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ON EMBEDDINGS OF MODULAR CURVES IN PROJECTIVE SPACES

GORAN MUIĆ

Abstract. We use explicit results on modular forms [8] via uniformization theory to obtain
embeddings of modular curves in projective spaces.

1. Introduction

Let X be the upper half–plane. Then the group SL2(R) acts on X as follows:

g.z =
az + b

cz + d
, g =

(

a b
c d

)

∈ SL2(R).

We let µ(g, z) = cz + d. Next, the SL2(R)–invariant measure on X is defined by dxdy/y2,
where the coordinates on X are written in a usual way z = x +

√
−1y, y > 0. A discrete

subgroup Γ ⊂ SL2(R) is called a Fuchsian group of the first kind if its fundamental domain
FΓ in X has a finite volume. Then, adding a finite number of points in R∪{∞} called cusps,
FΓ can be compactified. In this way we obtain a compact Riemann surface RΓ.
Let m ≥ 3 be an integer. We consider the space Sm(Γ) of all modular forms of weight

m which are cuspidal i.e., this is a space of all holomorphic functions f : X → C such that
f(γ.z) = µ(γ, z)mf(z) (z ∈ X, γ ∈ Γ) which are holomorphic and vanish at every cusp for
Γ. The space Sm(Γ) is a finite–dimensional Hilbert space under the Petersson inner product:

〈f1, f2〉 =
∫

Γ\X
ymf1(z)f2(z)

dxdy

y2
.

Let ξ ∈ X be a fixed point. Then we define the cuspidal modular forms ∆k,m,ξ in the
following way:

〈f, ∆k,m,ξ,χ〉 =
dkf

dzk
∣

∣

z=ξ
, f ∈ Sm(Γ), k ≥ 0.

In [8] we give the following explicit construction of the modular forms ∆k,m,ξ:

∆k,m,ξ(z) = ǫ−1
Γ 2m−2π−1(

√
−1)m

k
∏

i=0

(m− 1 + i)
∑

γ∈Γ

1
(

γ.z − ξ
)k+m

µ(γ, z)−m,

where ǫΓ = #({±1} ∩ Γ).
As it is explained in ([8], Section 2), above construction is related to the work of Petersson

and refines the construction of Petersson ([13], [14]). We give two rather different proofs of
above expansion for ∆k,m,ξ. The one given ([8], Section 2) uses ideas of Selberg, and the
one given in the context of representation theory is given in [9] using the methods developed
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in [6]. It is applied in [10] to obtain rather precise estimates on classical Poincaré series
which together with a non–vanishing criterion [7] was applied to study non–vanishing of L–
functions attached to modular forms. In this paper we give another application of modular
forms constructed in [8].
By means of the uniformization theory, we may realize every smooth complex complete

curve of genus g ≥ 2 in the form RΓ, where Γ has neither elliptic points nor cusps. Then, a
well–known result about the Riemann surfaces says that one can use holomorphic differentials
of degreem ≥ 3 to construct the embeddings ofRΓ into projective spaces. Instead of working
with holomorphic differentials of degree m, we may work with the space of cuspidal modular
forms S2m(Γ) (the isomorphism between the two can be extracted from pages 51, 52 in [4],
and it is also well–known). In fact, the idea of using modular forms (via Poincaré series)
to construct holomorphic maps on curves is very old one [3]. The advantage working with
Sm(Γ) is that we can allow Γ which might have elliptic points and cusps which is the case
with usual congruence subgroups Γ0(N), and of course we do not have to limit ourselves to
the case m is even. So, let Γ be any Fuchsian group of the first kind. We let tm = dimSm(Γ).
The dimension tm is explicitly computed in ([4], Theorems 2.5.2, 2.5.3) (see Lemma 2-2 (v)
in this paper).
Let m ≥ 3 such that tm ≥ 2. Then selecting a basis f0, . . . , ftm−1 of Sm(Γ) one may

construct a holomorphic map RΓ −→ Ptm−1 given by z 7→ (f0(z) : · · · : ftm−1(z)). In Section
3 in Theorem 3-3, we prove that for tm ≥ g + 1, where g is the genus of RΓ, this map
is associated to the complete linear system |cf |. Here, f is an arbitrary non–zero modular
form in Sm(Γ), and cf is an (integral) divisor cf of degree tm + g − 1 (see Lemma 2-2
(vi)). Essentially, cf is the divisor of zeroes of f when we subtract necessary contribution
of elliptic points and cusps common to all non–zero modular forms. The idea of considering
such divisors goes back to Petersson [14]. In Section 3 we give some other information related
to obtained projective curves: we compute their degrees, field of rational functions and show
that the divisors cf are nothing else than hyperplane intersection divisors. Section 3 is a
preliminary section of the paper and the results are based on the standard theory of algebraic
curves [5], and as some results obtained in ([8], Section 4) which are refined and generalized
in Section 2.
Section 4 is the central section of the paper. In this section we use above mentioned

modular forms ∆k,m,ξ to construct explicit embeddings into projective spaces

RΓ →֒ Pk

where k ranges between g + 1 and tm − 1. When k = tm − 1 we obtain the explicit version
of Theorem 3-3. In fact, since our modular forms depend on the parameter ξ ∈ X, we do
this a little more generally. Our families of embeddings are C∞ in ξ when ξ ranges over
the complement of the set of all (tm − 1)–order Weierstrass points [14]. The distribution of
such points was studied in [12], [11]. It resembles the distribution of zeroes of eigenforms for
Γ = SL2(Z) [16], [2]. In Section 4, we determine (tm − 1)–order Weierstrass points in terms
of our modular forms ∆k,m,ξ.
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In Section 5 (see Proposition 5-1) we study the complete linear system attached to above
embedding for k = tm − 1 as a function on ξ on the complement of the set of all (tm − 1)–
order Weierstrass points. We use the methods analogous to that in the usual Weierstrass
preparation theorem.

