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ON THE ESSENTIAL SPECTRUM OF CERTAIN

NON-COMMUTATIVE OSCILLATORS

ALBERTO PARMEGGIANI AND ALBERTO VENNI

Abstract. We show here that the spectrum of the family of non-
commutative harmonic oscillators Qw

(α,β)(x,D) for α, β ∈ R+ in the

range αβ = 1, is [0,+∞) and is entirely essential spectrum. The previ-
ous existing results concern the case αβ > 1 (case in which Qw

(α,β)(x,D)
is globally elliptic with a discrete spectrum whose qualitative properties
are being extensively studied), and ours therefore extends the picture to
the range of parameters αβ ≥ 1.

1. Introduction

In this paper, we consider the following system

(1.1) Qw(x,D) = Qw
(α,β)(x,D) = A

(

−∂2
x

2
+

x2

2

)

+J

(

x∂x +
1

2

)

, x ∈ R,

where

A =

[
α 0
0 β

]

, J =

[
0 −1
1 0

]

, α, β ∈ R+ = (0,+∞).

Put p0(x, ξ) = (x2 + ξ2)/2. System (1.1) is then the Weyl quantization of
the matrix-valued quadratic form on T ∗

R = R× R

Q(x, ξ) = Q(α,β)(x, ξ) = Ap0(x, ξ) + iJxξ.

Clearly, one has Q(x, ξ)∗ = Q(x, ξ) for all (x, ξ) ∈ R× R.
The operator Qw(x,D) shall be throughout realized as an unbounded

operator Q in L2(R;C2) with maximal domain

D = {u ∈ L2(R;C2); Qw(x,D)u ∈ L2(R;C2) (in the S
′-sense)},

i.e. Q is the maximal realization of Qw(x,D).
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2 A. PARMEGGIANI, A. VENNI

When αβ > 1 one has detQ(x, ξ) ≈ (x2 + ξ2)2, whence it follows that
Qw is a (classical) globally elliptic self-adjoint operator in L2(R;C2)
(see [20]), whence its realization Q has domain

B2(R;C2) = {u ∈ L2(R;C2);
∑

j,k≥0,j+k≤2

||xj∂k
xu||L2(R;C2) < +∞},

and is self-adjoint. Since B2(R;C2) is compactly embedded into L2(R;C2),
we have that the spectrum of Q is discrete, made of a diverging (to +∞)
sequence of real eigenvalues with finite multiplicities, and it turns out (see
[14]) that its lowest eigenvalue is positive. Hence (with repetitions according
to the multiplicity)

Spec(Q) = {0 < λ1 ≤ λ2 ≤ . . . → +∞}.
System (1.1) is called non-commutative harmonic oscillator (NCHO for
short), in the terminology introduced by Wakayama and the first author
in [13] and [14], and (1.1) is actually a normal form of the class introduced
there (see [14]).

Wakayama and the first author gave in [13,14], a qualitative description of
the spectrum of Qw when αβ > 1, by using sl2(R)-symmetries to construct
suitable creation-annihilation operators and a basis B made of “twisted”
vector-valued Hermite functions.

The case α = β is completely understood: the system is unitarily equiva-
lent (through automorphisms of S (R;C2) and S ′(R;C2)), according to the
cases α = β > 1, α = β = 1 and 0 < α = β < 1, respectively, to the scalar

harmonic oscillator
√
α2 − 1(−∂2

x+x2)/2, to the scalar −∂2
x/2, to the scalar√

1− α2(−∂2
x − x2)/2, respectively (see Corollary 4.1 of [14]), and one has

the following result.

Theorem 1.1 ( [14]). When α = β > 1 one has

(1.2) Spec(Q) =

{
√

α2 − 1

(

N +
1

2

)

; N ∈ Z+

}

(where Z+ = {0, 1, . . .}), with eigenvalues of multiplicity 2.
When α = β = 1 one has

(1.3) Spec(Q) = Specess(Q) = [0,+∞).

When α = β < 1 one has

(1.4) Spec(Q) = Specess(Q) = R.

Here Specess denotes the essential spectrum (the complement in C of the
discrete spectrum).

It is interesting to notice the appearance of the “symplectic” parameter√
α2 − 1 (denoted by ℓ =

√
αβ − 1 in [13, 14]).

