RA is a proper
subrelation, the picture changes considerably. For example, if ΣA is
a full shift, then de Finetti’s theorem states that the (shift-invariant)
Bernoulli measures are precisely the SA-invariant measures. If A is ar-
bitrary (but still irreducible and aperiodic), and if φ : ΣA 7−→ R is a
function depending on the single coordinate x0, then the equation (3.4)
shows that the Gibbs measure µφ ∈M1(ΣA) is invariant under SA, and
the ergodicity of µφ follows from Theorem 3.3. In Theorem 2.11 we
saw that for the golden mean shift ΣA, every SA-invariant probability
measure on Σ+

A was the Gibbs measure of a function of a single variable.
In this section we extend the statement to arbitrary SFT’s by showing
that every shift- and SA-invariant probability measure on ΣA is the
Gibbs measure for a potential function that depends on just one co-
ordinate. Very closely related results have been obtained previously by
Georgii [13] and Diaconis and Freedman [7]. By an obvious extension

to m-step SFT’s, every shift- and Sψm

A -invariant probability measure µ
is the Gibbs measure of a function depending on the m + 1 variables
x0, . . . , xm.
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We write πN : ΣA 7−→ Σ+
A for the projection onto the nonnegative

coordinates and observe that, in the notation of Example 2.2,

n−1⋃
i=0

S+
A ∩ ([i]0 × [i]0) ⊂ S = (πN × πN)(SA) ⊂ R+

A. (6.1)

Lemma 6.1. Let µ be a nonatomic, shift-invariant probability measure
on ΣA which is invariant and ergodic under SA. Then the projection
µ+ = µπ−1

N of µ onto Σ+
A is quasi-invariant and ergodic under S =

(πN×πN)(SA). Furthermore, the restriction of µ+ to the set [i]0 = {x ∈
Σ+
A : x0 = i} is invariant and ergodic under the relation S+

A ∩([i]0× [i]0)
for every i ∈ {0, . . . , n− 1} with µ+([i]0) > 0.

Proof. The quasi-invariance and ergodicity of µ+ under S are obvious
from (6.1) and the definition of µ+. Suppose that µ+([i]0) > 0, and
that there exist disjoint Borel sets B1, B2 ⊂ [i]0 with positive measure,
each of which is saturated under S+

A ∩ ([i]0 × [i]0). The ergodicity of
µ+ under S implies that there exists a homeomorphism V ∈ [S] with
µ+(V B1 ∩ B2) > 0. In particular we can find a j ∈ {0, . . . , n− 1} and

allowed strings s(1) = is
(1)
1 . . . s

(1)
m−1j, s

(2) = is
(2)
1 . . . s

(2)
m−1j, such that

V ([s(1)]0) = [s(2)]0 and the sets

Cl = Bl ∩ [s(l)]0, l = 1, 2,

have positive measure. We put s
(l)
0 = i, s

(l)
m = j for l = 1, 2 and define,

for every p ≥ 0, V (p) ∈ [RA] by

(V (p)x)k =


s
(2)
k−p if σp(x) ∈ C1 and p ≤ k ≤ p+m,

s
(1)
k−p if σp(x) ∈ C2 and p ≤ k ≤ p+m,

xk if k < p, k > p+m, or σp(x) /∈ (C1 ∪ C2).

In other words, V (p) checks for each x ∈ Σ+
A whether either of the

strings s(0), s(1) occurs at the positions p, . . . , p + m; if one of these
strings occurs, then it replaces it by the other one, and if neither occurs,
then the point is left unchanged. The measure µ+ is quasi-invariant
under each of the maps V (p), and the shift-invariance of µ+ guarantees
that the sequence of Radon-Nikodym derivatives (dµ+V (p)/dµ+, p ≥ 0)
is uniformly integrable. By approximating Ci by closed and open sets
and using uniform integrability we see that

lim
p→∞

µ+(C
(p)
l ) = µ+(Cl)

for l = 1, 2, where

C
(p)
l = Cl ∩ V (p)Cl.
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The ergodicity of µ+ under S implies that µ+ is exact and hence
mixing under the shift σ on Σ+