2. Preliminaries

In this section we recall and refine some results from [8]. We start by recalling some results
from ([4], 2.3).
Throughout this paper, we write

(2-1) tm = dimSm(Γ).

Let m ≥ 2 be an even integer and f ∈ Sm(Γ) − {0}. Then νz−ξ(f) the order of the
holomorphic function f at ξ. For each γ ∈ Γ, the functional equation f(γ.z) = µ(γ, z)mf(z)
shows that νz−ξ(f) = νz−ξ′(f), where ξ′ = γ.ξ. Also, if we let

eξ = #(Γξ/Γ ∩ {±1}) ,
then eξ = eξ′ . The point ξ is elliptic if eξ > 1. Next, following ([4], 2.3), we define

νξ(f) = νz−ξ(f)/eξ.

Clearly, νξ = νξ′ , and we may let
νaξ(f) = νξ(f),

where
aξ ∈ RΓ is a projection of ξ to RΓ,

a notation we use throughout this paper.
If x ∈ R∪{∞} is a cups for Γ, then we define νx(f) as follows. Let σ ∈ SL2(R) such that

σ.x = ∞. We write

{±1}σΓxσ
−1 = {±1}

{(

1 lh′

0 1

)

; l ∈ Z

}

,

where h′ > 0. Then we write the Fourier expansion of f at x as follows:

(f |mσ−1)(σ.z) =
∞
∑

n=1

ane
2π

√
−1nσ.z/h′

.

(We remind the reader that m is even.) We let

νx(f) = N ≥ 0,

where N is defined by a0 = a1 = · · · = aN−1 = 0, aN 6= 0. One easily see that this definition
does not depend on σ. Also, if x′ = γ.x, then νx(f) = νx(f). Hence, if bx ∈ RΓ is a cusp
corresponding to x, then we may define

νbx = νx(f).

Put
div(f) =

∑

a∈RΓ

νa(f)a ∈ Q⊗Div(RΓ),

where Div(RΓ) is the group of (integral) divisors on RΓ.
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Using ([4], 2.3), this sum is finite i.e., νa(f) 6= 0 for only a finitely many points. We let

deg(div(f)) =
∑

a∈RΓ

νa(f).

Assume now that −1 6∈ Γ and m ≥ 1 is odd. Let f ∈ Sm(Γ), f 6= 0. Then f 2 ∈ S2m(Γ).
We define νa(f) = νa(f

2)/2, and define div(f) and deg(div(f)) as before. (See [4], page 52.)
Let di ∈ Q⊗Div(RΓ), i = 1, 2. Then we say that d1 ≥ d2 if their difference d1−d2 belongs

to Div(RΓ) and is non–negative in the usual sense.

Lemma 2-2. Assume that m ≥ 1 is an integer and −1 6∈ Γ if m is odd. Assume that
f ∈ Sm(Γ), f 6= 0. Let t be the number of inequivalent cusps and u (resp., v) the number of
inequivalent regular (resp., irregular) cusps for Γ. Then we have the following:

(i) For a ∈ RΓ, we have νa(f) ≥ 0.
(ii) Let a ∈ RΓ is a cusp. If m is even or a is regular, then νa(f) ≥ 1 is an integer. If a

is not regular, then νa(f) ≥ 1/2 is in 1/2 + Z.
(iii) If a ∈ RΓ is not an elliptic point or a cusp, then νa(f) ≥ 0 is an integer. If a ∈ RΓ

is an elliptic point, then νa(f)− m
2
(1− 1/ea) is an integer.

(iv) Let g be the genus of RΓ. Then

deg(div(f)) = m(g − 1) +
m

2

(

t+
∑

a∈RΓ, elliptic

(1− 1/ea)

)

.

(v) Let [x] denote the largest integer ≤ x for x ∈ R. Then,

tm =

{

(m− 1)(g − 1) + (m
2
− 1)t+

∑

a∈RΓ,
elliptic

[

m
2
(1− 1/ea)

]

, m > 2, even

g, m = 2,

and

tm =(m− 1)(g − 1) + (
m

2
− 1)u+ (

m

2
− 1

2
)v+

+
∑

a∈RΓ,
elliptic

[m

2
(1− 1/ea)

]

, m ≥ 3, odd.

(vi) There exists an integral divisor cf ≥ 0 of degree tm + g − 1 such that

div(f) =cf +
∑

a∈RΓ, elliptic

(m

2
(1− 1/ea)−

[m

2
(1− 1/ea)

])

a+

+







∑

b∈RΓ,
cusp

b m ≥ 2 is even
∑

b∈RΓ,
regular cusp

b+
∑

b∈RΓ,
irregular cusp

1
2
b, m ≥ 1 is odd

Proof. This is ([8], Lemma 4-1). �
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Definition 2-3. Let ξ ∈ X or let ξ be a cusp for Γ. Let m ≥ 1 be an integer such that
Sm(Γ) 6= 0. We define (see Lemma 2-2 (iv))

kξ,m
def
= sup

f∈Sm(Γ)
f 6=0

cf (aξ).

