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UNIQUE EXPANSIONS OF REAL NUMBERS

MARTIJN DE VRIES AND VILMOS KOMORNIK

Abstract. It was discovered some years ago that there exist non-integer real

numbers q > 1 for which only one sequence (ci) of integers 0 ≤ ci < q satisfies
the equality

P

∞

i=1
ciq

−i = 1. The set U of such “univoque numbers” has

a rich topological structure, and its study revealed a number of unexpected
connections with measure theory, fractals, ergodic theory and Diophantine

approximation.
For each fixed q > 1 consider the set Uq of real numbers x having a unique

expansion of the form
P

∞

i=1
ciq

−i = x with integers 0 ≤ ci < q. We carry
out a detailed topological study of these sets. In particular, we characterize

their closures, and we determine those bases q for which Uq is closed or even
a Cantor set.

1. Introduction

Following a seminal paper of Rényi [R] many works were devoted to probabilistic,
measure-theoretical and number theoretical aspects of developments in non-integer
bases; see, e.g., Frougny and Solomyak [FS], Pethő and Tichy [PT], Schmidt [Sc].
A new research field was opened when Erdős, Horváth and Joó [EHJ] discovered
many non-integer real numbers q > 1 for which only one sequence (ci) of integers
0 ≤ ci < q satisfies the equality

∞
∑

i=1

ci

qi
= 1.

(They considered only the case 1 < q < 2.) Subsequently, the set U of such
univoque numbers was characterized in [EJK1], [KL3], its smallest element was
determined in [KL1], and its topological structure was described in [KL3]. On the
other hand, the investigation of numbers q for which there exist continuum many
such sequences, including sequences containing all possible finite variations of the
integers 0 ≤ c < q revealed close connections to Diophantine approximations; see,
e.g., [EJK1], [EJK3], [EK], [KLP], Borwein and Hare [BH1], [BH2], Komatsu [K],
and Sidorov [Si2].

For any fixed real number q > 1, we may also introduce the set Uq of real numbers
x having exactly one expansion of the form

∞
∑

i=1

ci

qi
= x

where the integer coefficients ci are subject to the conditions 0 ≤ ci < q. If q is
an integer, these sets are well known. However, their structure is more complex
if q is a non-integer, see, e.g., Daróczy and Kátai [DK1], [DK2], Glendinning and
Sidorov [GS], and Kallós [K1], [K2]. The purpose of this paper is to give a complete
topological description of the sets Uq: they have a different nature for different
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2 MARTIJN DE VRIES AND VILMOS KOMORNIK

classes of the numbers q. Our investigations also provide new results concerning
the univoque set U .

In order to state our results we need to introduce some notation and terminol-
ogy. In this paper a sequence always means a sequence of nonnegative integers. A
sequence is called infinite if it contains infinitely many nonzero elements; otherwise
it is called finite. Given a real number q > 1, an expansion in base q of a number
x is a sequence (ci) such that

0 ≤ ci < q for all i ≥ 1 and x =

∞
∑

i=1

ci

qi
.

This definition only makes sense if x belongs to the interval

J :=
[

0,
⌈q⌉ − 1

q − 1

]

where ⌈q⌉ denotes the upper integer part of q. Note that [0, 1] ⊂ J for all q > 1.
A sequence (ci) satisfying 0 ≤ ci < q for each i ≥ 1 is called univoque in base q if

x =

∞
∑

i=1

ci

qi

is an element of Uq. The greedy expansion (bi(x)) = (bi) of a number x ∈ J in base
q is the largest expansion of x in lexicographical order. It is well known that the
greedy expansion of any x ∈ J exists; [P], [EJK1], [EJK2]. A sequence (bi) is called
greedy in base q if (bi) is the greedy expansion of

x =

∞
∑

i=1

bi

qi
.

The quasi-greedy expansion (ai(x)) = (ai) of a number x ∈ J \ {0} in base q is the
largest infinite expansion of x in lexicographical order. Observe that we have to
exclude the number 0 since there do not exist infinite expansions of x = 0 at all.
On the other hand, the largest infinite expansion of any x ∈ J \ {0} exists, as we
shall prove in the next section. In order to simplify some statements below, the
quasi-greedy expansion of the number 0 ∈ J is defined to be 0∞ = 00 . . .. Note
that this is the only expansion of x = 0. A sequence (ai) is called quasi-greedy in
base q if (ai) is the quasi-greedy expansion of

x =

∞
∑

i=1

ai

qi
.

We denote the quasi-greedy expansion of the number 1 in base q by (αi). Since
α1 = ⌈q⌉ − 1 the digits of an expansion (ci) satisfy

ci ∈ {0, . . . , α1} for all i ≥ 1.

Hence, we consider expansions with coefficients or digits in the alphabet A :=
{0, . . . , α1} of numbers x ∈ [0, α1/(q − 1)].

Of course, whether a sequence is univoque, greedy or quasi-greedy depends on
the base q. However, if q is understood, we simply speak of univoque sequences and
(quasi)-greedy sequences. Furthermore, we shall write a := α1 − a (a ∈ A), unless
stated otherwise. Finally, we set a+ := a + 1 and a− := a − 1, where a ∈ A.

The following important theorem, which is essentially due to Parry (see [P]),
plays a crucial role in the proofs of our main results:

Theorem 1.1. Fix q > 1.
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(i) A sequence (bi) = b1b2 . . . ∈ {0, . . . , α1}N
is a greedy sequence in base q if

and only if

bn+1bn+2 . . . < α1α2 . . . whenever bn < α1.

(ii) A sequence (ci) = c1c2 . . . ∈ {0, . . . , α1}N
is a univoque sequence in base q

if and only if

cn+1cn+2 . . . < α1α2 . . . whenever cn < α1

and

cn+1cn+2 . . . < α1α2 . . . whenever cn > 0.

Note that if q ∈ U , then (αi) is the unique expansion of 1 in base q. Hence,
replacing the sequence (ci) in Theorem 1.1 (ii) by the sequence (αi), one obtains a
lexicographical characterization of U .

Recently, the authors of [KL3] studied the topological structure of the set U .
In particular, they showed that U is not closed and they obtained the following
characterization of its closure U :

Theorem 1.2. q ∈ U if and only if the quasi-greedy expansion of the number 1 in
base q satisfies

αk+1αk+2 . . . < α1α2 . . . for all k ≥ 1.

Remark. In the definition of U given in [KL3] the integers were excluded; however,
U is the same in both cases. Our definition simplifies some statements. For example
it will follow from the theorems below that

Uq = Uq ⇐⇒ q ∈ (1,∞) \ U
where Uq denotes the closure of Uq.

Now we are ready to state our main results.

Theorem 1.3. Let q ∈ U and x ∈ J . Denote the quasi-greedy expansion of x by
(ai). Then,

x ∈ Uq ⇐⇒ an+1an+2 . . . ≤ α1α2 . . . whenever an > 0.

Theorem 1.4. Suppose that q ∈ U . Then,

(i) |Uq \ Uq | = ℵ0 and Uq \ Uq is dense in Uq.

(ii) If q ∈ U , then each element x ∈ Uq \ Uq has 2 expansions.

(iii) If q ∈ U \ U , then each element x ∈ Uq \ Uq has ℵ0 expansions.

Remarks.

• Our proof of part (i) yields the following more precise results where for
q ∈ U we set

Aq =
{

x ∈ Uq \ Uq : x has a finite greedy expansion
}

and

Bq =
{

x ∈ Uq \ Uq : x has an infinite greedy expansion
}

:

– If q ∈ U \ N, then both Aq and Bq are countably infinite and dense

in Uq. Moreover, the greedy expansion of a number x ∈ Bq ends with
α1α2 . . ..

– If q = 2, 3, . . ., then Bq = ∅.

• For each x ∈ Uq \ Uq, the proof of parts (ii) and (iii) also provide the list of
all expansions of x in terms of its greedy expansion.
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Motivated by Theorem 1.3, we introduce for a general real number q > 1, the
set Vq , defined by

Vq =
{

x ∈ J : an+1(x)an+2(x) . . . ≤ α1α2 . . . whenever an(x) > 0
}

.

It follows from the above theorems that Uq ( Uq = Vq if q ∈ U . It is natural

to study the relationship between the sets Uq, Uq and Vq in case q /∈ U . In order
to do so, we introduce the set V, consisting of those numbers q > 1, for which the
quasi-greedy expansion of the number 1 in base q satisfies

αk+1αk+2 . . . ≤ α1α2 . . . for each k ≥ 1.

It follows from Theorem 1.1 and Theorem 1.2 that U ⊂ U ⊂ V and Uq ⊂ Vq for all

q > 1. The following results imply that Uq is closed if q /∈ U and that the set Vq is
closed for each number q > 1.

Theorem 1.5. Suppose that q ∈ V \ U . Then,

(i) The sets Uq and Vq are closed.
(ii) |Vq \ Uq| = ℵ0 and Vq \ Uq is a discrete set, dense in Vq.
(iii) Each element x ∈ Vq \ Uq has ℵ0 expansions, and a finite greedy expansion.

Remark. Our proof also provides the list of all expansions of all elements x ∈ Vq\Uq.

Theorem 1.6. Suppose that q ∈ (1,∞) \ V. Then,

Uq = Uq = Vq .

Remarks.

• In view of the above results, Theorem 1.1 already gives us a lexicographical
characterization of Uq in case q /∈ U because in this case Uq = Uq.

• It is well-known that the set U has Lebesgue measure zero; [EHJ], [KK]. In
[KL3] it was shown that the set U \ U is countably infinite. It follows from
the above results that Uq is closed for almost every q > 1.

• Let q > 1 be a non-integer. In [DDV] it has been proved that almost every
x ∈ J has a continuum of expansions in base q (see also [Si1]). It follows
from the above results that the set Uq has Lebesgue measure zero. Hence,
the set Uq is nowhere dense for any non-integer q > 1.

• Let q > 1 be an integer. In this case, the quasi-greedy expansion of 1 in
base q is given by (αi) = α∞

1 = (q − 1)∞. It follows from Theorem 1.1 that
J \ Uq is countable and each element in J \ Uq has only two expansions,
one of them being finite while the other one ends with an infinite string of
(q − 1)’s.

• In [KL1] it was shown that the smallest element of U is given by q′ ≈ 1.787,
and the unique expansion of 1 in base q′ is given by the truncated Thue-
Morse sequence (τi) = τ1τ2 . . ., which can be defined recursively by setting
τ2N = 1 for N = 0, 1, 2, . . . and

τ2N+i = 1 − τi for 1 ≤ i < 2N , N = 1, 2, . . . .