A, so that

lim
p→∞

µ+(Cl ∩ [s(k)]p) = µ+(Cl)µ
+([s(k)]0)

for every k, l ∈ {0, 1}. Hence

lim
p→∞

µ+(C
(p)
l ∩ [s(k)]p) = µ+(Cl)µ

+([s(k)]0)

for every k, l ∈ {0, 1}, and by setting

W (p)x =

{
V (0)V (p)x for x ∈ (C

(p)
1 ∩ [i(2)]p) ∪ (C

(p)
2 ∩ [i(1)]p)

x otherwise

for every p > m we have constructed a sequence of maps in [S+
A ] with

lim
p→∞

µ+(C2 ∩W (p)C1) = µ+(C2)µ
+([s(2)]0) > 0.

This violates the invariance of B1 and B2 under S+
A ∩ ([i]0 × [i]0), and

we conclude that the restriction of µ+ to [i]0 is ergodic under S+
A ∩

([i]0 × [i]0). �

With this lemma at hand we can characterize the set of all shift-
invariant measures on ΣA which are invariant and ergodic under SA.
Any 1-step (irreducible aperiodic) SA-invariant SFT inside ΣA with a
potential function on it depending on only a single coordinate determ-
ines such a measure, and we will show that they all arise in this way. In
the following theorem we denote by ΣA′ ⊂ ΣA an irreducible and aperi-
odic subshift defined by a 0-1-matrix A′ = (A′(i, j), 0 ≤ i, j ≤ n − 1)
with A′(i, j) ≤ A(i, j) for every (i, j) ∈ {0, . . . , n− 1}2. The matrix A′

may have some zero rows and columns; however, the irreducibility of
ΣA′ allows us to permute the alphabet {0, . . . , n − 1} of ΣA, if neces-
sary, and to assume that there exists an integer n′ ∈ {1, . . . , n−1} such
that the first n′ rows and columns of A are nonzero and the remaining
ones zero, and to regard ΣA′ as a (irreducible and aperiodic) subshift
of {0, . . . , n′− 1}Z. Any probability measure µ on ΣA with µ(ΣA′) = 1
will also be regarded as a probability measure on the SFT ΣA′ ⊂ ΣA,
and vice versa.

Theorem 6.2. Let µ be a nonatomic shift-invariant probability meas-
ure on ΣA which is invariant and ergodic under SA. Then there exists
an irreducible, aperiodic and SA-invariant SFT ΣA′ ⊂ ΣA and a func-
tion φ : ΣA′ → R depending on the single coordinate x0 of every point
x ∈ ΣA′ such that µ is the unique (Markov) Gibbs measure of φ on ΣA′.
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Conversely, if ΣA′ ⊂ ΣA is an irreducible, aperiodic and SA-invariant
SFT and φ : ΣA′ 7−→ R is a function of a single coordinate, then the
(Markov) Gibbs measure µφ is invariant and ergodic under SA.

Proof. First we construct an irreducible and aperiodic SFT ΣA′ ⊂ ΣA

with µ(ΣA′) = 1, such that µ is the Gibbs measure of a function
φ : ΣA′ 7−→ R of only two coordinates.

Let T ⊂ BΣA
be a countably generated sigma-algebra, and let D be

a countable generator of T . We write {[x]T : x ∈ ΣA} for the space
of atoms of T , where [x]T =

⋂
x∈D∈DD for every x ∈ ΣA, and denote

by {µTx : x ∈ ΣA} a regular decomposition of µ over T , i.e. a family of
Borel probability measures on ΣA with the following properties:

(a) µx([x]T ) = 1 for every x ∈ ΣA,
(b) the map x 7→ µTx (B) from ΣA to R is T -measurable for every

Borel set B ⊂ ΣA, and

µTx (B) = Eµ(1B|T )(x) µ-a.e.

In view of (b) we may also assume without loss in generality that

(c) µTx′ = µTx for every x ∈ ΣA and x′ ∈ [x]T .

