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HADAMARD'S AND CALABI-YAU'S CONJECTURES ONNEGATIVELY CURVED AND MINIMAL SURFACESNikolai Nadirashvili1. IntroductionIn this paper we consider two related problems. Let (M;s) be a Riemann surfacewith a complete Riemannian metric s on M and let	 : (M;s)! B1 � R3be an isometrical immersion, and let B1 be the unit ball.Problem 1 (Hadamard's conjecture, [Ha], cf. [R2]). Is it possible that the metrics has a negative Gaussian curvature?If the Gaussian curvature K of s is a negative constant then such an immersionis impossible even into the whole space R3 (Hilbert, [Hi]). Hilbert's theorem isvalid for K � const < 0 (E�mov, [E]). On the other hand there exists a completebounded surface inR3 with nonpositive Gaussian curvature (Rosendorn, [R1], [R2]).Problem 2 (Calabi-Yau problem, [Y]). Is it possible that an immersion 	 isminimal?Jorge and Xavier, [J-X] , proved the existence of a complete minimally immersedsurface between two planes. On the other hand there are many non-existence resultsunder certain extra conditions on the surface, see e.g. [H], [X].The aim of this paper is to show that to both problems the answer is YES. Andeven more, the following theorem holds.Theorem. There exists a complete surface of negative Gaussian curvature mini-mally immersed in R3 which is a subset of the unit ball.Our example of a minimal surface is somewhat similar to the example of Jorgeand Xavier: we also use the Weierstrass representation of minimal surfaces and theRunge approximation theorem. 2. PreliminariesLet 
 � C be a domain and ' : 
 ! C 3 be a conformal map ' = ('1; '2; '3),satisfying, '21 + '22 + '23 � 0. Then(1) X(z) = ReZ zz0 'Supported by the Federal Ministry of Science and Research, Austria. Typeset by AMS-TEX1



2is a minimal surface in R3. Also every minimal surface X : 
 ! R3 can belocally represented in the form (1) and if 
 is simply connected then X is globallyrepresented by (1), (see [C], [O]). In order for 
 to be immersed in R3 one requires3Xi=1 j'i(z)j=/ 0for all z 2 
.Let us assume that '1 � i'2 6� 0 and setf = '1 � i'2;g = '3=('1 � i'2)then f is a holomorphic and g is a meromorphic function on 
. The surface (1)can be obtained by(2) X(z) = ReZ zz0 (12f(1 � g2); i2f(1 + g2); fg):This is called the Weierstrass representation of a minimal surface. The inducedmetric sX on 
 is given by:(3) sX = (12 jf j(1 + jgj2)jdzj)2:The poles of g are the zeros of f and a pole of order k of g corresponds to a zero oforder 2k of f . The curvature KX of (M;s) is given by:KX = �� 4jg0jjf j(1 + jgj2)2�2 :The meromorphic map g has an important geometrical meaning: it is the com-position of the Gauss map of X(m) with the stereographic projection of the unitsphere to the equatorial plane, from the north pole. Let the minimal immersionX : 
! R3 be given by (2) and let h be a holomorphic function on 
; h 6= 0 in 
.Set ~f = fh; ~g = g=h, and(4) ~X(z) = ReZ zz0 (12 ~f (1� ~g2); i2 ~f (1 + ~g2); fg):Then ~X : 
! R3 is a minimal immersion.Notation. Let Dr be a disk on C : jzj < r, Sr := @Dr, and let Br � R3 be a balljxj < r. Let E � C be a set, " > 0. By U ["](E) we denote an "-neighbourhood ofthe set E.