Subsequently, Glendinning and Sidorov [GS] proved that Uq is countable if
1 < q < q′ and has the cardinality of the continuum if q ∈ [q′, 2). Moreover,
they showed that Uq is a set of positive Hausdorff dimension if q′ < q < 2,
and they described a method to compute its Hausdorff dimension (see also
[DK2], [K1], [K2]).

In the following theorem we characterize those q > 1 for which Uq or Uq is a
Cantor set, i.e., a non-empty closed set having no interior or isolated points. We
recall from [KL3] that
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• V is closed and U is closed from above,
• |U \ U| = ℵ0 and U \ U is dense in U ,
• |V \ U| = ℵ0 and V \ U is a discrete set, dense in V.

Since the set (1,∞)\V is open, we can write (1,∞)\V as the union of countably
many disjoint open intervals (q1, q2): its connected components. Let us denote by
L and R the set of left (respectively right) endpoints of the intervals (q1, q2).

Theorem 1.7.

(i) L = N ∪ (V \ U) and R = V \ U . Hence, R ⊂ L and

(1,∞) \ U = ∪(q1, q2]

where the union runs over the connected components (q1, q2) of (1,∞) \ V.

(ii) If q ∈ {2, 3, . . .}, then neither Uq nor Uq is a Cantor set.

(iii) If q ∈ U \N, then Uq is not a Cantor set, but its closure Uq is a Cantor set.
(iv) If q ∈ (q1, q2], where (q1, q2) is a connected component of (1,∞) \ V, then

Uq is a Cantor set if and only if q1 ∈ {3, 4, . . .} ∪ (U \ U).

Remark. We also describe the set of endpoints of the connected components (p1, p2)
of (1,∞) \ U : denoting by L′ and R′ the set of left (respectively right) endpoints
of the intervals (p1, p2), we have

L′ = N ∪ (U \ U) and R′ ⊂ U ;

see the remarks at the end of Section 7.

The above theorem enables us to give a new characterization of the stable bases,
introduced and investigated by Daróczy and Kátai ([DK1], [DK2]). Let us denote
by U ′

q and V′
q the sets of quasi-greedy expansions of the numbers x ∈ Uq and x ∈ Vq .

We recall that a number q > 1 is stable from above (respectively stable from below)
if there exists a number s > q (respectively 1 < s < q) such that

U ′
q = U ′

s.

Furthermore, we say that an interval I ⊂ (1,∞) is a stability interval if U ′
q = U ′

s for
all q, s ∈ I.

Theorem 1.8. The maximal stability intervals are given by the singletons {q}
where q ∈ U and the intervals (q1, q2] where (q1, q2) is a connected component of
(1,∞) \ V. Moreover, if q1 ∈ V \ U , then

U ′
q = V′

q1
for all q ∈ (q1, q2].

Remark. The proof of Theorem 1.8 yields a new characterization of the sets U and
V (see Lemma 7.9).

We recall from [LM] that a set A ⊂ {0, . . . , α1}N
is called a subshift of finite

type if there exists a finite set F ⊂ ∪∞
k=1 {0, . . . , α1}k

such that a sequence (ci) ∈
{0, . . . , α1}N

belongs to A if and only if each “word” in F does not appear in (ci).
The following theorem characterizes those q > 1 for which U ′

q is a subshift of finite
type.

Theorem 1.9. Let q > 1 be a real number. Then,

U ′
q is a subshift of finite type ⇐⇒ q ∈ (1,∞) \ U .

Finally, we determine the cardinality of Uq for all q > 1. We recall that for
q ∈ (1, 2) this has already been done by Glendinning and Sidorov ([GS]), using a
different method. Denote by q′′ the smallest element of U ∩ (2, 3). The unique
expansion of 1 in base q′′ is given in [KL2].
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Theorem 1.10. Let q > 1 be a real number.

(i) If q ∈ (1, (1 +
√

5)/2], then Uq consists merely of the endpoints of J .

(ii) If q ∈ ((1 +
√

5)/2, q′) ∪ (2, q′′), then |Uq| = ℵ0.

(iii) If q ∈ [q′, 2] ∪ [q′′,∞), then |Uq| = 2ℵ0 .

Remark. We also determine the unique expansion of 1 in base q(n) for n ∈ {3, 4, . . .}
where q(n) denotes the smallest element of U ∩ (n, n + 1) (see the remarks at the
end of Section 7).

For the reader’s convenience we recall some properties of quasi-greedy expansions
in the next section. These properties are also stated in [BK] and are closely related
to some important results, first established in the seminal works by Rényi [R]
and Parry [P]. Sections 3 and 4 are then devoted to the proof of Theorem 1.3.
Theorem 1.4 is proved in Section 5, Theorem 1.5 and Theorem 1.6 are proved in
Section 6, and our final Theorems 1.7, 1.8, 1.9 and 1.10 are established in Section 7.

2. Quasi-greedy expansions

Let q > 1 be a real number and let m = ⌈q⌉−1. In the previous section we defined
the quasi-greedy expansion as the largest infinite expansion of x ∈ (0, m/(q − 1)].
In order to prove that this notion is well defined, we introduce the quasi-greedy
algorithm: if ai = ai(x) is already defined for i < n, then an is the largest element
of the set {0, . . . , m} that satisfies

n
∑

i=1

ai

qi
< x.

Of course, this definition only makes sense if x > 0. In the following proposition we
show that this algorithm generates an expansion of x, for all x ∈ (0, m/(q − 1)]. It
follows that the quasi-greedy expansion is generated by the quasi-greedy algorithm.

Proposition 2.1. Let x ∈ (0, m/(q − 1)]. Then,

x =

∞
∑

i=1

ai

qi
.

Proof. If x = m/(q − 1), then the quasi-greedy algorithm provides ai = m for all
i ≥ 1 and the desired equality follows.

Suppose that x ∈ (0, m/(q − 1)). Then, by definition of the quasi-greedy algo-
rithm, there exists an index n such that an < m.

First assume that an < m for infinitely many n. For any such n, we have by
definition

0 < x −
n

∑

i=1

ai

qi
≤ 1

qn
.

Letting n → ∞, we obtain

x =

∞
∑

i=1

ai

qi
.

Next assume there exists a largest n such that an < m. Then,

n
∑

i=1

ai

qi
+

N
∑

i=n+1

m

qi
< x ≤

n
∑

i=1

ai

qi
+

1

qn
,

for each N > n. Hence,
∞
∑

i=n+1

m

qi
≤ x −

n
∑

i=1

ai

qi
≤ 1

qn
.
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Note that

1

qn
≤

∞
∑

i=n+1

m

qi
,

for any q > 1 and

1

qn
=

∞
∑

i=n+1

m

qi
,

if and only if q = m + 1. Hence, the existence of a largest n such that an < m is
only possible if q is an integer, in which case an+i = m for all i ≥ 1 and

x =

n
∑

i=1

ai

qi
+

∞
∑

i=n+1

m

qi
=

∞
∑

i=1

ai

qi
. �

Now we consider the quasi-greedy expansion (αi) of x = 1. Note that α1 = m =
⌈q⌉ − 1. If αn < α1, then

n
∑

i=1

αi

qi
+

1

qn
≥ 1,

by definition of the quasi-greedy algorithm. The following lemma states that this
inequality holds for each n ≥ 1.

Lemma 2.2. For each n ≥ 1, the inequality

(2.1)
n

∑

i=1

αi

qi
+

1

qn
≥ 1

holds.

Proof. The proof is by induction on n. For n = 1, the inequality holds, since
α1 +1 ≥ q. Assume the inequality is valid for some n ∈ N. If αn+1 < α1, then (2.1)
with n replaced by n + 1 follows from the definition of the quasi-greedy algorithm.
If αn+1 = α1, then the same conclusion follows from the induction hypothesis and
the inequality α1 + 1 ≥ q. �

Proposition 2.3. The map q 7→ (αi) is a strictly increasing bijection from the
open interval (1,∞) onto the set of all infinite sequences satisfying

(2.2) αk+1αk+2 . . . ≤ α1α2 . . . for all k ≥ 1.

Proof. By definition of the quasi-greedy algorithm and Proposition 2.1 the map
q 7→ (αi) is strictly increasing. According to the preceding lemma,

n
∑

i=1

αi

qi
+

1

qn
≥

∞
∑

i=1

αi

qi

for every n ≥ 1, whence

(2.3)
αn+1

q
+

αn+2

q2
+ · · · ≤ 1.

Since (αn+i) is infinite and (αi) is the largest infinite sequence satisfying (2.3),
inequality (2.2) follows.

Conversely, let (αi) be an infinite sequence satisfying (2.2). Solving the equation

∞
∑

i=1

αi

qi
= 1,
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we obtain a number q > 1. In order to prove that (αi) is the quasi-greedy expansion
of 1 in base q, it suffices to prove that for each n satisfying αn < α1, the inequality

∞
∑

i=n+1

αi

qi
≤ 1

qn

holds.
Starting with k0 := n and using (2.2), we try to define a sequence

k0 < k1 < · · ·

satisfying for j = 1, 2, . . . the conditions

αkj−1+i = αi for i = 1, . . . , kj − kj−1 − 1 and αkj
< αkj−kj−1

.

If we obtain in this way an infinite number of indices, then we have

∞
∑

i=n+1

αi

qi
≤

∞
∑

j=1





kj−kj−1
∑

i=1

αi

qkj−1+i
− 1

qkj





<

∞
∑

j=1

(

1

qkj−1
− 1

qkj

)

=
1

qn
.

If we only obtain a finite number of indices, then there exists a first nonnegative
integer N such that (αkN+i) = (αi) and we have

∞
∑

i=n+1

αi

qi
≤

N
∑

j=1





kj−kj−1
∑

i=1

αi

qkj−1+i
− 1

qkj



 +

∞
∑

i=1

αi

qkN +i

≤
N

∑

j=1

(

1

qkj−1
− 1

qkj

)

+
∞

∑

i=1

αi

qkN+i
=

1

qn
. �

The proofs of the following propositions are almost identical to the proof of
Proposition 2.3 and are therefore omitted.

Proposition 2.4. Fix q > 1 and denote by (αi) the quasi-greedy expansion of 1 in
base q. Then the map x 7→ (ai) is a strictly increasing bijection from (0, α1/(q−1)]
onto the set of all infinite sequences, satisfying

0 ≤ an ≤ α1 for all n ≥ 1

and

(2.4) an+1an+2 . . . ≤ α1α2 . . . whenever an < α1.