Let P0 = {[0]0, . . . , [n − 1]0} be the state (time-0) partition of ΣA,
and let A =

∨
k≥0 σ

−k(P0) ⊂ BΣA
be the sigma-algebra generated

by all cylinder sets of the form C = [i0, . . . , im]0, where m ≥ 0 and
(i0, . . . , im) ∈ {0, . . . , n − 1}m+1. Then A− = σ−1(A) ⊂ A, and the
atoms of A and A− are of the form

[x]A = {x′ ∈ ΣA : x′k = xk for k ≥ 0},
[x]A− = {x′ ∈ ΣA : x′k = xk for k ≥ 1}

for every x ∈ ΣA. The conditional information function Iµ(A|A−) is
given by

Iµ(A|A−)(x) = − logEµ(1[x0]|A−)(x) = − log µA
−

x ([x]A)

= log
dµAx

dµ
σ−1(A)
x

(x) (6.2)

for every x ∈ ΣA (cf. (3.11) in [6]). The map

J = e−Iµ(A|A−) : ΣA 7−→ [0, 1] ⊂ R (6.3)

is obviously A-measurable, and we claim that it is a function of the
coordinates x0, x1 of every point x ∈ ΣA.

In order to prove this claim we assume that s = s0 . . . sm and s′ =
s′0 . . . s

′
m are allowed strings with s0 = s′0, s1 = s′1 and sm = s′m, and
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such that the entries in s and s′ are permutations of each other, and
consider the map V ∈ [SA] which interchanges s and s′, i.e.

(V x)k =


s′k if x ∈ [s]0 and 0 ≤ k ≤ m,

sk if x ∈ [s′]0 and 0 ≤ k ≤ m,

xk if x /∈ ([s]0 ∪ [s′]0) or k > m

for every x ∈ ΣA. Then V (A) = A, V (A−) = A−, and (6.2)–(6.3)
show that

J(x) = J(V x)

for every x ∈ ΣA. The A-measurability of J allows us to view it as a
map J : Σ+

A 7−→ R, and the argument in the preceding paragraph shows
that this map is invariant under the subrelation of S+

A consisting of all
(x, x′) ∈ S+

A with x0 = x′0 and x1 = x′1. According to Lemma 6.1 this
implies that J is constant µ+-a.e. on each cylinder set [i0, i1]0 ⊂ Σ+

A,
where µ+ is the projection of µ onto Σ+

A, and thus a function of the
coordinates x0, x1. This also proves our claim for the original map
J : ΣA 7−→ R.

Define a 0-1-matrix A′ = (A′(i, j), 0 ≤ i, j ≤ n− 1) by setting (with
the understanding that 00 = 0)

A′(i, j) =

{
J(x0, x1)

0 ∈ {0, 1} if x ∈ [i, j]0 ⊂ Σ+
A,

0 if [i, j]0 = ∅
.

Clearly A′(i, j) ≤ A(i, j) for every (i, j) ∈ {0, . . . , n − 1}. We claim
that the SFT ΣA′ ⊂ ΣA defined by A′ has the following properties:

(d) ΣA′ is equal to the (closed) support of µ;
(e) if R+

A′ is the Gibbs relation of the one-sided SFT Σ+
A′ , then

dµ+(x)

dµ+(y)
=
∏
k≥0

J(σk(x))

J(σk(y))

for every (x, y) ∈ R+
A′ ;

(f) if RA′ is the Gibbs relation of Σ+
A′ , then

dµ+(x)

dµ+(y)
=
∏
k≥0

J(σk(x))

J(σk(y))

for every (x, y) ∈ RA′ ;
(g) SA(ΣA′) = ΣA′ .

Indeed, (e) is an immediate consequence of the definition of J in terms
of conditional measures, (f) follows from (e) and the shift-invariance
of µ, (d) follows from the fact that µ is the Gibbs measure of log J on
ΣA′ , and (g) is a consequence of this as well as the SA-invariance of µ.
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Since µ is shift-invariant and SA-ergodic, Remark 4.5 shows that the
matrix A′ is aperiodic.

