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Abstract

We consider dJ(1)-invariant nonlinear Klein-Gordon equation in dimensior> 1, self-interacting via the mean
field mechanism. We analyze the long-time asymptotics ofefienergy solutions and prove that, under certain generic
assumptions, each solution convergeg as +oo to the two-dimensional set of all “nonlinear eigenfunctbof the
form ¢(z)e~"“*. This global attraction is caused by the nonlinear enemyystier from lower harmonics to the continuous
spectrum and subsequent dispersive radiation.

1 Introduction and main results
In this paper, we establish the global attraction to theetgrof all solitary waves for the complex Klein-Gordon field
¥ (x,t) with the mean field self-interaction:

{¢<x,t>—wa,t)—m%(a:,t)+p<x>F<<p,w<-,t>>>, reR, n>1, teR wy

w|t:0 =¢0($)= ¢|t:0 :7T0(£L').

Above,p is a smooth coupling function from the Schwartz clgss: .7 (R"™), p # 0.

The long time asymptotics for nonlinear wave equations theen the subject of intensive research, starting with the
pioneering papers by Segal [Segf3b, Seg63a], StrausS[Sartd Morawetz and Straugs [MS72], where the nonlinear
scattering and the local attraction to zero solution weow@d. Local attraction to solitary waves,asymptotic stability
in U(1)-invariant dispersive systems was addressed in [SW90, |[ER@32 [ BP95] and then developed[in [PW97. SW99,
[Cuc01a/ Cuc01h, BSDB, Cuc03]. Global attractiorstatic, stationary solutions in dispersive systemishout U(1)
symmetrywas first established il [Kom91, Kom95, KVM96, KSK97, Korn9%& Q).

The present paper is our third result on the global attradtiosolitary waves iflJ(1)-invariant dispersive systems.
In [KKO74a], we proved such an attraction for the Klein-Gondi®ld coupled to one nonlinear oscillator. In [KKQO7b], we
generalized this result for the Klein-Gordon field coupledéveral oscillators. We are aware of only one other recent
advance[Tao(07] in the field of nonzero global attractordfamiltonian PDEs. In that paper, the global attraction ffier t
nonlinear Schrodinger equation in dimensians 5 was considered. The dispersive wave was explicitly spelifgéng
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the rapid decay of local energy in higher dimensions. Théalattractor was proved to be compact, but it was neither
identified with the set of solitary waves nor was proved to binite dimension[[Tac07, Remark 1.18].

In the present paper we are going to extend our theory to @&hijmensional setting, for the Klein-Gordon equation
with the mean field interaction. This model could be viewedaageneralization of thé-function coupling [[KKO74,
[KKO7D] to higher dimensions. We follow the cairns of the apgwh we developed ih [KKOVa, KKO7b]. The substantial
modification is due to apparent impossibility to split offiagersive component and get the convergence to the attiacto
the local energy norm, as in [KKO7a, KKO7b]; the convergemwegorove ise-weaker. On the other hand, this allowed to
avoid the technique of quasimeasures, considerably stiogi¢he argument. The main ideas are the absolute continuit
of the spectral density for large frequencies, compactaggament to extract the omega-limit trajectories, and then
usage of the Titchmarsh Convolution Theorem to pinpoinsiiectrum to just one frequency.

Let us give the plan of the paper. In the remainder of thisi@ectve formulate the assumptions and the results.
The absolute continuity of the spectrum is analyzed in 8ai. The proof of the Main Theorem takes up Secfibn 2
(where we analyze the absolute continuity of the spectrurtafge frequencies) and Sectigh 3 (where we select omega-
limit trajectories and analyze their spectrum with the aidh® Titchmarsh Convolution Theorem). The example of
a multifrequency solitary waves in the situation wheis orthogonal to some of the solitary waves is constructed in
Sectior 4. In Appendik]A we give a brief sketch of the prooftud global well-posedness for equatibn{1.1).

1.1 Hamiltonian structure
We set¥ (t) = (v(z,t), w(z,t)) and rewrite the Cauchy problein (IL.1) in the vector form:

0 1
A—m?2 0

0
F((p,¢(-,1)))
where¥, = (¢, ). We assume that the nonlinearityadmits a real-valued potential:

F(z) =-VU(z), ze€C, U € C?*(C), (1.3)

U(t) = l U(t) + p(z)

‘| 5 \I/|t:0 :\IJO, xER”’ nz 17 tER, (12)

where the gradient is taken with respecRez andIm z. Then equatior(1]2) formally can be written as a Hamiltania
system,

. 0 1
¥ (t) = J DH(V), J:l_l 0],

whereDH is the variational derivative of the Hamilton functional

1

M) =5 [ (7R + VO + m ) '+ U)W =

> (1.4)

() ] |

m(x)

We assume that the potenti&l(z) is U(1)-invariant, whereU(1) stands for the unitary groug?, § € Rmod 2x:
Namely, we assume that there exigts C?(R) such that

U(z) = u(]z]?), z e C. (1.5)
Conditions[[1.B) and (1l.5) imply that
F(2) = a(|z])z, z € C, (1.6)
wherea(-) = —24/(-) € C*(R) is real-valued. Therefore,
F(e2) = e F(2), feR, zeC. (1.7)
Due to theU(1)-invariance, the Nother theorem formally implies that finectional
ow) =3 [ @r-mpy e w=| ", (1.8)
2 n 7'{'(:6)

is conserved for solutiong(¢) to (1.2).