When α 6= β things are highly nontrivial. In this case, when αβ > 1,
in [14] (see also [13]) to understand the spectrum two kinds of sets, Σ±

0 and
Σ±
∞, were introduced. (The ± stands in this case for the parity: the system
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preserves parity, whence it follows that one can study, separately, the even
case, +, and the odd one, −, respectively.) The sets Σ±

0 are described as the
sets of those eigenvalues that are roots of particular polynomials, whereas
the sets Σ±

∞ are described as the sets of those eigenvalues that are zeroes
of particular meromorphic functions (defined through continued fractions).
These polynomials and meromorphic functions are related to certain three-
term recurrence systems. Corresponding to eigenvalues belonging to Σ0 =
Σ+
0 ∪Σ−

0 one has eigenfunctions which are written as a linear combination of
finitely many elements of the basis B, whereas corresponding to eigenvalues
belonging to Σ∞ = Σ+

∞ ∪ Σ−
∞ one has eigenfunctions which are written as

a linear combination of infinitely many elements of the basis B. While one
always has Σ+

0 ∩ Σ−
0 = ∅, the intersection Σ+

∞ ∩ Σ−
∞ has a very difficult

description and is yet to be understood. Upon defining

E±(λ) = {u ∈ L2(R;C2); Qw(x,D)u = λu, u even/odd},
one has the following theorem.

Theorem 1.2 ( [14]; see also [13]). When α 6= β, one has

Σ+
0 ⊂ Σ+

∞, Σ−
0 ⊂ Σ−

∞,

Spec(Qw(x,D)) = Σ+
∞ ∪ Σ−

∞,

and

dimE±(λ) =







2, whenever λ ∈ Σ±
0

1, whenever λ ∈ Σ±
∞ \ Σ±

0

,±−respectively .

Notice that the theorem says nothing about whether Σ±
0 ∩(Σ∓

∞ \Σ∓
0 ) 6= ∅,

case that would yield an eigenvalue of multiplicity 3.
The sets Σ±

0 and Σ±
∞, although explicitly described, are complicated (see

[13, 14] and also [15, 17, 18]), and it would be desirable to have also other
(hopefully simpler) descriptions.

It is a remarkable fact, proved by Ochiai in [11] (see also [12]), that the
spectral problem for Qw is equivalent to a family of third-order Fuchsian
differential equations with four regular singularities in the complex unit
disk. Furthermore, important work on the spectral zeta-function ζQ(s), and
its special values, associated with Qw(x,D), defined by

ζQ(s) =
∑

λ∈Spec(Q)

1

λs
, s ∈ C, Re s > 1,

has been started by Ichinose and Wakayama (see [6,7]; see also [18] and [8]).
It is also worth mentioning that numerical study of the spectrum Qw(x,D)
has been carried out by Nagatou, Nakao and Wakayama in [10], and that
one can study the spectrum by Rellich’s perturbation theory in the limit
αβ → +∞ with α/β a fixed constant 6= 1 (see [15]). Furthermore, the study
of Poisson-type relations for the spectral distribution, and clustering the-
orems of the spectrum were proved in Parmeggiani [16, 17] (see also [18]).
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As for the multiplicity of the lowest eigenvalue, one has results in Parmeg-
giani [15], in Hiroshima and Sasaki [3], and in the more recent paper by
Wakayama [21]; however, our knowledge of the lowest eigenvalue is still
incomplete. It is finally worth mentioning the recent study of Dicke-type
crossings among the eigenvalues of certain families of NCHOs carried out
by Hirokawa in [2], which is related to the study of self-adjoint operators
with non-commutative coefficients such as the Rabi model or the Jaynes-
Cumming model, describing the interaction between a one-mode photon
and a two-level atom.

In this paper, we extend the knowledge of the spectrum of Qw
(α,β)(x,D),

thought of as its maximal realization Q, to the case αβ = 1, with α, β > 0,
case in which the NCHO is no longer globally elliptic, proving that when
αβ = 1 one has

Spec(Q) = Specess(Q) = [0,+∞).

The proof is based on a metaplectic factorization (in S ′(R;C2)) ofQw(x,D),
with local metaplectic operators (i.e. none of the metaplectic operators
involved is the Fourier transform).

2. A fundamental lemma and a few consequences of it

We prove in this section a fundamental lemma, following the approach
of [18] in his proof of Theorem 8.2.1. Although the lemma will be used only
in the case αβ = 1, we shall prove it in the general case (i.e. α, β > 0 and
no restriction on αβ) because it will be useful also in a subsequent study.