Next we prove that the one-sided measure µ+ is equivalent to an
S+
A -invariant measure ν+.
Renumber the symbols 0, . . . , n − 1 of A, if necessary, choose an

integer n′ ∈ {1, . . . , n − 1} such that first n′ rows and columns of A′

are nonzero and the remaining ones zero, and view S = {0, . . . , n′− 1}
as the alphabet of ΣA′ ⊂ ΣA ∩ SZ ⊂ {0, . . . , n − 1}Z. Put P (i, j) =
J(x0, x1) whenever x = (xk) ∈ ΣA′ satisfies that x0 = i, x1 = j. As µ
is invariant under SA, the conditions (f) and (g) above show that

dµ(x)

dµ(y)
=
∏
k∈Z

P (xk, xk+1)

P (yk, yk+1)
= 1 (6.4)

whenever (x, y) ∈ SA′ = SA∩(ΣA′×ΣA′). We set S+
A′ = S+

A∩(ΣA′×ΣA′)
and define the S+

A′-equivalence classes of symbols of Σ+
A′ ⊂ {0, . . . , n′−

1}N as in Remark 4.4. For each such equivalence class C ⊂ {0, . . . , n′−
1} choose and fix a symbol iC ∈ C. Given any x ∈ Σ+

A′ , find the
equivalence class C with x0 ∈ C, choose y ∈ S+

A′(x) with y0 = iC and
set

b(x) =
dµ+(x)

dµ+(y)
.

Then (from (6.4)) b(x) is well-defined, i.e. independent of the choice of
y, and only depends on the coordinate x0 of x. For any (x, y) ∈ S+

A′ ,

dµ+(x)

dµ+(y)
=
b(x)

b(y)
.

Let ν+ be the unique probability measure on Σ+
A′ which is a constant

multiple of b−1µ+. Then ν+ is Markov,

dν+(x)

dν+(y)
=
b(y)

b(x)

∏
k≥0

P (xk, xk+1)

P (yk, yk+1)

for all (x, y) ∈ R+
A′ , and ν+ is invariant under S+

A′ (which is equivalent
to saying that ν+, regarded as a probability measure on Σ+

A, is invariant
under S+

A ).
Finally we show that µ can also be written as the Gibbs measure of

a function of a single coordinate on ΣA′ ⊂ {0, . . . , n′ − 1}Z.
Regard b as a function on the alphabet {0, . . . , n′ − 1} of ΣA′ by

setting b(i) = b(x) whenever x0 = i, i = 0, . . . , n′−1, and put P̄ (i, j) =
b(i)−1P (i, j)b(j) for every (i, j) ∈ {0, . . . , n′ − 1}2 with A′(i, j) = 1.
We claim that P̄ (i, j) = P̄ (i, j′) whenever A′(i, j) = A′(i, j′) = 1 (or,
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equivalently, whenever µ([ij]0)µ([ij′]0) > 0). As we have seen above,

dν+(x)

dν+(y)
=
∏
k≥0

P̄ (xk, xk+1)

P̄ (yk, yk+1)

for every (x, y) ∈ R+
A′ . Given A′-allowable 2-blocks ij and ij′, Lemma

6.1 implies that there exists a pair (x, y) ∈ S+
A′ ∩ ([ij]0 × [ij′]0) =

S+
A ∩ (Σ+

A′ × Σ+
A′) ∩ ([ij]0 × [ij′]0). As ν+ is S+

A -invariant,

dν+(x)

dν+(y)
=
∏
k≥0

P̄ (xk, xk+1)

P̄ (yk, yk+1)
= 1.

However, the pair (σ(x), σ(y)) also lies in S+
A′ = S+

A ∩ (Σ+
A′×Σ+

A′), since
x0 = y0, so that

dν+(σ(x))

dν+(σ(y))
=
∏
k≥1

P̄ (xk, xk+1)

P̄ (yk, yk+1)
= 1.

By comparing the last two equations we have established that P̄ (i, j) =
P̄ (i, j′), which proves our claim.

Let φ : {0, . . . , n′ − 1} 7−→ R be the map satisfying that

φ(x0) = log P̄ (x0, x1) = −Iµ(x0, x1)− log b(x0) + log b(x1)

for every x ∈ ΣA′ . From condition (f) above we know that

ρµ(x, y) =
∑
k∈Z

(φ(xk)− φ(yk))

for every (x, y) ∈ RA′ . In other words, µ is the unique Gibbs measure
of φ on ΣA′ .

This completes the proof of the first part of the theorem, and the
converse assertion is obvious from (3.4), the definition of SA and The-
orem 3.3. �

Remark 6.3. If µ is atomic, invariant and ergodic under SA, then µ has
to be concentrated on a fixed point.