We introduce the phase space of finite energy states foriequdt2). Denote by - |2 and|| - || g the norms in
L?(R™) and the Sobolev spadé*(R"), s € R, respectively. We also denote By||z:, R > 0, the norm inH* (B"(R)),
whereB"(R) is a ball of radiusk in R™. Let us fix an arbitrary > 0.
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()

X

Definition 1.1. (i) & = H*(R") @ L?(R") is the Hilbert space of the statés= l 1 , with the norm

10% = lI7lZe + IVelzs +m?|lv]2a. (1.9)
(i) &= H'"<(R") & H~<(R") is the space with the norm
1@l g—c = [I(1 = A)"/*¥]|s. (1.10)
(iii) &% “ is the space with the Fréchet topology defined by the semmigsor
1912 o= 72+ V012 + w2l .. R>o0. (L11)
Remarkl.2. The spacef, © is metrizable (but not complete). The metric can be intredizy

19 = 327 F0 e e (112)
R=1

Equation[(T.P) is formally a Hamiltonian system with the ghapace’ and the Hamilton functionat. Both?{ andQ
are continuous functionals ef We introduced intd(Z19){1.11) the facter > 0, so thatH (V) = 1| ||%2+U({p, ).

1.2 Global well-posedness
To have a priori estimates available for the proof of the glatell-posedness, we assume that

2

U(z) > A—B|z|* forzeC, whereAecRand0< B < # (1.13)
Pl
Theorem 1.3. Let F'(z2) satisfy conditiond(1]3)[{1.5), and(1113). Then:
(i) Forevery¥, € & the Cauchy probleni(Z.2) has a unique solutiore C'(R, &).
(i) The mapW(t) : ¥y — P(t) is continuous ing’ and & for eacht € R.
(i) The values of the energy and charge functionals are congderve
H(U(t)) = H(Py), Q(T(t)) = Q(y), teR. (1.14)
(iv) The followinga prioribound holds:
[T®)lle < C(Po), teR. (1.15)
(v) Foranye € [0, 1],
¥ e COR, &), (1.16)
whereC(¢) stands for the EIder functional space.
We prove this theorem in AppendiX A.
1.3 Solitary waves
Definition 1.4. (i) The solitary waves of equation (1.1) are solutions of threnfo
U(x,t) = ¢ (x)e ™1, where w € R, ¢, (z) € H'(R™). (1.17)

(i) The solitary manifold is the s& = {(¢.,, —iwd,,): w € R}, whereg,, are the amplitudes of solitary waves.
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Identity (I.T) implies that the s&is invariant under multiplication by‘?, § € R. Let us note that sinc&(0) = 0 by
(@8), for anyw € R there is a zero solitary wave,, (z) = 0.

Define 5(6)

_ P +
V(:v,w) =Feou [m}, weCru (—m,m), (1.18)

whereCt = {w € C: Imw > 0}. Note that/ (-, w) is an analytic function af € C* with the values in/>°(R"™). Since
|V (z,w)| < const [Imw|~! forw € CT, we can extend for any € R™ the functionV (z,w) to the entire real liney € R
as a boundary trace:

V(z,w) = 1ir(r)1+V(:17,w +40), w e R, (1.19)

where the limit holds in the sense of tempered distributions

Proposition 1.5(Existence of solitary waves)Assume thaf’'(z) satisfies[(117), and that € .¥(R"), p # 0. There may
only be nonzero solitary wave solutions[to {1.2)do€ [—m, m|U Z,, where

Z, = {w € R\[-m,m]: p(€) = 0 for all ¢ € R™ such that m? + ¢* = w?}. (1.20)
The profiles of solitary waves are given by
" cp§)
Pu(§) = 2 1rm2_w?
wherec € C, ¢ # 0 is a root of the equation
a(w)a(|c)lo(w)?) = 1, (1.21)
whereq is defined in[(1]6) and
1 N 2
o) = V) = e [ S e (122)

The existence of such root is a necessary condition for tistegice of nonzero solitary wavés (1.17).
The condition[(I-21) is also sufficient far> 5 and for|w| # m, n > 1.
For |w| = m, n < 4, the following additional condition is needed for sufficgn

AEYV|2

/n W%' dre < . (1.23)
Remark1.6. As follows from [1.21) and[{1.22)7(w) is strictly positive forjw| < m (sincep # 0) and takes finite
nonzero values for alb that correspond to solitary waves (fer< 4, the finiteness of (w) atw = +m follows if (1.23)
is satisfied).

Remarkl.7. One can see that generically the solitary wave manifold ésdimensional.

