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HOPF DECOMPOSITION AND HOROSPHERIC LIMIT SETS

VADIM A. KAIMANOVICH

Abstract. By looking at the relationship between the recurrence properties of a count-
able group action with a quasi-invariant measure and the structure of its ergodic compo-
nents we establish a simple general description of the Hopf decomposition of the action
into the conservative and the dissipative parts in terms of the Radon–Nikodym deriva-
tives of the action. As an application we prove that the conservative part of the boundary
action of a discrete group of isometries of a Gromov hyperbolic space with respect to
any invariant quasi-conformal stream coincides (mod 0) with the big horospheric limit
set of the group.

Conservativity and dissipativity are, alongside with ergodicity, the most basic notions
of the ergodic theory and go back to its mechanical and thermodynamical origins. The
famous Poincaré recurrence theorem states that any invertible transformation T preserv-
ing a probability measure m on a state space X is conservative in the sense that any
positive measure subset A ⊂ X is recurrent, i.e., for a.e. starting point x ∈ A the trajec-
tory {T nx} eventually returns to A. These definitions obviously extend to an arbitrary
measure class preserving action G 	 (X, m) of a general countable group G on a prob-
ability space (X, m). The opposite notions are those of dissipativity and of a wandering
set, i.e., such a set A that all its translates gA, g ∈ G, are pairwise disjoint. An action is
called dissipative if it admits a positive measure wandering set, and it is called completely
dissipative if, moreover, there is a wandering set such that the union of its translates is
(mod 0) the whole action space.

Our approach to these properties is based on the observation that the notions of con-
servativity and dissipativity admit a very natural interpretation in terms of the ergodic
decomposition of the action (under the assumption that such a decomposition exists,
i.e., the action space is a Lebesgue measure space). Let C ⊂ X denote the union of all
the purely non-atomic components, and let D = X \ C be the union of all the purely
atomic ergodic components. We call C and D the continual and discontinual parts of
the action, respectively. Further, let Dfree be the subset of D consisting of the points
with trivial stabilizers, i.e., the union of free orbits in D. The restriction of the action
to the set C ∪ (D \ Dfree) is conservative, whereas the restriction to the set Dfree is com-
pletely dissipative, thus providing the so-called Hopf decomposition of the action space
into the conservative and completely dissipative parts (Theorem 11). [Historically, such
a decomposition was first established in the pioneering paper of Eberhard Hopf [Hop30]
for one-parameter groups of measure preserving transformations.] Although this fact is
definitely known to the specialists, it rather belongs to the “folklore”, and the treatment
of this issue in the literature is sometimes pretty confused, so that we felt it necessary to
give a clear and concise proof.
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The continual part C can be described as the set of points for which the orbitwise sum
of the Radon–Nikodym derivatives of the action is infinite (Theorem 19(iii)). Therefore,
in the case of (mod 0) free actions this condition completely characterizes the conservative
part of the action. Once again, the specialists in the theory of discrete equivalence relations
will hardly be surprised by this result. However, to the best of our knowledge, in spite of
its simplicity it has never been formulated explicitly. A simple consequence of this fact is
the description of the conservative part of a free action G 	 (X, m) as the set of points
x ∈ X with the property that

(∗) there exists t = t(x) such that {g ∈ G : dgm/dm(x) ≥ t} is infinite

(Theorem 19(iv)).
The latter result completely trivializes the problem of a geometric description of the

conservative part of the boundary action of a discrete group of isometries G of a Gromov
hyperbolic space X with respect to a certain natural measure class, which is our main
application.

More precisely, for any boundary point ω ∈ ∂X and any x, y ∈ X let βω(x, y) =
lim supz[d(y, z)−d(x, z)], where z ∈ X converges to ω in the hyperbolic compactification.
For CAT(−1) spaces βω are the usual Busemann cocycles, whereas in the general case the
cocycle identity is satisfied up to a uniformly bounded additive error only, so that we have
to call them Busemann quasi-cocycles. Then one can look for a family λ = {λx} of pairwise
equivalent finite boundary measures parameterized by points x ∈ X (following [KL05] we
use the term stream for such families) whose mutual Radon–Nikodym derivatives are
prescribed by βω in the sense that

(∗∗)

∣∣∣∣log
dλx

dλy

(ω) −Dβω(x, y)

∣∣∣∣ ≤ C ∀x, y ∈ X , ω ∈ ∂X

for certain constants C ≥ 0, D > 0. We call such a stream quasi-conformal of dimen-
sion D. It is invariant if gλx = λgx for any g ∈ G, x ∈ X .