Proposition 2.5. Fix q > 1 and denote by (αi) the quasi-greedy expansion of 1 in
base q. Then the map x 7→ (bi) is a strictly increasing bijection from [0, α1/(q− 1)]
onto the set of all sequences, satisfying

0 ≤ bn ≤ α1 for all n ≥ 1

and

(2.5) bn+1bn+2 . . . < α1α2 . . . whenever bn < α1.

Remarks.

• A sequence (ci) is univoque if and only if (ci) is greedy and (α1 − ci) is
greedy. Hence, Theorem 1.1 is a consequence of Proposition 2.5.
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• The greedy expansion of x ∈ [0, α1/(q − 1)] is generated by the greedy
algorithm: if bi = bi(x) is already defined for i < n, then bn is the largest
element of A such that

n
∑

i=1

bi

qi
≤ x.

The proof of this assertion goes along the same lines as the proof of Propo-
sition 2.1.

• Note that the greedy expansion of a number x ∈ (0, α1/(q − 1)] coincides
with the quasi-greedy expansion if and only if the greedy expansion of x is
infinite. If the greedy expansion (bi) of x ∈ J \ {0} is finite and bn is its
last nonzero element, then the quasi-greedy expansion of x is given by

(ai) = b1 . . . bn−1b
−
n α1α2 . . . ,

as follows from the inequalities (2.2), (2.4) and (2.5).

3. Proof of the necessity part of Theorem 1.3

Let q > 1 be a real number.

Lemma 3.1. Let (bi) = b1b2 . . . be a greedy sequence. Then the truncated sequence
b1 . . . bn0∞ is also a greedy sequence, where n ≥ 1 is an arbitrary positive integer.

Proof. The statement follows at once from Proposition 2.5. �

Lemma 3.2. Let (bi) 6= α∞
1 be a greedy sequence and let N be a positive integer.

Then there exists a greedy sequence (ci) > (bi) such that

c1 . . . cN = b1 . . . bN .

Proof. Since (bi) 6= α∞
1 , it follows from (2.5) that bn < α1 for infinitely many n.

Hence, we may assume, by enlarging N if necessary, that bN < α1. Let

I = {1 ≤ i ≤ N : bi < α1} =: {i1, . . . , in} .

Since N ∈ I, I 6= ∅. Note that for ir ∈ I,

∞
∑

j=1

bir+j

qj
=

N−ir
∑

j=1

bir+j

qj
+

1

qN−ir

∞
∑

i=1

bN+i

qi
< 1

because (bi) is greedy and bir
< α1. Choose yir

such that

(3.1)

∞
∑

i=1

bN+i

qi
< yir

≤ α1/(q − 1)

and

(3.2)

N−ir
∑

j=1

bir+j

qj
+

1

qN−ir
yir

< 1.

Let y = min{yi1 , . . . , yin
} and denote the greedy expansion of y by d1d2 . . .. Finally,

let (ci) = b1 . . . bNd1d2 . . .. From (3.1) we infer that (ci) > (bi). It remains to show
that (ci) is a greedy sequence, i.e., we need to show that

(3.3)
∞
∑

i=1

cn+i

qi
< 1 whenever cn < α1.

If cn < α1 and n ≤ N , then (3.3) follows from (3.2). If cn < α1 and n > N , then
(3.3) follows from the fact that (di) is a greedy sequence. �
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Lemma 3.3. Let (bi) be the greedy expansion of some x ∈ [0, α1/(q − 1)] and
suppose that for some n ≥ 1, bn > 0 and

bn+1bn+2 . . . > α1α2 . . . .

Then,

(i) There exists a number z > x such that [x, z]∩ Uq = ∅.
(ii) If bj > 0 for some j > n, then there exists a number y < x such that

[y, x] ∩ Uq = ∅.

Proof. (i) Choose a positive integer M > n such that

bn+1 . . . bM > α1 . . . αM−n.

Applying Lemma 3.2, choose a greedy sequence (ci) > (bi) such that c1 . . . cM

= b1 . . . bM . Then, (ci) is the greedy expansion of some z > x. If (di) is the greedy
expansion of some element in [x, z], then (di) also begins with b1 . . . bM and hence

dn+1 . . . dM > α1 . . .αM−n.

In particular, we have that dn > 0 and

dn+1dn+2 . . . > α1α2 . . . .

We infer from Theorem 1.1 that [x, z]∩ Uq = ∅.

(ii) It follows from Lemma 3.1 that (ci) := b1 . . . bn0∞ is the greedy expansion
of some y < x. If (di) is the greedy expansion of some element in [y, x], then
(ci) ≤ (di) ≤ (bi) and d1 . . . dn = b1 . . . bn. Therefore,

dn+1dn+2 . . . ≥ bn+1bn+2 . . . > α1α2 . . .

and dn = bn > 0. It follows from Theorem 1.1 that [y, x] ∩ Uq = ∅. �

Proof of the necessity part of Theorem 1.3. If x ∈ Uq, then the quasi-greedy ex-
pansion (ai) and the greedy expansion (bi) of x coincide. Hence, the stronger
implication

(3.4) am > 0 =⇒ am+1am+2 . . . < α1α2 . . .

follows from Theorem 1.1. Suppose now that x ∈ Uq\Uq. According to Theorem 1.1,
there exists a smallest positive integer n for which

bn > 0 and bn+1bn+2 . . . ≥ α1α2 . . . .

First assume that

bn+1bn+2 . . . > α1α2 . . . .

Applying Lemma 3.3 we conclude that bi = 0 for i > n. Hence, the quasi-greedy
expansion of x is given by

(ai) = b1 . . . b−n α1α2 . . . .

We must show that

am > 0 =⇒ am+1am+2 . . . ≤ α1α2 . . . .

Instead, we prove the stronger implication (3.4).
If m > n, then (3.4) follows from Theorem 1.2 and our assumption q ∈ U .
If m = n, then (3.4) follows from α1 = 0 < α1.
Now assume that m < n and am > 0. Since am = bm, we have that bm > 0 and by
minimality of n,

bm+1bm+2 . . . < α1α2 . . . .

Equivalently,

bm+1 . . . bnα∞
1 < α1α2 . . . .
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Hence,
bm+1 . . . bn < α1 . . . αn−m,

from which it follows that

am+1 . . . an ≤ α1 . . . αn−m.

Moreover, according to Theorem 1.2,

an+1an+2 . . . = α1α2 . . . < αn−m+1αn−m+2 . . . ,

proving (3.4).
Next assume that

(3.5) bn+1bn+2 . . . = α1α2 . . . .

If q is an integer, then (αi) = α∞
1 = (q − 1)∞ and the implication (3.4) follows

from the fact that (ai) is infinite by definition. If q is a non-integer and (3.5) holds,
then (bi) is infinite and therefore (ai) = (bi). Hence, we need to show that the
implication

(3.6) bm > 0 =⇒ bm+1bm+2 . . . ≤ α1α2 . . .

holds. If m ≥ n, then (3.6) follows from

bm+1bm+2 . . . = αm−n+1αm−n+2 . . . ≤ α1α2 . . . .

If m < n, then (3.6) follows from the minimality of n. �

4. Proof of the sufficiency part of Theorem 1.3

Fix q ∈ U and denote the quasi-greedy expansion of x ∈ [0, α1/(q − 1)] by
(ai) = (ai(x)). Suppose that

(4.1) an+1an+2 . . . ≤ α1α2 . . . whenever an > 0.

In this section we prove that such an element x belongs to the set Uq.
It follows from Theorem 1.2 and Proposition 2.3 that the quasi-greedy expansion

of 1 in base q satisfies

(4.2) αk+1αk+2 . . . ≤ α1α2 . . . for all k ≥ 1,

and

(4.3) αk+1αk+2 . . . < α1α2 . . . for all k ≥ 1.

Note that a sequence satisfying (4.2) and (4.3) is automatically infinite. Hence,
a sequence satisfying (4.2) and (4.3) is the quasi-greedy expansion of 1 in base q
for some q ∈ U . The following two lemmas are obtained in [KL3].

Lemma 4.1. If (αi) is a sequence satisfying (4.2) and (4.3), then there exist arbi-
trary large integers m such that αm > 0 and

(4.4) αk+1 . . .αm < α1 . . .αm−k for all 0 ≤ k < m.

Lemma 4.2. Let (γi) be a sequence satisfying

γk+1γk+2 . . . ≤ γ1γ2 . . .

and
γk+1γk+2 . . . ≤ γ1γ2 . . .

for all k ≥ 1, with γj := γ1 − γj . If

γn+1 . . . γ2n ≥ γ1 . . . γn

for some n ≥ 1, then in fact

(γi) = (γ1 . . . γnγ1 . . . γn)∞.
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Now we are able to prove the sufficiency part of Theorem 1.3. For a fixed base
q ∈ U , we will distinguish between x ∈ J with a finite greedy expansion and x ∈ J
with an infinite greedy expansion.

Lemma 4.3. Fix q ∈ U . Suppose that x ∈ [0, α1/(q − 1)] has a finite greedy
expansion (bi) and suppose that the quasi-greedy expansion (ai) of x satisfies the
condition (4.1). Then, x ∈ Uq.

Proof. Note that 0 ∈ Uq . Hence, we may assume that x ∈ (0, α1/(q − 1)]. If bn is
the last nonzero element of (bi), then

(ai) = b1 . . . b−n α1α2 . . . .

According to Lemma 4.1, there exists a sequence 1 ≤ m1 < m2 < · · · , such that
(4.4) is satisfied with m = mi for all i ≥ 1. We may assume that mi > n for all
i ≥ 1. Consider for each i ≥ 1 the sequence (bi

j), given by

(bi
j) = b1 . . . b−n (α1 . . .αmi

α1 . . .αmi
)∞.

Define for i ≥ 1, the number xi by

xi =

∞
∑

j=1

bi
j

qj
.

Note that the sequence (xi)i≥1 converges to x as i goes to infinity. It remains to
show that xi ∈ Uq for all i ≥ 1. According to Theorem 1.1 it suffices to verify that

(4.5) bi
m+1b

i
m+2 . . . < α1α2 . . . whenever bi

m < α1

and

(4.6) bi
m+1b

i
m+2 . . . < α1α2 . . . whenever bi

m > 0.

According to (4.3),
αmi+1 . . .α2mi

≤ α1 . . . αmi
.