Proof. Substituting the ansatz, (x)e~** into (I.1) and usind{116), we get the following equation/gn

—wu(z) = Agu(z) —m*¢u(2) + p(a) F({p, $u)), = €R™ (1.24)
Therefore, all solitary waves satisfy the relation
(€ +m? =)o () = PE)F((p. du))- (1.25)

Forw ¢ [—m,m] U Z, the relation[[1.25) leads t0,, ¢ L*(R") (unlessg,, = 0). We conclude that there are no nonzero
solitary waves fow ¢ [—m,m] U Z,,.
Let us consider the casee [—m, m] U Z,. From [1.Zb), we see that

PO r((p,4.)). (1.26)

:§2+m2—w

6w (€)

Using the functiorV/ (=, w) defined in[[Z.1B), we may expregs (z) = ¢V (x,w), with ¢ € C. Substituting this ansatz
into (I.26) and usind (11.6), we can write the conditioncan the form [1.211).
Forn < 4, the finiteness of the energy of solitons corresponding te -=m is equivalent to the conditiof (1.23).
This finishes the proof of the proposition. O
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1.4 The main result
Assumption A. We assume that € .(R"), the setZ,, is finite, and that
o(w) #0, wE Zp. (1.27)
Above,Z, ando(w) are defined in(1.20) and(1]22).
Remarkl.8 Note thato(w) is well-defined at the points df,, sincep|l5l:m =0forwe Z,.

As we mentioned before, we need to assume that the nonlipéapolynomial. This assumption is crucial in our
argument: It will allow to apply the Titchmarsh Convoluti@heorem. Now all our assumptions éhcan be summarised
as follows.

Assumption B. F'(z) satisfies[(113) with the polynomial potentidl~), and also satisfie§ (1.5) add (1.13). This can be
summarised as the following assumptionlofx ):

p
U(z) = ualel,  u,€R, p>2, u,>0. (1.28)
n=1

Our main result is the following theorem.

Theorem 1.9(Main Theorem) Assume that the coupling functip(ir) satisfies Assumptidd A and that the nonlinearity
F(z) satisfies Assumptidd B. Then for aby € & the solution¥(¢) € C(R, &) to the Cauchy probleni (1.2) converges
to S in the spaces’; ¢, for anye > 0:

lim dist gge(\lf(t), S) =0, (1.29)

t—+oo

wheredist .- (¥, S) := inf |V — s|| o—c, With || - || .- defined in .
éDF S éDF éDF
EIS

Remarkl.1Q The &’ “-convergence to the attractor stated in this theorem is erethlan thes»-convergence proved in
[KKO74a] and [KKO7H], where we considered the Klein-Gordaidiin dimensiom = 1, coupled to nonlinear oscillators.

Obviously, it suffices to prove Theordm11.9 fors +oo.

2 Absolute continuity for large frequencies

2.1 Splitting of a dispersive component

First we split the solutiom(x, t) into ¢ (x, t) = x(x,t) + ¢(z, t), wherey andy are defined as solutions to the following
Cauchy problems:

X(z,t) = Ax(z,t) = m’x(z,1), (X, X)|o = Yo, (2.1)
$(x,t) = Ap(z,t) = m*p(x,t) + p(x) f(t), (2, @)= = (0,0), (2.2)
where¥ is the initial data from[{1]2), and
Note that(p, ¥(-, t)) belongs taCy(R) since(, 1) € Cy(R, &) by Theoreni1I3i¢). Hence,
f() € Co(R). (2.4)
On the other hand, sincg(t) is a finite energy solution to the free Klein-Gordon equatiee also have
(X X) € Cy(R, &). (2.5)
Hence, the functio(t) = ¥ (t) — x(t) also satisfies
(0,¢) € Cb(R,&). (2.6)

The following lemma reflects the well-known energy decaytlfierlinear Klein-Gordon equation.

Lemma 2.1. There is a local decay of in the & seminorms. That i&/R > 0,

1@ X))l g p = 0, = 00 (2.7)
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2.2 Complex Fourier-Laplace transform

Let us analyze the complex Fourier-Laplace transform(af, ¢):
P(2,0) = FiouOB)p(x, 1)) = / ¢“lp(z,t)dt, weCT, zeR", (2.8)
0

whereC*t := {z € C: Imz > 0}. Due to [Z.6)5(-,w) is an H!-valued analytic function ab € C*. Equation[(Z.R)
for p implies that
—p(w,w) = Ap(z,w) —m*G(z,w) + p(@)f(w), weCt, zeR”,
wheref(w) is the Fourier-Laplace transform ¢f¢):
fo)=Fidlowre) = [ epwa,  wect
0

The solutions(x,w) is analytic forw € C* and can be represented by

@z, w) = V(z,w)f(w), weCt. (2.9)

