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Abstract. This paper deals with strange attractors of S-unimodal maps f . It gen-
eralizes results from [BKNS] in the sense that very general topological conditions are

given that either
i) guarantee the existence of an absorbing Cantor set provided the critical point of

f is sufficiently degenerate, or
ii) prohibit the existence of an absorbing Cantor set altogether.

As a byproduct we obtain very weak topological conditions that imply the existence
of an absolutely continuous invariant probability measure for f .

1. Introduction

Attractors are one of the central themes in dynamics, but a universal defini-
tion of attractor is hard to give. Already in the context of interval maps one
encounters ambiguities that one would hardly expect. Let us illustrate this by the
well-established classification of attractors for S-unimodal interval maps. First we
need to distinguish between a metric and a topological attractor.

Definition (cf. [Mi1]). A closed set A is a metric (topological) attractor, if
i) The basin B(A) = {x | ω(x) ⊂ A} has positive Lebesgue measure (is a residual

set).
ii) There is no proper closed subset A′ ⊂ A such that B(A′) has positive Lebesgue

measure (is a residual set).

The following classification is due to Guckenheimer [G] for the topological part,
and to Blokh and Lyubich [BL1] for the metric part.

Classification of Attractors. Let f : I → I be a non-flat S-unimodal (i.e. the
Schwarzian derivative of f is negative) map of the interval. Then f has a unique
topological attractor, which is one of the following:
i) An attracting periodic orbit.
ii) The union of n intervals which are cyclically permuted by f . On each of these

intervals fn is topological transitive.
iii) A Cantor set on which f acts as an adding machine. This is the infinitely

renormalizable case.
Furthermore, f has a unique metric attractor, which can be of type i), ii), iii) or
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iv) A Cantor set, but iii) does not apply: f is finitely renormalizable.

An attractor of type iv) is called an absorbing Cantor set. It is a metric but not
a topological attractor. It has been an open question for some years whether case
iv) can occur. If ` = 2 absorbing Cantor sets do not exist. Proofs were given by

Lyubich [L1] and by Jakobson and Świa̧tek [JS1,JS2,JS3]. However, as was proved
in [BKNS], there are maps (with a degenerate critical point) that have an absorbing
Cantor set. This applies at least to maps with a special combinatorial structure,
known as the Fibonacci dynamics.

The purpose of this paper is to generalize the results of [BKNS]: We want to indicate
which topological constraints allow/prohibit the existence of absorbing Cantor sets.

The topology of absorbing Cantor sets is known to some extent [BL2,GJ,Ma1]. If
A is an absorbing Cantor set, then A = ω(c) (where c is the critical point of f), A is
minimal and c must have a rigid recurrence behaviour, sometimes called persistent
recurrence. The precise formulation of this recurrence behaviour may change from
one author to the next. In section 3 we will discuss this in detail: The differences
in formulation are very subtle, leading to intricate counter-examples (section 11).

Let us discuss some of the ideas and tools used in this paper, and then state the
main result in a simplified form.

Our main tool is a certain kind of induced map (section 4). It is a generaliza-
tion of the induced map used in [BKNS]. The dynamics of the induced map F can
be considered as a random walk on a Markov chain with countably many states,
{Uk}k∈N. From a topological viewpoint, F is well-understood. The possible tran-
sitions from one state to another are given by the combinatorial structure of the
original map f . If f is non-renormalizable, the set of dense orbits on the chain is
residual in the set of all orbits. For the map f , this means that the set of points
having a dense f-orbit is also residual.

¿From a measure theoretical viewpoint, one has to distinguish between recurrent
and transient Markov chains. In principle, if a point x escapes to infinity under
iteration of F , then x tends to ω(c) under iteration of f . Therefore a transient
Markov chain corresponds to a map with an absorbing Cantor set (section 5). We
will have to compute the probabilities to go from one state to another. This involves
complicated estimates, which makes up the hardest part of the proofs.

We will describe the combinatorics of a unimodal map by means of the kneading
map Q. This map has been developed by Hofbauer and Keller, e.g. [H,HK]. It
is a map on N with the property that Q(n) < n for all n > 0. For example, the
Fibonacci map has the kneading map Q(k) = max{k−2, 0}. The precise definition
and some of the properties of Q will be given in section 2. Here we will point out
how Q describes the dynamics on the Markov chain: ¿From state Uk one can reach
Ul if and only if

l ≥ min{Q(k) + 1, Q(Q(k − 1) + 1) + 1}.

Therefore if k − Q(k) is bounded (f is Fibonacci-like), then one can drop only a
bounded number of states in the Markov chain. This gives good chances to find
a transient Markov chain. We conjecture that the boundedness of k − Q(k) is
sufficient for the existence of an absorbing Cantor set (provided the critical order
` is sufficiently large). Using an additional condition on Q, we can indeed prove
this conjecture (section 6). On the other hand, we can show that in general no
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absorbing Cantor set can arise if k−Q(k) → ∞, irrespective the value of ` (section
8).

Related to the question of absorbing Cantor sets is the question whether f has
an absolutely continuous (with respect to Lebesgue measure) invariant probability
measure (acip for short). As was proved in [KN,LM], the Fibonacci map has an
acip if the order ` of the critical point is sufficiently small (` < 2 + ε). It is
conjectured that the picture is as follows: Let f` be a family of Fibonacci maps
with critical order `. For ` small, f` has an acip. If ` increases, the acip disappears,
to be replaced by a conservative absolutely continuous infinite σ-finite invariant
measure. If ` increases even more, then an absorbing Cantor set is created, and f`

is therefore no longer conservative.
The same picture may be true for Fibonacci-like maps. However, using the

summability condition of Nowicki and van Strien [NS], we can give a large class of
combinatorial structures that imply the existence of an acip, irrespective the value
of ` (section 9). In this case the stage of a σ-finite measure is never reached.

Let us summarize this exposition in the following, simplified, theorem:

Theorem A. Let f be a finitely renormalizable, non-flat S-unimodal map having
critical order ` < ∞ and kneading map Q. Assume that Q is eventually non-
decreasing.
a) If k −Q(k) is bounded, then there exists `0 (depending only on the upper bound

of k −Q(k)) such that f has an absorbing Cantor set, whenever ` > `0.
b) If limk − Q(k) = ∞, then f has no absorbing Cantor set.

c) If lim k−Q(k)
logk = ∞, then f has an absolutely continuous invariant probability

measure.

The assumption that Q is eventually non-decreasing is strong, but it simplifies
the metric estimates considerably. Among other things, these metric estimates are
needed to show that certain (dynamically defined) points uk accumulate exponen-
tially fast on c. In section 7 (and 10), we derive sufficient topological conditions
for this behaviour. These conditions are much weaker than that Q is eventually
non-decreasing. In fact, Theorem A is a special case of the Theorems 6.1, 8.1 and
9.1.

We want to thank Gerhard Keller for the many fruitful discussions. We also thank
the referee for the useful remarks.

2. Notation and Preliminaries

f : I → I S-unimodal map on the unit interval
c, cn := fn(c) critical point and its iterates
` order of the critical point
ω(c), B(ω(c)) critical omega-limit set and its basin of attraction
Sk k-th cutting time
Q kneading map
Hn(x) maximal interval of monotonicity of fn containing x
Mn(x) := fn(Hn(x))
x̂ involution of x: f(x̂) = f(x)
xf := f(x) used for points close to c1.
dk := fSk (c)



4 HENK BRUIN

zk, Ak := (zk−1, zk) k-th closest precritical point
uk, Uk := (uk−1, uk) generalized closest prefixed points

F induced map F |Uk ∪ Ûk := fSk−1 |Uk ∪ Ûk

ϕn(x) ϕn(x) = k if and only if Fn(x) ∈ Uk

yk := fSQ(k)−1 (dk−1)

tfk right boundary point of HSk−1(c1)

In some more detail:

- f : [0, 1] → [0, 1] is a unimodal map with f(0) = f(1) = 0. We assume that f is

C3 and has negative Schwarzian derivative (Sf := D3f
Df

− 3
2
(D2f

Df
)2 < 0 wherever

it is defined).

- f is called renormalizable of period n > 1 if there is an interval c ∈ J ( [c2, c1]
such that fn(J) ⊂ J . The maximal interval with this property is called restric-
tive. We assume throughout the paper that f admits no periodic attractor and
is not renormalizable.

- | | denotes Lebesque measure or just the absolute value. d(A,B) is the distance
between sets or points.

- The order of the critical point ` < ∞. Hence |f(c) − f(x)| = O(1)|c − x|` and
Df(x) = O(`)|x − c|`−1. It follows that the involution x 7→ x̂ (x̂ is such that
x̂ 6= x (if x 6= c) and f(x̂) = f(x)) is Lipschitz. For simplicity we will assume
that x̂ = 2c− x.

- ω(x) is the set of accumulation points of orb(x), the forward orbit of x. A forward
invariant set A is minimal if every x ∈ A has a dense orbit in A.

- ω(x) is minimal if and only if x is uniformly recurrent [Got], i.e. for every
neighbourhood U of x, there exists N = N (U ) such that for every m for which
fm(x) ∈ U , there exists n ≤ N such that also fm+n(x) ∈ U .

- Suppose that Hn(x) = (a, b) 3 x is the maximal interval on which fn is diffeo-
morphic, then

rn(x) := min{|fn(x) − fn(a)|, |fn(x) − fn(b)|},

and

Rn(x) := max{|fn(x) − fn(a)|, |fn(x) − fn(b)|}.