We have to introduce some notation. For α, β ∈ R+, let

0 < δ :=
√

αβ, s(δ) :=







sgn(αβ − 1), δ 6= 1,

0, αβ = 1.
, ǫ :=

√

|αβ − 1|,

and ω± :=
α± β

2
. Let v± := 1√

2

[
1
∓i

]

be the orthonormal eigenvectors

of J belonging to ±i, respectively. Hence Jv± = ±iv± and, furthermore,

KJv± = v∓, where K =

[
0 1
1 0

]

. Let W0 := [v+|v−]. Let us consider the

(global, in the sense of Shubin, see [20], or [9], or [18]) symbols

p0(x, ξ) =
ξ2 + x2

2
, e(x, ξ) = xξ,

pδ(x, ξ) =
ξ2 + s(δ)x2

2
, Lδ(x, ξ) =

ξ2 + (δ2 − 1)x2

2
,

and the linear symplectomorphisms χδ, χ± : R× R −→ R× R, where

χδ : (x, ξ) 7−→ (δ1/2x, δ−1/2ξ), χ± : (x, ξ) 7−→ (x, ξ ± x),

which are associated with the metaplectic operators

Uδ : f(x) 7−→ (Uδf)(x) = δ−1/4f(x/δ1/2),
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U± : f(x) 7−→ (U±f)(x) = e±ix2/2f(x),

respectively. Notice that U∗
− = U−1

− = U+, and that U∗
δ = U−1

δ = U1/δ.

Lemma 2.1. There exist metaplectic operators U0 and Uǫ, isometries of
L2(R;C2) and automorphisms of S ′(R;C2) and of S (R;C2), such that for
all α, β ∈ R+ and for all λ ∈ C, on S ′(R;C2) the operator Qw(x,D) − λ
can be factored as (recall that Dx = −i∂x)

(2.1) Qw(x,D)− λ = A1/2U∗
0

(1

2
D2

x − λV (x)
)

U0A
1/2, when ǫ = 0,

and as

(2.2) Qw(x,D)−λ =
1

δ
A1/2U∗

ǫ

(

ǫpwδ (x,D)− λ

δ
Vǫ(x)

)

UǫA
1/2, when ǫ > 0,

where

V (x) =

[
ω+ −ω−e

−ix2

−ω−e
ix2

ω+

]

, Vǫ(x) = V (x/ǫ1/2),

and

U0 =
1√
2

[
U−U

∗
δ 0

0 U+U
∗
δ

] [
1 i
1 −i

]

, Uǫ = (U∗
1/ǫ ⊗ I2)U0.

The metaplectic operators U0 and Uǫ are local (i.e. leave C∞
0 (R;C2) invari-

ant).

Proof. One writes

Qw(x,D)− λ =
1

δ
A1/2

(

δpw0 (x,D) + iJew(x,D)− λδA−1
)

A1/2.

Hence, thinking of A1/2 as an automorphism of S ′(R;C2), we have that
(Qw(x,D)− λ)u = 0 in S ′(R;C2) is equivalent to

(δpw0 (x,D) + iJew(x,D)− λδA−1)v = 0, v := A1/2u ∈ S
′(R;C2).

Since
δp0(x, ξ)∓ xξ = (Lδ ◦ χ∓ ◦ χ−1

δ )(x, ξ),

we have
δpw0 (x,D)∓ ew(x,D) = UδU

−1
∓ Lw

δ (x,D)U∓U
−1
δ .

As A−1 = (ω+I−ω−KJ)/δ2, we may write, using the diagonalizer W0 of J ,

W ∗
0

(

δpw0 (x,D) + iJew(x,D)− λδA−1
)

W0 =

=

[
δpw0 (x,D)− ew(x,D)− λ

δω+
λ
δω−

λ
δω− δpw0 (x,D) + ew(x,D)− λ

δω+

]

=

=

[
UδU+ 0
0 UδU−

]

︸ ︷︷ ︸

=:U∗

Lw
δ (x,D)

[
U−U

∗
δ 0

0 U+U
∗
δ

]

︸ ︷︷ ︸

=:U

−λ

δ

[
ω+ −ω−
−ω− ω+

]

=

= U∗
(

Lw
δ (x,D)− λ

δ
U

[
ω+ −ω−
−ω− ω+

]

U∗
)

U =
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(since U+U
∗
δ (U−U

∗
δ )

∗ : f 7−→ eix
2
f)

= U∗
(

Lw
δ (x,D)− λ

δ
V (x)

)

U,

where

V (x) :=

[
ω+ −ω−e

−ix2

−ω−e
ix2

ω+

]

.