2.3 Traces of distributions forw € R
First we remark that
O(t)p(z,t) € Cy(R, H(R™)) (2.10)

by (2.8) sincep(z, 0+) = 0 by initial conditions in[[2Z.2). The Fourier-Laplace tramsh of ¢ in time, 7, ., [©(t)p (-, t)],
is a tempered{ ! -valued distribution ofo € R by (Z.8). We will denote this Fourier-Laplace transformify, w), w € R,
which is the boundary value of the analytic functipf,w), w € C*, in the following sense:

o w) = liI(r)1+<,5(-,w + ie), weR, (2.11)

where the convergence is in the spacéidtvalued tempered distributions of .7/ (R, H!(R")). Indeed,
@('7 w + ’LE) =Fiow [G(t)</7(7 t)eiet]a

while ©(t)p(-, t)e~ — O(t)p(-,t), with the convergence taking place.iti’ (R, H!(R™)) which is the space aff *-
valued tempered distributions ofc R. Therefore,[(2.111) holds by the continuity of the Fouri@nsform7;_.,, in
<" (R). Similarly to {Z.11), the distributiorf (w) for w € R is the boundary value of the analytic@ function f(w),
weCH:
flw) = hI(IJlJr flw+ie), weR, (2.12)

since the functio®(¢) f (¢) is bounded. The convergence holds in the space of tempeseibdiionss”’(R).

Let us justify that the representatidn (2.9) fofx, w) is also valid wheno € R, w # +m, if the multiplication in
(2.9) is understood in the sense of distributions.

Proposition 2.2. For any fixedr € R", V(z,w), w € R\{—m, m}, is a smooth function, and the identity

p(z,w) =V(r,w)flw), weR\{-m,m}, (2.13)
holds in the sense of distributions.

_ 1 e“rpg)ds  [*  R(z,n)dn
Vi) =g /R E4m?— (w+i0)? /0 2 +m2 — (w+40)2’ (2.14)

Proof. Consider

where 1
li 5 = T ifm[\) dS . 2 15

For eachr € R", R(x,n) is smooth forp > 0 and satisfiesR(z,n)| = O(n™~1). It follows that for eache € R™,
V(z,w) is @ smooth function ab € R\{—m,m}, and hence is a multiplicator in the space of distributions. O
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2.4 Absolutely continuous spectrum
Let x(w) denote the branch afw? — m?2 such thatim vw? — m?2 > 0 forw € C*:

klw) = Vw? —m2, Im k(w) > 0, weCt. (2.16)
Thenk(w) is the analytic function fow € C*. We extend it tav € C+ by continuity.

Proposition 2.3. The distributionf (w + i0), w € R, is absolutely continuous fdw| > m and satisfies

/ |f(w)|?A (w) dw < const < oo, (2.17)
|w|>m
where.7Z (w) = “EE 2(n) = b [ _, 16O dSe, n € R.

Remark2.4. Note that the functionZ (w) is non-negative fojw| > m. The set of zeros of#Z (w), |w| > m, coincides
with Z, defined in[[1.20).

Remark2.5. Recall thatf(w), w € R, is defined by[{Z.12) as the trace distributigitew) = f(w + i0).

Proof. We will prove that for any closed intervélsuch thatl N ([—m,m] U Z,) = () the following inequality holds:
Jlieraw <. (2.18)
I

for some constan€ > 0 which does not depend oh Since there is a finite number of connected components of
R\ ([-m,m] U Z,), this will finish the proof of the proposition.
Let us prove[(2.18). The Parseval identity applied to

oo
o(z,w +ie) = / oz, t)e™ = dt, €>0,
0

and a similar relation fod, ¢ (z, w + i€) leads to

/ lp(,w+ Z€)||§11 dw = 27r/ ||90(-,t)||%116725t dt.
e 0

Sincesup, [l¢(-, )|z < oo by (2.6), we may bound the right-hand side ®@y/e, with someC; > 0. Taking into
account[(2.D), we arrive at the key inequality

o c
/ Fw+ i) PIVw + 03 do < 2. (2.19)

Lemma 2.6. Assume that is a closed interval such thdtn ([—m,m] U Z,) = (. Then there exists; > 0 such that

IV (w+ie) |3 Z%M, wel, 0<e<er, (2.20)
€

whereC; does not depend on the intenval

Proof. Let us compute thé/!-norm using the Fourier space representation. th({ew + i€) = %, we
have:

L[ P @)ER A [ mP ARy [ (PR ) di
e ) @ m =i ") PrmE- @i - ) R mt - (i
R™ 0 %))
(2.21)

IV (w+ie)llipn =

K

wherex([I) is given by

k(I)={n>0:vn?>+m? eI} (2.22)
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We denote

no = k(w) € Kk(I).
Since the denominator under the integral in the right-hadhel of (Z.21) vanishes when= 0 andn = 7, the inequality
in (2.20) is due to the contribution of a small neighbourhobg = 1, which we will specify shortly. Since the function
(m? + n?)%(n) is smooth and strictly positive an(1), there existg$; > 0 (that does not depend on a particulae I)
so that(m? + n?)%(n) > 5(m? +no?)%(no), for all n € x(I) such thatn — no| < ;. Hence,[[Z.21) takes the form

(5 + m*)Z (o) dn
2 % +m? — (w+1i€)?|?
w(I)N[no—381,m0+61]

IV(w+ie)|F >

(2.23)

We require thad; < |x(I)|/2; then eithefny — o1, 1m0] C &(I) or [no,no + 1] C k(I), or both. Therefore, the integral in
the right-hand side of(2.23) restricted#l) N [0 — d1, 1o + ;] becomes unboundedly largeas- 0+, and moreover
there existg; > 0 (which does not depend on a particulae ) such that