Let ξ ∈ X be a non–elliptic point. Then kξ,m = supf∈Sm(Γ)
f 6=0

νz−ξ(f) which agrees with the

definition given in ([8], Lemma 4-2). Going back to the general set–up of Definition 2-3, we
observe that there exists a unique to a scalar fξ,m ∈ Sm(Γ)− {0} such that cfξ,m(aξ) = kξ,m.
(See [8], Lemma 4-2 for the case ξ non–elliptic; the general case has similar proof.) By
Lemma 2-2 (vi), we may write

(2-4)

div(fξ,m) = dξ,m + kξ,maξ +
∑

a∈RΓ, elliptic

(m

2
(1− 1/ea)−

[m

2
(1− 1/ea)

])

a+

+







∑

b∈RΓ,
cusp

b m ≥ 2 is even
∑

b∈RΓ,
regular cusp

b+
∑

b∈RΓ,
irregular cusp

1
2
b, m ≥ 1 is odd,

where dξ,m is a non–negative integral divisor of degree (see Lemma 2-2 (vi))

(2-5) deg(dξ,m) = g − 1 + tm − kξ,m ≤ g, for m ≥ 3.

We may define the usual spaces of meromorphic functions

L(kaξ + dξ,m) = {F ∈ C (RΓ) ; div(F ) + kaξ + dξ,m ≥ 0} , k = 0, 1, 2, . . . ,

where C (RΓ) is the field of rational functions on RΓ.
We have the inclusions

L(0 · aξ + dξ,m) ⊂ L(1 · aξ + dξ,m) ⊂ · · · ;
the dimension of the spaces increase for not more than one. We collect some results that has
the proofs similar to those given by ([8], Section 4).

Lemma 2-6. Let ξ ∈ X or let ξ be a cusp for Γ. Let m ≥ 3 be an integer such that
Sm(Γ) 6= 0. Then

tm − 1 ≤ kξ,m ≤ tm + g − 1.

Proof. This is ([8], Lemma 4-4) when ξ is not elliptic. In other two cases the upper bound
has the same proof. For the lower bound, we need to adjust the proof of ([8], Lemma
4-2(iv)). Instead of working in Sm(Γ), we work in the space of meromorphic functions
{f/fξ,m; f ∈ Sm(Γ)}, where fξ,m is fixed but the proof is essentially the same. In more
details, we restrict to a neighborhood of aξ and observe that the functions from that space of
functions have poles from order 0 up to at most kξ,m, choosing a local chart we can switch to
the vector space of functions holomorphic at aξ having a zero of order at most kξ,m. Then,
one easily adjust the proof ([8], Lemma 4-2(iv)). �

We include the following lemma which just the standard Riemann–Roch:
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Lemma 2-7. Let ξ ∈ X or let ξ be a cusp for Γ. Let m ≥ 3 be an integer such that
Sm(Γ) 6= 0. Then, for k ≥ g − tm + kξ,m, we have the following1:

dimL(kaξ + dξ,m) = tm + k − kξ,m.

Proof. The Riemann–Roch theorem says

dimL(kaξ + dξ,m) = deg(kaξ + dξ,m) + dimL(K − kaξ − dξ,m) + 1− g.

Here K is the canonical divisor. The claim is obvious if g = 0. Indeed, Lemma 2-6 implies
that

g − tm + kξ,m = 1.

Since, also K = 0, the Riemann–Roch theorem and (2-5) implies that

dimL(kaξ + dξ,m) = tm + k − kξ,m.

So, we assume that g ≥ 1. Then, K 6= 0 and we have

deg(K) = 2g − 2.

Thus, as usual, we see that if

deg(K − kaξ − dξ,m) = 2g − 2− k − deg(dξ,m) < 0

i.e.,

k ≥ 2g − 1− deg(dξ,m) = g − tm + kξ,m,

then dimL(K − kaξ − dξ,m) = 0 and with the aid of (2-5) the lemma follows. �

Lemma 2-8. Let ξ ∈ X or let ξ be a cusp for Γ. Let m ≥ 3 be an integer such that
Sm(Γ) 6= 0. Then, for all 0 ≤ i ≤ kξ,m, we have

L((kξ,m − i)aξ + dξ,m) = {f/fξ,m; f = 0 or cf (aξ) ≥ i} .
Moreover, dimL(dξ,m) = 1 i.e., it consists of constants.

Proof. This is proved in the same way as ([8], Lemma 4-13). �

Lemma 2-9. Let ξ ∈ X or let ξ be a cusp for Γ. Let m ≥ 3 be an integer such that
Sm(Γ) 6= 0. Then, for all 0 ≤ i ≤ tm − g− 1, there exists f ∈ Sm(Γ) such that cf (aξ) = i. In
particular, if tm ≥ g + 1, then there exists f ∈ Sm(Γ) such that cf (aξ) = 0.