Hence, at this point we have obtained the factorization

(2.3) Qw(x,D)− λ =
1

δ
A1/2W0U

∗
(

Lw
δ (x,D)− λ

δ
V (x)

)

UW ∗
0A

1/2.

Now, when ǫ = 0, that is αβ = 1 = δ, we then have Lw
1 (x,D) = D2

x/2, so
that

Qw(x,D)− λ = A1/2U∗
0

(1

2
D2

x − λV (x)
)

U0A
1/2,

where

(2.4) U0 = UW ∗
0 =

1√
2

[
U−U

∗
δ 0

0 U+U
∗
δ

] [
1 i
1 −i

]

,

which is the sought factorization, as claimed.
Next, when ǫ > 0, consider χ1/ǫ : (x, ξ) 7−→ (ǫ−1/2x, ǫ1/2ξ), and the associ-

ated metaplectic operator U1/ǫ : f 7−→ ǫ1/4f(ǫ1/2 ·). Since

U∗
1/ǫL

w
δ (x,D)U1/ǫ = (Lδ ◦ χ1/ǫ)

w(x,D) =
ǫ

2
(D2

x + s(δ)x2) = ǫpwδ (x,D),

we get from (2.3)

Qw(x,D)− λ =
1

δ
A1/2U∗

ǫ

(

ǫpwδ (x,D)− λ

δ
Vǫ(x)

)

UǫA
1/2,

where this time

(2.5) Uǫ = (U∗
1/ǫ ⊗ I2)UW

∗
0 ,

and

Vǫ(x) = U∗
1/ǫV (x)U1/ǫ = V (x/ǫ1/2)

(of course, as a multiplication operator). This concludes the proof of the
lemma. �

Therefore we have in particular that

(2.6) Qw(x,D) =
ǫ

δ
A1/2U∗

ǫ p
w
δ (x,D)UǫA

1/2, when ǫ > 0,

and

(2.7) Qw(x,D) =
1

2
A1/2U∗

0D
2
x U0A

1/2, when ǫ = 0,

where the metaplectic operators U0 and Uǫ are given in (2.4) and (2.5),
respectively.

Notice that neither U0 nor Uǫ commutes with A.
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Recalling that Qw(x,D) is realized as the maximal operator Q, with do-
main

D = Dα,β = {u ∈ L2(R;C2); Qw(x,D)u ∈ L2(R;C2)},
we have that, when αβ = 1, D can be described as

(2.8) D = {u ∈ L2(R;C2); D2
xU0A

1/2u ∈ L2(R;C2)} =

= {u ∈ L2(R;C2); U0A
1/2u ∈ H2(R;C2)},

whereas, when 0 < αβ < 1, it can be described as

D = {u ∈ L2(R;C2); (D2
x − x2)UǫA

1/2u ∈ L2(R;C2)}.
Moreover, when αβ ≥ 1 we have Qw(x,D) ≥ 0 on S (R;C2). This is already
well-known when αβ > 1 (see [14], or [18]), and when α, β ∈ R+ with αβ = 1
it follows from Lemma 2.1, for we have

(
Qw(x,D)u, u

)
=

1

2

(
D2

xU0A
1/2u,U0A

1/2u
)
=

=
1

2
||∂xU0A

1/2u||2L2 ≥ 0, ∀u ∈ S (R;C2).

As another immediate consequence of Lemma 2.1, we may establish the
self-adjointness of Q, also for the range of values 0 < αβ ≤ 1.
This also follows from the arguments of Hörmander [5], whose extension to
our system presents no problem: using the Weyl-Hörmander pseudodiffer-
ential calculus in the “global” setting (see, e.g., [20], or [9], or [18]) one sees
that Q is the closure of its restriction of S (R;C2) on which it is symmetric.

However, we shall here prove directly the self-adjointness of Q for the sake
of having a self-contained approach.

Recall also that the operatorD2
x−x2, realized as an unbounded operator in

L2 defined on its maximal domain, is self-adjoint, with (essential) spectrum
(−∞,+∞).

Corollary 2.2. The operator Q is self-adjoint also for 0 < αβ ≤ 1.

Proof. We give a proof in the case αβ = 1, the other case 0 < αβ < 1 being
completely similar. For simplicity we write D∗ for D(Q∗). Put F = U0A

1/2.
Since

D∗ = {v ∈ L2; D = F−1(H2) ∋ u 7−→ (Qu, v) =
1

2
(D2

xFu,Fv) is bndd},

using (2.7) we may consider

F(D∗) = {Fv ∈ L2; H2 ∋ Fu 7−→ (D2
xFu,Fv) is bndd}.