Note that this inequality cannot be an equality, for otherwise it would follow from
Lemma 4.2 that

(αi) = (α1 . . . αmi
α1 . . .αmi

)∞.

However, this sequence does not satisfy (4.3) for k = mi. Therefore,

αmi+1 . . .α2mi
< α1 . . . αmi

.

Equivalently,

(4.7) α1 . . .αmi
< αmi+1 . . .α2mi

.

If m ≥ n, then (4.5) and (4.6) follow from (4.2), (4.4) and (4.7).
Now assume that m < n. If bi

m < α1, then

bi
m+1 . . . bi

n = bm+1 . . . b−n

< bm+1 . . . bn

≤ α1 . . . αn−m,

where the last inequality follows from the fact that (bi) is a greedy expansion and
bm = bi

m < α1. Hence,
bi
m+1b

i
m+2 . . . < α1α2 . . . .

Suppose that bi
m = am > 0. Since by assumption,

am+1am+2 . . . ≤ α1α2 . . .

and since bi
m+1 . . . bi

n = am+1 . . . an, it suffices to verify that

bi
n+1b

i
n+2 . . . < αn−m+1αn−m+2 . . . .



UNIQUE EXPANSIONS OF REAL NUMBERS 13

This is equivalent to

(4.8) αn−m+1αn−m+2 . . . < (α1 . . .αmi
α1 . . .αmi

)∞.

Since n < mi for each i ≥ 1, we infer from (4.4) that

αn−m+1 . . .αmi
< α1 . . .αmi−(n−m)

and (4.8) follows. �

Lemma 4.4. Fix q ∈ U . Suppose that x ∈ [0, α1/(q − 1)] has an infinite greedy
expansion (bi) and suppose that the quasi-greedy expansion (ai) of x satisfies the
condition (4.1). Then, x ∈ Uq.

Proof. We may assume that x /∈ Uq. Note that (ai) = (bi), since the greedy
expansion of x is infinite by assumption. Since x /∈ Uq, there exists a first positive
integer n such that

bn > 0 and bn+1bn+2 . . . ≥ α1α2 . . . .

According to (4.1) this last inequality is in fact an equality.
As before, let 1 ≤ m1 < m2 < · · · be a sequence such that (4.4) is satisfied with

m = mi for all i ≥ 1. Again, we may assume that mi > n for all i ≥ 1. Consider
for each i ≥ 1 the sequence (bi

j), given by

(bi
j) = b1 . . . bn(α1 . . .αmi

α1 . . .αmi
)∞

and define for i ≥ 1, the number yi by

yi =

∞
∑

j=1

bi
j

qj
.

Then the sequence (yi)i≥1 converges to x as i goes to infinity. It remains to show
that yi ∈ Uq for all i ≥ 1.
If m ≥ n, then (4.5) and (4.6) follow as in the proof of the preceding lemma.
Now assume that m < n. If bi

m = bm < α1, then by (2.5),

bi
m+1 . . . bi

n = bm+1 . . . bn ≤ α1 . . .αn−m.

Hence, it suffices to verify that

bi
n+1b

i
n+2 . . . = (α1 . . .αmi

α1 . . . αmi
)∞ < αn−m+1αn−m+2 . . . ,

which is already done (cf. (4.8)). Finally, suppose that bi
m = bm > 0. We must

verify that

bi
m+1 . . . bi

nbi
n+1 . . . < α1α2 . . . .

By minimality of n, we have

bm+1 . . . bnbn+1 . . . < α1α2 . . . ,

i.e.,

(4.9) bm+1 . . . bnα1α2 . . . < α1α2 . . . .

Therefore,

bi
m+1 . . . bi

n = bm+1 . . . bn < α1 . . .αn−m,

for otherwise

bm+1 . . . bn = α1 . . .αn−m

and it would follow from (4.9) that

α1α2 . . . < αn−m+1αn−m+2 . . . ,

which contradicts (4.2). �



14 MARTIJN DE VRIES AND VILMOS KOMORNIK

5. Proof of Theorem 1.4

In order to prove Theorem 1.4 we start with some preliminary lemmas.

Lemma 5.1. Fix q > 1. If (bi) 6= α∞
1 is the greedy expansion of a number x ∈ J ,

i.e., if 0 ≤ x < α1/(q − 1), then there exists a sequence 1 ≤ n1 < n2 < · · · such
that for each i ≥ 1,

(5.1) bni
< α1 and bm+1 . . . bni

< α1 . . .αni−m if m < ni and bm < α1.

Proof. We define a sequence (ni)i≥1 satisfying the requirements by induction.
Let r be the first positive integer for which br < α1. Then, (5.1) with ni replaced

by r holds trivially. Set n1 := r.
Suppose we have already defined n1 < · · · < nℓ, such that for each 1 ≤ j ≤ ℓ,

bnj
< α1 and bm+1 . . . bnj

< α1 . . . αnj−m if m < nj and bm < α1.

Since (bi) is greedy and bnℓ
< α1, there exists a first integer nℓ+1 > nℓ such that

(5.2) bnℓ+1 . . . bnℓ+1
< α1 . . . αnℓ+1−nℓ

.

Note that bnℓ+1
< αnℓ+1−nℓ

≤ α1. It remains to verify that for all 1 ≤ m < nℓ+1

for which bm < α1, we have that

(5.3) bm+1 . . . bnℓ+1
< α1 . . . αnℓ+1−m.

If m < nℓ, then (5.3) follows from the induction hypothesis. If m = nℓ, then (5.3)
reduces to (5.2). If nℓ < m < nℓ+1, then

bnℓ+1 . . . bm = α1 . . . αm−nℓ
,

by minimality of nℓ+1, and thus by (5.2),

bm+1 . . . bnℓ+1
< αm−nℓ+1 . . .αnℓ+1−nℓ

≤ α1 . . . αnℓ+1−m. �

The following lemma has been established in [KL3]:

Lemma 5.2. If q ∈ U \ U , then the greedy expansion (βi) of 1 is finite and all
expansions of 1 are given by

(5.4) (αi) and (α1 . . .αm)Nα1 . . . αm−1α
+
m0∞, N = 0, 1, 2, . . . ,

where m is such that βm is the last nonzero element of (βi).

Note that if the greedy expansion (βi) of 1 is finite with last nonzero element
βm, then the quasi-greedy expansion of 1 is given by (αi) = (β1 . . . β−

m)∞ =
(α1 . . . αm)∞. Hence, as a consequence of Lemma 5.2, for each q ∈ U , the quasi-
greedy expansion (αi) of 1 is also the smallest expansion of 1 in lexicographical
order.

Proof of Theorem 1.4. (ia) We establish that |Uq \ Uq| = ℵ0. More specifically, if

q ∈ U \N, then the sets Aq and Bq (introduced in a remark following the statement
of Theorem 1.4) are countably infinite. Moreover, the greedy expansion of a number
x ∈ Bq ends with α1α2 . . .. If q ∈ {2, 3, . . .}, then Aq = Uq \ Uq.

Fix q ∈ U . Denote the greedy expansion of a number x ∈ Uq \ Uq by (bi). Since
x /∈ Uq , there exists a number n such that bn > 0 and

bn+1bn+2 . . . ≥ α1α2 . . . .

If this inequality is strict, then bi = 0 for all i > n (cf. Lemma 3.3). Otherwise,
the sequence (bi) ends with α1α2 . . ., which is infinite unless q is an integer. It
follows from Theorem 1.1, Theorem 1.2 and Theorem 1.3 that a sequence of the
form 0n10∞ for n ≥ 0, is the finite greedy expansion of 1/qn+1 ∈ Uq \Uq. Moreover,
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if q ∈ U \N, then a sequence of the form αn
1 α1α2 . . . for n ≥ 1, is the infinite greedy

expansion of a number x ∈ Uq \ Uq. These observations conclude the proof.

(ib) We show that if q ∈ U , then Aq is dense in Uq .

Fix q ∈ U . For each x ∈ Uq, we will define a sequence (xi)i≥1 of numbers in

Aq ⊂ Uq \ Uq that converges to x. We have seen in the proof of part (i) that
1/qn ∈ Aq for each n ≥ 1. Hence, there exists a sequence of numbers in Aq that
converges to 0 ∈ Uq. Suppose now that x ∈ Uq \ {0} and denote by (ci) the unique
expansion of x. Since c1c2 . . . 6= α∞

1 is greedy, we infer from Lemma 5.1 that there
exists a sequence 1 ≤ n1 < n2 < · · · , such that for each i ≥ 1,

(5.5) cni
> 0 and cm+1 . . . cni

< α1 . . .αni−m if m < ni and cm > 0.

Now consider for each i ≥ 1 the sequence (bi
j), given by

(bi
j) = c1 . . . cni

0∞

and define the number xi by

xi =

∞
∑

j=1

bi
j

qj
.

According to Lemma 3.1, the sequences (bi
j) are the finite greedy expansions of the

numbers xi, i ≥ 1. Moreover, the sequence (xi)i≥1 converges to x as i goes to
infinity. We claim that xi ∈ Aq for each i ≥ 1. Note that xi /∈ Uq because the
quasi-greedy expansion (ai

j), given by

c1 . . . c−ni
α1α2 . . .

is another expansion of xi. According to Theorem 1.3, it remains to prove that

(5.6) ai
j > 0 =⇒ ai

j+1a
i
j+2 . . . ≤ α1α2 . . . .

If j < ni and ai
j > 0, then

ai
j+1 . . . ai

ni
= cj+1 . . . c−ni ≤ α1 . . .αni−j ,

by (5.5) and

ai
ni+1a

i
ni+2 . . . = α1α2 . . . < αni−j+1αni−j+2 . . . ,

by Theorem 1.2. If j = ni, then (5.6) follows from α1 = 0 < α1. Finally, if j > ni,
then (5.6) follows again from Theorem 1.2.

(ic) We show that if q ∈ U \ N, then the set Bq is dense in Uq.

Fix q ∈ U \ N. For each x ∈ Uq, we will define a sequence (xi)i≥1 of numbers in

Bq ⊂ Uq \ Uq that converges to x. It follows from Theorem 1.1, Theorem 1.2 and
Theorem 1.3 that a sequence of the form 0iα1α1α2 . . . for i ≥ 0, is the infinite greedy
expansion of a number xi ∈ Uq \ Uq . Note that the sequence (xi)i≥1 converges to
0 ∈ Uq. Therefore, we may again assume that x ∈ Uq \ {0}. Let (ci) be the unique
expansion of a number x ∈ Uq \ {0}, and let 1 ≤ n1 < n2 < · · · be a sequence of
integers satisfying (5.5). Arguing as in the proof of part (ib), one finds that for
each i ≥ 1, the sequence

(bi
j) = c1 . . . cni

α1α2 . . .

is the infinite greedy expansion of a number xi ∈ Uq \ Uq .