Example 6.4. Symmetric measures on the Golden Mean SFT. If A =
( 1 1

1 0 ), then Theorem 2.11 describes all the S+
A -invariant probability

measures on ΣA. In interpreting this statement in the two-sided case
one has to be a little careful (cf. (6.1)): the two points . . . 01010101010 . . .
of period two are both fixed under SA; therefore each of them carries
an SA-invariant probability measure which is not shift-invariant. How-
ever, every nonatomic SA-invariant and ergodic probability measure on
ΣA is also shift-invariant.
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Example 6.5. A nonatomic, symmetric but not shift-invariant measure
on an SFT. If

A =
(

1 1 0
1 1 1
0 1 1

)
,

then the point . . . 000012222 . . . is fixed under SA, but not under the
shift, and carries an atomic, SA-invariant probability measure which is
not shift-invariant, and whose orbit under the shift is infinite. In order
to obtain a nonatomic example we set

A =

(
1 1 1 0 0
1 1 1 0 0
1 1 1 1 1
0 0 1 1 1
0 0 1 1 1

)
and consider the unique SA-invariant probability measure on the set
{x = (xk) ∈ ΣA : x0 = 2 and x−k ∈ {0, 1}, xk ∈ {3, 4} for every k >
0}.

Example 6.6. An irreducible, aperiodic, SA-invariant SFT ΣA′ ⊂ ΣA

which is not determined by its alphabet. Let

A =
(

1 1 1
0 0 1
1 0 0

)
, A′ =

(
1 1 0
0 0 1
1 0 0

)
.

Then ΣA′ has the same alphabet as ΣA and is irreducible, aperiodic
and SA-invariant. This example shows that the irreducible, aperiodic
and SA-invariant SFT’s ΣA′ ⊂ ΣA which arise in Theorem 6.2 are not
necessarily of the form ΣA ∩ SZ for some subset S ⊂ {0, . . . , n− 1}.

7. Questions and Remarks

7.1. Weak mixing. As in Section 1 we let V = (Vk, k ≥ 0) be a
sequence of nonempty, finite, totally ordered sets, put XV =

∏
k≥0 Vk,

assume that Y ⊂ XV is a nonempty, closed subset satisfying (M),
write TY for the adic transformation of Y , and define the m-weights
wm(y), y ∈ Y , by (2.13). In the case of a full shift with an adic-
invariant measure, TY has an eigenfunction with eigenvalue ζ only if
ζwm(y) → 1 µ-a.e. How general is this statement?

Conditions for existence of eigenfunctions in the stationary case were
developed in [33] and [50]. We conjecture that even in the measure-
preserving Bernoulli case on the full 2-shift the adic transformation TY
is weakly mixing: ζwm(y) → 1 µ-a.e. implies that ζ = 1. It is not
difficult to see that TY is topologically weakly mixing. Also, because of
the self-similar structure of Pascal’s triangle modulo a prime [29, 35],
TY cannot have an eigenvalue (other than 1) that is a root of unity. If
ζ is not a root of unity, perhaps ζwm(y) is even almost surely uniformly
distributed in the unit circle, or at least dense. Conceivably, it is not
convergent to 1 down every path inside Pascal’s triangle. Consider the
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skew product transformation T (z1, z2, z3, . . . ) = (ζz1, z1z2, z2z3, . . . ) on
the infinite torus. For ζ not a root of unity, it is well known that
this is uniquely ergodic, and so, as we look at any fixed coordinate in
the successive members of the orbit of any point, we see a uniformly
distributed sequence. If we flip a coin with probabilities α and 1 − α
of heads and tails, and each time the coin comes up heads we shift our
view one coordinate to the right, will we still see, with probability 1, a
uniformly distributed, dense, or at least not convergent to 1 sequence?