In the CAT(−1) case any invariant quasi-conformal stream is equivalent (with uni-
formly bounded Radon–Nikodym derivatives) to an invariant conformal stream of the
same dimension, i.e., such that the logarithms of the Radon–Nikodym derivatives are pre-
cisely proportional to the Busemann cocycles. Given a reference point o ∈ X , an invariant
(quasi-)conformal stream is uniquely determined just by a (quasi-)conformal measure λo

with the property that log dgλo/dλo(ω) is proportional to βω(go, o) (up to a uniformly
bounded additive error).

Coornaert [Coo93] proved (applying the construction used by Patterson [Pat76] in the
case of Fuchsian groups) that for any discrete group of isometries G of a Gromov hyper-
bolic space X with a finite critical exponent D there exists an invariant quasi-conformal
stream of dimension D supported by the limit set of G.

It is with respect to the measure class of an invariant quasi-conformal stream λ = {λx}
that we study the Hopf decomposition of the boundary action. The geometric description
(∗∗) of the Radon–Nikodym derivatives in combination with criterion (∗) immediately
implies that the conservative part of the action coincides (mod 0) with the big horospheric
limit set ΛhorB

G of the group G, i.e., the set of points ω ∈ ∂X for which there exists t = t(ω)
such that {g ∈ G : βω(go, o) ≥ t} is infinite for a certain fixed reference point o ∈ X,
or, in other words, the set of points ω ∈ ∂X such that a certain horoball centered at ω
contains infinitely many points from the orbit Go (Theorem 33).

This characterization of the conservative part of the boundary action was first estab-
lished by Pommerenke [Pom76] for Fuchsian groups with respect to the visual stream on
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the boundary circle (although in a somewhat different terminology). Pommerenke’s ar-
gument uses analytic properties of the Blaschke products and does not immediately carry
over to the higher dimensional situation. Sullivan [Sul81] used a more direct geometrical
approach and proved this characterization for Kleinian groups, again with respect to the
visual stream. Actually he considered the small horospheric limit set ΛhorS

G (also called
just horospheric limit set ; it is defined by requiring that the intersection of any horoball
centered at ω ∈ ΛhorS

G with the orbit Go be infinite) essentially showing that ΛhorB \ ΛhorS

is a null set. By extending Sullivan’s approach (with some technical complications) Tukia
[Tuk97] proved Theorem 33 for Kleinian groups with respect to an arbitrary invariant
conformal stream.

Our completely elementary approach subsumes all these particular cases and identifies
the conservative part of the boundary action with the big horospheric limit set in full gen-
erality, for an arbitrary invariant quasi-conformal stream on a general Gromov hyperbolic
space.

It is clear from looking at criterion (∗) that the right object in the context of studying
conservativity of boundary actions is the big horospheric limit set ΛhorB rather than the
small one ΛhorS. Nonetheless it is plausible that ΛhorB \ ΛhorS is a null set with respect
to any invariant quasi-conformal stream on an arbitrary Gromov hyperbolic space. This
was proved by Sullivan [Sul81] for Kleinian groups with respect to the visual stream, and
for subgroups of a free group (again with respect to the uniform stream) it was done in
[GKN07].

We refer the reader to [GKN07] for a recent detailed study of the interrelations between
various kinds of limit sets in the simplest model case of the action of a free subgroup on the
boundary of the ambient finitely generated free group. Actually, it was this collaboration
that brought me to the issues discussed in the present article, and I would like to thank
my collaborators Rostislav Grigorchuk and Tatiana Nagnibeda for the gentle insistence
with which they encouraged my work.

1. Structure of the ergodic components and recurrence properties

1.A. Lebesgue spaces. We begin by recalling the basic properties of the Lebesgue mea-
sure spaces introduced by Rokhlin, see [Roh52, CFS82]. Measure-theoretically these are
the probability spaces such that their non-atomic part is isomorphic to an interval with
the Lebesgue measure on it. Thus, any Lebesgue space is uniquely characterized by its
signature σ = (σ0; σ1, σ2, . . . ), where σ0 is the total mass of the non-atomic part, and
σ1 ≥ σ2 ≥ . . . is the ordered sequence of the values of its atoms (extended by zeroes if the
set of atoms is finite or empty). There is also an intrinsic definition of Lebesgue spaces
based on their separability properties. However, for applications it is usually enough to
know that any Polish topological space (i.e., separable, metrizable, complete) endowed
with a Borel probability measure is a Lebesgue measure space. We shall follow the stan-
dard measure theoretical convention:

Unless otherwise specified, all the identities, properties etc. related to measure spaces
will be understood mod 0 (i.e., up to null sets). In particular, all the σ-algebras are
assumed to be complete, i.e., to contain all the measure 0 sets.