Contraction Principle. For every ε > 0 there exists δ > 0 such that for every
n ≥ 0 and every interval of size |J | > ε, |fn(J)| ≥ δ.

In particular, fn|J cannot be homeomorphic for every n. The Contraction Principle
holds if there are no wandering intervals or periodic attractors [BL2,MS].

Let g : J → R be C1, then the distortion

dis(g, J) := sup
x,y∈J

|Dg(x)|
|Dg(y)| .

If g has negative Schwarzian derivative, g expands the cross ratio: Let j ⊂ t be

intervals, and let l, r be the components of t \ j. Then |t| |j|
|l| |r|

is the cross-ratio of j

and t.
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Expansion of Cross-Ratios. Let g : t → T be a diffeomorphism with negative
Schwarzian derivative. Then g expands the cross-ratio, i.e.

|t| |j|
|l| |r| ≤

|T | |J |
|L| |R|

where the capital letters indicate the g-images.

Furthermore, we can use the Koebe Principle (see e.g. [MS]). Let T ⊃ J again be
intervals. T is said to contain a δ-scaled neighbourhood of J if both components of
T \ J have size ≥ δ|J |.
Koebe Principle. Suppose Sg ≤ 0. Fix δ > 0 and let K =

(

1+δ
δ

)2
. Then the

following property holds: Let j ⊂ t be intervals such that g|t is monotone. If T
contains a δ-scaled neighbourhood of J , then dis(g, j) ≤ K.

A forward iterate cn is called a closest return if cj /∈ [cn, ĉn] for 0 < j < n. The
closest precritical points zk and cutting times Sk are defined as follows: S0 := 1,
z0 := f−1(c) ∩ (0, c). Inductively,

Sk+1 := min{n > Sk | f−n(c) ∩ (zk, c)}
and

zk+1 := f−Sk+1 (c) ∩ (zk, c).

We will give a few properties of these notions. More details can be found in [B2,B3].
Let Ak := (zk−1, zk), and A0 := (0, z0). If Sk < n ≤ Sk+1, then (zk, c) and (c, ẑk)
are maximal intervals on which fn is diffeomorphic.

Figure 2.1

c ẑk ẑk−1

zr−1 dk−1 = fSk−1(c) fSk−1(zk) = zr c

?

fSk−1

By construction, fSk−1 (zk) is again a closest precritical point, see figure 2.1. The
kneading map Q : N→ N is defined such that

fSk−1 (zk) = zQ(k).

It follows that

(2.1) Sk = Sk−1 + SQ(k).

The kneading map determines the combinatorics of the map completely. Define
dk := fSk (c). By figure 2.1 and the construction of the closest preimages,

(2.2) dk−1 ∈ (zQ(k)−1, zQ(k)) ∪ (ẑQ(k), ẑQ(k)−1).

This is true for all k ≥ 1. If Q(k) = 0, then dk−1 ∈ I \ (z0, ẑ0). Notice also that
fSk maps (zk−1, c) diffeomorphically onto (dQ(k), dk) and fSk (zk) = c. Therefore
dk and dQ(k) lie on different sides of c.
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Lemma 2.1. If there is no periodic attractor, then Q(k) < k for all k ≥ 1.

Proof. fSk−1 maps both (zk−1, c) and (c, ẑk−1) diffeomorphically onto (dk−1, c). If
Q(k) ≥ k, then by (2.2), dk ∈ (zk−1, ẑk−1). Hence fSk−1 maps either (zk−1, c) or
(c, ẑk−1) diffeomorphically into itself, yielding a periodic attractor. �

Lemma 2.2. There exists a unimodal map with Q as kneading map if and only if

(2.3) {Q(k + j)}j≥1 � {Q(Q2(k) + j)}j≥1,

where � denotes lexicographical order.

Proof. See [H] or [B3]. Formula (2.3) is the admissibility condition for kneading
maps. The geometric interpretation is that |dk − c| ≤ |dQ2(k) − c| for all k.

Figure 2.2

zQ(k)−1 dk−1 zQ(k) c

dQ2(k) dk c dQ(k)

?

fSQ(k)

This follows immediately from (2.2) by taking the SQ(k)-th iterate, see figure
2.2. �

Lemma 2.3. If f is renormalizable of period n, but has no n-periodic attractor,
then there exists k such that Sk = n and Q(k + j) ≥ k for all j ≥ 1.

Proof. Let [p, p̂] be the restrictive interval of period n. Then the situation is as in
figure 2.3.

Figure 2.3

zk−1 p zk c ẑk p̂ ẑk−1

p c dk p̂

?

fn
H

H
H

H
H

H
HHj

H
H

H
H

H
H

Hj

Because fn((p, c)) 3 c and fn|(p, c) is diffeomorphic, (p, c) 3 zk for some k minimal,
and n = Sk. Therefore p ∈ (zk−1, zk). By Lemma 2.1, dk /∈ (zk, ẑk), and as
dk ∈ [p, p̂], dk ∈ (ẑk, ẑk−1). Because f j ([p, p̂]) 3 c only if j is a multiple of n = Sk

(in which case f j([p, p̂]) ⊂ [p, p̂]), dm ∈ [p, p̂] ⊂ (zk−1, ẑk−1) for every m ≥ k.
Therefore Q(m + 1) ≥ k for every m ≥ k. �

We will often have to impose the following condition on the combinatorics:

(2.4) Q(k + 1) > Q(Q2(k) + 1) for all sufficiently large k.
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Geometrically, this means that there is at least one closest precritical point be-
tween dk and dQ2(k), see figure 2.2. We have not been able to prove most of the
metric estimates without (2.4) or a similar condition. Condition (2.4) prohibits the
existence of saddle-node like returns (see Section 7). Clearly (2.4) is true if Q is
eventually non-decreasing. Moreover

Lemma 2.4. If Q is eventually non-decreasing and Q(k) → ∞, then there exists
k0 such that for all k ≥ k0, dk is a closest return and there is no other closest
return past dk0 .

Proof. Suppose that k0 is such that Q(k + 1) ≥ Q(k) for all k ≥ k0, and take k0

such that Q(k) > k1 for all k ≥ k0.

We will first show that dk+1 ∈ (dk, d̂k) for all k ≥ k0. Suppose by contradiction

that dk ∈ (dk+1, d̂k+1) for some k ≥ k0. Then Q(k + 2) ≤ Q(k + 1), so in fact

Q(k + 2) = Q(k + 1) = n. By (2.2), dk ∈ (dk+1, zn) ∪ (ẑn, d̂k+1). As dk+2 =
fSn (dk+1), dk+1 = fSn (dk) and fSn (zn) = c, dk+1 ∈ (dk+2, c). It follows by
induction that Q(k+ j + 1) = Q(k+ j) for all j ≥ 1, contradicting our assumption
that Q(k) → ∞.

Next suppose that cn is a closest return for some Sk < n < Sk+1. Without
loss of generality we can assume that cn ∈ (dk, c) and dk ∈ (zQ(k+1)−1, zQ(k+1)).
Write m := n − Sk < SQ(k+1). As cn is a closest return, Mn−1(c1) 3 c. Hence
also Mm(dk) 3 c and Hm(dk) contains a preimage x of c. As there are no points
of f−m(c) in (zQ(k+1)−1, c), f

m(zQ(k+1)−1) ∈ [c, cn]. Because zQ(k+1)−1 is a closest
precritical point, in fact fm(zQ(k+1)−1) = c, so m = SQ(k+1)−1. It follows that
zQ(k+1)−1 ∈ fm([dk, zQ(k+1)]) = [zQ2(k+1), cn]. See figure 2.4.

Figure 2.4

zQ(k+1)−1 dk zQ(k+1) c

zQ2(k+1) zQ(k+1)−1 cn c

fm = fSQ(k+1)−1

XXXXXXXXXXXXz

Q
Q

Q
QQs������������

9

Therefore r := n+ SQ(k+1)−1 is a cutting time. Furthermore

r = Sk + 2SQ(k+1)−1 = Sk+1 + SQ(k+1)−1 − SQ2(k+1)

< Sk+1 + SQ(k+2) = Sk+2.

Hence r = Sk+1. But then Q(Q(k + 1)) = Q(k + 1) − 1, and because Q is non-
decreasing, f is renormalizable with period SQ(k+1)−1. Passing to the renormaliza-
tion (which has a non-decreasing kneading map) and repeating the arguments, we
get the result. �

Let tfk be such that

HSk−1(c
f ) = (zf

k−1, t
f
k).

Notice that tfk /∈ [c2, c1], so tfk is not the image of any point tk. The notation is just

to indicate that tfk is close to cf .
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Lemma 2.5. Let κ := min{k | Q(k) > 0}. Then for all k > κ, MSk−1(c
f ) =

fSk−1(zf
k−1, t

f
k) ⊂ (dQ(k), dQ2(k)). If (2.4) holds, then MSk−1(c

f ) = (dQ(k), dQ2(k)),
for k sufficiently large.

Proof. By (2.1), at least fSk−1(zf
k−1) = dQ(k). For k = κ + 1, fSk−1(tfk) = c1 =

dQ2(k), as one can verify by hand. Now take k > κ + 1 arbitrary and suppose
without loss of generality that dk−1 > c. Therefore by (2.2), dk−1 ∈ (c, ẑQ(k)−1). If

(2.5) ẑQ(k)−1 ∈ (dk−1, f
Sk−1−1(tfk−1)),

then by construction of HSk−1(c
f ), fSk−1−1(tfk) = ẑQ(k)−1. Hence fSk−1(tfk) =

fSQ(k) (ẑQ(k)−1) = dQ2(k). If (2.5) is false, so fSk−1−1(tfk−1) ∈ (dk−1, ẑQ(k)−1), then

tfk = tfk−1 and fSk−1(tfk) ∈ fSQ(k) ((dk−1, ẑQ(k)−1)) = (dk, dQ2(k)). This proves the
first statement.