7.2. Super-K. Let us say that a finite-state process (P , T ), where T
is a measure-preserving or nonsingular transformation on a probability
space (X,µ) and P is a finite measurable partition ofX, is (one- or two-
sided) super-K if the associated (dependent, transient) random walk
on P × {0, 1, 2, . . . }|P|, which keeps track not only of which symbol
appears (i.e., which atom of P is entered) at each time n, but also
how many times each symbol has appeared up to time n, has (one- or
two-sided, respectively) trivial tail. We have shown above that certain
processes with Gibbs measures, including all mixing Markov processes,
are two-sided super-K. Are there other natural examples, for example
processes with the right uniform rate of mixing? Does every K-system
have a super-K generator?

7.3. Invariant Measures. In Section 6 we identified the shift- and
SA-invariant measures on subshifts of finite type. More generally, if
ψ is a continuous map on ΣA taking values in an arbitrary countable,
discrete group G with finite conjugacy classes, what can be said about
the set of SψA-invariant measures on ΣA? It is not difficult to check

that, if ψ takes values in a finite group, then the only SψA-invariant
measure is the measure of maximal entropy on ΣA (i.e. the unique RA-
invariant measure). More generally, if G is a countable, discrete group
with finite conjugacy classes and G ′ a finite group, and if ψ : ΣA 7−→ G
and ψ′ : ΣA 7−→ G ′ are continuous maps, we denote by (ψ, ψ′) : ΣA 7−→
G × G ′ the product map and leave it as an exercise to show that the
set of nonatomic, shift-invariant measures which are invariant under

SψA coincides with the corresponding set for S
(ψ,ψ′)
A .

7.4. Asymptotic formulae. Let A = (A(i, j), 0 ≤ i, j ≤ n − 1) be
an irreducible and aperiodic 0-1-matrix, P = (P (i, j), 0 ≤ i, j ≤ n−1)
a stochastic matrix which is compatible with A, and p̄ the probability
vector satisfying p̄P = p̄. By (4.1), the shift-invariant Markov meas-
ure µ̄P in (4.3) is quasi-invariant under the relation SA appearing in
Example 2.2, and is equivalent to the Gibbs measure µlogP (cf. (4.2)).
We define ψ0 : Σ+

A 7−→ ZZ/nZ as in Examples 5.3 and 5.4 and set
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ψ0(0, x) = 0 ∈ ZZ/nZ,

ψ0(m,x) =
m−1∑
k=0

ψ0(σ
k(x)),

[[s]]m = {x ∈ Σ+
A : ψ0(m+ 1, x) = s}

for every m ≥ 1, s ∈ ZZ/nZ and x ∈ ΣA.
The following proposition, which gives necessary and sufficient con-

ditions for a (quasi-invariant) Markov measure to be ergodic for the
symmetric equivalence relation S+

A (equivalently the adic transforma-
tion T ∗

Σ+
A

) on the SFT Σ+
A, should be compared with Theorem 2.5.

Proposition 7.1. The following conditions are equivalent.

(1) The measure µ̄P is ergodic under the adic transformation T ∗
Σ+

A

(or, equivalently, under the relation S+
A );

(2) For every Borel set B ⊂ Σ+
A,

lim
m→∞

µ̄P (B ∩ [[ψ0(m+ 1, x)]]m ∩ [xm]m)

µ̄P ([[ψ0(m+ 1, x)]]m ∩ [xm]m)

lim
m→∞

µ̄P (B ∩ [[ψ0(m+ 1, x)]]m)

µ̄P ([[ψ0(m+ 1, x)]]m)
= µ̄P (B) µ̄P -a.e.;

(3) For every i ∈ {0, . . . n− 1},

lim
m→∞

µ̄P ([i]0 ∩ [[ψ0(m+ 1, x)]]m ∩ [xm]m)

µ̄P ([[ψ0(m,x)]]m ∩ [xm]m)

lim
m→∞

µ̄P ([i]0 ∩ [[ψ0(m+ 1, x)]]m)

µ̄P ([[ψ0(m,x)]]m)
= p̄(i) µ̄P -a.e.

Proof. Put R
(∗,m)

Σ+
A

= {(x, x′) ∈ S+
A : xk = x′k for k ≥ m}, m ≥ 0, write

B(∗,m)

Σ+
A

for the sigma-algebra of R
(∗,m)

Σ+
A

-saturated Borel subsets of Σ+
A,

and set

B∗
Σ+

A
=
⋂
m≥0

B(∗,m)

Σ+
A

.