An important feature of the Lebesgue measure spaces is

Theorem E (Existence of conditional probabilities). Let p : (X, m) → (X, m)
be a homomorphism (projection, factorization, quotient map) of Lebesgue spaces, i.e.,
for any measurable set A ⊂ X its preimage A = p−1(A) ⊂ X is also measurable, and
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m(A) = m(A). Then the preimages Xx = p−1(x), x ∈ X, can be uniquely endowed with
conditional probability measures mx in such a way that (Xx, mx) are Lebesgue spaces
and the measure m decomposes into an integral of the measures mx, x ∈ X, with respect
to the quotient measure m on X. Namely, for any function f ∈ L1(X, m) its restrictions
fx to Xx are measurable and belong to the respective spaces L1(Xx, mx), the integrals
f (x) = 〈fx, mx〉 depend on x measurably, and 〈f, m〉 = 〈f , m〉 (cf. the classical Fubini
theorem).

In fact, the above property follows from the classical Fubini theorem in view of Rokhlin’s

Theorem C (Classification of homomorphisms of Lebesgue spaces). Any homo-
morphism p : (X, m) → (X, m) of Lebesgue spaces is uniquely (up to an isomorphism)
determined by the signatures of the quotient measure m and of the conditional measures
mx. Namely, let us denote by I the unit interval endowed with the Lebesgue measure
λ, and partition I into a union of consecutive intervals I0, I1, . . . with λ(Ii) = σi for
a certain signature σ. Further, let us consider a coordinatewise measurable assignment
of signatures σx to points x ∈ I which is constant on the intervals I1, I2, . . . , and, as
before, let Ix

0 , Ix
1 , . . . be the consecutive subintervals of I with λ(Ix

i ) = σx
i . Denote by

(X, m) the Lebesgue space obtained from the square (I × I, λ⊗ λ) by collapsing the sets
{x} × Ix

i , i ≥ 1, x ∈ I0, and Ij × Ix
i , i, j ≥ 1, x ∈ Ij, onto single points. In the same way,

let (X, m) be the quotient space of the interval (I, λ) obtained by collapsing the intervals
I1, I2, . . . onto single points, so that the signature of (X, m) is σ. Then the projection
of the square I × I onto the first coordinate gives rise to a homomorphism from (X, m)
to (X, m), and the signatures of the associated conditional measures are precisely σx.
The claim is that any homomorphism of Lebesgue spaces can be obtained in this way. In
particular, if both the quotient measure m and all the conditional measures mx are purely
non-atomic (i.e., have the signature (1; 0, 0, . . . )), then the corresponding quotient map is
isomorphic just to the projection of the unit square onto the first coordinate.

Obviously, any homomorphism of Lebesgue spaces gives rise to the preimage sub-σ-
algebra in X which consists of the preimages of all the measurable sets in X. Another
important feature of the Lebesgue spaces is that, in fact, an arbitrary sub-σ-algebra in X
can be obtained in this way for a certain uniquely defined quotient map.

Below we shall use the following elementary fact which follows at once from the unique-
ness of the system of conditional measures.

Lemma 1. Let T be an invertible measure class preserving transformation of a Lebesgue
space (X, m), and let p : (X, m) → (X, m) be its T -invariant projection, i.e., p(Tx) = p(x)
for a.e. x ∈ X. Then the conditional measures mx, x ∈ X, of the projection p are
quasi-invariant with respect to T and have the same Radon–Nikodym derivatives as the
measure m:

dTm

dm
(x) =

dTmx

dmx

(x) , where x = p(x) ,

for a.e. x ∈ X.

1.B. Ergodic components, continuality and discontinuality. Let now G 	 (X, m)
be an action of an infinite countable group G by measure class preserving transformations
on a Lebesgue space (X, m) — which will be our standing assumption through the rest of
this Section.

The quotient space (X, m) of (X, m) determined by the σ-algebra of G-invariant sets
is called the space of ergodic components of the action of G on the space (X, m), and
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the preimages Xx endowed with the conditional measures mx are called the ergodic com-
ponents. The ergodic components Xx are G-invariant, the conditional measures mx are
G-quasi-invariant, and the action of G on the spaces (Xx, mx) is ergodic (e.g., see [Sch77]).
Lemma 1 implies that the conditional measures mx have the same Radon–Nikodym deriva-
tives with respect to the action of G as the original measure m.

Since the ergodic components are ergodic, each of them is either purely atomic (in
which case it consists of a single G-orbit), or purely non-atomic.