Figure 2.5

dQ(k)−1 yk c

dQ(k) c dk dQ2(k)

z
f
k−1 cf t

f
k

t
f
k−1

c dk−1 ẑQ(k)−1 dQ2(k−1)

?

f
S

Q2(k)

?

f
SQ(k)−1

?

fSk−1−1

If fSk−1−1(tfk−1) = dQ2(k−1) and Q(Q2(k − 1) + 1) < Q(k), then (2.5) is satisfied.

In this case all the relations of figure 2.5 (with yk := fSQ(k)−1 (dk−1)) are true. By
induction the second statement follows too. �

For the proofs of the following statements, we refer to [Ma2].
- A point x is said to be nice if its forward orbit does not enter (x, x̂).
- An interval is called nice if it is symmetric and has nice boundary points.
- Let V be a nice interval and let m > 0 be the smallest integer such that cm ∈ V .

Then because f is not renormalizable, fm(V ) contains a boundary point x of V
in its interior. Pulling back this point along the orbit c, c1, ..., cm we obtain two
points y and ŷ in V . y and ŷ are nice. Define ψ by ψ(V ) = (y, ŷ).

- Let V be a nice interval and x /∈ V . If n is the first visit time of x to V , then
Mn(x) ⊃ V .

- Additionally, let x /∈ ψ(V ), and n be the first visit time of x to ψ(V ). Then
Mn(x) ⊃ V .
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3. Persistent Recurrence and Related Notions

In this section we discuss several notions concerning the recurrence behaviour of
the critical point:
- Johnson and Guckenheimer [GJ] introduced critical monotonicity as a sufficient

condition for the non-existence of absorbing Cantor sets.
- Blokh and Lyubich [BL2] gave a necessary topological condition (rn(x) → 0 for
x ∈ ω(c)) for the existence of absorbing Cantor sets.

- In complex dynamics the notion of persistent recurrence has been used: it refers
to Yoccoz’ τ -function. Real interpretations of persistent recurrence appear in
papers of Lyubich [L1-2].

- The existence of absorbing Cantor sets was proven for sufficiently flat Fibonacci-
maps. In this paper we are showing that absorbing Cantor sets can also be found
for more general, Fibonacci-like, maps.

It is not clear from the start which condition implies which, and in fact the difference
is very subtle in some cases. In this section we want to classify the several versions
of recurrence and discuss their relations (knowing that some of these relations were
proved in [BL2,L1,Mi2]).

(C1) f is Fibonacci-like, i.e. k − Q(k) is bounded.
(C2) Q(k) → ∞.
(C3) Rn(c1) → 0.
(C4) For every neighbourhood U 3 c there exists N such that for every n > N ,

Mn(c1) does not cover a component of U \ {c}.
(C5) For every symmetric neighbourhood U 3 c there exists N such that for

every n > N , Mn(c1) 6⊃ U
(C6) For every symmetric neighbourhood U 3 c there exists N such that for

every n > N : cn+1 /∈ U or Mn(c1) 6⊃ U (i.e. f is not critically monotonic).
(C7) For every nice interval U 3 c, there exists N such that for every n > N :

cn+1 /∈ U or Mn(c1) 6⊃ U .
(C8) rn(c1) → 0.
(C9) ω(c) is a minimal Cantor set containing c.

Proposition 3.1. The following implications hold:

(C1) ⇒ (C2) ⇔ (C3) ⇔ (C4) ⇒ (C5) ⇒ (C6) ⇒ (C7) ⇔ (C8) ⇒ (C9)

Here ⇒ also means that the reverse implication is false.

Proof. (C1) ⇒ (C2): Trivial.
(C2) 6⇒ (C1): Trivial.
(C2) ⇒ (C3): Lemma 2.5 states that MSk−1(c1) ⊂ (dQ(k), dQ2(k)). If Q(k) → ∞,

then RSk−1(c1) < |dQ(k) − dQ2(k)| < |zQ(Q(k)+1)−1 − ẑQ(Q2(k)+1)−1| → 0 as k → ∞.
By the Contraction Principle also Rn(c1) → 0.

(C3) ⇒ (C2) limnRn(c1) → 0 implies limk RSk−1(c1) → 0, whence |dk − c| → 0.
As (dk, c) 3 zQ(k+1) or ẑQ(k+1), Q(k) → ∞.

(C3) ⇒ (C4): Trivial.
(C4) ⇒ (C3): Assume by contradiction that lim infRn(c1) ≥ ε > 0. Then there

exist arbitrarily large integers n such that |Mn(c1)| ≥ ε. Due to the Contraction
Principle, there exists δ > 0 and arbitrarily large integers m such that |Mm(c1)| > δ
and Mm(c1) 3 c. Therefore Mm(c1) contains a component of (c−δ/2, c+δ/2)\{c}.
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(C4) ⇒ (C5): Trivial.
(C5) 6⇒ (C4): See example 11.2.
(C5) ⇒ (C6): Trivial.
(C6) 6⇒ (C5): See example 11.3.
(C6) ⇒ (C7): Trivial.
(C7) 6⇒ (C6) See example 11.1.
(C7) ⇒ (C8): Assume (C7) holds but lim sup rn(c1) = δ > 0. Choose a nice

interval V so small that according to the Contraction Principle no interval of length
≥ 2δ can be mapped in a monotonic way into V . Let n be arbitrary such that
rn(c1) ≥ δ. Let m ≥ n be the smallest iterate such that cm+1 ∈ V . As V is nice,
Mm−n(cn+1) ⊃ V , and by the choice of V , Hm−n(cn+1) ∩ fn−m(V ) ⊂ Mn(c1).
Therefore also Mm(c1) ⊃ V . Since this can be done for infinitely many n, (C7) is
false after all.

(C8) ⇒ (C9): As rn(c1) → 0, c is recurrent. Recall that f is assumed to have
no periodic attractor, so #(orb(c)) = ∞. Assume by contradiction that ω(c) is not
minimal. Then c is not uniformly recurrent. Therefore there exists a set V 3 c
such that b(n) := min{k − n | k > n, ck ∈ V } can be arbitrarily large. Without
loss of generality assume that V is nice. If cn ∈ V , then we can pull-back V
along the orbit cn, cn+1, ..., cn+b(n), obtaining an interval Vn ⊂ V . As V is nice,
Vn ∩ Vm = ∅ if b(n) 6= b(m). (In particular, V0 is the only interval of this kind on
which fb(n) = fb(0) is not monotone.) Because b(n) can be arbitrarily large, there
are infinitely many sets Vn.

Next take m(n) = min{k ≥ 1 | ck ∈ Vn}. Then for each Vn, there exists a set
V ′

n 3 c1 such that fm(n)−1 maps V ′
n monotonically onto Vn.

Now let U := ψ(V ). As f is not renormalizable, U 6= V . Let δ be the minimum
length of the components of V \ U . Let m′(n) := min{k ≥ 0 | cm(n)+k ∈ U}. Then

there exists V ′′
n ⊃ c1 such that fm′ (n)+m(n)−1 maps V ′′

n monotonically onto V , with
cm′(n)+m(n) ∈ U . Therefore rm′(n)+m(n)−1(c1) ≥ δ. Because this is true infinitely
often, rk(c1) 6→ 0.

(C9) 6⇒ (C8): Counter-examples appear for example in [GT].
(C8) ⇒ (C7): Suppose (C8) is true, and, by contradiction, that (C7) is false.

Therefore there exists a sequence of iterates ni such that Mni
(c1) ⊃ V 3 cni+1,

where V is a nice interval. Because (C8) is true, d(cni+1, ∂V ) → 0 as i → ∞. This
means that ∂V ∩ ω(c) 6= ∅, and ω(c) is not minimal. This contradicts the previous
the (C8) ⇒ (C9) implication. �

The notion of persistence recurrence comes from complex dynamics: A quadratic
map f(z) = z2 + c1 has a persistently recurrent critical point if τ (k) → ∞. Here
τ is Yoccoz’ τ -function in the critical tableau. In order to relate this property to
the ones we already have, we will assume in the next lemma that f(z) = z2 + c1,
c1 ∈ R, instead of just a smooth unimodal map. Because of the notation c1, we can
maintain cn as the n-th iterate of the critical point.

Lemma 3.2. c is persistently recurrent if and only if rn(c1) → 0.

Proof. We will use the notation from [Mi2]. Pn(x) denotes the order n puzzle piece
containing x.

First recall that the two boundary points of Pn(c) ∩ R are preimages of the
orientation reversing fixed point p. They are symmetric two each other, and nice.
In other words Pn(c) ∩ R is a nice interval for each n.



ABSORBING CANTOR SETS 11

Because of Proposition 3.1, it suffices to show that persistent recurrence is equiv-
alent to property (C7). Assume by contradiction that c is not persistently recurrent.
Therefore lim infn τ (n) = k < ∞. Take n arbitrary such that fn−k maps Pn(c) by
a two-fold covering onto Pk(c). Then fn−k−1 maps f(Pn(c)) ∩ R to a fixed nice
interval Pk(c) ∩ R 3 cn−k. Therefore (C7) is false.