/ dn - 1 / dn - 1/ dn
N2 +m? — (w+ie)?2 = 2 2 +m? — (w+ie)?2 = 3 ) [n?+m?— (w+ie)?]?
w(I)N[no—61,m0+01] [mo—61,m0+61] R
(2.24)

forall e > 0, ¢ < ¢;. The last integral, evaluated by the Cauchy theorem, islequg/ (2ewno) + O(1). Therefore, we
may assume that > 0 is so small (independently of a particularc I) that

dn

In? +m? — (w + i€)?|?
w(I)N[no—3d1,m0+61]

™

> wel, 0<e<er. (2.25)

1
3 3ewno’

Note thatwn, = wk(w) > 0 because, fow € R\[—m,m], x(w) € R and is of the same sign asis. Combining[(Z.23)

and [2.2b), we get:

2%( )11 1 wZ(no)
. A2, > YA 1 _ L "o <
WV (,w+ie)|z > > 3w 6 m wel, 0<e<er. (2.26)
O
Substituting[(2.20) intd (2.19), we get
/|f(w + ie)|2///(w) dw < C1/Cq, 0 <e<er. (2.27)
I

We conclude that the set of functiops. (w) = f(w + i€)\/-#(w), 0 < € < €, defined forw € I, is bounded in the

Hilbert space.?(I), and, by the Banach Theorem, is weakly compact. The conueegef the distribution§(2.12) implies

the weak convergeneg . — gy in the Hilbert spacd.?(I). The limit functiong;(w) coincides with the distribution
e—0+

f(w)\/-# (w) restricted ontd. This proves the bounf{Z118) and finishes the proof of thpgsition. O

3 Nonlinear Spectral analysis of omega-limit trajectories

3.1 Compactness
We are going to prove compactness of the set of translatibihe singular componenfip(z,t + s): s > 0}.

Proposition 3.1. For any sequence; — oo there exists an infinite subsequence (which we also denatg such that

(‘p('vt""‘sj)ﬂb('vt"_‘sj)) - (5("t)76('7t))a J — 00, (31)

for somes € Cy(R, H(R™)) with 3 € Cy(R, L*(R™)).
In 31), the convergence holds in the topologydf—T7', T, & ©), for anyT > 0 and anye > 0. The following
bound holds:

sup [[(B(-,1), B(-, 1)l & < oo. (3.2)

teR
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This proposition is a consequence of Theokem ¥ hich implies that1, 1)) € C((R, &), (x, x) € C(R, &),
and thugp, ) € CO(R,&7°).

We callomega-limit trajectonyany function3(z, ¢) that can appear as a limit in(8.1). Previous analysis detrates
that the long-time asymptotics of the solutigfz, ¢) in &» depends only on the singular componeiit, ¢t). By Propo-
sition[3.1, to conclude the proof of Theorém]1.9, it suffieeshieck that every omega-limit trajectory belongs to the set
of solitary waves; that is,

B(x,t) = ¢, (v)e 1, reR", tekR, (3.3)

with somewy € R.

3.2 Compactness of spectrum

The convergencé(3.1) and equatibn(1.1), together withrhaf#.1, imply that any omega-limit trajectof(z, ¢) is a
solution to equatior (111) (although(z, t) is not!):

B(x,t) = AB(x,t) = m?B(x,1) + p()F((p.5), = €R" tER. (3.4)
For a particular omega-limit trajectory(z, ¢), we denotey(¢t) = F({p, 5(-,1))).
Proposition 3.2. supp § C [-m, m] U Z,, whereZ,, is defined in[{1.20).

’

Proof. The convergenc&(3.1) implies that, for amye C5°(R") and¢ € Cg°(R), (a, (€ * o) (-, t + 5;)) — (a, (C *
B)(-,t)). Due to the continuity of the Fourier transform fro#f (R) into itself, we also have

/

Cw)lon G w)e ™% o Cw)lon Blow)), 55— oo (3.5)

Assume thasupp ¢N([—m, m]UZ,) = 0. Then, by Propositidi2l.2, we may substittte )3 (z, w) by ¢ (w)V (z, w) f (w),
getting

W), V(s w) fw)e ™ L ¢(w)a, Bl,w)), 55— oo, (3.6)
)
)

Since f is locally L? on R\ ([-m,m] U Z,) by Propositiof 213, while (for each € R") V (z,w) is smooth forw €
R\{£m}, the product (w){«, ( w))f(w) is an absolutely continuous measure. Therefore the lefttside of [35)
converges to zero. It follows tha?l(:z: w)=0forw ¢ [-m,m]U Z,. O

3.3 Spectral inclusion
Proposition 3.3. supp § C supp(p, 3(-,w)).

This proposition states that the time spectrum@j = F'({p, 3(-,t))) is included in the time spectrum s, 5(-, t)).
This spectral inclusion plays the key role in the proof of main result (Theoreifn 11.9).