Definition 2. The continual C (resp., discontinual D) part of the action G 	 (X, m) is
the union of all the purely non-atomic (resp., purely atomic) components of the action.
Denote by C and D the corresponding G-invariant subsets of the space of ergodic compo-
nents X (their measurability follows from Theorem C). An orbit Gx is continual (resp.,
discontinual) if it belongs to C (resp., to D). The action is discontinual if m(D) > 0 and
continual otherwise. If m(C) = 0 the action is called completely discontinual.

Remark 3. The quotient measure class on the space of ergodic components and the mea-
sure classes of the conditional measures on the ergodic components do not change when
the measure m is replaced with an equivalent one, so that the above Definition (as well
as various definitions below related to conservativity and dissipativity) depends only on
the measure class of m.

Lemma 4. Let A ⊂ X be a measurable G-invariant subset. It is contained in the dis-
continual part D if and only if one can select, in a measurable way, a representative from
each G-orbit contained in A, i.e., if and only if there exists a measurable map π : A → A
which is constant along the orbits of the action.

Proof. If π is such a map, then it identifies the space of ergodic components of A with
π(A), so that in particular A ⊂ D. Conversely, by Theorem C the discontinual part D
can be identified, in a measurable way, with the product D × {1, 2, . . .}. Then one can
define the map π : D → D with the required properties as π(x, n) = (x, 1). �

Remark 5. Below we shall also encounter the situation when instead of a map with the
properties from the above Lemma one has an orbit constant measurable map x 7→ Mx,
where Mx is a non-empty finite subset of the orbit Gx. This situation can be easily
reduced to Lemma 4 by choosing (in a measurable way!) just a single point from each
of the sets Mx. This can be done, for instance, by identifying the space (X, m) with the
unit interval (with possible collapsing corresponding to the atoms of the measure m) and
taking then the minimal of the points of Mx.

1.C. Recurrent and wandering sets. Let us first remind the definitions (e.g., see
[Kre85] for the case when G is the group of integers Z). Actually, we have to slightly
modify them (and to distinguish recurrence from infinite recurrence) in order to take into
account certain effects which do not arise for the group Z (see below the remarks after
Theorem 11).

Definition 6. A measurable set A ⊂ X is called recurrent (resp., infinitely recurrent) if
for a.e. point x ∈ A the trajectory Gx eventually returns to A, i.e., gx ∈ A for a certain
element g ∈ G other than the group identity e (resp., returns to A infinitely often, i.e.,
gx ∈ A for infinitely many elements g ∈ G). The opposite notion is that of a wandering
set (kind of a “fundamental domain”), i.e., a measurable set A ⊂ X with pairwise disjoint
translates gA, g ∈ G.

We shall now explain the connection between these notions and our Definition 2.
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Proposition 7. Any measurable subset of the continual part C is infinitely recurrent.

Proof. For a measurable subset A ⊂ C put

A0 = {x ∈ A : gx ∈ A for finitely many g ∈ G} ⊂ F ,

where
F = {x ∈ X : Gx ∩ A is non-empty and finite} .

The set F is G-invariant and measurable, and by Lemma 4 and Remark 5 F ⊂ D.
Therefore A0 must be a null set, whence the claim. �

Denote by Dfree (resp., Dcofinite) the union of all the free (resp., cofinite) discontinual
orbits, i.e., such that the stabilizers of their points are trivial (resp., finite). Obviously,
Dfree ⊂ Dcofinite, and both these sets are measurable. Let Dfree and Dcofinite be the cor-
responding subsets of the space of ergodic components X. The definition immediately
implies

Proposition 8. Any measurable subset of D \ Dfree (resp., of D \ Dcofinite) is recurrent
(resp., infinitely recurrent).

Let us now look at the wandering sets.

Proposition 9. Any wandering set is contained in Dfree, and there is a maximal wander-
ing set, i.e., such that Dfree =

⋃
g∈G gA.

Proof. If A is a wandering set, then the map π from the G-invariant union Ã =
⋃

g∈G gA
to A defined as π(x) = Gx∩A is measurable and G-invariant, so that A ⊂ D by Lemma 4.
Moreover, all the orbits intersecting A are obviously free, whence A ⊂ Dfree.

As for the maximality, one can take for such a wandering set any measurable section
of the projection Dfree → Dfree (which exists by Lemma 4). �

1.D. Hopf decomposition.

Definition 10. An action G 	 (X, m) is called conservative (resp., infinitely conserva-
tive) if any measurable subset A ⊂ X is recurrent (resp., infinitely recurrent). It is called
dissipative if there is a non-trivial wandering set, and completely dissipative if the whole
action space X is the union of translates of a certain wandering set.