Conversely, assume that (C7) is false, and that V is a nice interval such that
Mn(c1) ⊃ V 3 cn+1 for arbitrarily large n. Take k minimal such that Pk(c)∩R ⊂ V .
For n as above, let m ≥ 0 be the smallest integer such that cm+n+1 ∈ Pk(c) ∩ R.
It follows that fn+m+1 maps Pn+m+1(c) by a two-fold covering onto Pk(c) ∩ R.
Hence τ (n +m + 1) = k for arbitrarily large numbers n, and c is not persistently
recurrent. �

Lemma 3.3. We have rn(c1) → 0 if and only if rn(x) → 0 for every x ∈ ω(c), in
which case rn(x) → 0 uniformly.

Proof. ⇐ Trivial. Notice that it immediately follows that ω(c) is minimal. In-
deed, if for some x ∈ ω(c), c /∈ ω(x), then rn(x) 6→ 0.

⇒ Assume that there exists {xn} ⊂ ω(c) such that lim supn rn(xn) ≥ δ > 0.
Choose c ∈ U = ψ(V ) ( V so small that for every interval J of length ≥ 2δ,
fn(J) 6⊂ V for every n ≥ 0. We already know that ω(c) is minimal, so c ∈ ω(xn).
Choose n arbitrarily large such that rn(xn) ≥ δ and set m1(n) := min{k ≥ n |
fk(xn) ∈ V }. Pull-back V along the orbit xn, f(xn), ..., fm1(n)(xn), obtaining a
neighbourhood of Vn of xn.

Let m2(n) := min{k ≥ 1 | ck ∈ Vn}. This gives an interval V ′
n 3 c1 which is

mapped monotonically onto V by fm1 (n)+m2(n)−1. Finally, let m3(n) := min{k ≥
0 | cm1(n)+m2(n)+k ∈ U}. Then there exists an interval V ′′

n 3 c1 which is mapped

monotonically onto V by fm1 (n)+m2(n)+m3(n)−1 and moreover cm1(n)+m2(n)+m3(n) ∈
U . Because this happens infinitely often, rk(c1) 6→ 0, a contradiction. �

Corollary 3.4. If rn(c1) → 0, then x ∈ B(ω(c)) if and only if rn(x) → 0.

Proof. If x /∈ B(ω(c)), then there exists δ > 0 and arbitrarily large iterates n such
that d(fn(x), ω(c)) = d(fn(x), orb(c)) > δ. Since ∂Mn(x) ⊂ orb(c) ∪ {0, 1} it is
clear that lim supn rn(x) ≥ δ.

For the other direction, assume that lim supn rn(x) = δ > 0. Since rn|ω(c) →
0 uniformly, there exists N such that rn|ω(c) < δ

4 for all n ≥ N . Let L :=

supJ
|f(J)|
|J | (supremum taken over all subintervals of [c2, c1]), and ε = δ

4LN . Assume

by contradiction that x ∈ B(ω(c)). Then there exists M such that d(fm(x), ω(c)) <
ε for all m ≥M .

Pick n ≥ N + M such that rn(x) ≥ δ
2 . Then there exists neighbourhoods

V ⊃ U of fn−N (x) such that fN |V is monotone, fN (V ) = (fn(x) − δ
2 , f

n(x) + δ
2 ),

and fN (U ) = (fn(x) − δ
4 , f

n(x) + δ
4). By definition of ε, each component of U \

{fn−N (x)} has size ≥ ε. As n−N ≥M , there exists y ∈ U ∩ω(c). But that means
that rN (y) ≥ d(fN (y), fN (∂V )) ≥ δ

4
, contradicting the definition of N . �

4. The Induced Map F

In this section we introduce the induced map used in sections 6 and 8. We will
construct a countable interval partition, given by points {uk}∪{ûk}. These points
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Figure 4.1

c ẑk ûk ẑk−1

dk−1 zQ(k) uQ(k)+1 zQ(k)+1 c

?

fSk−1

are defined as follows: û1 = p is the orientation reversing fixed point of f and hence
u1 = p̂. Assume that ui is defined for every i < k.
The iterate fSk−1 maps (zk−1, c) and (c, ẑk−1) diffeomorphically onto (dk−1, c). Let
uk ∈ (zk−1, zk) be such that

fSk−1 (uk) =

{

uQ(k)+1 ∈ (zQ(k), zQ(k)+1) if dk−1 < c,

ûQ(k)+1 ∈ (ẑQ(k)+1, ẑQ(k)) if dk−1 > c.

See figure 4.1. Then also

fSk (uk) = fSQ(k) ◦ fSk−1 (uk) = fSQ(k) (uQ(k)+1) = uQ(Q(k)+1)+1.

Let U = (p̂, p) and Uk = (uk−1, uk). The induced map F is defined as

F |Uk ∪ Ûk = fSk−1 .

Hence

F (Uk) = F (Ûk) =

{

(uQ(k)+1, ûQ(Q(k−1)+1)+1) if dk−1 < c

(uQ(Q(k−1)+1)+1, ûQ(k)+1) if dk−1 > c.

Clearly F is a Markov map, i.e. F preserves the partition {Uk}. F is also an
extendible Markov map. By this we mean that

fSk−1 (HSk−1 (Uk)) ⊃ HSr−1 (Ur) whenever F (Uk) ⊃ Ur.

Here HSk−1 (Uk) is the maximal interval containing Uk on which fSk−1 is monotone.
Indeed, as HSk−1(Uk) = (zk−2, c),

fSk−1 ((zk−2, c) = (dQ(k−1), dk−1) ⊃ HSr−1(Ur) = (zr−2, c),

for each Ur ⊂ F (Uk). As F is a Markov map, there exist well-defined cylinder sets:

Ui0,...in−1 = {x | Fm(x) ∈ Uim
∪ Ûim

for 0 ≤ m < n}.

Because F is extendible Markov, its iterates have the same property:

Lemma 4.1. Let V = Ui0,...,in−1 be an arbitrary cylinder. Therefore F n−1(V ) =
Uk, k = in−1 and Fn(V ) = fr(V ) = (uQ(k)+1, ûQ(Q(k−1)+1)+1) or its involution.
Then

fr(Hr(V )) = fSk−1 (HSk−1 (Uk)) = fSk−1 ((zk−2, c)) = (dQ(k−1), dk−1).

Proof. Use induction. �
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5. Random Walks Governed by F

The main tool for the proof of the (non-)existence of absorbing Cantor sets is a
random walk on the states Uk. The transitions from one state to another are given

by the induced map. Write ϕn(x) = k if Fn(x) ∈ Uk ∪ Ûk. In order to prove that
x ∈ B(ω(c)), one need to check the asymptotic behaviour of ϕn(x).

Lemma 5.1.
i) If Q(k) → ∞ and limnϕn(x) = ∞, then x ∈ B(ω(c)).
ii) If rn(c1) → 0 and x ∈ B(ω(c)), then limn ϕn(x) = ∞.

Proof. i) As limnϕn(x) = ∞, |Fn−1(x) − c| → 0. By definition, F n−1(x) ∈
Uϕn−1 (x). Because Q(k) → ∞, also |F n(x) − dϕn−1(x)−1| → 0. It follows from the
Contraction Principle, that also for the intermediate iterates (i.e. for r1 < r < r2
where Fn−1 = fr1 and Fn = fr2 ), d(fr(x), fr−r1 (c)) → 0 as n → ∞. Hence
d(fr(x), ω(c)) → 0.

ii) Assume by contradiction that k0 := lim infn ϕn(x) < ∞. Let

δ := min
k≤k0

min{|zk−2 − uk−1|, |uk − c|}.

Take n, s such that F n(x) = fs(x) ∈ Uk for some k ≤ k0. Then by Lemma 4.1,
Hs(x) ⊃ (zk−2, c), whence rs(x) ≥ δ > 0. Since this holds for arbitrarily large s,
lim sups rs(x) > 0. According to Corollary 3.4, x /∈ B(ω(c)). �

The asymptotic behaviour of ϕn can be computed from the expectation E(ϕn −
ϕn−1), taken with respect to normalized Lebesgue measure on U . If E(ϕn−ϕn−1) ≥
ε > 0, then we expect that limn ϕn(x) = ∞ almost surely. To prove this, we will
use conditional expectations. We also need boundedness of the variance. For this
reason, we will use functions ψn ≤ ϕn, which satisfy ϕn → ∞ if and only if ψn → ∞,
but also have bounded conditional variances.

Theorem 5.2. Let ψn : U → R, n ∈ N, be functions satisfying the following
conditions:
- ψn−1 is constant on each cylinder Ui0 ,...in−1 .
- There exist k1 ∈ N and δ > 0 such that for every cylinder Ui0,...in−1 with in−1 ≥
k1, E(ψn − ψn−1 | Ui0,...in−1) ≥ δ.

- V ar(ψn − ψn−1 | Ui0,...in−1) is uniformly bounded.
Then the set X = {x ∈ U | ψn(x) → ∞} has positive Lebesgue measure.