(ii) and (iii) Fix q ∈ U and let (bi) be the greedy expansion of some number x ∈
Uq \ Uq . Let n be the smallest positive integer for which bn > 0 and bn+1bn+2 . . . ≥
α1α2 . . .. Let (di) be another expansion of x. Then, (di) < (bi) and hence there
exists a smallest integer j for which dj < bj . First we show that j ≥ n. Suppose
by contradiction that j < n. Then, bj > 0 and by minimality of n, we have

bj+1bj+2 . . . > α1α2 . . ..
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Since α1α2 . . . is the smallest expansion of 1, we have that α1α2 . . . is the largest
expansion of the number

∑

i≥1 αi/qi, and therefore,

∞
∑

i=1

bj+i

qi
>

∞
∑

i=1

αi

qi
.

But then,

∞
∑

i=1

dj+i

qi
=

∞
∑

i=1

bj+i

qi
+ bj − dj

>

∞
∑

i=1

αi

qi
+ 1

=

∞
∑

i=1

α1

qi
,

which is clearly impossible. If j = n, then dn = b−n , for otherwise we have again

∞
∑

i=1

dn+i

qi
≥

∞
∑

i=1

bn+i

qi
+ 2

>

∞
∑

i=1

bn+i

qi
+

∞
∑

i=1

αi

qi
+

∞
∑

i=1

αi

qi

≥
∞
∑

i=1

α1

qi
,

where the second inequality follows from the fact that (αi) is the smallest expansion
of 1 and the inequality

α1α2 . . . < α1α2 . . . .

Now we distinguish between two cases:
If j = n and

(5.7) bn+1bn+2 . . . > α1α2 . . . ,

then by Lemma 3.3, we have br = 0 for r > n, from which it follows that (dn+i) is
an expansion of 1. Hence, if q ∈ U and (5.7) holds, then the only expansion of x
starting with b1 . . . b−n is given by (ci) := b1 . . . b−n α1α2 . . .. If q ∈ U \ U and (5.7)
holds, then any expansion (ci) starting with b1 . . . b−n is an expansion of x if and
only if (cn+i) is one of the expansions listed in (5.4).

If j = n and

(5.8) bn+1bn+2 . . . = α1α2 . . . ,

then
∞
∑

i=1

dn+i

qi
=

∞
∑

i=1

bn+i

qi
+ 1 =

∞
∑

i=1

α1

qi
.

Hence, if (5.8) holds, then the only expansion of x starting with b1 . . . b−n is given
by b1 . . . b−n α∞

1 .
Finally, if j > n, then

bn+1bn+2 . . . = α1α2 . . . ,

for otherwise (bn+i) = 0∞ and dj < bj is impossible. Note that in this case
q /∈ U , because otherwise (bn+i) is the unique expansion of

∑

i≥1 αi/qi and thus

(dn+i) = (bn+i) which is impossible since j > n. Hence, if q ∈ U , then (bi) is the
only expansion of x starting with b1 . . . bn. If q ∈ U \ U and (5.8) holds, then any
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expansion (ci) starting with b1 . . . bn is an expansion of x if and only if (cn+i) is one
of the conjugates of the expansions listed in (5.4).

The statements of parts (ii) and (iii) follow directly from the above considera-
tions. �

Remark. Fix q ∈ U . It follows from Theorem 1.4 (i) that each x ∈ Uq \Uq has either
a finite expansion or an expansion that ends with α1α2 . . ., i.e., x can be written as

x =
b1

q
+ · · ·+ bn

qn
+

1

qn

(

α1

q − 1
− 1

)

.

Moreover, according to Lemma 5.2, the greedy expansion of 1 in base q is finite if
q ∈ U\U . Hence, if q ∈ U is transcendental, then each x ∈ Uq\Uq is a transcendental

number. If q ∈ U is an algebraic number or if q ∈ U \ U , then each x ∈ Uq \ Uq is
also algebraic.

6. Proof of Theorem 1.5 and Theorem 1.6

Fix q > 1. It follows from Proposition 2.3 and Proposition 2.5 that a sequence
(bi) is greedy if and only if 0 ≤ bn ≤ α1 for all n ≥ 1, and

(6.1) bn+k+1bn+k+2 . . . < α1α2 . . . for all k ≥ 0, whenever bn < α1.

Lemma 6.1. Assume that q /∈ U . Then a greedy sequence (bi) cannot end with
α1α2 . . ..

Proof. Assume by contradiction that for some n,

bn+1bn+2 . . . = α1α2 . . ..

Since in this case bn+1 = α1 = 0 < α1, it would follow from (6.1) that

αk+1αk+2 . . . < α1α2 . . . for all k ≥ 1.

But this contradicts our assumption that q /∈ U . �

Lemma 6.2. Assume that q /∈ U . Then,

(i) The set Uq is closed.
(ii) Each element x ∈ Vq \ Uq has a finite greedy expansion.

Proof. (i) Let x ∈ J \ Uq and denote the greedy expansion of x in base q by (bi).
According to Theorem 1.1, there exists a positive integer n such that

bn > 0 and bn+1bn+2 . . . ≥ α1α2 . . . .

Applying Lemma 3.3 and Lemma 6.1 we conclude that

[x, z] ∩ Uq = ∅,

for some number z > x. It follows that Uq is closed from above. Note that the set
Uq is symmetric in the sense that

x ∈ Uq ⇐⇒ α1/(q − 1) − x ∈ Uq,

as follows from Theorem 1.1. Hence, the set Uq is also closed from below.

(ii) Let x ∈ Vq \ Uq and suppose that (ai(x)) = (bi(x)). Then, it would follow
that for some positive integer n,

bn+1bn+2 . . . = α1α2 . . . ,

contradicting Lemma 6.1. �

Lemma 6.3. Let (ai) be the quasi-greedy expansion of some x ∈ [0, α1/(q − 1)].
Furthermore, let M be an arbitrary positive integer. Then a1 . . . aM0∞ is a greedy
sequence.
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Proof. If x = 0, then there is nothing to prove. If x 6= 0, then the statement follows
from Proposition 2.4 and Proposition 2.5. �

Recall from the introduction that the set V consists of those numbers q > 1 for
which the quasi-greedy expansion (αi) of 1 in base q satisfies

(6.2) αk+1αk+2 . . . ≤ α1α2 . . . for all k ≥ 1.

Note that the quasi-greedy expansion of 1 in base q for q ∈ V \ U is of the form

(6.3) (αi) = (α1 . . . αkα1 . . .αk)∞,

where k ≥ 1 is the first integer for which equality holds in (6.2). In particular, such
a sequence is periodic. Any sequence of the form (1n0n)∞, where n is a positive
integer, is infinite and satisfies (2.2) and (6.2) but not (4.3). On the other hand,

there are only countably many periodic sequences. Hence, the set V\U is countably
infinite. Note that αk > 0, for otherwise it would follow from (6.2) and (6.3) that

αkαk+1 . . . α2k−1 = α1α1α2 . . .αk−1 ≤ α1 . . .αk−10,

which is impossible, because α1 > 0. The following lemma ([KL3]) implies that the
number of expansions of 1 is countably infinite in case q ∈ V \ U . Moreover, all
expansions of the number 1 in base q are determined explicitly.

Lemma 6.4. If q ∈ V \ U , then all expansions of 1 are given by (αi), and the
sequences

(α1 . . .α2k)Nα1 . . . α2k−1α
+
2k0

∞ , N = 0, 1, . . .

and

(α1 . . .α2k)Nα1 . . .αk−1α
−
k α∞

1 , N = 0, 1, . . . .

It follows from the above lemma that for each q ∈ V \ U , the greedy expansion
of 1 in base q is given by (βi) = α1 . . . α2k−1α

+
2k0

∞ and the smallest expansion of 1

in base q is given by α1 . . .αk−1α
−
k α∞

1 .
Now we are ready to prove Theorem 1.5 and Theorem 1.6. Throughout the

proof of Theorem 1.5, q ∈ V \U is fixed but arbitrary, and k ≥ 1 is the first positive
integer for which equality holds in (6.2).

Proof of Theorem 1.5. (i) We show that the sets Uq and Vq are closed. In view of
Lemma 6.2, it remains to prove that Vq is closed.

Fix x ∈ J \ Vq and let (ai(x)) = (ai) be the quasi-greedy expansion of x. Then,
there exists an integer n > 0, such that

an > 0 and an+1an+2 . . . > α1α2 . . . .

Let m be such that

(6.4) an+1 . . . an+m > α1 . . .αm,

and let

y =

n+m
∑

i=1

ai

qi
.

According to Lemma 6.3, the greedy expansion of y is given by a1 . . . an+m0∞.
Therefore, the quasi-greedy expansion of each number v ∈ (y, x] starts with the
block a1 . . . an+m. It follows from (6.4) that

(y, x] ∩ Vq = ∅.

Consider now the sequence

(di) = a1 . . . anα1α2 . . ..
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It follows from (2.4) and (6.2) that (di) is the quasi-greedy expansion of
∑

i≥1

di/qi = z > x.

Note that the quasi-greedy expansion (vi) of an element v ∈ [x, z) satisfies

vn = an > 0 and vn+1vn+2 . . . < α1α2 . . ..

Hence,

[x, z)∩ Vq = ∅,

from which the claim follows.

(iia) We prove that |Vq \ Uq| = ℵ0. The set Vq \ Uq is countable, because each
element x ∈ Vq \ Uq has a finite greedy expansion (cf. Lemma 6.2). On the other
hand, for each n ≥ 1, the sequence αn

1 0∞ is the greedy expansion of an element
x ∈ Vq \ Uq , from which the claim follows.

(iib) In order to show that Vq \ Uq is dense in Vq , one can argue in the same way
as in the proof of Theorem 1.4 (ib). Instead of applying Theorem 1.2 one should
now apply the inequality (6.2).

(iic) Finally, we show that all elements of Vq \ Uq are isolated points of Vq . Let
x ∈ Vq \Uq and let bn be the last nonzero element of the greedy expansion (bi) of x.
Choose m such that αm < α1. Note that this is possible because q /∈ N. According
to Lemma 3.2, there exists a greedy sequence (ci) > (bi), such that

c1 . . . cn+m = b1 . . . bn0m.