The action on the disjoint union of two G-invariant sets is conservative (resp., infinitely
conservative) if and only if the action on each of these sets has the same property. Taking
stock of the Propositions from Section 1.C we now obtain

Theorem 11 (Hopf decomposition for general actions). The action space X can be decom-
posed into the disjoint union of two G-invariant measurable sets (called its conservative
and dissipative parts, respectively)

X = [C ∪ (D \ Dfree)] ⊔ Dfree

such that the restriction of the action to C ∪ (D \Dfree) is conservative and the restriction
to Dfree is totally dissipative.

Corollary 12. If the action G 	 (X, m) is free, i.e., D = Dfree, then its conservative part
coincides with the continual set C, and its dissipative part coincides with the discontinual
set D.

Corollary 13 (Poincaré recurrence theorem). If the measure m is invariant, then Dfree

is a null set, and therefore the action is conservative.
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Remark 14. The decomposition into the conservative and totally dissipative parts de-
scribed in the above Theorem is unique. Indeed, let X = C1 ⊔ D1 = C2 ⊔ D2 be two
such decompositions. If they are different, then one of the sets C1 ∩ D2, C2 ∩ D1 must be
non-empty. Let it be, for instance, A = C1 ∩ D2. Then the restriction of the action to A
has to be simultaneously conservative (because A ⊂ C1) and totally dissipative (because
A ⊂ D2), which is impossible.

Remark 15. If the conservativity is replaced with the infinite conservativity, then, gen-
erally speaking, the Hopf decomposition as above is not possible. Namely, the action is
infinitely conservative on C ∪ (D \Dcofinite) and is completely dissipative on Dfree, whereas
on the remaining set Dcofinite \ Dfree it is neither infinitely conservative nor dissipative.

Remark 16. The group Z does not contain non-trivial finite subgroups, so that for its
actions Dcofinite = Dfree, and therefore infinite conservativity is equivalent to plain conser-
vativity. The conservative part of the action in this case is the union of the continual
part C and the set of all the periodic points D \ Dcofinite.

Remark 17. When dealing with the actions of the group Z one sometimes defines the
notion of recurrence by looking only at the “positive semi-orbits” Z+x. All measurable
subsets of C are recurrent in this sense as well. Indeed, for a subset A ⊂ C let A0 = {x ∈
A : Z+x ∩ A is finite}. Then x 7→ zx, where z is the maximal element of Z with zx ∈ A,
is a measurable “selection map” in the sense of Lemma 4, so that A0 ⊂ D, whence A0 is
a null set.

Remark 18. If one defines strict recurrence and strict conservativity by requiring that
the orbit Gx returns to the set A at an orbit point different from the starting point x,
then the strictly conservative part of the action coincides just with the continual part C.
Again, as with the infinite conservativity, the action on the set D \ Dfree will be neither
strictly conservative nor dissipative.

1.E. A continuality criterion.

Theorem 19. Let G 	 (X, m) be a free measure class preserving action of a countable
group G on a Lebesgue space. Denote by µx, x ∈ X, the measure on the orbit Gx defined
as

µx(gx) =
dg−1m

dm
(x) =

dm(gx)

dm(x)

(obviously, the measures µx corresponding to different points x from the same G-orbit are
proportional). Then for a.e. point x ∈ X the following conditions are equivalent:

(i) The orbit Gx is dissipative;
(ii) The orbit Gx is discontinual;
(iii) The measure µx is finite;
(iv) For any t > 0 the set {y ∈ Gx : µx(y) ≥ t} is finite;
(v) The set Mx of maximal weight atoms of the measure µx is non-empty and finite.

Proof. (i) ⇐⇒ (ii). This is Corollary 12.
(ii) =⇒ (iii). By Definition 2, the orbit Gx is discontinual if and only if it is an ergodic

component of the G-action on X. By Lemma 1 in this case the measure πx is proportional
to the conditional measure on this ergodic component, and therefore it is finite.

(iii) =⇒ (iv) =⇒ (v). Obvious.
(v) =⇒ (i). Follows from Lemma 4 and Remark 5 (because the map x 7→ Mx is

measurable in view of Theorem C). �
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Corollary 20. Under conditions of Theorem 19 the continual part C and the discontinual
part D of the action coincide (mod 0) with the sets

(21)

{
x ∈ X :

∑

g∈G

dgm(x)

dm(x)
= ∞

}

and

(22)

{
x ∈ X :

∑

g∈G

dgm(x)

dm(x)
< ∞

}
,

respectively.