For every m ≥ 0, R+
A

(∗,m)
is the smallest sigma-algebra with respect to

which the maps ψ0(k, ·), k ≥ m, are measurable.
As we saw in the proof of Theorem 4.3, there exists a finite partition

O1, . . . ,Op of Σ+
A into closed and open subsets such that the restriction

of µ̄P to each Oi is ergodic under R∗
Σ+

A

∩ (Oi×Oi). From the choice of
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the map h̄ in (3.14) and Remark 4.4 it is furthermore clear that each
of the sets Oi can be chosen as

Oi =
⋃
j∈Fi

[j]0,

where F1, . . . , Fp is the partition of the alphabet Z/nZ into R∗
Σ+

A

-equiva-

lence classes of symbols, and that

B∗
Σ+

A
= {O1, . . . ,Op} (mod µ̄P ).

If B ⊂ Σ+
A is a Borel set, then the martingale convergence theorem

implies that

lim
m→∞

Eµ̄P
(1B|B(∗,m)

Σ+
A

) = Eµ̄P
(1B|B∗Σ+

A
)

µ̄P -a.e. and in L1(Σ+
A,BΣ+

A
, µ̄P ). In particular, if µ̄P is ergodic, then

lim
m→∞

µ̄P (B ∩ [[ψ0(m+ 1, x)]]m ∩ [xm]m)

µ̄P ([[ψ0(m+ 1, x)]]m ∩ [xm]m)

= lim
m→inf ty

1

µ̄P ([[ψ0(m+ 1, x)]]m ∩ [xm]m)

·
∫
Eµ̄P

(1B|B(∗,m)

Σ+
A

) · 1[[ψ0(m+1,x)]]m∩[xm]m dµ̄P

= µ̄P (B) µ̄P -a.e.,

since [[s]]m ∩ [i]m ∈ B(∗,m)

Σ+
A

for every s ∈ Z{0,,̇sn−1} and i ∈ Z/nZ. The

omission of the terms [xm]m is equivalent to replacing [[ψ0(m+1, x)]]m∩
[xm]m = [[ψ0(m)]]m−1 ∩ [[ψ0(m+ 1, x)]]m by [[ψ0(m+ 1, x)]]m and does
not affect the calculation. This shows that (1) implies (2) and hence
(3).

Conversely, if µ̄P is nonergodic, the description of the sigma-algebra
B∗

Σ+
A

shows that, for every i ∈ Z/nZ, Eµ̄P
(1[i]0|B∗Σ+

A

) = 0 on Σ+
A r Oj,

where

Oj =
⋃
{[i′]0 i′ ∈ {0, . . . , n− 1}is S+

A -equivalent to i}.

It follows that there exists, for every sufficiently large m, a set C ∈
B(∗,m)

Σ+
A

of the form C = [[sm]]m ∩ · · · ∩ [[sm+j]]m+j or, equivalently, of

the form C = [i]m ∩ [[sm+1]]m+1 ∩ · · · ∩ [[sm+j]]m+j, with

µ̄P (1[i]0 ∩ C)

µ̄P (C)
=

1

µ̄P (C)

∫
1C · Eµ̄P

(1[i]0|B
(∗,m)

Σ+
A

) dµ̄P

<
µ̄P ([i]0)

2
=
p̄(i)

2
.
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Since the measure µ̄P is Markov,

µ̄P ([i]0 ∩ C)

µ̄P (C)
=
µ̄P ([i]0 ∩ [[sm]]m ∩ [i]m)

µ̄P ([[sm]]m ∩ [i]m)
.

From the two different ways of writing C it is clear that the terms [xm]m
can be omitted in this calculation. We have proved that (3)—and hence
(2)—cannot hold if µ̄P is nonergodic. �

Proposition 7.1 has combinatorial consequences whose direct proof
appears quite difficult in all but the most elementary cases. Let A =
( 1 1

1 1 ), Σ+
A = Σ+

2 , and let P = ( a bc d ) be a stochastic matrix which is
compatible with A, i.e. which satisfies that abcd > 0. We denote by
µ = µ̄P the shift-invariant probability measure defined in (3.1), where p̄
is the probability vector satisfying p̄P = p̄. Since µ = µ̄P is equivalent
to the Gibbs measure µlogP , Theorem 4.3 and Remark 4.4 implies that
µ is ergodic under S+

2 , so that µ must satisfy the equivalent conditions
(2) and (3) in Proposition 7.1.