Proof. Indeed, by Lemma 2-7, we have

L((kξ,m − i)aξ + dξ,m) 6= L((kξ,m − i− 1)aξ + dξ,m)

if kξ,m − i− 1 ≥ g − tm + kξ,m. Now, we apply Lemma 2-8. �

The following proposition is the main result of the present section. We use notion of linear
systems of divisors. We refer to ([5], page 147) for this notion.

1Lemma 2-2 (v) and the assumption Sm(Γ) 6= 0 imply that tm ≥ g. Hence, we can take k = kξ,m.
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Proposition 2-10. Let m ≥ 3 be an integer such that Sm(Γ) 6= 0. Then, for any non–zero
f ∈ Sm(Γ), we have the following:

L(cf ) = {g/f ; g ∈ Sm(Γ)} .
Furthermore, if tm ≥ g + 1 the complete linear system |cf | has no base points.

Proof. By definition, we have the following:

L(cf ) = {F ∈ C(RΓ); div(F ) + cf ≥ 0.}
Next, if g ∈ S(Γ), g 6= 0, then by Lemma 2-2 (vi) we obtain

(2-11) div

(

g

f

)

+ cf = div(g)− div(f) + cf = cg − cf + cf = cg ≥ 0.

This shows that g/f ∈ L(cf ).
Let ξ ∈ X or let ξ be a cusp for Γ. By Lemma 2-8, we have the following:

dimL(kξ,maξ + dξ,m) = tm.

Again, by Lemma 2-2 (vi), we have

div(fξ,m/f) = kξ,maξ + dξ,m − cf .

Thus, the divisors cf and kξ,maξ + dξ,m are linearly equivalent. This implies that

dimL(cf ) = dimL(kξ,maξ + dξ,m) = tm.

This proves the first claim of the proposition.
The assumption tm ≥ g + 1 implies that for every ζ ∈ X or a cusp, there exists g ∈

Sm(Γ) such that cg(aζ) = 0 (see Lemma 2-9). This means that aζ 6∈ supp(cg) for some
g ∈ Sm(Γ)−{0}. Then, by (2-11), we have that g/f 6∈ L(cf −aζ). This proves the last claim
of the proposition. �

3. Maps to Projective Spaces

Assume that m ≥ 3 and tm ≥ 2. We have a holomorphic map

RΓ −→ Ptm−1

defined by

(3-1) az 7→ (f0(z) : · · · : ftm−1(z))

where f0, . . . , ftm−1 is a basis of Sm(Γ). For any non–zero f ∈ Sm(Γ), this map can be
written as follows:

(3-2) az 7→ (f0(z)/f(z) : · · · : ftm−1(z)/f(z)) .

As with any holomorphic map, this one has attached divisor d. The divisor d is defined
by

−d =
∑

a∈RΓ

min

(

div

(

fi
f

)

(a), 0 ≤ i ≤ tm − 1

)

a.
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When tm ≥ g+1, it is very easy to compute d. By Lemma 2-2 (vi), we have the following:

−d =
∑

a∈RΓ

min

(

div

(

fi
f

)

(a), 0 ≤ i ≤ tm − 1

)

a

=
∑

a∈RΓ

min (cfi(a)− cf (a), 0 ≤ i ≤ tm − 1)a

= −cf +
∑

a∈RΓ

min (cfi(a), 0 ≤ i ≤ tm − 1)a

= −cf ,

where in the last equality we use Lemma 2-9 (and the assumption tm ≥ g + 1).

Now, we prove the main result of this section. By Lemma 2-2 (vi), for non–zero f, g ∈
Sm(Γ), we have that

div

(

f

g

)

= div(f)− div(g) = cf − cg.

Thus, the divisors cf and cg are equivalent. Hence, the corresponding complete linear systems
are equal

|cf | = |cg| .

Theorem 3-3. Let m ≥ 3 such that tm ≥ g + 1, 2. Then, the holomorphic map (3-1) is
attached to the (base point free) complete linear system |cf | where f ∈ Sm(Γ) is any non–zero
modular form. Moreover, if tm ≥ g + 2, then the divisor cf is very ample; in particular, the
holomorphic map (3-1) is an embedding.

Proof. By above computation, the divisor attached to the map (3-2) is cf . The linear system
of the holomorphic map (3-2) is by definition equal to

{

div

(

tm−1
∑

i=0

aifi/f

)

+ cf ; a0, . . . , atm−1 ∈ C

}

.

By Proposition 2-10, it is equal to the complete linear system |cf |. This proves the first
claim.
By definition |cf | is very ample if it is base–point–free and it defines an embedding. By

Proposition 2-10, the complete linear system |cf | is base–point–free for tm ≥ g + 1. By
Lemma 2-2 (vi), we obtain we obtain

deg(cf ) = g − 1 + tm ≥ (g − 1) + (g + 2) = 2g + 1.

By the standard theory of algebraic curves, any divisor of degree ≥ 2g+1 is very ample. In
fact, we did not have to check that |cf | is base–point free in advance since this holds for any
any divisor of degree ≥ 2g + 1. �
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Corollary 3-4. Assume that m ≥ 3 is given such that tm ≥ g + 2. Then, if f0, . . . , ftm−1 is
a basis of Sm(Γ), then we denote by

(3-5) C = C(f0, . . . , ftm−1).

the image of the map (3-1). Then, C is a irreducible smooth projective curve in Ptm−1 which
has a degree tm + g − 1.