As H2 is the maximal domain of D2
x, we thus conclude that F(D∗) =

H2(R;C2), whence D∗ = D. �

Therefore, in particular, for all α, β ∈ R+ with αβ = 1, the operator
Q is self-adjoint, with spectrum contained in [0,+∞). We know that when
α = β = 1, our NCHOQw(x,D) is thus isometrically equivalent to (D2

x/2)I2,
whence the spectrum of Q is indeed the whole half-ray [0,+∞). In the next
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section, we will see that this is indeed the case also for all α, β ∈ R+ with
αβ = 1.

We close the section by stating the following classical characterization of
the bottom of the essential spectrum of a self-adjoint operator (Persson’s
Theorem; see [1]), that we state already in the case of a self-adjoint system
of the kind we shall have to consider in what follows (the generalization to
these systems presents no problem).

Proposition 2.3. Let F = F ∗ ∈ L∞(R;M2(C)) ∩ C∞(R;M2(C)), and let
P = P∗ be the realization of D2

x/2 + F (x) with domain H2(R;C2) (i.e. the
maximal realization). Hence P is semibounded from below. We have

(2.9) inf Specess(P) = sup
K⊂⊂R

inf
{(Pϕ,ϕ)

||ϕ||2 ; ϕ ∈ C∞
0 (R \K;C2), ϕ 6= 0

}

.

3. Proof of the main result

In this section we prove our result, that we recall next.

Theorem 3.1. Let α, β ∈ R+ with αβ = 1. For Qw(x,D), realized as the
maximal extension Q with domain D (see (2.8)), we have

Spec(Q) = Specess(Q) = [0,+∞).

Proof. We shall follow the approach by Sasaki [19]. Since Q is self-adjoint
and nonnegative on D, we shall prove that for any given λ ∈ [0,+∞), the
operator Q−λ has 0 in the essential spectrum (in other words, by the Weyl
criterion, see e.g. [4], for each λ ≥ 0 one may construct a corresponding Weyl
sequence). Therefore, by Lemma 2.1, this is in turn reduced to proving that
for every fixed λ ∈ [0,+∞), the operator

1

2
D2

x − λV (x) =:
1

2
D2

x − λω+ + λω−

[
0 e−ix2

eix
2

0

]

=:
1

2
D2

x − µ+ F (x)

has 0 in the essential spectrum. To prove this, it suffices to prove that
Specess(

1
2D

2
x + F (x)) = [0,+∞), because one may then construct a Weyl

sequence for 1
2D

2
x+F (x)−µ, for all µ ∈ [0,+∞). For short, we keep writing

1
2D

2
x + F (x) also for its maximal realization in L2(R;C2) with maximal do-

main H2(R;C2), on which it is self-adjoint, by virtue of the fact that for the
vector-valued potential F we have F = F ∗ ∈ L∞(R;M2(C))∩C∞(R;M2(C)).

We have the following basic proposition.

Proposition 3.2. Specess(
1

2
D2

x + F (x)) = [0,+∞).

Proof of the proposition. Since (as a Riemann generalized integral) one has
∫ ∞

0
eix

2
dx =

√
2π(1 + i)/4 =: ω0, we note that

(3.10) lim
R→+∞

±
∫ ±R

0
F (x)dx = λω−

[
0 ω̄0

ω0 0

]

.



On the essential spectrum . . . 9

Define, for R ∈ R,

W+(x;R) :=

∫ x

R
F (s)ds, W−(x;R) =

∫ −R

x
F (s)ds.

Then

W± = W ∗
±, W ′

±(x;R) = ±F (x), and W±(±R;R) = 0 (±−respectively).

By virtue of (3.10) we have that there exists C0 > 0 such that for all R

sup
x∈R

||W±(x;R)||C2→C2 ≤ C0,

and that

α(R) := sup
x≥R

||W+(·, R)||C2→C2 + sup
x≤−R

||W−(·, R)||C2→C2 −→ 0, as R → +∞.

For u ∈ C∞
0 (R;C2), and χR the characteristic function of [−R,R], consider

(u, Fu) =

∫

R

〈u(x), F (x)u(x)〉C2dx = (u, χRFu) + (u, (1− χR)Fu)

= (u, χRFu) +

∫ −R

−∞
〈u(x), F (x)u(x)〉C2dx

︸ ︷︷ ︸

I−(R)

+

∫ +∞

R
〈u(x), F (x)u(x)〉C2dx

︸ ︷︷ ︸

I+(R)

.