For i, j ∈ {0, 1}, m ≥ 1 and s = (s0, s1) with s0 + s1 = m+ 1, let

Qi,j(s) =
µ([i]0 ∩ [[(s]]m ∩ [j]m)

p̄(i)
.

If C = [i0, . . . , im′ ]0 ⊂ Σ+
2 with

∑m′

j=0 ij = s′1, s
′
0 = m′ + 1 − s′1, and

s′ = (s′0, s
′
1), then

µ(C ∩ [[s]]m ∩ [j]m)

µ(C)
= Qim′j(s− s′),

and Proposition 7.1 implies that

lim
m→∞

Qim′xm(ψ0(m+ 1, x)− s′)

Qjm′′xm(ψ0(m+ 1, x)− s′′)
= 1 (7.1)

for µ-a.e. x ∈ Σ+
2 , and for any s′, s′′ ∈ N2. In other words, Proposition

7.1 is a statement about ‘amnesia’ concerning the initial coordinates
of the points x ∈ Σ+

2 . In this special case the quantities Qij(s) can be
determined explicitly (as sums of products of binomial coefficients and
other factors), but the verification of the convergence

lim
m→∞

Qij(s
(m) − s′)

Qi′j(s(m) − s′′)
= 1

in (7.1) for suitable sequences (s(m) = (s
(m)
0 , s

(m)
1 ), m ≥ 1) with s

(m)
i →

∞ for i = 0, 1 looks forbidding.
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7.5. Interval splitting. There should be some consequences for in-
terval splitting of the ergodicity of Markov measures for the Pascal
adic on the full shift. Perhaps if intervals are split in different pro-
portions depending on whether they arose as the left or right half of
a previously-split interval the resulting division points would still be
uniformly distributed. Weak mixing of the Pascal adic might imply
uniform distribution in a rectangle if two intervals are split simultan-
eously.

7.6. Dynamics. What are the joinings of the adic transformation on
the full 2-shift with two different Bernoulli measures? Are these adic
systems disjoint, or at least not isomorphic? A very general problem is
to describe the dynamics of the measures found in our above theorem,
especially in case the equivalence relation Sψ+

A consists of the orbit
relation for a single nonsingular transformation.

7.7. Possible applications. Subshifts of finite type are important for
the design of actual communication systems, especially in magnetic
recording. In biological or materials science applications (say poly-
mer building) SFT’s might arise from something like the momentary
disabling of a receptor: receipt of a certain symbol could make the
receptor momentarily sensitive only to certain other symbols. If we
want to model a signal recorded with constraints of the kind imposed
by membership in a subshift of finite type (for example to record effi-
ciently on a disk that has already been used), in the absence of further
information it might be reasonable to assume that the statistics of the
signal are given by a measure with some of the symmetries discussed
above. For example, as in de Finetti’s motivation for exchangeabil-
ity (the distribution of repeated samples should be independent of the
order in which they are drawn), perhaps it is natural to assume that
cylinder sets in the SFT which map to one another under permuta-
tions of finitely many coordinates (or are symmetric in some other
respect) have equal probabilities. For applications, the case of higher-
dimensional actions needs serious development. The general situations
connected with Sψ+

A -invariance (which can keep track of accumulated
symbol or transition counts or derangement effects) might reflect a
cost associated with sending or receiving certain signals, or a hyster-
esis or memory in materials. In image enhancement and pattern gen-
eration and recognition, symmetric Gibbs measures could account for
the presence of texture, like bands or dapples [1, 12]. Knowing their
dynamics, for example spectral properties, could help to filter out such
background by using appropriate transforms, to code signals better by
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taking the structure into account, or to detect boundaries between re-
gions with different textures. The presence of discrete spectrum might
reflect subtle rhythms (periodic or aperiodic regularities different from
spatial regularities, which are connected with the dynamics of the as-
sociated shift transformations). Weak mixing would be tantamount
to the lack of any such almost periodic structure and might indicate
resistance to filtration by Fourier methods.
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