Proof. The first claim follows by Chow’s theorem. By the standard theory, the degree is
given by

deg (C) = deg (cf ) = tm + g − 1,

by Lemma 2-2 (vi). �

Corollary 3-6. Assume that m ≥ 3 is given such that tm ≥ g + 2. Then, for the curve C
given by (3-5), the hyperplane intersection divisor for x0 = 0 is cf0.

Proof. Indeed, the corresponding map we can write has follows:

az 7−→ (f0(z) : · · · : ftm−1(z)) = (1 : f1(z)/f0(z) · · · : ftm−1(z)/f0(z)).

Next, by Lemma 2-2 (vi), we note that

div(fi/f0) = div(fi)− div(f0) = cfi − cf0 ,

where cfi , cf0 ≥ 0. Finally, Lemma 2-9, shows that if cf0(aζ) > 0 for some aζ ∈ RΓ, then
there exists i ≥ 1 such that cfi(aζ) = 0. Now, the proof is immediate. �

Since f0 could be any non–zero modular form in Sm(Γ), we see that the divisors cf are
just the hyperplane intersection divisors. Hence, their geometric interpretation.

Corollary 3-7. Assume that m ≥ 3 is given such that tm ≥ g+2. Then, the field of rational
functions C(RΓ) is generated over C by the rational functions fi/f0, 1 ≤ i ≤ tm − 1.

Proof. We denote the homogeneous coordinates on Ptm−1 by (x0 : · · · : xtm−1). We remark
that C does not lie in any hyperplane, and, in particular, not in x0 = 0. Thus, the field of
rational functions on C is generated by xi/x0, 1 ≤ i ≤ tm−1. Now, apply the map (3-1). �

4. Wronskians and explicit version of Theorem 3-3

Using, some further results from [8], we can make Theorem 3-3 more explicit. This is the
goal of the present section. We start with the following lemma:

Lemma 4-1. Let m ≥ 1. Then, for any sequence f1, . . . , fk ∈ Sm(Γ), the Wronskian

W (f1, . . . , fk) (z)
def
=

∣

∣

∣

∣

∣

∣

∣

∣

f1(z) · · · fk(z)
df1(z)
dz

· · · dfk(z)
dz

· · ·
dk−1f1(z)
dzk−1 · · · dk−1fk(z)

dzk−1

∣

∣

∣

∣

∣

∣

∣

∣

is a cuspidal modular form in Sk(m+k−1)(Γ).
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Proof. This is a standard fact (see [15], ([1], page 162), ([8], Theorem 3-8 (iii)). We leave
details to the reader. �

We recall the following construction of elements of Sm(Γ) (see [8], Proposition 2.1). We
assume that m ≥ 3. Put ǫΓ = #({±1} ∩ Γ). Let ξ ∈ X. Then, k ≥ 0, the series

(4-2) ∆k,m,ξ(z)
def
=

(m− 1)m · · · (m+ k − 1)(2
√
−1)m

4ǫΓπ

∑

γ∈Γ

(

γ.z − ξ
)−k−m

µ(γ, z)−m,

converges absolutely and uniformly on compact sets to an element of Sm(Γ) which satisfies

(4-3) 〈f, ∆k,m,ξ〉 =
dkf(z)

dzk
∣

∣

z=ξ
, f ∈ Sm(Γ), k ≥ 0,

where the Petersson inner product on Sm(Γ) is defined by

〈f1, f2〉 =
∫

Γ\X
ymf1(z)f2(z)

dxdy

y2
.

We put

(4-4) Wk(z, ξ)
def
=

∣

∣

∣

∣

∣

∣

∣

∣

∆0,m,ξ(z) · · · ∆k,m,ξ(z)
d∆0,m,ξ(z)

dz
· · · d∆k,m,ξ(z)

dz
· · ·

dk∆0,m,ξ(z)

dzk
· · · dk∆k,m,ξ(z)

dzk

∣

∣

∣

∣

∣

∣

∣

∣

.

The next lemma collects some properties of those functions.

Lemma 4-5. Let m ≥ 3 and k ≥ 0. Let ξ ∈ X. Then, we have the following:

(i) Wk(·, ξ) ∈ S(k+1)(m+k)(Γ).

(ii) The function Wk(ξ)
def
= Wk(ξ, ξ) is real–analytic and non–negative function on X.

(iii) We have Wk(γ.ξ) = |µ(γ, ξ)|2(k+1)m+2k(k+1)Wk(ξ), for all γ ∈ Γ and ξ ∈ X.
(iv) The sequence ∆0,m,ξ, . . . ,∆k,m,ξ is linearly independent if and only if Wk(ξ) = 0.
(v) If k ≥ tm, then Wk is identically zero.
(vi) The set of zeroes of Wk is Γ–invariant. If Wk is not identically zero, then the zeroes

of Wk belongs to finitely many Γ–orbits.
(vii) For any non–elliptic point ξ which satisfies Wtm−1(ξ) 6= 0, we have kξ,m = tm − 1.
(viii) Let ξ be an elliptic point. Then Wk(ξ) = 0 for all k ≥ 0 if the order of Γξ does not

divide m.
(ix) Let ξ be an elliptic point. Then Wk(ξ) = 0 for all k ≥ 1.
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Proof. (i) follows from Lemma 4-1. Next, using (4-3), we can write (4-4) in the following
form:

(4-6) Wk(z, ξ) =

∣

∣

∣

∣

∣

∣

∣

∣

〈∆0,m,ξ,∆0,m,z〉 · · · 〈∆k,m,ξ,∆0,m,z〉
〈∆0,m,ξ,∆1,m,z〉 · · · 〈∆k,m,ξ,∆1,m,z〉

· · ·
〈∆0,m,ξ,∆k,m,z〉 · · · 〈∆k,m,ξ,∆k,m,z〉

∣

∣

∣

∣

∣

∣

∣

∣

.