Remark 23. Theorem 19 (except for the equivalence (i) ⇐⇒ (ii)) and Corollary 20 (with
the summation taken over the equivalence class of x) are also true for an arbitrary count-
able non-singular equivalence relation on a Lebesgue space (X, m). In this case µx are
the measures on the equivalence classes determined by the Radon–Nikodym cocycle of
the equivalence relation. In particular, the equivalence of conditions (ii), (iii), (iv), (v)
from Theorem 19 also holds for non-free actions. In what concerns Corollary 20, the only
difference with the free case is that one has to replace the summation over g in formulas
(21) and (22) with the summation over the orbit of x. The proof is precisely the same;
however, in order to spare the reader the trouble of going through the definitions from
the ergodic theory of equivalence relations (see [FM77]) we confine ourselves just to free
actions. This generality is sufficient, on one hand, to expose our (very simple) line of
argument, and, on the other hand, to deal with our main application to boundary actions
(Theorem 33).

Remark 24. Condition (iv) from Theorem 19 is not, generally speaking, equivalent just
to existence of t > 0 such that the set {y ∈ Gx : µx(y) ≥ t} is finite (i.e., to boundedness
of the values of the weights of the measure µx). The most manifest example of this is an
action with a finite invariant measure, see Corollary 13.

2. Application to boundary actions

2.A. Hyperbolic spaces and limit sets. Recall that a non-compact complete proper
metric space X is Gromov δ-hyperbolic (with δ ≥ 0) if its metric d satisfies the δ-
ultrametric inequality

(x|z)o ≥ min{(x|y)o, (y|z)o} − δ ∀x, y, z, o ∈ X ,

where

(x|y)o =
1

2
[d(o, x) + d(o, y) − d(x, y)]

is the Gromov product. In addition we require that the space X be separable. On the
other hand, we do not require the space X to be geodesic. This class of spaces contains
Cartan–Hadamard manifolds with pinched sectional curvatures (in particular, the classical
hyperbolic spaces of constant negative curvature) and metric trees, see [Gro87, GdlH90]
for more details.

A Gromov hyperbolic space X admits a natural hyperbolic compactification X = X ∪
∂X , and the action of the isometry group Iso(X ) extends by continuity to a continuous
boundary action on ∂X . The boundary ∂X is a Polish space.

The limit set Λ = ΛG ⊂ ∂X of a discrete subgroup G ⊂ Iso(X ) (any such subgroup
is at most countable) is the set of all the limit points of any given orbit Go, o ∈ X ,
with respect to the hyperbolic compactification, so that the closure of the orbit Go in the
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hyperbolic compactification is Go ∪ ΛG (this definition does not depend on the choice of
the basepoint o). The limit set is closed and G-invariant. Moreover, the action of G on
ΛG is minimal (there are no proper G-invariant closed subsets), whereas the action of G
on the complement ∂X \ΛG is properly discontinuous (no orbit has accumulation points)
[Gro87, Bou95].

The latter result provides a topological decomposition of the boundary action. On
the other hand, the situation is more complicated from the measure-theoretical point
of view. Let m be a G-quasi-invariant measure on ∂X . Without loss of generality we
can assume that it is purely non-atomic. Then, since any element of G fixes at most two
boundary points, the action is free. The complement ∂X \ΛG is obviously contained in the
dissipative (≡ discontinual) part of the action. However, this is as much as can a priori
be said about the ergodic properties of the boundary action. In particular, the action
on ΛG need not be ergodic or conservative. There are numerous examples witnessing to
this; see [GKN07] for a detailed discussion of the simplest model case of the action of a
subgroup of a free group on the boundary of the ambient group and for further references.

One can specialize the type of convergence in the definition of the limit set. For instance,
the radial limit set Λrad is the set of all the accumulation points of any fixed orbit Go, o ∈
X , which stay inside a tubular neighbourhood of a certain geodesic ray in X . Yet another
type of the boundary convergence, which we are going to describe below, is provided by
horospheric neighborhoods.

Denote by
βz(x, y) = d(y, z)− d(x, z) x, y ∈ X

the distance cocycle associated with a point z ∈ X , and, following [Kai04], put

(25) βω(x, y) = lim sup
z→ω

βz(x, y) ∀x, y ∈ X , ω ∈ ∂X .