Proof. By Proposition 3.1,

o(-1.17) ,
ft+55)=F(p,p(t+55))) —  F((p,8(1) =g(t), j— o0,

foranyT > 0. Using [2.I8) and taking into account tHatz, w) is smooth fow # +m, we obtain the following relation
which holds in the sense of distributions:

Bla,w) = V(z,w)iw), zeR',  weR\{+m). (3.7)
Taking the pairing ofl(3]7) witly and using definition of (w) (see [1.2R)), we get:
(p,B(w)) = o(@)gw),  weR\{m}. (3.8)
First we prove Propositidn 3.3 modulo the set {+m}.
Lemma 3.4. supp §\{m} C supp(p, 5(-,w)).

Proof. By Propositiof 3.Rsuppg C [-m,m] U Z,. Thus, the statement of the lemma follows frdm [3.8) and from
noticing thato (w) is smooth and positive fas € (—m, m) and moreover, by Assumptiéf A, it is nonzeroBn O
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To finish the proof of Propositidn 3.3, it remains to consither contribution ofv = £m.

Lemma 3.5. If wy = +m belongs taesupp g, thenwy € supp(p, 5).

Proof. In the case wheny = +m is not an isolated point ift-m, m| N supp g, we use[(31B) to conclude that, €
supp(p, 3) due to positivity ofo(w) for |w| < m (which is apparent froni (1.22)).

We are left to consider the case when= m or —m is an isolated point ifi—m, m] N supp g. We can pick an open
neighbourhood’ of wy such thal/' N supp g = {wo} sincesupp § € [-m,m] U Z, andZ,, is a discrete finite set. Pick

¢ € C§°(R), supp ¢ C U, such that(wg) = 1. First we note that
(W)g(w) = Mo(w —wo), M #0, (3.9)

where the derivatives of th#w — w) are prohibited becauge: ¢(t) is bounded. By[(317), we havénsupp,, B c {wo},
hence

C(w)f(z,w) = d(w —wo)b(z),  be H'(R™). (3.10)
Again, the terms with the derivatives &fv —wy) are prohibited becausge, Cxp(-,t)) are bounded for any € C°(R™),
while the inclusiorb(z) € H*(R) is due to3 € .7"(R, H'(R)).

Multiplying B4) by ¢ (w) and taking into accoun(3.9].(3]10), and the relatign= m?, we see that the distribution
b(x) satisfies the equation
0= Ab(x) + Mp(x). (3.11)

Thereforep(z) # 0 due toM # 0 andp(z) £ 0. Coupling [3:ID) withp and using[(311), we get:
2 <Ab7 b>

C(W)(p, B(-,w)) = 6(w — wo){p,b) = —d(w — WO)T # 0, (3.12)
sinceb € H'(R™) is nonzero. This finishes the proof of Lemmal3.5. O

Lemmag$ 31U and 3.5 allow to conclude thapp §(w) C supp(p, 3(-,w)), finishing the proof of Propositidn 3.3.0

3.4 The Titchmarsh argument

Finally, we reduce the spectrumoft) to one point using the spectral inclusion from Propositidhehd the Titchmarsh
Convolution Theorem.

Lemma 3.6. (p, 3(-, 1)) = 0 or supp{p, B(-,w)) = {w, }, for somew, € [~m,m|U Z,.

Proof. Denote

By (L.28),9(t) :== F(v(t)) = — >-P _, 2nu,|y(t)|*"~2~(¢). Then, by the Titchmarsh Convolution Theorem,
Sup supp g = ne{nr<npa>; o) sup supp (¥ * ) * ... * (¥ *5) %y = psup suppy + (p — 1) sup supp 7. (3.14)
- n—1

Remark3.7. The Titchmarsh Convolution Theorem applies becauge 7 C [—m,m] U Z,, and hence is compact.
Noting thatsup supp 4 = — inf supp 7, we rewrite [3.14) as

sup supp g = supy + (p — 1)(sup supp ¥ — inf supp 7). (3.15)
Taking into account Propositién 3.3 and (3.15), we get thieviong relation:
sup supp 4 > sup supp g = supsupp” + (p — 1)(sup supp 4 — inf supp 7). (3.16)

This is only possible ifupp 4 C {w }, for somew, € [—-m,m]U Z,,. O



Alexander Komech, Andrew KomeclKlein-Gordon equation with mean field interaction 11

3.5 Conclusion of the proof of Theoreni_ L9

We need to prové (3.3). As follows from Leminal3i.) is a finite linear combination aof(w — w. ) and its derivatives.
As the matter of fact, the derivatives could not be presecabse of the boundednessydt) := (p, 5(-, t)) that follows
from Propositiof 3]1. Therefor§,= 27Cd(w — w4 ), with someC' € C. This implies the following identity:

y(t) = Ce ™+t CeC, teR. (3.17)
The representatiofi (3.7) implies thatz, t) = §(z,0)e~“+! sinceg = 2rCd(w — wy ), C € C. Therefore, equation
(3:4) and the bound(3.2) imply thatx, t) is a solitary wave. This completes the proof of Theokerh 1.9.
4 Multifrequency solutions

Now we consider the situation when Assumpfidn A is violatedhis case, we show that there could exist multifrequency
solutions, indicating that the set of all (one-frequenaofitary waves is only a proper subset of the global attractor
Fix wy € (m,3m). Pickp € .#(R"™) so that the following two conditions are satisfied:

m\s\:\/w%—m? =0 *
_ 1 pE)2d"E
o) = o /R oy =0 (4.2)

These two equalities imply that(w) vanishes at a certain point 4f,, violating Assumptiofi.A.