33. Proof of the TheoremLemma. Let X 2 C1( �D1;R3) and(5) X : D1 ! Br � R3;r > 0, be a minimal immersion, X(0) = 0;KX < 0. Assume that (D1; sX) is ageodesic disk of radius � centred in 0. Then for every "; � > 0 there exists a minimalimmersion Y : D1 ! BR � R3;R = pr2 + s2+ ", such that (D1; sY ) is a geodesic disk of radius �+ s;KY < 0 andjX � Y j < " on D1�"This Lemma will be proved in Section 4. We now show that the Theorem is aconsequence of the Lemma.We de�ne a sequence of minimal immersionsXn : D1 ! R3by induction over n = 1; 2; : : : . Let X1 : (D1; jdzj)! R3 be any minimal immersionsuch that KX1 < 0;X1(0) = 0 and let (D1; sX1) be a disk of radius 1. Let "n; n =1; 2; : : : , be a sequence of positive numbers which will be speci�ed later. Assumethat a minimal immersion Xn�1 = X is already de�ned. Set " = "n; s = 1=n andlet the minimal immersion Y be de�ned by the lemma. De�ne Xn = Y . If the "ktend su�ciently fast to zero as k!1 then the following holds:(a) Xk ! 	 as k!1 in the open disk D1 and	 : D1 ! R3is a minimal immersion and K	 < 0;(b) Xk : D1 ! Brk � R3where rk � rk�1 + 1=k2 and hence rk � 2 for all k;(c) since (D1; sXk ) is a geodesic disk of radius �k, where �k is given by�k = kXj=1 1=jthe metric (D1; sX) is complete provided that the "k tend to zero su�ciently fast.The theorem is proved.



4 4. Proof of the Lemma(4.1) Consider the following labyrinth, see the diagram below.
ω

ω4
1It's not di�cult to �nd a way from the inner circle to the outside but any suchway is fairly long although the Euclidean distance is short.Now we give a formal description of a partition of the unit disk, which is illus-trated by the diagram above.N-partition of a disk. Let N 2 N. Denote ri = 1� i=N3, i = 0; : : : ; 2N2 + 1,A = D1nDr2N2+1 ,Ai = Dr2inDr2i+1 , ~Ai = Dr2i�1nDr2i ,A = [N2i=0Ai;~A = [N2i=1 ~Ai;S = [2N2i=0 Sri :Denote by l� a ray in C , l� = �ei�; � > 0,l = [Ni=0li2�=N ;~l = [Ni=0l(2i+1)�=N :L = l \A, ~L = ~l \ ~A, H = S [L[ ~L, P = U [1=4N3](H), 
 = AnP , si = li�=N \A.Let us denote by !j ; j = 1; : : : ; 2N , the union of the segment sj and thosecomponents of the set 
 which have nonempty intersection with sj .Let the curve P � D1n
 connect the point 0 and S1. Then we havelength (�) > 10N:Let h be a continuous function in D1; h � 1 on D1, h � N4 on 
. Let a smoothcurve � connect 0 and S1 in D1. Then(6) Z� hds > N



5where ds is the arc length parameter on �.(4.2) Let G : D1 ! S2 be the Gauss map of the minimal surface (5). Since Xis smooth in �D1 the map G is continuous in �D1. Hence, for any � > 0 there existsN = N(�) such that for every domain !i of the N-partition of D1 the followinginequality holds diamG(!i) < �:(4.3) Proposition. Let E1; E2 � D1 � C be compact such that each complement{Ei is connected, i = 1; 2, and E1 \ E2 = ;. Let g be a meromorphic functionon D1+�0; �0 > 0 and g0 6= 0 on D1. Let T > 1. Then there exists a holomorphicfunction h(z) on D1, h(z) = h[T;E1; E2; g](z)such that j1� hj < 1=T on E1jh� T j < 1=T on E2:(g=h)0 6= 0 on D1Proof. There exist Jordan domains E01; E02 � D1 such that E1 �� E01; E2 �� E02and E01 \ E02 = ;. By Runge's theorem for any �1 > 0 there exists a holomorphicfunction w on C such that jwj < �1 on E01;jw � lnT j < �1 on E02:>From the above inequalities it follows thatw0 ! 0 on E1 [E2 as �! 0:Since g0=g is a nonvanishing meromorphic function on D1 we can choose � > 0 sosmall such that d := w0 � g0=g 6= 0 on E1 [E2:Since the set of zeros and the set of poles of d are discrete there exists a Jordandomain E � D1 such that E1 � E;E2 � E,d 6= 0 on Eand(7) 1=d 6= 0 on @E:Denote q := g=g0, then q is a holomorphic function on D1+�0. Denote by z1; :::; znthe zeros of q in D1 and by k1; :::; kn their orders. Since 1=d is a holomorphicfunction on E we obtain by the theorem of Walsh, [W], that for any � > 0 thereexists a holomorphic function s�(z) on D1 such thatjs� � 1=dj < � on E