If the space X is CAT(−1) (e.g., a Cartan–Hadamard manifold with pinched sectional
curvatures or a tree), then lim sup in the above formula can be replaced just with the
ordinary limit, and βω are the boundary Busemann cocycles. Although for a general
Gromov hyperbolic space βω are not, generally speaking, cocycles, they still satisfy the
cocycle identity with a uniformly bounded error (i.e., they are quasi-cocycles). Namely,

Proposition 26 ([Kai04]). There exists a constant C ≥ 0 depending on the hyperbolicity
constant δ of the space X only such that for any ω ∈ ∂X the function βω (25) has the
following properties:

(i) βω is “jointly Lipschitz”, i.e., |βω(x, y)| ≤ d(x, y) for all x, y ∈ X , in particular,
βω(x, x) ≡ 0 ;

(ii) 0 ≤ βω(x, y) + βω(y, z) + βω(z, x) ≤ C for all x, y, z ∈ X .

The quasi-cocycles βω are obviously invariant with respect to the isometries of X , i.e.,

βgω(gx, gy) = βω(x, y) ∀x, y ∈ X , ω ∈ ∂X , g ∈ Iso(X ) .

We shall define the horoball in X centered at a boundary point ω ∈ ∂X and passing
through a point o ∈ X as

HBallω(o) = {x ∈ X : βω(o, x) ≤ 0} .

Definition 27. The big (resp., small) horospheric limit set ΛhorB = ΛhorB

G (resp., ΛhorS =
ΛhorS

G ) of a discrete group G of isometries of a Gromov hyperbolic space X is the set of
all the points ω ∈ ∂X such that a certain (resp., any) horoball centered at ω contains
infinitely many points from a fixed orbit Go, o ∈ X (the resulting set does not depend on
the choice of the orbit Go, see Remark 28 below).
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Remark 28. As it follows from Proposition 26, for any fixed reference point o ∈ X the big
(resp., small) horospheric limit sets can also be defined as the set of all the points ω ∈ ∂X
for which the set

{x ∈ Go : βω(o, x) ≤ t}

is infinite for a certain (resp., for any) t ∈ R.

Remark 29. Usually our small horospheric limit set is called just the horospheric limit set,
and in the context of Fuchsian groups its definition, along with the definition of the radial
limit set, goes back to Hedlund [Hed36]. Following [Mat02] (in the Kleinian case) we call
it small in order to better distinguish it from the big one, which, although apparently
first explicitly introduced by Tukia [Tuk97] (again just in the Kleinian case), essentially
appears (for Fuchsian groups) already in Pommerenke’s paper [Pom76].

The horospheric limit sets ΛhorS, ΛhorB are obviously G-invariant, Borel, and contained
in the full limit set Λ (because the only boundary accumulation point of any horoball is
just its center).

2.B. Boundary conformal streams.

Definition 30. A family of pairwise equivalent finite measures λ = {λx} on the boundary
∂X of a Gromov hyperbolic space X parameterized by points x ∈ X is called a quasi-
conformal stream of dimension D > 0 if there exists a constant C > 0 such that∣∣∣∣log

dλx

dλy

(ω) − Dβω(x, y)

∣∣∣∣ ≤ C ∀x, y ∈ X , ω ∈ ∂X .

A stream λ is invariant with respect to a group G ⊂ Iso(X ) if

λgx = gλx ∀ g ∈ G, x ∈ X .

Remark 31. We follow here the terminology developed in [KL05]. More traditionally, any
invariant quasi-conformal stream is determined just by a single finite boundary quasi-
conformal measure λ = λo with the property that

(32)

∣∣∣∣
dgλ

dλ
(ω) −Dβω(go, o)

∣∣∣∣ ≤ C ∀ g ∈ G, ω ∈ ∂X .

for a certain reference point o ∈ X . If βω are cocycles (which is the case for CAT(−1)
spaces), then any measure λ satisfying (32) is equivalent to a unique finite measure λ′

(called conformal) which satisfies formula (32) with C = 0 (it follows from the fact that
any uniformly bounded cocycle is cohomologically trivial). This definition is motivated
by the fact that the visual measure on the boundary sphere ∂H

d+1 of the classical (d+1)-
dimensional hyperbolic space with sectional curvature −1 is conformal of dimension d (in
our terminology it means that the visual stream which consists in assigning to any point
from the hyperbolic space the associated visual measure is conformal). However, the limit
set of the group can be “much smaller” than the boundary sphere and be a null set with
respect to the visual measure. Existence of conformal measures which are concentrated
on the limit set (and for which the dimension coincides with the critical exponent of the
group) was first established by Patterson [Pat76] in the case of Fuchsian groups. His
construction was further generalized (see [Sul79], [Kai90]), ultimately providing existence
of a conformal measure for any closed subgroup of isometries of a general CAT(−1)
space [BM96]. For discrete isometry groups of general Gromov hyperbolic spaces existence
of measures satisfying (32) (i.e., existence of invariant quasi-conformal streams in our
terminology) was established by Coornaert [Coo93] (also by a generalization of Patterson’s
construction).
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We are now ready to proceed to the main application of Theorem 19 which is a de-
scription of the Hopf decomposition of (the measure class of) a quasi-conformal stream
invariant with respect to a discrete subgroup G ⊂ Iso(X ). As the atomic part of such a
stream is obviously discontinual (so that by Theorem 33 its Hopf decomposition is com-
pletely determined by the size of the point stabilizers), we can restrict our considerations
to the purely non-atomic case only.