This shows that the Gramm determinant of the sequence of modular forms ∆0,m,ξ, . . .∆k,m,ξ

is Wk(ξ). This proves (iv). Also, one of the basic property of the Gramm determinant
implies Wk(ξ) ≥ 0 for all ξ ∈ X. This proves that the function in (ii) is non–negative. It
is real analytic by ([8], Proposition 2-7 (i)). This completes the proof of (iii). Next, (iv)
is a consequence of Lemma 4-1 and the following obvious consequence of (4-6) Wk(z, ξ) =

Wk(ξ, z). (v) follows directly from (iv). The first part of (vi) follows from (iii). The last part
of (vi) follows from the following observation. By (iv), the claim is sufficient to establish for
k = tm − 1. But, by the proof of ([8], Theorem 3-5 (iii)), those orbits are determined as the
zeroes of the cuspidal modular form given by the Wronskian W (f1, . . . , ftm), attached to a
basis f1, . . . , ftm of Sm(Γ). Finally, (vii) follows from (vi) and ([8], Theorem 3-5 (iii)). We
prove (viii). We observe that γ −→ µ(γ, ξ) is a character Γξ −→ C× by the cocycle relation

µ(γ1γ2, ξ) = µ(γ1, γ2.ξ)µ(γ2, ξ) = µ(γ1, ξ)µ(γ2, ξ).

Its kernel is trivial. Indeed, if

γ =

(

aγ bγ
cγ dγ

)

∈ Γξ

satisfies
cγξ + dγ = µ(γ, ξ) = 1,

then taking the imaginary part we find cγ = 0 and dγ = 1. Also

aγξ + bγ =
aγξ + bγ
cγξ + dγ

= γ.ξ = ξ,

implies aγ = 1 and bγ = 0. Hence, the group Γξ can be considered as a subgroup of C×. In
particular, it is cyclic. So, if the order of Γξ does not divide m, we can find γ ∈ Γξ such
that µ(γ, ξ)m 6= 1. Hence, for f ∈ Sm(Γ), f(ξ) = f(γ.ξ) = µ(γ, ξ)mf(ξ) implies f(ξ) = 0. In
particular,

〈∆0,m,ξ,∆0,m,ξ〉 = ∆0,m,ξ(ξ) = 0.

Hence, ∆0,m,ξ = 0. Since Wk(ξ) can be computed using (4-6) with z = ξ, the first row there
consists of 0’s in our case. Thus, we have proved that if m is not divisible by the order of
Γξ, then Wk(ξ) = 0 for all k ≥ 0. This proves (viii). Finally, we prove (ix). By (viii) we may
assume that the order of Γξ divides m. Then, since the order of Γξ is greater than 2 (this
fact is elementary 2), then W1(ξ) = 0 by (i). Now, (iv) implies that ∆0,m,ξ and ∆1,m,ξ are
linearly dependent. Thus, the sequence ∆0,m,ξ, . . . ,∆k,m,ξ is linearly dependent for k ≥ 1.
Hence, Wk(ξ) = 0 by (iv). �

2If not, then by the definition of an elliptic point (see the begining of Section 2), we find that the order
of Γξ is equal to 2. But in SL2(R) elements of order ≤ 2 are ±1. Then, we would get eξ = 1 which is a
contradiction with the definition of an elliptic point.
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Let ξ ∈ X. Then, we define for all k ≥ 0

(4-7)

Ξk,m,ξ(z) =

∣

∣

∣

∣

∣

∣

∣

∣

〈∆0,m,ξ,∆0,m,ξ〉 · · · 〈∆0,m,ξ,∆k−1,m,ξ〉 ∆0,m,ξ

〈∆1,m,ξ,∆0,m,ξ〉 · · · 〈∆1,m,ξ,∆k−1,m,ξ〉 ∆1,m,ξ

· · · · · · · · ·
〈∆k,m,ξ,∆0,m,ξ〉 · · · 〈∆k,m,ξ,∆k−1,m,ξ〉 ∆k,m,ξ

∣

∣

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

∣

∣

∣

∆0,m,ξ(ξ) · · · dk−1∆0,m,ξ

dzk−1 |z=ξ ∆0,m,ξ

∆1,m,ξ(ξ) · · · dk−1∆1,m,ξ

dzk−1 |z=ξ ∆1,m,ξ

· · · · · · · · ·
∆k,m,ξ(ξ) · · · dk−1∆k,m,ξ

dzk−1 |z=ξ ∆k,m,ξ

∣

∣

∣

∣

∣

∣

∣

∣

∣

.