If we set

z =

∞
∑

i=1

ci

qi
,

then the quasi-greedy expansion (vi) of a number v ∈ (x, z] starts with b1 . . . bn0m.
Hence, vn = bn > 0, and

vn+1 . . . vn+m = αm
1 > α1 . . .αm.

Therefore,

(x, z] ∩ Vq = ∅.

In order to show that there exists also a number y < x, such that

(y, x) ∩ Vq = ∅,

we introduce for m ≥ 1 the sequences (bm
j ), given by

(bm
j ) = b1 . . . b−n (α1 . . .αkα1 . . . αk)m0∞

and we define the numbers xm by

xm =
∞
∑

j=1

bm
j

qj
.

The sequences (bm
j ) are all greedy by Lemma 6.3. Moreover, xm ↑ x as m goes to

infinity. Let v ∈ (xm, xm+1] for some m ≥ 1, and let the quasi-greedy expansion of
v be given by (di). Then,

d1 . . . dndn+1 . . . d2km+n = b1 . . . b−n (α1 . . .αkα1 . . .αk)m

and

d2km+n+1 . . . d2k(m+1)+n < α1 . . .αkα1 . . . αk.

Therefore,

d2k(m−1)+n+k = αk > 0
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and

d2k(m−1)+n+k+1 . . . d2k(m+1)+n > α1 . . .αkα1 . . .αkα1 . . . αk

= α1 . . .α3k.

Hence, v /∈ Vq , i.e.,

(x1, x)∩ Vq = ∅.

(iii) We already know from Lemma 6.2 that each x ∈ Vq \ Uq has a finite greedy
expansion. It remains to show that each element x ∈ Vq \ Uq has ℵ0 expansions.
Let x ∈ Vq \ Uq and let bn be the last nonzero element of its greedy expansion (bi).
If j < n and bj = aj > 0, then

aj+1 . . . an = bj+1 . . . b−n ≤ α1 . . .αn−j,

because x ∈ Vq . Therefore,

(6.5) bj+1 . . . bn > α1 . . . αn−j.

Let (di) be another expansion of x and let j be the smallest positive integer for
which dj 6= bj . Since (bi) is greedy, we have dj < bj and j ∈ {1, . . . , n}. First we
show that j ∈ {n − k, n}. Suppose by contradiction that j /∈ {n − k, n}.

First assume that n − k < j < n. Then, bj > 0 and by (6.5),

bj+1 . . . bn0∞ > α1 . . . αn−jαn−j+1 . . .α−
k 0∞.

Since α1 . . .α−
k α∞

1 is the smallest expansion of 1 in base q, α1 . . . α−
k 0∞ is the greedy

expansion of α1/(q − 1) − 1, and therefore,

∞
∑

i=1

bj+i

qi
> α1/(q − 1) − 1.

But then,
∞

∑

i=1

dj+i

qi
=

∞
∑

i=1

bj+i

qi
+ bj − dj

> α1/(q − 1),

which is impossible.
Next assume that 1 ≤ j < n − k. Rewriting (6.5), one gets

bj+1 . . . bn < α1 . . . αn−j.

If

bj+1 . . . bj+k = α1 . . . αk,

then

bj+k+1 . . . bn < αk+1 . . .αn−j.

Hence,

bj+k+1bj+k+2 . . . > αk+1αk+2 . . .

= α1α2 . . . .

Since in this case bj+k = αk < α1, the last inequality contradicts the fact that (bi)
is a greedy sequence. Hence, if j < n − k, then

bj+1 . . . bj+k < α1 . . . αk.

Equivalently,

bj+1 . . . bj+k ≥ α1 . . . α−
k .
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Since n > j + k and bn > 0, it follows that

bj+1bj+2 . . . > α1 . . .α−
k 0∞,

which leads to the same contradiction as at the beginning of the proof. It remains
to investigate what happens if j ∈ {n − k, n}.

If j = n − k, then it follows from (6.5) that

bn−k+1 . . . bn ≥ α1 . . .α−
k .

Equivalently,

bn−k+1bn−k+2 . . . = bn−k+1 . . . bn0∞ ≥ α1 . . .α−
k 0∞,

and thus

(6.6)

∞
∑

i=1

dn−k+i

qi
≥

∞
∑

i=1

bn−k+i

qi
+ 1 ≥ α1/(q − 1),

where both inequalities in (6.6) are equalities if and only if

dn−k = b−n−k, bn−k+1 . . . bn = α1 . . .α−
k , and dn−k+1dn−k+2 . . . = α∞

1 .

Hence, dn−k < bn−k is only possible in case bn−k > 0 and bn−k+1 . . . bn = α1 . . .α−
k .

Finally, if j = n, then dn = b−n , for otherwise

∞
∑

i=1

dn+i

qi
≥ 2 >

∞
∑

i=1

αi

qi
+

∞
∑

i=1

αi

qi
= α1/(q − 1),

because

α1α2 . . . < α1 . . .α−
k α∞

1 .

In this case (dn+i) is one of the expansions listed in Lemma 6.4. �

Remark. Fix q ∈ V \U . According to Lemma 6.4, the number 1 has a finite greedy
expansion in base q. Hence, each element q ∈ V \ U is algebraic. Because each
x ∈ Vq \ Uq has a finite greedy expansion in base q, it follows that the set Vq \ Uq

consists entirely of algebraic numbers.

Lemma 6.5. Let (αi) be the quasi-greedy expansion of 1 in some base q > 1 and
assume there exists a positive integer k such that

αk+1αk+2 . . . > α1α2 . . .

Then there exists a positive integer m such that αm > 0 and

αm+1αm+2 . . . > α1α2 . . . .

Proof. Let m = max {1 ≤ i ≤ k : αm > 0}. Note that m is well defined, since α1 >
0. Then, αm+1 . . .αk = 0 . . .0. Hence,

αm+1αm+2 . . . > α1α2 . . . . �

Proof of Theorem 1.6. Fix q /∈ V. In view of Lemma 6.2, it remains to prove that
a number x ∈ J \ {0} with a finite greedy expansion does not belong to Vq .

Let x ∈ J \ {0} be an element with a finite greedy expansion. Since q /∈ V, there
exists a positive integer k, such that

αk+1αk+2 . . . > α1α2 . . . .

According to Lemma 6.5, we may assume that αk > 0. Since the quasi-greedy
expansion of each element x ∈ J \ {0} with a finite greedy expansion ends with
α1α2 . . ., we conclude that x /∈ Vq . �
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7. Proof of Theorem 1.7–Theorem 1.10

In this section we will complete our study of the univoque set Uq for numbers
q > 1. The results proved in the preceding sections were mainly concerned with
various properties of the sets Uq for numbers q ∈ V. Now we will use these properties
to describe the topological structure of Uq for all numbers q > 1.

Since the set V is closed, we may write (1,∞)\V as the union of countably many
disjoint open intervals (q1, q2): the connected components of (1,∞) \ V. In order
to determine the endpoints of these components we recall from [KL3] that

• V is closed.
• V \ U is dense in V.
• all elements of V \ U are isolated in V.

In fact, for each element q ∈ U there exists a sequence (qm)m≥1 of numbers in V \U
such that qm ↑ q, as can be seen from the proof of Theorem 2.6 in [KL3].

Proposition 7.1.

(i) The set R of right endpoints q2 of the connected components (q1, q2) is given
by R = V \ U .

(ii) The set L of left endpoints q1 of the connected components (q1, q2) is given
by L = N ∪ (V \ U).

Proof of Proposition 7.1 (i). Note that V \U ⊂ R because the set V \U is discrete.
As we have already observed in the preceding paragraph, each element q ∈ U can
be approximated from below by elements in V \ U . Hence, R = V \ U . �

The proof of part (ii) of Proposition 7.1 requires more work. We will prove a
number of technical lemmas first. In the remainder of this section q ∼ (αi) indicates
that the quasi-greedy expansion of 1 in base q is given by (αi). For convenience we
also write 1 ∼ 0∞, and we occasionally refer to 0∞ as the quasi-greedy expansion
of the number 1 in base 1.

Let q2 ∈ V \ U and suppose that

q2 ∼ (αi) = (α1 . . .αkα1 . . .αk)∞

where k is chosen to be minimal.

Remark. The minimality of k implies that the smallest period of (αi) equals 2k.
Indeed, if j is the smallest period of (αi), then αj = α2k = αk < α1 because j

divides 2k. Hence, α1 . . .α+
j 0∞ is an expansion of 1 in base q2 which contradicts

Lemma 6.4 if j < 2k.

Lemma 7.2. For all 0 ≤ i < k, we have

αi+1 . . . αk < α1 . . .αk−i.

Proof. For i = 0, the inequality follows from the relation α1 = 0 < α1. Hence,
assume that 1 ≤ i < k. Since q2 ∈ V,

αi+1 . . . αk ≤ α1 . . .αk−i.

Suppose that for some 1 ≤ i < k,

αi+1 . . . αk = α1 . . .αk−i.

If k ≥ 2i, then

α1 . . .α2i = α1 . . .αiα1 . . . αi,

and it would follow from Lemma 4.2 that

(αi) = (α1 . . .αiα1 . . .αi)
∞,
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contradicting the minimality of k. If i < k < 2i, then

αi+1 . . . α2i = αi+1 . . . αkα1 . . .α2i−k

= α1 . . .αk−iα1 . . .α2i−k

≥ α1 . . .αk−iαk−i+1 . . .αi

= α1 . . .αi,

leading to the same contradiction. �

Let q1 be the largest element of V ∪ {1} that is smaller than q2. This element
exists because the set V ∪{1} is closed and the elements of V \U are isolated points
of V ∪ {1}. The next lemma provides the quasi-greedy expansion of 1 in base q1.

Lemma 7.3. q1 ∼ (α1 . . .α−
k )∞.

Proof. Let q1 ∼ (vi). If k = 1, then q2 ∼ (α10)∞ and (vi) = (α−
1 )∞ because q2

is the smallest element of V ∩ (α1, α1 + 1). Hence, we may assume that k ≥ 2.
Observe that

v1 . . . vk ≤ α1 . . .αk.

If v1 . . . vk = α1 . . . αk, then

vk+1 . . . v2k ≤ α1 . . .αk,

i.e.,

vk+1 . . . v2k ≥ α1 . . .αk,

= v1 . . . vk

(here we need that k ≥ 2, for otherwise the conjugate bars on both sides have a
different meaning) and it would follow from Lemma 4.2 that q1 = q2. Hence,

v1 . . . vk ≤ α1 . . .α−
k .