Theorem 33. Let G be a discrete group of isometries of a Gromov hyperbolic space X .
Then the big horospheric limit set ΛhorB

G is (mod 0) the conservative part of the boundary
action of G with respect to any purely non-atomic G-invariant boundary quasi-conformal
stream λ.

Proof. Fix a reference point o ∈ X and consider the associated measure λo. Without loss
of generality we may assume that it is normalized, so that (∂X , λo) is a Lebesgue space.
Any isometry of X has at most two fixed boundary points, the group G is countable, and
the measure m is purely non-atomic. Therefore, the action of G on the space (∂X , λo)
is free, and we can apply Theorem 19. By condition (iv) the orbit Gω is dissipative if
and only if all the sets {g ∈ G : dgλo/dλo(ω) ≥ t} are finite, which, in view of (32), is
the same as the finiteness of all the sets {g ∈ G : βω(go, o) ≥ t}, i.e., the same as the
finiteness of the intersection of the orbit Go with any horoball centered at ω. Thus, the
orbit Gω is dissipative if and only if it is contained in the complement of ΛhorB

G . �

Corollary 34. By Corollary 20, the big horospheric limit set ΛhorB
G (≡ the conservative

part of the boundary action) coincides with the divergence set of the Poincaré–Busemann
series {

ω ∈ ∂X :
∑

g∈G

eDβω(go,o) = ∞

}
.

Remark 35. For Fuchsian groups with respect to the visual stream on the boundary cir-
cle Theorem 33 and Corollary 34 were proved by Pommerenke [Pom76] (although in a
somewhat different terminology, see the discussion in [Pom82, Section 1]). Pommerenke’s
argument uses analytic properties of the Blaschke products and does not immediately
carry over to the higher dimensional situation. Sullivan [Sul81] used a more direct geo-
metrical approach and established Theorem 33 for Kleinian groups, again with respect to
the visual stream (actually he considered the small horospheric limit set ΛhorS essentially
showing that ΛhorB\ΛhorS is a null set, see the Remark below). By extending Sullivan’s ap-
proach (with some technical complications) Tukia [Tuk97] proved Theorem 33 for Kleinian
groups with respect to an arbitrary invariant conformal stream.

Remark 36. Our argument used the characterization of the conservative part of a free
action G 	 (X, m) as the set of all the points x ∈ X such that for a certain t > 0

{g ∈ G : dgm/dm(x) > t} is infinite

(see condition (iv) from Theorem 19), which in our setup is precisely the big horospheric
limit set ΛhorB. The small horospheric limit set ΛhorS corresponds to requiring that the
above condition hold for any t > 0, which, in general, is not equivalent to conservativity
(see Remark 24). From this point of view the right object in the context of studying
conservativity of boundary actions is definitely ΛhorB rather than ΛhorS. The difference
ΛhorB \ ΛhorS is the set of all the boundary points ω ∈ ∂X for which among the horoballs
centered at ω there are both ones containing finitely many points from the orbit Go of a
fixed reference point o ∈ X and ones containing infinitely many points from Go. Sullivan
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[Sul81] essentially proved that ΛhorB\ΛhorS is a null set with respect to the visual stream for
Kleinian groups (also see the discussion of his result in [Pom82, Section 1]); for subgroups
of a free group (again with respect to the uniform stream on the boundary of the ambient
group) it was done in [GKN07]. We are not aware of any other results of this kind; in
particular, it is already not known for Kleinian groups with respect to general invariant
conformal streams, see [Tuk97]. Nonetheless, it seems plausible that ΛhorB \ ΛhorS is a
null set with respect to any invariant quasi-conformal stream on an arbitrary Gromov
hyperbolic space.
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Math. (2) 41 (1995), no. 1-2, 63–102. MR 1341941 (96f:58120)

[CFS82] I. P. Cornfeld, S. V. Fomin, and Ya. G. Sinăı, Ergodic theory, Grundlehren der Mathematischen
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