Proof. We first restrict ourselves to X0 = {x | ϕn(x) ≥ k1 for all n}. Define
Ψm = (ψm − ψm−1) − E((ψm − ψm−1)|Ui0...im−1). Then E(Ψm|Ui0...im−1 ) = 0 and

there exists V such that V ar(Ψm | Ui0...im−1 ) = E(Ψ2
m | Ui0 ...im−1) < V for all

m and all cylinders Ui0...im−1 . Let Tn :=
∑n

m=1 Ψm, so E(T 2
1 ) = E(Ψ2

1) ≤ V .
By assumption Tn−1 is constant on each set Ui0...in−1 . Suppose by induction that

E(T 2
n−1) ≤ (n− 1)V , then

E(T 2
n) =E(T 2

n−1) + E(Ψ2
n) + 2E(ΨnTn−1)

≤ (n− 1)V + V + 2
∑

Ui0...in−1

E(ΨnTn−1 | Ui0...in−1)

≤nV + 2
∑

Ui0...in−1

Tn−1 ·E(Ψn | Ui0...in−1) = nV.
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By the Chebyshev inequality P (|Tn| > nε) ≤ nV
n2ε2 = V

nε2 . In particular P (|Tn2| >
n2ε) ≤ V

n2ε2 . Therefore
∑

nP (|Tn2| > n2ε) < ∞ and by the Borel-Cantelli Lemma,

P (|Tn2| > n2ε infinitely often) = 0.

As ε is arbitrary,
T

n2

n2 → 0 a.s. Now for the intermediate values of n, let

Dn := max
n2<k<(n+1)2

|Tk − Tn2 |.

Because |Tk − Tn2 | = |∑k
j=n2+1 Ψj |, E(|Tk − Tn2 |2) ≤ (k − n2)V ≤ 2nV . Hence

E(D2
n) ≤ E(

(n+1)2−1
∑

k=n2+1

|Tk − Tn2 |2) ≤
(n+1)2−1
∑

k=n2+1

2nV = 4n2V.

Using Chebyshev’s inequality again, we obtain P (Dn ≥ n2ε) ≤ 4n2V
n4ε2 = 4V

n2ε2 . Hence

P (Dn ≥ n2ε infinitely often) = 0, and Dn

n2 → 0 a.s. Combining things and taking

n2 ≤ k < (n + 1)2, we get

|Tk|
k

≤ |Tn2 | +Dn

n2
→ 0 a.s.

Because ψm − ψm−1 = Ψm + E(ψm − ψm−1 | Ui0...im−1 ) ≥ Ψm + δ,

lim inf
n→∞

1

n

n
∑

i=2

(ψi − ψi−1) ≥ lim inf
n→∞

1

n
Tn + δ ≥ δ a.s.

Hence ψn(x) → ∞ for a.e. x ∈ X0. Therefore |X0∩X∩Uk |
|Uk|

→ 1 as k → ∞, whence

|X| > 0. �

6. Maps having Absorbing Cantor Sets

Theorem 6.1. Let f be a non-renormalizable S-unimodal map with critical order
` < ∞. Let its kneading map Q satisfy the properties: There exists N, k1 ∈ N such
that for all k ≥ k1,

(6.1) Q(k + 1) > Q2(k) + 1

and

(6.2) Q(k) ≥ k −N.

Then there exists `0 = `0(N ) such that, if ` ≥ `0, then f has an absorbing Cantor
set.

Remark. Condition (6.1) is rather unnatural. It will be used effectively in Lemma
10.2. Note that (6.1) is satisfied if f is finitely renormalizable (use Lemma 2.3)
and Q is eventually non-decreasing. Note also that (6.1) immediately implies (2.4).
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Hence Lemma 2.5 applies. We need (6.1) for the estimates, but we don’t believe
that it really affects the existence of an absorbing Cantor set.

According to Theorem 5.2 it suffices to check certain conditional expectations and
variances. This will be done in Proposition 6.2. This proposition uses the following
metrical conditions: There exists C, `0 ≥ 1 and k1 ∈ N such that for all ` ≥ `0 and
k ≥ k1

(6.3)
1

C`
≤ |uk−1 − uk|

|uk−1 − c| ≤ C

`

and

(6.4)
1

C`
≤ |dk−1 − uQ(k)+1|

|uQ(k)+1 − c| ≤ C

`
.

The proofs of these statements are a generalization of the proofs in [BKNS]. They
are very technical; we put them in section 10.

Proposition 6.2. Let f be a Fibonacci-like S-unimodal map having critical order
` and kneading map Q. Let k1 be such that (6.3) and (6.4) hold. Then there
exists `0 < ∞ such that if ` ≥ `0, and Uϕ0,...ϕn−1 is a cylinder with ϕn−1 > k1,
E(ϕn − ϕn−1 | Uϕ0,...ϕn−1 ) > 1 and V ar(ϕn − ϕn−1 | Uϕ0 ,...ϕn−1) is uniformly
bounded.

Proof. Let V = Uϕ0,...ϕn−1 be any cylinder set such that ϕn−1 ≥ k1. Since F is
extendible Markov, the Koebe space corresponding to F n|V depends only on the
last application of F in the composition. In other words, suppose that F n = fs

and Fn−1(V ) = Uk, then fs(Hs(V )) = fSk−1 ((c, zk−2)) = (dQ(k−1), dk−1).
To be definite, assume that dQ(k−1) < c < dk−1. We will only calculate the

conditional expectation and variance on the part V 0 ⊂ V that is mapped to
(uQ(Q(k−1)+1)+1, c). The estimates for the part V 1 of V which is mapped onto
(c, ûQ(k)+1) are similar.

Abbreviate q = Q(Q(k − 1) + 1) + 1 > k − 2N . Let for r ≥ q, vr ∈ V be such
that Fn(vr) = ur and Fn(v∞) = c. Let also Vr = (vr, vr−1), see figure 6.1.

Figure 6.1

vqvr vr−1

Vr

vq+[`]v∞

dQ(k−1)

uq

ur

uq+[`]

c

qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq

F n | V
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By (6.3), (1 − C
`
) ≤ |ui+1−c|

|ui−c|
≤ (1 − 1

C`
), whence

(1 − C

`
)i−j ≤ |ui − c|

|uj − c| ≤ (1 − 1

C`
)i−j .

Using also (6.4), we obtain that for ` sufficiently large, and k < r ≤ q + `, there
exist K = K(C, `) > 0 such that

|dQ(k−1) − uq|
|dQ(k−1) − ur|

≥ |dQ(k−1) − uq|
|uq − c|

|uq − c|
|uq−1 − c|

1

1 − |ur−c|
|uq−1−c|

≥ 1

C`

1 − C
`

1 − (1 − C
`
)r−q

≥ K

r − q
,

and
|Ur|

|uq − ur−1|
=

|Ur |
|ur−1 − c|

|ur−1 − c|
|uq − c|

1

1 − |ur−1−c|
|uq−c|

≥ 1

C`

(1 − C
`
)r−1−q

1 − (1 − C
` )r−1−q

≥ K

r − q
.

These relations and the expansion of cross-ratios (with L = Ur , J = (ur−1, uq) and
R = (uq , dQ(k−1))) yield, for k < r ≤ q + `,

|Vr|
|vr−1 − vq|

=
|l|
|j| ≥

|R|
|T |

|L|
|J | ≥

|dQ(k−1) − uq|
|dQ(k−1) − ur|

|Ur|
|uq − ur−1|

≥ K2

(r − q)2
.

Hence the conditional expectation:

E(ϕn − k | V 0) =
1

|V 0|
∑

j

(j − k)|Vj|

≥ 1

|V 0|{−2N |vk − vq| + (` − 2N )|vq+[`] − v∞|

+

q+[`]
∑

j=k+1

K2 j − k

(j − q)2
|vj−1 − vq|}

≥ 1

|V 0|{(
K2

2
log ` − 2N )|vk − vq| + (` − 2N )|vq+[`] − v∞|}.

for ` sufficiently large. Hence E(ϕn − k | V 0) → ∞ as ` → ∞.
Let us compute the variance. For j ≥ k, the interval (uj , c) has Koebe space

(dQ(k−1), uj) which is at least of order 1
` . This gives a distortion bound of O(`2).

V ar(ϕn − k|V 0) ≤ E((ϕn − k)2|V 0) =
1

|V 0|
∑

j

(j − k)2|Vj |

≤ 4N 2 +
∑

j>k

(j − k)2
|Vj |
|V 0|

≤ 4N 2 + O(`2)
∑

j>k

(j − k)2
|uj − c|
|uk − c|

≤ 4N 2 + O(`2)
∑

j>k

(j − k)2(1 − 1

C`
)j−k = 4N 2 + O(`5).
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This concludes the proof. �

Proof of Theorem 6.1. Combine Proposition 6.2, Theorem 5.2 and Lemma 5.1. �

7. Estimates on
|uk−uk+1|
|uk−c|

In this section we concentrate on the relative space between uk and ul (or similarly,
the relative space between zk and zl) for l > k. Let ε > 0 be arbitrary. We introduce
the function ρε to measure how much |zl−c| is smaller than |zk−c| in factors 1−ε:
|zl − c| ≈ (1 − ε)ρε(l)−ρε(k)|zk − c|. More precisely, we define ρ = ρε : N → N by:
ρ(0) := 0, and if l ≤ k − 1 is the largest integer such that ρ(l) = ρ(k − 1), then

ρ(k) :=

{

ρ(k − 1) + 1 if
|zl−zk|
|zl−c| ≥ ε,

ρ(k − 1) otherwise.

Hence ρ(k − 1) ≤ ρ(k) ≤ k for each k ≥ 1, and for k ≥ l, |zk−c|
|zl−c| ≤ (1 − ε)ρ(k)−ρ(l).

Because zk ∈ (uk, uk−1) for all k, also
|uk+1−c|
|ul−c| ≤ (1 − ε)ρ(k)−ρ(l).