It follows from Proposition 2.3 that (wi) = (α1 . . .α−
k )∞ is the largest quasi-greedy

expansion of 1 in some base q > 1 that starts with α1 . . .α−
k . Therefore, it suffices

to show that the sequence (wi) satisfies inequality (6.2) for all k ≥ 1. Since the
sequence (wi) is periodic with period k, it suffices to verify that

(7.1) wj+1wj+2 . . . ≤ w1w2 . . . for all 0 ≤ j < k.

If j = 0, then (7.1) is true because w1 = 0 < w1; hence assume that 1 ≤ j < k.
Then, according to the preceding lemma,

αj+1 . . . αk < α1 . . .αk−j,

and

α1 . . . αj < αk−j+1 . . . αk.

Hence,

wj+1 . . .wj+k = αj+1 . . .α−
k α1 . . .αj

≤ α1 . . .αk−jα1 . . .αj

< α1 . . .αk,

so that

wj+1 . . . wj+k ≤ w1 . . . wk.

Since the sequence (wj+i) = wj+1wj+2 . . . is also periodic with period k, the in-
equality (7.1) follows. �
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Lemma 7.4. Fix q > 1 and denote by (βi) the greedy expansion of the number 1
in base q. For any positive integer n, we have

βn+1βn+2 . . . ≤ β1β2 . . . .

Proof. It follows from (6.1) that

βn+1βn+2 . . . < α1α2 . . . ≤ β1β2 . . . ,

whenever there exists a positive integer j ≤ n satisfying βj < β1 = α1. If such an
integer j does not exist, then either (βi) = α∞

1 or there exists an integer j > n
for which βj < α1. In both these cases the desired inequality readily follows as
well. �

Now we consider a number q1 ∈ V \ U . Recall from Lemma 5.2 and Lemma 6.4
that the greedy expansion (βi) of 1 in base q1 is finite. Denote its last nonzero
element by βm.

Lemma 7.5.

(i) The smallest element q2 of V that is larger than q1 exists. Moreover,

q2 ∼ (β1 . . . βmβ1 . . . βm)∞.

(ii) The greedy expansion of 1 in base q2 is given by (γi) = β1 . . . βmβ1 . . . β−
m0∞.

Proof. (i) First of all, note that

q1 ∼ (αi) = (β1 . . . β−
m)∞.

Moreover,
(β1 . . . β−

m)∞

is the largest quasi-greedy expansion of 1 in some base q > 1 that starts with
β1 . . . β−

m. Hence, in view of Lemma 4.2, it suffices to show that the sequence

(wi) = (β1 . . . βmβ1 . . . βm)∞

satisfies the inequalities

(7.2) wk+1wk+2 . . . ≤ w1w2 . . .

and

(7.3) wk+1wk+2 . . . ≤ w1w2 . . .

for all k ≥ 0. Observe that (7.2) for k + m is equivalent to (7.3) for k and (7.3) for
k + m is equivalent to (7.2) for k. Since both relations are obvious for k = 0, we
only need to verify (7.2) and (7.3) for 1 ≤ k < m. Fix 1 ≤ k < m.

The relation (7.3) follows from our assumption that q1 ∈ V:

wk+1 . . .wm = βk+1 . . . βm < αk+1 . . .αm ≤ α1 . . .αm−k = w1 . . . wm−k.

Since 1 ≤ m − k < m, we also have

wm−k+1 . . . wm < w1 . . . wk.

Using Lemma 7.4, we obtain

wk+1 . . . wk+m = wk+1 . . . wmw1 . . . wk

≤ w1 . . . wm−kw1 . . .wk

< w1 . . . wm−kwm−k+1 . . .wm,

from which (7.2) follows.
(ii) We must show that

(7.4) γk+1γk+2 . . . < w1w2 . . . whenever γk < w1.
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If 1 ≤ k < m, then (7.4) follows from

γk+1 . . . γk+m = wk+1 . . . wk+m < w1 . . . wm.

If k = m, then (7.4) follows from γm+1 = β1 = 0 < w1.
If m < k < 2m, then

γk+1 . . . γ2m = βk−m+1 . . . β−
m ≤ w1 . . .w2m−k.

Hence,
γk+1γk+2 . . . = γk+1 . . . γ2m0∞ < w1w2 . . . ,

because (wi) is infinite. Finally, if k ≥ 2m, then γk+1 = 0 < w1. �

Proof of Proposition 7.1 (ii). It follows from Lemma 7.5 that V \ U ⊂ L. If q2 ∼
(n0)∞ for some n ∈ N, then (n, q2) is a connected component of (1,∞) \ V. Hence,
N ⊂ L. It remains to show that (L \ N) ∩ U = ∅.

If (q1, q2) is a connected component of (1,∞) \ V with q2 ∼ (αi) and q1 ∈ L \N,
then by Lemma 7.3, q1 ∼ (α1 . . . α−

k )∞ for some k ≥ 2. Since α1 . . .αk0∞ is a larger
expansion of 1 in base q1, we have q1 /∈ U . �

Recall from Section 1 that for q > 1, U ′
q and V′

q denote the sets of quasi-greedy
expansions of numbers x ∈ Uq and x ∈ Vq respectively.

Lemma 7.6. Let (q1, q2) be a connected component of (1,∞)\ V and suppose that
q1 ∈ V \ U . Then,

U ′
q2

= V′
q1

.

Proof. Let us write again

q2 ∼ (α1 . . . αkα1 . . .αk)∞

where k is chosen to be minimal. Suppose that a sequence (ci) ∈ {0, . . . , α1}∞ is
univoque in base q2, i.e.,

(7.5) cn+1cn+2 . . . < (α1 . . .αkα1 . . . αk)
∞ whenever cn < α1

and

(7.6) cn+1cn+2 . . . < (α1 . . . αkα1 . . .αk)∞ whenever cn > 0.

If cn < α1, then by (7.5),

cn+1 . . . cn+k ≤ α1 . . .αk.

If we had
cn+1 . . . cn+k = α1 . . .αk,

then
cn+k+1cn+k+2 . . . < (α1 . . . αkα1 . . .αk)∞,

and by (7.6) (note that in this case cn+k = αk > 0),

cn+k+1cn+k+2 . . . > (α1 . . . αkα1 . . .αk)∞,

a contradiction. Hence,
cn+1 . . . cn+k ≤ α1 . . .α−

k .

Note that cn+k < α1 in case of equality. It follows by induction that

cn+1cn+2 . . . ≤ (α1 . . .α−
k )∞.

Since a sequence (ci) satisfying (7.5) and (7.6) is infinite unless (ci) = 0∞, we
may conclude from Proposition 2.4 and Lemma 7.3, that (ci) is the quasi-greedy
expansion of some x in base q1. Repeating the above argument for the sequence
c1c2 . . ., which is also univoque in base q2, we conclude that (ci) ∈ V′

q1
. The converse

inclusion follows from the fact that the map q 7→ (αi) is strictly increasing. �
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Lemma 7.7. Let (q1, q2) be a connected component of (1,∞)\ V and suppose that
q1 ∈ V \ U . If q ∈ (q1, q2], then

(i) U ′
q = V′

q1
;

(ii) Uq contains isolated points if and only if q1 ∈ V \U. Moreover, if q1 ∈ V\U ,
then each sequence (ai) ∈ V′

q1
\ U ′

q1
is the expansion in base q of an isolated

point of Uq and each sequence (ci) ∈ U ′
q1

is the expansion in base q of an
accumulation point of Uq.

Proof. (i) Note that

(7.7) U ′
q ⊂ U ′

r and V′
q ⊂ U ′

r if q < r and ⌈q⌉ = ⌈r⌉.
It follows from Lemma 7.6 that U ′

q = V′
q1

for all q ∈ (q1, q2].

(ii) We need the following observation which is a consequence of Lemma 3.1 and
Lemma 3.2:

If x ∈ J has an infinite greedy expansion in base q, then a sequence (xi) with
elements in J converges to x if and only if the greedy expansion of xi converges
(coordinate-wise) to the greedy expansion of x as i → ∞. Moreover, xi ↓ 0 if and
only if the greedy expansion of xi converges (coordinate-wise) to the sequence 0∞

as i → ∞.
First assume that q1 ∈ V \ U . Let x ∈ Vq1

\ Uq1
and denote the quasi-greedy

expansion of x in base q1 by (ai). Since each element in Vq1
\ Uq1

is an isolated
point of Vq1

(cf. Theorem 1.5 (ii)), there exists a positive integer n such that
the quasi-greedy expansion in base q1 of an element in Vq1

\ {x} does not start
with a1 . . . an. Since (ai) ∈ V′

q1
= U ′

q, it follows from the above observation that
the sequence (ai) is the unique expansion in base q of an isolated point of Uq. If
x ∈ Uq1

, then there exists a sequence of numbers (xi) with xi ∈ Vq1
\ Uq1

such that
the quasi-greedy expansions of the numbers xi converge to the unique expansion
of x, as can be seen from the proof of Theorem 1.5 (iib) (which in turn relies on
the proof of Theorem 1.4 (ib)). Hence, the unique expansion of x in base q1 is the
unique expansion in base q of an accumulation point of Uq.

Next assume that q1 ∈ U \ U . According to Theorem 1.4 (i), the set Uq1
has

no isolated points. Hence, for each x ∈ Uq1
, there exists a sequence of numbers

(xi) with xi ∈ Uq1
\ {x} such that xi → x. In view of the above observation,

the unique expansions of the numbers xi converge to the unique expansion of x.
Therefore, the unique expansion of x in base q1 is the unique expansion in base q
of an accumulation point of Uq. If x ∈ Vq1

\ Uq1
= Uq1

\ Uq1
, then there exists a

sequence (xi) of numbers in Uq1
such that the unique expansions of the numbers

xi converge to the quasi-greedy expansion (ai) of x, as follows from the proof of
Lemma 4.3 and Lemma 4.4. Hence, also in this case, (ai) is the unique expansion in
base q of an accumulation point of Uq. Since U ′

q = V′
q1

, this completes the proof. �

Lemma 7.8. Let (q1, q2) be a connected component of (1,∞)\ V and suppose that
q1 ∈ N. If q ∈ (q1, q2], then U ′

q = U ′
q2

and Uq contains isolated points if and only if
q1 ∈ {1, 2}.