We develop Ξk,m,ξ into power series centered at ξ:

(4-8) Ξk,m,ξ(z) =
∞
∑

j=k

Wk,j(ξ) (z − ξ)j ,

where we let

Wk,j(ξ) =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∆0,m,ξ(ξ) · · · dk−1∆0,m,ξ

dzk−1 |z=ξ
dj∆0,m,ξ

dzj
|z=ξ

∆1,m,ξ(ξ) · · · dk−1∆1,m,ξ

dzk−1 |z=ξ
dj∆1,m,ξ

dzj
|z=ξ

· · · · · · · · ·
∆k,m,ξ(ξ) · · · dk−1∆k,m,ξ

dzk−1 |z=ξ
dj∆k,m,ξ

dzj
|z=ξ

∣

∣

∣

∣

∣

∣

∣

∣

∣

.

Note that
Wk,k(ξ) = Wk(ξ).

Thus, νz−ξ(Ξk,m,ξ) = k if and only if Wk(ξ) 6= 0.

Lemma 4-9. Let m ≥ 3 such that Sm(Γ) 6= 0. Assume that ξ ∈ X satisfies Wtm−1(ξ) 6= 0.
Then, we have the following:

(i) The modular forms Ξ0,m,ξ,Ξ1,m,ξ, . . . ,Ξtm−1,m,ξ form the basis of Sm(Γ).
(ii) We have νz−ξ(Ξk,m,ξ) = k for 0 ≤ k ≤ tm − 1.
(iii) We may take fξ,m = Ξtm−1,m,ξ, up to a scalar 6= 0. In particular, kξ,m = tm − 1.

Proof. (i) is obvious from (4-7) and (4-8) combined with Lemma 4-5 (iv). (ii) follows from
the comments before the statement of the lemma combined with the fact that Wtm−1(ξ) 6= 0
implies Wk(ξ) 6= 0 for all 0 ≤ k ≤ tm − 1. (See Lemma 4-5 (iv).) Finally, (iii) follows from
Lemma 4-5 (vii). �

Now, we prove the main result of the present section. The present theorem is a slight
generalization of Theorem 3-3 since we are dealing with specific linear systems.

Theorem 4-10. Let m ≥ 3 such that tm ≥ g+2. Then, for 1 ≤ k ≤ tm−1, we define a con-
tinuous map {Wtm−1(ξ) 6= 0} ×RΓ −→ Pk by (ξ, az) 7→ (Ξtm−1−k,m,ξ(z) : · · · : Ξtm−1,m,ξ(z))
which is real analytic in ξ and holomorphic in z. Moreover, for each ξ it sends aξ to
(1 : 0 : · · · : 0). Finally, if k ≥ g + 1 (which is satisfied for k = tm − 1), then the map
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is attached to base point free complete linear system |kaξ + dξ,m|; kaξ + dξ,m is very ample
and it defines an embedding of RΓ into Pk. The field of rational functions on RΓ is generated
over C by

Ξtm−g−2,m,ξ

Ξtm−1,m,ξ

, . . . ,
Ξtm−2,m,ξ

Ξtm−1,m,ξ

.

Proof. The map is well–defined by Lemma 4-9 (i). The fact that the map is continuous,
real analytic in ξ, and holomorphic in z follows easily from ([8], Proposition 2-7) and its
definition. It maps aξ to (1 : 0 : · · · : 0) by Lemma 4-9 (ii).
Next, the assumption tm ≥ g + 2 implies that tm − 1 ≥ 1. Hence, Lemma 4-5 (ix) imply

that ξ is not elliptic when Wtm−1(ξ) 6= 0. Then, Lemma 4-9 (iii) implies that kξ = tm − 1.
Hence, (2-5) implies that the degree of kaξ + dξ,m is k + g. Assuming that k ≥ g + 1 we
obtain the divisor kaξ + dξ,m of degree k + g ≥ 2g + 1. By the standard theory, this implies
that divisor kaξ + dξ,m very ample. In particular, |kaξ + dξ,m| is base–point–free.
By Lemma 4-9 (ii), (iii), Lemma 2-7, and Lemma 2-8, the basis of L(kaξ + dξ,m) is given

by

Ξtm−1−k,m,ξ

Ξtm−1,m,ξ

, . . . ,
Ξtm−1,m,ξ

Ξtm−1,m,ξ

.

Thus, the map attached to the base point free complete linear system |kaξ + dξ,m| is exactly
the map RΓ −→ Pk by az 7→ (Ξtm−1−k,m,ξ(z) : · · · : Ξtm−1,m,ξ(z)) which is embedding since
the divisor kaξ + dξ,m very ample.
The very last claim has the same proof as Corollary 3-7. �

We remark that for k = g + 1, we constructed a family of explicit embeddings of RΓ into
Pg+1. They are quite different than usual embeddings into Pg+1 constructed with the aid
of the complete linear system (2g + 1)a, where a ∈ RΓ is any point. For m large enough,
we have that tm ≥ 2g + 2. Then, among the maps in Theorem 4-10 is the map attached to
|(2g+1)aξ + dξ,m|. It defines an embedding into P2g+1. Choosing appropriately the (g+1)–
dimensional linear subspace E of P2g+1, we may project the curve to get the curve in E
which is in fact the one that comes from |(2g + 1)aξ|. One may write down the equations
for this in terms of the divisor dξ,m.