Lemma 4.1. There exist € R, b < 0 so that equatior{1]1) with the nonlinearity
F(y)=ay+bhl*y,  veC,

admits multifrequency solutionse C(R, H') of the form

P(x,t) = ¢o(z)sinwot + ¢1(x) sinwit, wo = %, b0, ¢1 € H'(R™),

with both¢gy and ¢, nonzero.

Proof. To make sure that the nonlinearity does not produce higkguincies, we assume that

Due to this assumption,

3 3sinwot — sin 3wot

F((p,1)) = F((p, o) sinwot) = a{p, go) sinwot + b(p, do) 1

Collecting the terms with the factors efo wot andsinw,t = sin 3wot, We rewrite the equatiosh = Ay — m2y +
pF({p,1)) as two following equalities:

3
~ P00 = Ao — mb0 + p(x) (alp, o) + L) (@.4)
3
— w2y = Ady — m2¢y — p(x)b<p’4¢0> . (4.5)

We defineg, by ¢o(¢) = -8 and picka andb which satisfy [4Z1). We také < 0 so that AssumptiofIB is

24 m2—w?2>

satisfied. Then the functiopy is defined by

(51 (5) _ _b<pa ¢0>3 /3(5) _ _ba(w0)3 /3(5)

4 2+m?-uf 4 &24+m?—wi

Due to [41) ¢, € HY(R™). Since(p, ¢1) = const o(wy) = 0, the assumptiori(4.3) is indeed satisfied. O
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A Appendix: Global well-posedness

The global existence stated in Theofend 1.3 is obtained Inglatd arguments from the contraction mapping principle. To
achieve this, we use the integral representation for theisalk to the Cauchy problem (1.2):

0

Vat) = Wo% + 20000, 200 = [ Wt =)0 )

}@, W:{ﬂ,tZO (A1)

HereW,(t) is the dynamical group for the linear Klein-Gordon equatidrich is a unitary operator in the spa€e The
bound
[ Z[W1](t) — Z[Wa](t)||le < Ct Sl[lp]|\‘1’1(3)—‘1’2(5)||£’7 ¢>0, 0<t<1, (A.2)
se[0,t
which holds for any two functiong, ¥, € C([0, 1], &), shows thatZ[y] is a contraction operator ifi([0, ¢], &) if t > 0
is sufficiently small.
To prove the a priori boun@{T115), we u§e(1.13) to bolrd s in terms of the value of the Hamiltonian:
2m?

103 < —— 7=
© = m?2 —2B||pl3.

(H(D)—A), Te&. (A.3)

We now concentrate on the Holder continuity of the solutm@.2). First we consider the linear case.

Lemma A.1l. Letu(z,t) be the solution to the Cauchy problem

i = Au — m?u, (u,1)],_y = (ug,v0) € &.

Then(u, ) € CO(R,&~¢(R™)) for0 < e < 1.

Proof. It suffices to prove the continuity stated in the lemma neerpbintt = 0. We will only prove the estimate
llu(-,t) — u(-, 0)|| gr-« < const |t|¢; the bound|a(-,t) — v(-,0)| g-- < const|¢| is obtained similarly. The difference
(¢, t) — (&, 0) is given by

sin 2 m2
L%%ﬁf%ﬁ) (A4)

Let us analyze the contribution infla(-, t) — u(-,0)||3,._. of the second term from the right-hand side[of{(A.4) only (the
first term is analyzed similarly). We have:

(g, t) —a(§,0) = (cos(tv/ €2 +m?) — D)ao(£) +

.9
/@+MrMﬂte+WM@M%stm“g+W

) PN m €
S @ ) [0(€)]* d"¢ < const [¢]**|[v]|7-,
Rn

]R'n.
where we used the inequalityin z| < z¢, valid for any0 < e < 1 andz € R. This finishes the proof. O
Now we can prove the inclusioh (1]16) stated in Thedrer 1.3.
Lemma A.2. The solution to[(112) wit|,_, € & satisfiest € C(9)(R,£7¢),0 < e < 1.
Proof. It suffices to prove the statement of the lemma riear0. The representatiof (A.1) fak () yields
U(t) —T(0) = (Wo(t)¥(0) — ¥(0)) + Z[¥](t). (A.5)

Estimating the contribution intpW () — ¥ (0)|| s-- of the first term in the right-hand side 6f(A.5) by LemmalA. Hahe
contribution of the second term by the bouhd (A.2) (whereake ¥, = ¥, ¥, = 0), we get

[W(t) = W(0)]lg-c < Cilt]"+ Colt],  Ci, C2 >0,



Alexander Komech, Andrew KomeclKlein-Gordon equation with mean field interaction 13

References

[BP93]

[BPY5]

[BS03]

V. S. Buslaev and G. S. Peiraln,Scattering for the nonlinear Scabdinger equation: states that are close to
a soliton St. Petersburg Math. J., 4 (1993), pp. 1111-1142.