Proof. Note that if q1 = n ∈ N, then q2 ∼ (n0)∞. Suppose that q ∈ (n, q2]. The
verification of the following statements is an easy exercise which we leave to the
reader.
A sequence (ai) ∈ {0, . . . , n}∞ is in U ′

q if and only if

aj < n =⇒ aj+1 < n,

and

aj > 0 =⇒ aj+1 > 0.
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In particular we see that
U ′

q = U ′
q2

.

If n = 1, then U ′
q = {0∞, 1∞}. If n = 2, then

U ′
q = {0∞, 2∞} ∪

∞
⋃

n=0

{0n1∞, 2n1∞} .

Hence, if n = 2, then Uq is countable and all elements of Uq are isolated, except for
its endpoints. If n ≥ 3, then Uq has no isolated points. �

Lemma 7.9. Let q > 1 be a real number.

(i) If q ∈ U , then q is neither stable from below nor stable from above.
(ii) If q ∈ V \ U , then q is stable from below, but not stable from above.
(iii) If q /∈ V, then q is stable from below and stable from above.

Proof. (i) As mentioned at the beginning of this section, if q ∈ U , then there exists

a sequence (qm)m≥1 with numbers qm ∈ V \ U , such that qm ↑ q. Since

U ′
qm

( V′
qm

⊂ U ′
q,

q is not stable from below. If q ∈ U \ N, then q is not stable from above because

U ′
q ( V′

q ⊂ U ′
s

for any s ∈ (q, ⌈q⌉]. If q ∈ {2, 3, . . .}, then q is not stable from above because the
sequence q∞ ∈ U ′

s \ U ′
q for any s > q.

(ii) and (iii) If q /∈ U , then q ∈ (q1, q2], where (q1, q2) is a connected component
of (1,∞) \ V. From Lemma 7.7 and Lemma 7.8 we conclude that q is stable from
below. Note that q = q2 if and only if q ∈ V \ U . Hence, if q /∈ V, then q is also
stable from above. If q ∈ V \ U , then q is not stable from above because

U ′
q ( V′

q ⊂ U ′
s

for any s ∈ (q, ⌈q⌉]. �

Proof of Theorem 1.7. Thanks to Proposition 7.1, we only need to prove parts (ii),
(iii) and (iv).

(ii) If q ∈ {2, 3, . . .}, then Uq ( Uq = [0, 1]. Hence, neither Uq nor Uq is a Cantor
set.

(iii) and (iv) If q /∈ N, then Uq is nowhere dense, according to a remark following
the statement of Theorem 1.6 in Section 1. Hence, if q /∈ N, then Uq is a Cantor
set if and only if Uq is closed and does not contain isolated points.

If q ∈ U \ N, then by Theorem 1.4 (i), the set Uq is not closed and Uq does not
contain isolated points from which part (iii) follows.

Finally, let q ∈ (q1, q2], where (q1, q2) is a connected component of (1,∞) \ V.
Since q /∈ U , the set Uq is closed. It follows from Lemma 7.7 and Lemma 7.8 that

Uq is a Cantor set if and only if q1 ∈ {3, 4, . . .} ∪ (U \ U). �

Proof of Theorem 1.8. The statements of Theorem 1.8 readily follow from Propo-
sition 7.1 and the Lemmas 7.7, 7.8, and 7.9. �

Proof of Theorem 1.9. First assume that q ∈ (1,∞) \ U . Then, q ∈ (q1, q2], where
(q1, q2) is a connected component of (1,∞) \ V. Let us write

q2 ∼ (αi) = (α1 . . .αkα1 . . . αk)
∞,

where k is minimal. Define F ⊂ {0, . . . , α1}k+1
by

F = {ja1 . . . ak : j < α1 and a1 . . . ak ≥ α1 . . . αk} .
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It follows from Lemma 7.7 (i) and the proof of Lemma 7.6 and Lemma 7.8 that

a sequence (ci) ∈ {0, . . . , α1}N
belongs to U ′

q if and only if cj . . . cj+k /∈ F and
cj . . . cj+k /∈ F for all j ≥ 1. Therefore, U ′

q is a subshift of finite type.

Next assume that q ∈ U . It follows from the proof of Lemma 4.3 and Lemma 4.4
that for each x ∈ Uq \ Uq, there exists a sequence (xi) of numbers in Uq such that
the unique expansions of the numbers xi converge to the quasi-greedy expansion of
x. Hence, the set U ′

q is not a subshift of finite type because it is not closed (in the
topology of coordinate-wise convergence). �

Proof of Theorem 1.10. (i) Note that the quasi-greedy expansion of 1 in base q2 =

(1 +
√

5)/2 is given by (αi) = (10)∞. It follows from the proof of Lemma 7.8 that
U ′

q = {0∞, 1∞} for all q ∈ (1, q2].

(ii) Due to the properties of the set V \ U that we mentioned at the beginning
of this section we may write

V ∩ (1, q′) = {qn : n ∈ N} and V ∩ (2, q′′) = {rn : n ∈ N} ,

where the qn’s and the rn’s are written in increasing order. Note that q1 ∼ (10)∞

and r1 ∼ (20)∞. Moreover, qn ↑ q′ and rn ↑ q′′. Thanks to (7.7) we only need to
verify that Uqn

and Urn
are countable for all n ∈ N. This will be carried out by

induction.
It follows from the proof of Lemma 7.8 that Uq1

and Ur1
are countable. Suppose

now that Uqn
is countable for some n ≥ 1. By Lemma 7.6,

U ′
qn+1

= V′
qn

= U ′
qn

∪ (V′
qn

\ U ′
qn

).

According to Theorem 1.5 (ii), the set V′
qn

\ U ′
qn

is countable, whence Uqn+1
is

countable as well. It follows by induction that Uqn
is countable for each n ∈ N.

Similarly, Urn
is countable for each n ∈ N.

(iii) It follows from Theorem 1.4 (i) that |Uq′ | = 2ℵ0 and |Uq′′ | = 2ℵ0. The
relation (7.7) yields that |Uq| = 2ℵ0 for all q ∈ [q′, 2] ∪ [q′′, 3]. If q > 3, then U ′

q

contains all sequences consisting of merely ones and twos. Hence, |Uq| = 2ℵ0. �

We conclude this paper with an example and some remarks.

Example. For k ∈ N, define the numbers q∗(k) and q(k) by setting

q∗(k) ∼ (1k−10)∞ and q(k) ∼ (1k0k)∞.

It follows from Lemma 7.5 and Theorem 1.8 that the sets (q∗(k), q(k)] are maximal
stability intervals. Moreover, it follows from the proof of Theorem 1.9 that a se-

quence (ci) ∈ {0, 1}N
belongs to U ′

q for q ∈ (q∗(k), q(k)] if and only if a zero is never
followed by k consecutive ones and a one is never followed by k consecutive zeros.
This result was first established by Daróczy and Kátai in [DK1], using a different
approach.

Note that the smallest element of V larger than q(k) is given by r(k), where

r(k) ∼ (1k0k−110k1k−10)∞,

as follows from Lemma 7.5. Therefore, the sets (q(k), r(k)] are also maximal sta-
bility intervals. If q ∈ (q(k), r(k)], then the set Uq is not a Cantor set because

q(k) ∈ V \ U .

Remarks.

• Let us now consider the set of left endpoints L′ and the set of right endpoints
R′ of the connected components of (1,∞) \ U . We will show that

L′ = N ∪ (U \ U) and R′ ⊂ U .
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Fix a number q ∈ (1,∞) \ U . Let q1 be the smallest element of V larger

or equal than q. Since q1 ∈ V \ U , the number q1 is a left endpoint and a
right endpoint of a connected component of (1,∞)\ V. Hence, there exists

a sequence q1 < q2 < · · · of numbers in V \ U , such that

(qi, qi+1) ∩ V = ∅ for all i ≥ 1.

Let βm be the last nonzero element of the greedy expansion (βi) of the
number 1 in base q1. We define a sequence (ci) by induction as follows.
First, set

c1 . . . cm = β1 . . . βm.

Then, if c1 . . . c2Nm is already defined for some nonnegative integer N , set

c2Nm+1 . . . c2N+1m−1 = c1 . . . c2Nm−1 and c2N+1m = c2Nm + 1.

Note that this construction generalizes that of the truncated Thue–Morse
sequence. It follows from Lemma 7.5 that the greedy expansion of 1 in base
qn is given by c1 . . . c2n−1m0∞. Hence, (ci) is an expansion of 1 in base q∗,
where

q∗ = lim
n→∞

qn.

Moreover, q∗ ∈ U , as can be seen from the proof of Lemma 4.2 in [KL3]. It
follows that R′ ⊂ U .

Now let r1 be the largest element of V ∪ {1} that is smaller than q1.
Let us also write r1 ∼ (αi) and q1 ∼ (ηi). It follows from Lemma 7.3 and
the remark preceding Lemma 7.2 that (αi) has a smaller period than (ηi).
Hence, there exists a finite set of numbers rk < · · · < r1 in V ∪ {1}, such
that for 1 ≤ i < k,

(ri+1, ri) ∩ V = ∅,

and such that rk is a left endpoint of a connected component of (1,∞)\ V,
but not a right endpoint. This means that

rk ∈ N ∪ (U \ U) and (rk, q)∩ U = ∅.

Hence, rk ∈ U ∪ {1} and therefore rk ∈ L′. We may thus conclude that
L′ ⊂ N∪ (U \U). On the other hand, L∩U ⊂ L′ because U ⊂ V. It follows
that L′ = N ∪ (U \ U).

• The analysis of the preceding remark enables us also to determine for each
n ∈ N the smallest element q(n) of the set U ∩ (n, n + 1):

Fix n ∈ N, and let q be the smallest element of V ∩ (n, n + 1). Then,
q ∼ (n0)∞ and the greedy expansion (βi) of 1 in base q is given by n10∞.
The sequence (ci) constructed in the preceding remark with m = 2 and

c1c2 = n1 is the unique expansion of the number 1 in base q(n).
• In [KL2] it was shown that for each n ∈ N, there exists a smallest number

r(n) > 1 such that the number 1 has only one expansion in base r(n) with
coefficients in {0, 1, . . . , n}. Although this might appear as an equivalent
definition of the numbers q(n), there is a subtle difference. For instance,
it can be seen from the results in [KL2] that q(n) = r(n) if and only if
n ∈ {1, 2}.
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dapest. Eötvös Sect. Math. 37 (1994), 109–118.
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