In this section we will try to estimate ρ using conditions on Q. For instance,
if Q is eventually non-decreasing, then ρ(k) = ρ(k) + 1 for k sufficiently large and
ε sufficiently small. (One should think of ε = O(`−2).) Hence |uk − c| decrease
exponentially in this case.

Remark. One of the main difficulties in getting estimates for |zk−c|
|zk−1−c| for arbitrary

unimodal maps is the occurrence of almost saddle node bifurcations. We speak of
an almost saddle node bifurcation of period n if the graph of the central branch of
fn is disjoint from, but almost tangent to the diagonal. At the bifurcation itself, i.e.
when the graph of the central branch is tangent, a neutrally attracting n-periodic
point, say q, is created. Without loss of generality, assume that q < c. Then the
precritical points zk accumulate on q. By a continuity argument one can show that
close before the bifurcation, the precritical points zk, zk+1, ..., zk+j0 cluster together
around the spot ‘where q is going to appear’. Here the period n = Sk−SQ2(k) and j0
can be arbitrarily large. Therefore ρε(i) can be constant for arbitrarily long pieces.
However, we think that the occurrence of almost saddle node bifurcations does not
affect the (non-)existence of absorbing Cantor sets. (The existence of absolutely
continuous invariant probability measures is a totally different matter, cf. [B1].)
As we cannot support this remark by rigid estimates, we will exclude almost saddle
node bifurcations by assumption.

The estimates in this section rely on one technique developed by Martens [Ma1-2],
and involve nice points. We will use the following weaker version of niceness:

(7.1) fj(x) /∈ (x, x̂) for every j < Sk,

where Sk is minimal such that c ∈ fSk ((x, c)).

Proposition 7.1. There exists δ = δ(`) > 0 with the following property: Let
x ∈ (zk−1, zk) satisfy (7.1). If the interval J and n ∈ N are such that fn|J is
the monotone first visit of J to (x, x̂), then there exists T ⊃ J such that fn|T is
monotone and fn(T ) contains a δ-scaled neighbourhood of (x, x̂).

Proof. Let M := (xf , c1). Then fSk−1(M ) 3 c and by assumption f j(M )∩(x, x̂) =
∅ for j < Sk − 1. Let m < Sk be such that |fm(M )| ≤ |fj(M )| for all j < Sk. Let
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r, l < Sk be such that fr(M ) and f l(M ) are the closest right and left neighbours
of fm(M ) that are still disjoint from fm(M ). Both neighbours need not exist, for
instance if m ∈ {0, 1}. In those cases define the disjoint right or left neighbour
as the appropriate boundary point of I. It follows that [f l(M ), fr(M )] contains a
1-scaled neighbourhood of fm(M ). (This holds true also if the closest disjoint left
or right neighbour does not properly exist and |x− c| is sufficiently small.)

Let H be the maximal interval such that fm |H is monotone and fm(H) ⊂
[f l(M ), fr(M )]. We claim that

fm(H) = [f l(M ), fr(M )].

Suppose by contradiction that fm(H) ( [f l(M ), fr(M )]. Let L be a component
of H \ M . If ∂I ∩ ∂L 6= ∅, then also fm(∂L) ∩ ∂I 6= ∅ and we already have a
contradiction. We can assume, by maximality of H, that there exist j < m such
that c ∈ fj(∂L). As fj(M ) ∩ (x, x̂) = ∅, fm(L) ⊃ fm−j−1(M ) and fm−j−1(M ) ∩
fm(M ) = ∅. This contradicts the definition of closest disjoint neighbour, proving
the claim.

Due to the expansion of cross-ratio, we can pull-back [f l(M ), fr(M )] along the
orbit M, f(M ), ...., fm(M ) and show that H contains a 1

3 -scaled neighbourhood of

M . Let H ′ = f−1(H), then H ′ contains a δ-scaled neighbourhood of (x, x̂), where
δ = δ(`) = O( 1

` ).
Now let J and n be as in the statement of the proposition. To finish the proof,

it suffices to show that there exists a neighbourhood T ⊃ J such that fn maps T
monotonically onto H ′. Let T ⊃ J be the maximal neighbourhood of J such that
fn|T is monotone and fn(T ) ⊂ H ′. Suppose by contradiction that fn(T ) ( H ′. Let
L be a component of T \J . By maximality, there exists j < n such that c ∈ ∂f j (L).
By assumption f j(J)∩(x, x̂) = ∅, so fn(L) ⊃ fn−j−1(M ) and fn−j−1(M ) is disjoint
from (x, x̂). As fm+1 is monotone on each component of H ′ \{c}, also fn+m+1|L is
monotone, and fn+m+1(L) ⊃ fn+m−j (M ) which is disjoint from fm(M ). However
fSk ((x, x̂)) 3 c, so n + m − j < Sk. Again, this contradicts the definition of the
closest disjoint neighbours of fm(M ). �

Remark. In the second half of the proof it is not necessary that f j(J) is disjoint
from (x, x̂) for all j < n. It suffices if f j (J) ∩ (x, x̂) = ∅ when c ∈ ∂f j (L).

Corollary 7.2. There exist K(`) and ε(`) > 0 such that if cj /∈ (dk, d̂k) for all

0 < j < Sk+1, then dis(fSk−1, (zf
k , c

f)) ≤ K(`) and
|zk−1−zk|
|zk−1−c| ≥ ε(`).

In particular ρε(k) = ρε(k − 1) + 1. If Q is (eventually) non-decreasing, then dk is
a closest return for every k sufficiently large (Lemma 2.4). This implies that there
exists k0, R ∈ N such that ρ(k) = k −R for all k ≥ k0.

Proof. We use the Proposition 7.1 with x = dk. Because cj /∈ (dk, d̂k) for 0 < j <

Sk+1, f
j ((dk, d̂k)) ∩ (dk, d̂k) = ∅ for 0 < j < SQ(k+1).

Let b be the middle point between c and d̂k, and let J , (zf
k , c

f ) ⊂ J ⊂ (zf
k−1, c

f ),

be such that fSk−1(J) = (b, dk). Let T = HSk−1(c
f ), then zf

k−1 ∈ ∂T . As

fSk−1(zf
k−1) = dQ(k) /∈ (dk, d̂k), fSk−1(T ) contains a one-sided 1

4
-scaled neigh-

bourhood of (b, dk) at the side of b.

Because cj /∈ (dk, d̂k) for j < Sk, one can show that fSk−1(T ) also contains the
component of H ′ \ {c} containing dk. Here H ′ is as in the proof of Proposition 7.1.
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Hence fSk−1(T ) contains the necessary δ-scaled neighbourhood of (b, dk), where
δ = δ(`) is as in Proposition 7.1.

Hence fSk−1|J , and fSk−1|(zf
k , c

f ), has bounded distortion. Moreover, |J | ≥
(1 + O(δ))|zf

k − cf |, so the second statement follows by non-flatness. �

The next corollary gives a weaker condition implying ρ(k) = ρ(k − 1) + 1. Let
pk ∈ (zk−1, zk) ∪ (ẑk, ẑk−1) be the orientation reversing Sk−1-periodic point of f .
By definition of closest precritical point, f j ((zk−1, zk)) ∩ (zk−1, ẑk−1) = ∅ for all
0 < j < Sk−1. Hence pk is a nice point.

Corollary 7.3. There exist δ(`), ε(`) > 0 with the following properties: For k arbi-

trary, let n be such that fn−1(tfk) = c. Assume that fn(c) /∈ (pQ(k+1)−1, p̂Q(k+1)−1).

Then fSk−1|(zf
k , c

f ) has Koebe space δ on the side of dk. If also |dk−c| < |dQ(k)−c|,
then

|zk−1−zk|
|zk−1−c| ≥ ε.

The assumptions are such that the positions in figure 7.1 hold. For example, if
(2.4) holds, then Lemma 2.5 shows that n = Sk − SQ2(k) for k sufficiently large.

One can verify that the assumptions of Corollary 7.3 hold if Q(k + 1) > Q2(k) + 2
and Q(k + 1) > Q(Q(k) + 1) for k sufficiently large.

Figure 7.1

fn(c)

zQ(k+1)−2

pQ(k+1)−1

zQ(k+1)−1

dk

c

Proof. The proof is similar to the proof of Corollary 7.2. Take x = pQ(k+1)−1.

Therefore x is nice and dk ∈ (x, x̂). Let J 3 cf be the maximal neighbourhood of
cf such that fSk−1(J) ⊂ (x, x̂). Let L ⊂ (cf , 1) be the maximal interval adjacent
to J on which fSk−1 is monotone. According to the remark below the proof of
Proposition 7.1, it suffices to check that f j (J) ∩ (x, x̂) = ∅ if ∂f j (L) 3 c. By
assumption j = n − 1, and fn(c) /∈ (x, x̂). Hence fn−1(J) ∩ (x, x̂) = ∅. Therefore
the (one-sided) Koebe space is sufficiently large. If also |dQ(k) − c| > |dk − c|, then
|zk−1−zk|
|zk−1−c| ≥ ε follows by non-flatness. �

8. Maps Having no Absorbing Cantor Sets

Theorem 8.1. Let Q be a kneading map satisfying

(8.1) k − Q(k) → ∞ as k → ∞.

Let f be a non-flat S-unimodal map and have kneading map Q. Assume also that
there exists N ∈ N and ε > 0 such that

(8.2) ρε(k +N ) > ρε(k),

for all k sufficiently large. Then f has no absorbing Cantor set.