6and for all i = 1; :::; n js�(z) + q(z)j = o(jz � zijki) as z ! zi:Denote y = 1=s� + 1=q. Then y be a holomorphic function on D1 and(8) y � g0=g 6= 0 on D1:>From (7) it follows that j1=s� � dj ! 0 on @E as �! 0(9) jy � w0j ! 0 on E as � ! 0:Let z0 2 E1: Set w1(z) = Z zz0 y(s)ds:>From (9) it follows that for su�cientlly small � > 0 we havejw1j < 2� on E1;jw1 � ln T j < 2� on E2:Let us denote h = ew1(z):Then (g=h)0 = (g0 � w01g)hand from (8) it follows that (g=h)0 6= 0 on D1:For su�ciently small � > 0 we evidently have j1�hj < 1=T on E1 and jT �hj < 1=Ton E2 as required.(4.4) Let N and T be su�ciently large positive constants which will be speci�edlater. We de�ne a sequence of minimal immersionsFk : D1 ! R3k = 0; : : : ; 2N3 = K by induction over k. Set F0 = X. Assume that a map Fi�1 isalready de�ned. Let us pick a point qi 2 S1 such that(10) dist(qi; G(!i)) = 1=pNWe assume that in the orthogonal coordinates x1; x2; x3 in R3 the vector qi isdirected along x3. Let (2) be the Weierstrass representation of Fi�1. Seth = h[T;D1nU [1=4N3](!i); !i; g];



7~f = fh; ~g = g=h and let ~X be de�ned by (4). Set Fi := ~X. Then(11) �(Fi) = �(Fi�1);where � is the orthogonal projection R3 to the x3 axes. If KFi�1 < 0 thenKFi < 0:Denote gFi = ajdzj. By (3) we havea � jf jmax(jhj; jgj=jhj):Hence a!1 on !i as T !1, gFi ! gFi�1 on D1nU [1=4N3](!i) as T !1. By(7) the following inequality holds on the set U [1=4N3](!i)n!i:a � 1=4pN:Thus, by (6) for su�ciently large T the geodesic distance between the points 0 andS1 in the metric (D1; gFK ) is no less than pN=4.Let d be a geodesic disk in (D1; gFK ) of radius � + s with centre at 0. Sincethe Gaussian curvature of gFK is nonpositive, @d is a smooth curve in D1. Forsu�ciently large N it follows:(12) D1�" � dand(13) jX � FK j < " on D1�":Let � 2 @d. If � 2 D1 n K[i=1U [1=4N ](!i)then(14) FK (�) = X(�) + o(1) as T !1:If � 2 U [1=4N ](!i) for some j; 1 � j � K, then from (11) it follows that the vectorFK(�) has the form(15) FK(�) = X(�) + tp(�) + o(1) as T !1where t = t(N;T ) 2 R; < p(�); qi >= 0. By (10)(16) hX(�); qj i ! 0 asN !1:>From (12) and (13) it immediately follows thatlimN!1T!1t(N;T ) � s:So as a consequence of (14), (15), (16) and of the inequality jX(�)j � r we havelimN!1T!1 jFK(�)j �pr2 + s2:Let w : D1 ! d be a biholomorphic map such that w(0) = 0; w0(0) > 0. SetY = FK � w. By Carathodory's theorem on the convergence of a sequence ofconformal maps, (see [G]), it follows from (9) that for every � > 0 and for allsu�cienly large N the following inequality holds.jX � Y j < " on D1�"The lemma is proved.
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