Now,

I−(R) = −
[

〈u(x),W−(x;R)u(x)〉C2

]−R

−∞
︸ ︷︷ ︸

=0

+2

∫ −R

−∞
Re 〈u′(x),W−(x;R)u(x)〉C2dx.

It therefore follows that for R > 0

∣
∣

∫ −R

−∞
〈u(x), F (x)u(x)〉C2dx

∣
∣ ≤ sup

x≤−R
||W−(·, R)||C2→C2

∫ 0

−∞

(
|u|2 + |u′|2

)
dx,

and, analogously,

∣
∣

∫ +∞

R
〈u(x), F (x)u(x)〉C2dx

∣
∣ ≤ sup

x≥R
||W+(·, R)||C2→C2

∫ +∞

0

(
|u|2 + |u′|2

)
dx.

Therefore we get

|(u, (1− χR)Fu)| ≤ 2α(R)
(

||u||2L2 + (u,
1

2
D2

xu)
)

,

whence, picking R0 ≫ 1 so that, say, α(R) < 1/4 for all R ≥ R0,

(3.11) (1− 2α(R))
1

2
D2

x + χRF − 2α(R) ≤ 1

2
D2

x + F

≤ (1 + 2α(R))
1

2
D2

x + χRF + 2α(R)
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on C∞
0 (R;C2), and also on H2(R;C2). Since χRF is D2

x-compact for every
R > 0, we thus conclude by Proposition 2.3 that for all R ≥ R0

−2α(R) = inf Specess

(

(1− 2α(R))
1

2
D2

x + χRF − 2α(R)
)

≤ inf Specess(
1

2
D2

x + F )

≤ inf Specess

(

(1 + 2α(R))
1

2
D2

x + χRF + 2α(R)
)

= 2α(R).

Hence, by taking the limit as R → +∞,

0 = inf Specess(
1

2
D2

x + F ) ∈ Specess(
1

2
D2

x + F ) ⊂ [0,+∞).

We have now to show that [0,+∞) ⊂ Specess(
1
2D

2
x + F ). Since 0 is in the

essential spectrum, we may take a corresponding Weyl sequence {wk}k≥1 ⊂
H2(R;C2), that is, a sequence such that (w-L2 stands for “weakly in L2”)

(3.12)







||wk||L2 = 1, wk
w−L2

−→ 0,

||(12D2
x + F )wk||L2 −→ 0,

as k → +∞.

By (3.11) we get constants C1 > 0, C2 ∈ R such that

C1D
2
x/2 + C2 ≤ D2

x/2 + F on H2(R;C2),

so that ||Dxwk|| ≤ C3 for all k ≥ 1. It therefore follows that we may choose

a subsequence {wkj}j≥1 ⊂ {wk}k≥1 with Dxwkj
w−L2

−→ w0 for some w0 ∈ L2.

On the other hand, wk
w−L2

−→ 0 implies that w0 = 0. Next, as χRF is D2
x-

compact, by possibly passing to a subsequence (that we keep denoting by
wkj ) we have (wkj , χRFwkj ) → 0 as j → +∞, so that from (3.11), (3.12) we
obtain

(1− 2α(R)) lim sup
j→+∞

||Dxwkj ||2L2 ≤ 2α(R) −→ 0, as R → +∞.

Hence ||Dxwkj ||L2 → 0 as j → +∞. Now, for each γ ≥ 0, put uj :=

ei
√
2γ xwkj . Obviously, we have uj ∈ H2(R;C2) and

(
1

2
D2

x + F )uj = ei
√
2γ x(

1

2
D2

x + F )wkj + γ ei
√
2γ xwkj +

√

2γ ei
√
2γ xDxwkj .

Therefore ||(D2
x/2 + F − γ)uj ||L2 −→ 0 as j → +∞. Since ||uj ||L2 = 1 and

uj
w−L2

−→ 0 as j → +∞, we thus have that γ ∈ Specess(D
2
x/2 + F ), for all

γ ≥ 0. This concludes the proof of the proposition. �

By Lemma 2.1 and Proposition 3.2 the proof of the theorem is now complete.
�
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Remark 3.3. The case 0 < αβ < 1 seems to be of a very different nature,
and to require another approach. We shall deal with this case in a subsequent
paper.
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