¿From the previous section one can derive topological conditions that imply (8.2).
The simplest such condition is that Q is (eventually) non-decreasing. Hence The-
orem 8.1 yields that every non-flat S-unimodal map with k − Q(k) → ∞ and
Q(k + 1) ≥ Q(k) for k sufficiently has no absorbing Cantor set.
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Instead of F we will used a reinduced mapG, which has better distortion properties.
Let in this section ϕG

n (x) = k if Gn(x) = k. Clearly ϕG
n (x) → ∞ if ϕn(x) → ∞. For

the proof of Theorem 8.1 we use Theorem 5.2. Therefore we need to check certain
conditional expectations and variances. But even the adjusted functions ϕG

n are not
adequate. First of all ϕG

n are so to say in the wrong direction: We need to prove
that ϕG

n (x) does not tend to infinity for most points. Secondly ϕG
n will not give us

bounded variances. Therefore we will use a certain truncation of −ϕG
n .

Proof of Theorem 8.1. Let k0 be such that ρε(k + N ) > ρε(k) for all k ≥ k0. Let
K := (1+ε

ε )2 be a distortion bound, and let M ∈ N be so large that

Mε−K
∑

j≥0

j(1 − ε)j/N ≥ 1.

Let k1 ≥ k0 +M + N + 2 be so large that Q(k) ≤ k −M −N − 2 for all k ≥ k1.

Now we define the reinduced map G. Let x be such that F n(x) is defined for all
x. Let i = i(x) ≥ 1 be the smallest integer which satisfies one of the following

properties. (Take r such that F i−1(x) ∈ Ur ∪ Ûr .)

- r < k1.

- r ≥ k1 and there exists a neighbourhood V 3 x such that F i|V is monotone and
F i(V ) ⊃ (uk0 , ûk0).

- r ≥ k1 and F i(x) ∈ (ur−M−N−1, ûr−M−N−1).

Then

G(x) := F i(x).

For s ≥ k1, G|Us consist of a middle branch G : V → (us−M−N−1, ûs−M−N−1)
coinciding with F : V → (us−M−N−1, ûs−M−N−1). All other branches of G|Uk are
longer. Note that G is well-defined for a.e. x ∈ U : Either x ∈ ⋃k,j f

−j(uk ∪ ûk)

(which applies to countably many points only), or i(x) is finite. Indeed, if i(x) = ∞,
then ϕn(x) < ϕn−1(x) for all n. This is of course impossible.

The branches of Gn have nice distortion properties. First of all, as G is an induced
map an extendible Markov map F , G is also extendible Markov, and it inherits the
Koebe-spaces of F . Before giving detailed distortion results, we introduce some
more notation. Suppose V ⊂ UϕG

0 ,....ϕG
n−1

is a branch-domain of Gn. Let V +
r ⊂ V

be such that Gn(V +
n ) = Ûr and V −

r ⊂ V be such that Gn(V −
n ) = Ur . Assume

ϕG
n−1(V ) = s ≥ k1. Hence Gn(V ) contains an ε-scaled neighbourhood of (us, ûs).

In particular, Gn(V ) contains an ε-scaled neighbourhood of
⋃

r≥sG
n(V +

r ∪ V −
r ).

By the Koebe Principle, it follows that

(8.3) K
|Gn(V )|

|V | ≥
|⋃r≥sG

n(V +
r ∪ V −

r )|
|⋃r≥s(V

+
r ∪ V −

r )| ≥ 1

K

|Gn(V )|
|V | .

Assume that Gn(V ) = (ua, ûb) and let W ⊂ V be the interval such that Gn(W ) =

(ua, us−M) or (ûs−M , ûb). Then we can estimate |W |
|V | from below. Indeed, take

x ∈ V such that Gn(x) = c, and let W0 ⊃ W and W1 be the components of
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Figure 8.1
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Gn

V \{x}. Let h : I → V be the (unique) surjective Möbius transformation such that
|W |
|V | = |h−1(W )|

|h−1(V )| and |h−1(W0\W )|
|h−1(W1)| = 1. Then the situation is as in figure 8.1.

As Gn(V ) ⊃ (us−M , ûs−M), |Gn(W1)| ≥ |Gn(W0 \W )|. By the expansion of
cross-ratio

(8.4)
|W |
|V | =

|l|
|t| ≥

|j|
|r|

|L|
|T |

|R|
|J | = 1 · |G

n(W )|
|Gn(V )|

|Gn(W1)|
|Gn(W0 \W )| ≥

|Gn(W )|
|Gn(V )| .

Define ψ0(x) = −ϕG
0 (x) = −ϕ0(x) and

ψn(x) = ψn−1 − max{ϕG
n (x) − ϕG

n−1(x),−M}.

Clearly −ψn(x) ≥ ϕG
n (x) for every n. We claim that for all cylinders UϕG

0 ,....ϕG
n−1

with ϕG
n−1 ≥ k1 E(ψn − ψn−1 | UϕG

0 ,....ϕG
n−1

) ≥ 1 and V ar(ψn − ψn−1 | UϕG
0 ,....ϕG

n−1
)

is uniformly bounded.

Indeed, let again V ⊂ UϕG
0 ,....ϕG

n−1
be a branch-domain of Gn. Assume that

ϕG
n−1(V ) = s ≥ k1, then Gn(V ) = (ua, ûb) ⊃ (us−M−N−1, ûs−M−N−1), whence

Gn(V ) contains an ε-scaled neighbourhood of (us−M , ûs−M). Using (8.3), (8.4)
and the choice of M ,

E(ψn−ψn−1 | V ) ≥ 1

|V |{
∑

r≤s−M

M |V +
r ∪ V −

r | −
∑

r≥s

(r − s)|V +
r ∪ V −

r |}

≥ M
|us−a − us−M | + |ûs−b − ûs−M |

|ua − ûb|
−
∑

r≥s

(r − s)K
|ur − ûr|
|ua − ûb|

≥ Mε −
∑

r≥s

K (r − s) (1 − ε)ρ(r)−ρ(s)

≥ Mε −K
∑

r≥s

(r − s)(1 − ε)
r−s

N ≥ 1.
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For the variance (≤ the second moment),

V ar(ψn − ψn−1 | V ) ≤ 1

|V | {
∑

r≤s

M2|V +
r ∪ V −

r | +
∑

r≥s

(r − s)2|V +
r ∪ V −

r |}

≤ M2 +
∑

r≥s

(r − s)2K
|ur − ûr|
|ua − ûb|

≤ M2 +
∑

r≥s

(r − s)2K(1 − ε)ρ(r)−ρ(s)

≤ M2 +K
∑

r>s

(r − s)2(1 − ε)(r−s)/N < M2 + O(
1

ε5
).

Suppose f has an absorbing Cantor set. Hence by Lemma 5.1, limnϕ
G
n (x) =

limnϕn(x) = ∞ a.e. Yet from the above computations and Theorem 5.2, it follows
that ψn → ∞ on a positive measured set X ⊂ B(ω(c)). Therefore for x ∈ X both
limnϕ

G
n (x) = ∞ and limnϕ

G
n (x) ≤ − limn ψn(x) = −∞. This contradiction shows,

by means of Lemma 5.1, that B(ω(c)) cannot have full Lebesgue measure. �

9. Absolutely Continuous Invariant Probability Measures

In this section we give a sufficient condition for the existence of an absolutely
continuous (with respect to Lebesgue) invariant probability measure (acip).

Theorem 9.1. Let f be non-flat S-unimodal. If there exists ε > 0 and k0 ∈ N
such that for all k ≥ k0

- ρε(Q(k + 1) − 1) > ρε(Q(Q2(k) + 1)),
- ρε(Q(Q(k) + 1) − 1) > ρε(Q(Q2(k) + 1)), and
-
∑

i(1 − ε)ρε(i)−ρε(Q(i+1)) < ∞,
then f has an acip.

The first condition on ρε implies that (2.4) holds. Using the results in section 7 we
can derive

Corollary 9.2. Let Q(k) be eventually non-decreasing and also limk
k−Q(k)

log k = ∞.

Then every non-flat S-unimodal map with kneading map Q has an acip.

Proof of Theorem 9.1. We will prove the theorem by checking that the Nowicki-van
Strien summability condition [NS] is satisfied: f has an acip if

∞
∑

n=1

|Dfn(c1)|−
1
` < ∞.

Let Tk be the partial sum
∑Sk

n=1 |Dfn(cf )|− 1
` . Then by the chain-rule

Tk+1 = Tk + |DfSk (cf )|− 1
`

SQ(k+1)
∑

n=1

|Dfn(df
k)|−1

` .

By the assumptions and Lemma 2.5, there exists k1 ≥ k0 such that for all k ≥ k1,

fSk−1(tfk) = dQ2(k) and |dk − dQ2(k)| > ε|dk − c|.
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Figure 9.1
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Using non-flatness and the expansion of cross-ratios, it follows that for k ≥ k1

(see figure 9.1),

|DfSk (cf )| = |Df(dk)| · |DfSk−1(cf )| = O(`)|dk − c|`−1 |J |
|j|

≥ O(`)|dk − c|`−1 |t|
|r|

|R|
|T |

|L|
|l| ≥ O(`ε)|dk − c|`−1 |dk − c|

|zf
k − cf |

≥ O(`ε)
|dk − c|`
|zf

k − cf |`
≥ O(`ε)(1 − ε)`{ρ(Q(k+1))−ρ(k)}.

Now for the factor
∑SQ(k+1)

n=1 |Dfn(df
k)|− 1

` , we compare |Dfn(df
k)| with |Dfn(cf )|.