V. S. Buslaev and G. S. Péeiraan, On the stability of solitary waves for nonlinear Sodinger equations
in Nonlinear evolution equationsol. 164 of Amer. Math. Soc. Transl. Ser, @p. 75-98, Amer. Math. Soc.,
Providence, RI, 1995.

V. S. Buslaev and C. Suler®n asymptotic stability of solitary waves for nonlinear &ualinger equations
Ann. Inst. H. Poincaré Anal. Non Linéaire, 20 (2003), pp94475.

[CucO1a] S. Cuccagnasymptotic stability of the ground states of the nonlined&dinger equationRend. Istit. Mat.

Univ. Trieste, 32 (2001), pp. 105-118 (2002), dedicateti¢onhemory of Marco Reni.

[Cuc01b] S. Cuccagnéstabilization of solutions to nonlinear Sdudinger equationsComm. Pure Appl. Math., 54

[Cuc03]
[KKO7a]

[KKO7b]

[Kom91]

[Kom95]

[Kom99]

[KS00]

[KSK97]

[KVO6]

IMS72]

[PW97]

(2001), pp. 1110-1145.
S. Cuccagn®n asymptotic stability of ground states of NIR&v. Math. Phys., 15 (2003), pp. 877-903.

A. 1. Komech and A. A. Komech3lobal attractor for a nonlinear oscillator coupled to thddfn-Gordon field
Arch. Ration. Mech. Anal., 185 (2007), pp. 105-142.

A. I. Komech and A. A. Komech,On global attraction to quantum stationary states Il. Sev-
eral nonlinear oscillators coupled to massive scalar fjeld2007), MPI Preprint Nr. 17/2007,
http://ww. m s. npg. de/ preprints/ 2007/ prepr200717. htm .

A. . Komech,Stabilization of the interaction of a string with a nonlirrezscillator, Mosc. Univ. Math. Bull.,
46 (1991), pp. 34-39.

A. I. Komech,0n stabilization of string-nonlinear oscillator interaoh, J. Math. Anal. Appl., 196 (1995), pp.
384-409.

A. Komech,On transitions to stationary states in one-dimensionallim@ar wave equationsArch. Ration.
Mech. Anal., 149 (1999), pp. 213-228.

A. Komech and H. Spohr,ong-time asymptotics for the coupled Maxwell-Lorentzagigns Comm. Partial
Differential Equations, 25 (2000), pp. 559-584.

A. Komech, H. Spohn, and M. Kunzkong-time asymptotics for a classical particle interagtinith a scalar
wave field Comm. Partial Differential Equations, 22 (1997), pp. 3835-

A. I. Komech and B. VainbergDn asymptotic stability of stationary solutions to noningvave and Klein-
Gordon equationsArch. Rational Mech. Anal., 134 (1996), pp. 227-248.

C. S. Morawetz and W. A. Strau€decay and scattering of solutions of a nonlinear relatigistave equation
Comm. Pure Appl. Math., 25 (1972), pp. 1-31.

C.-A. Pillet and C. E. Waynénvariant manifolds for a class of dispersive, Hamiltonjgrartial differential
equationsJ. Differential Equations, 141 (1997), pp. 310-326.

[Seg63a] I. SegaNon-linear semi-groupsAnn. of Math. (2), 78 (1963), pp. 339-364.

[Seg63b] I. E. Segallhe global Cauchy problem for a relativistic scalar field wgower interactionBull. Soc. Math.

[Str68]
[SW90]

[SW92]

France, 91 (1963), pp. 129-135.
W. A. StraussDecay and asymptotics fatu = f(u), J. Functional Analysis, 2 (1968), pp. 409-457.

A. Soffer and M. I. WeinsteinMultichannel nonlinear scattering for nonintegrable etjoas Comm. Math.
Phys., 133 (1990), pp. 119-146.

A. Soffer and M. I. Weinsteinylultichannel nonlinear scattering for nonintegrable edjoas. Il. The case of
anisotropic potentials and datd. Differential Equations, 98 (1992), pp. 376-390.



Alexander Komech, Andrew KomeclKlein-Gordon equation with mean field interaction 14

[SW99] A. Soffer and M. I. WeinsteirResonances, radiation damping and instability in Hamidomonlinear wave
equationsinvent. Math., 136 (1999), pp. 9-74.

[Tao07] T. TaoA (concentration-)compact attractor for high-dimensibman-linear Schddinger equationDyn. Par-
tial Differ. Equ., 4 (2007), pp. 1-53.



	Introduction and main results
	Hamiltonian structure
	Global well-posedness
	Solitary waves
	The main result

	Absolute continuity for large frequencies
	Splitting of a dispersive component
	Complex Fourier-Laplace transform
	Traces of distributions for R
	Absolutely continuous spectrum

	Nonlinear Spectral analysis of omega-limit trajectories
	Compactness
	Compactness of spectrum
	Spectral inclusion
	The Titchmarsh argument
	Conclusion of the proof of Theorem ??

	Multifrequency solutions
	Appendix: Global well-posedness