5. On the divisor dξ,m

In this section we consider the case when Γ has no cusps and elliptic points. This forces
g ≥ 2. By Lemma 2-2 (v), tm = dimSm(Γ) = (m− 1)(g − 1) 6= 0 for m ≥ 3. Then, we may
observe that Lemma 4-9 (iii) shows that fξ,m can be taken to depend continuously on ξ on
the set defined byWtm−1(ξ) 6= 0. More precisely, we may let fξ,m = Ξtm−1,m,ξ. Hence, we may
view (ξ, z) 7→ fξ,m(z) as a continuous function which is real analytic in ξ and holomorphic
in z. This will help us understand the divisor dξ,m. So far, we only know that it does not
contain aξ in its support, it is non–negative, integral, and it has a degree g (see (2-5)).
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Proposition 5-1. LetWtm−1(ξ0) 6= 0. Then, there exists δ > 0 and C∞–functions b0, . . . , bg−1

on the set Wtm−1(ξ) 6= 0, |ξ − ξ0| < δ, such that if r1(ξ), . . . , rg(ξ) are all zeroes of the poly-
nomial

zg + bg−1(ξ)z
g−1 + · · ·+ b0(ξ) = 0,

then

dξ,m =

g
∑

i=1

ari(ξ).

Proof. We imitate the proof of the Weierstrass preparation theorem. Let ζ1, . . . , ζl ∈ X be
fixed representatives of points from the support of dξ0,m. We select open circles Di with
centers ζi, 1 ≤ i ≤ l such that γ.Di ∩ Dj 6= ∅, γ ∈ Γ, implies γ = ±1. In particular,
fξ0,m(ζi) = 0, but fξ0,m(z) 6= 0 for z ∈ Di − {ζi}. We select a circle Ci with center ζi, say
|z − ζi| = ri which is completely inside Di. Then, for z ∈ Ci, we have fξ0,m(z) 6= 0. Thus,
there exists δ = δz > 0 such that |ξ − ξ0| < δz and |w − z| < δz, w ∈ Ci, implies fξ(w) 6= 0.
Because of the compactness of Ci, there exists δ > 0 such that |ξ−ξ0| < δ implies fξ,m(z) 6= 0
for all z ∈ Ci. Now, we apply the residue theorem to count zeroes of fξ,m inside each Di.
We have the following:

∑

|ζ−ζi|<ri
fξ,m(ζ)=0

νz−ζ(fξ,m) =
1

2π
√
−1

∫

Ci

∂fξ,m(z)/∂z

fξ,m(z)
dz, for |ξ − ξ0| < δ, 1 ≤ i ≤ l.

Obviously, we have that the left–hand side is continuous in ξ. Thus, we have
∑

|ζ−ζi|<ri
fξ,m(ζ)=0

νz−ζ(fξ,m) = νz−ζi(fξ0,m), for |ξ − ξ0| < δ, 1 ≤ i ≤ l.

Because of the assumption γ.Di ∩ Di 6= ∅ for γ 6= ±1, we see that the support of the
divisor

dξ,m,i
def
=

∑

|ζ−ζi|<ri
fξ,m(ζ)=0

νz−ζ(fξ,m)aζ

consists of Γ–non–equivalent points aζ when ζ ranges over fξ,m(ζ) = 0 in |ζ − ζi| < ri. As
it is also γ.Di ∩ Dj 6= ∅ for γ 6= ±1, we see that for i 6= j the supports of just constructed
divisors dξ,m,i and dξ,m,j are disjoint. Finally, because of the same assumptions we have

dξ0,m =
l
∑

i=1

νz−ζi(fξ0,m)aζi .

In particular,
l
∑

i=1

νz−ζi(fξ0,m) = deg (dξ0,m) = g.
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By above discussion, we obtain

deg (
l
∑

i=1

dξ,m,i) =
l
∑

i=1

∑

|ζ−ζi|<ri
fξ,m(ζ)=0

νz−ζ(fξ,m) =
l
∑

i=1

νz−ζi(fξ0,m) = g.

Thus, we finally obtain

dξ,m =
l
∑

i=1

dξ,m,i, |ξ − ξ0| < δ.

Again, by the residue theorem, for m ≥ 0, we have the following:

∑

|ζ−ζi|<ri
fξ,m(ζ)=0

νz−ζ(fξ,m)ζ
m =

1

2π
√
−1

∫

Ci

zm
∂fξ,m(z)/∂z

fξ,m(z)
dz, for |ξ − ξ0| < δ, 1 ≤ i ≤ l.

This implies that the sum
l
∑

i=1

∑

|ζ−ζi|<ri
fξ,m(ζ)=0

νz−ζ(fξ,m)ζ
m

is a C∞–function on |ξ − ξ0| < δ. In another words, if r1(ξ), · · · , rg(ξ) are all zeroes of fξ in
the union of the circles |ζ − ζi| < ri counted with multiplicity, then

rm1 (ξ) + · · ·+ rmg (ξ), m ≥ 0,

is a C∞–function.
Let σ1(ξ), . . . , σg(ξ) be the elementary symmetric polynomials in r1(ξ), · · · , rg(ξ). These

are polynomials in the sums of powers, hence C∞–functions. �
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