Take again k ≥ k1 and consider the points in figure 9.2.

Figure 9.2
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f
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Q(k+1)

dQ2(k+1) dk+1 c dQ(k+1) dQ3(k+1)

?

f
SQ(k+1)−1

By assumption

|dQ2(k+1) − dk+1|, |dQ3(k+1) − dQ(k+1)| ≥
ε

2
|dk − dQ(k+1)|.

Hence by the Koebe Principle, there exists K = O( 1
ε2 ) such that

1

K
≤ |DfSQ(k+1)−1(df

k)|
|DfSQ(k+1)−1(cf )| ≤ K.

But also for n < SQ(k+1) (because the Koebe spaces are the same),

1

K
≤ |DfSQ(k+1)−n−1(fn(df

k))|
|DfSQ(k+1)−n−1(fn(cf ))| ≤ K.

The chain-rule gives |Dfn(df
k)| ≥ 1

K2 |Dfn(cf )|. Combining things, we get for
k ≥ k1

Tk+1 = Tk + |DfSk (cf )|− 1
`

SQ(k+1)
∑

n=1

|Dfn(df
k)|−1

`

≤ Tk + O(`ε)(1 − ε)ρ(k)−ρ(Q(k+1))K
2
`

SQ(k+1)
∑

n=1

|Dfn(cf )|− 1
`

≤ Tk{1 + O(`εK
2
` )(1 − ε)ρ(k)−ρ(Q(k+1))}.
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Therefore

∑

n≥1

|Dfn(cf )|− 1
` ≤ Tk1

∏

k≥k1

{1 + O(`εK
2
` )(1 − ε)ρ(k)−ρ(Q(k+1))},

which is finite if
∑

k(1 − ε)ρ(k)−ρ(Q(k+1)) < ∞. This proves Theorem 9.1. �

10. Estimates for Fibonacci-like Maps

In this section we give the proofs of (6.3) and (6.4). They will follow from Lemmas
10.6 and 10.7 and non-flatness. The estimates are a generalization of those in
[BKNS]. If Q(k) = max{k − 2, 0}, we regain the estimates in that paper.

In this section, x will stand both for the point x as for the distance |x−c|. Similarly
xf both denotes the point as the distance |xf − cf |. Let f be an S-unimodal map
whose kneading map satisfies Q(k) ≥ k − N for some fixed integer N . f has no
periodic attractor, and assume also that f is not renormalizable. Then Lemmas
2.1 and 2.2 yield that for every k there exists j0 ≥ 0 such that Q(k + j) = k for
0 < j < j0, and Q(k + j0) < k. If j0 is large, then we have an almost restrictive
interval, cf [Jo]. One can verify that |c − dk| < |c − dk+1| < ... < |c − dk+j0 |. We
also assume (6.1). As Q(k) < k, (6.1) implies (2.4). Define yk := fSQ(k)−1 (dk−1).
Figure 10.1 shows that yk ∈ (zQ2(k), ẑQ2(k)).

Figure 10.1

c ẑQ(k) dk−1 ẑQ(k)−1

dQ(k)−1 zQ2(k) yk zQ2(k)+1 c

?

f
SQ(k)−1

Lemma 10.1. If (2.4) holds, then for k sufficiently large,

(10.1) yk ∈ (zQ2(k), zQ2(k)+1) ∪ (ẑQ2(k)+1, ẑQ2(k)).

Proof. Suppose (10.1) was false, so yk ∈ (zQ2(k)+1, c)∪ (c, ẑQ2(k)+1), see figure 10.2.

Figure 10.2
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f
S

Q2(k)



ABSORBING CANTOR SETS 25

Figure 10.3
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Then dk = fS
Q2 (k) (yk) /∈ (zQ(Q2(k)+1), ẑQ(Q2(k)+1)). Using (2.2) however, we obtain

Q(Q2(k) + 1) ≥ Q(k + 1), violating (2.4). �

Lemma 10.2. Let Λf
n :=

df

Q2(n)

df
n

. Then for n sufficiently large, Λf
n > 3, and

log Λf
n > 1.1.

Proof. Pick m arbitrary, and let n = Q2(m).

Consider the intervals as in figure 10.3. Using non-flatness, expansion of cross-
ratio and the inequality (

√
ab− 1)2 ≥ (a − 1)(b− 1), we get

1

`

(

1 − df
n

df
Q2(n)

)

≤ dQ2(n) − dn

dQ2(n)
=

|R|
|T | ≤

|J |
|L|

|l|
|j|

=
dn − zQ(n+1)

zQ(n+1)

zf
n − zf

n+1

zf
n+1

≤ 1

`

(

df
n

zf
Q(n+1)

− 1

)(

zf
n

zf
n+1

− 1

)

≤ 1

`





√

√

√

√

df
n

zf
Q(n+1)

zf
n

zf
n+1

− 1





2

.

Hence

(

1 − df
n

df
Q2(n)

)

≤





√

√

√

√

df
n

zf
Q(n+1)

zf
n

zf
n+1

− 1





2

≤





√

√

√

√

df
n

zf
n+1

− 1





2

.

Recall that Q2(m) = n. By (6.1), Q(m+1) > Q2(m)+1 = n+1, so df
m ∈ (zf

n+1, c
f ).

It follows that

(

1 − 1

Λf
Q2(m)

)

≤





√

√

√

√

df
n

zf
n+1

− 1





2

≤
(√

Λf
m − 1

)2

.

As 1 − 1
x
> (

√
x − 1)2 for all x ∈ (1, 3.1), Λf

m > Λf
Q2(m) whenever Λf

Q2(m) < 3.1.

Therefore for some sufficiently large m, Λf
m > 3.1. Because 1 − 1

3.1 ≤ (
√
x − 1)2

implies x ≥ 3.1, it follows that Λf
m ≥ 3.1 for all subsequent m. �
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Lemma 10.3. Let a ∈ (zn, ẑn) and b = fSn (a). Then for n sufficiently large,

|DfSn (af )| ≤ bf

af
log

df
Q2(n)

bf
log

df
n

bf

(

df
Q2(n)

bf

)

1
`

.

Proof. We apply non-flatness and the expansion of the cross-ratio on the intervals
in figure 10.4.

Figure 10.4
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|DfSn (af )| ≤ 2`
bf

b

|L|
|l| ≤ 2`

bf

b

|T |
|R|

|J |
|j|

|r|
|t|

< 2`
bf

b

dQ2(n) − b

dQ2(n) − dn

dn − b

af

= 2`
bf

af

dn − b

dn
`
dQ2(n) − b

dQ2(n)

1

`
d

Q2 (n)−dn

dn

dQ2(n)

b

≤ bf

af

2

Λf
n

log
df

Q2(n)

bf
log

df
n

bf

(

df
Q2(n)

− dn

bf

)

1
`

.

Because Λf
n ≥ 3 for n sufficiently large, the lemma follows. �

Define µf
n := max{ zf

k−1

zf

k

| n − 10N ≤ k ≤ n}.

Lemma 10.4. For m sufficiently large,

|DfSQ(m+1) (df
m)| ≤ df

m+1

df
m

36N 2(3N + 2) log4(µf
m+1)

(

µf
m+1

)
12N+2

`

.

Proof. Decompose |DfSQ(m+1) (df
m)| = |DfS

Q2 (m+1) (yf
m+1)|·|DfSQ(m+1)−1 (df

m)|. For
each factor, we will use Lemma 10.3.
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Consider the second factor, and let df
m take the role of af , see figure 10.5. Then

|DfSQ(m+1)−1 (df
m)| ≤

yf
m+1

df
m

log
df

Q2(Q(m+1)−1)

yf
m+1

log
df

Q(m+1)−1

yf
m+1

(

df
Q2(Q(m+1)−1)

yf
m+1

)

1
`

.

Figure 10.6
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For the first factor, let yf
m+1 take the role of af (figure 10.6). Then

|DfSQ2 (m+1) (yf
m+1)| ≤

df
m+1

yf
m+1

log
df

Q4(m+1)

df
m+1

log
df

Q2(m+1)

df
m+1

(

df
Q4(m+1)

df
m+1

)

1
`

.

¿From Lemma 10.1 and the definition of ym+1, it follows that (see figure 10.5),

zf
Q2(m+1)+1 < yf

m+1 < df
Q(m+1)−1 < zf

Q2(m+1)−1.

As Q(n) ≥ n− N , also Λf
n ≤ (µf

n)3N . Combining the above formulas, we get

|DfSQ(m+1) (df
m)| ≤ df

m+1

df
m

· log

(

zf
Q2(m+1)−1

zf
Q2(m+1)+1

)

·

log

(

zf
Q2(m+1)−1

zf
Q2(m+1)+1

Λf
Q(m+1)−1

)(

zf
Q2(m+1)−1

zf
Q2(m+1)+1

Λf
Q(m+1)−1

)

1
`

·

log(Λf
m+1) log(Λf

m+1Λ
f
Q2(m+1))

(

Λf
m+1Λ

f
Q2(m+1)

) 1
`

≤ df
m+1

df
m

36N 2(3N + 2) log4(µf
m+1)

(

µf
m+1

)
12N+2

`

,

as asserted. �

Lemma 10.5. For m sufficiently large,

df
m

zf
m

(

df
m

df
Q2(m)

) 1
`

≤ |DfSm (cf )| ≤ 2
df

m

zf
m+1

log
df

m

zf
Q(m+1)

.
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Figure 10.7
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Proof. For the first inequality, we use the expansion of the cross-ratio of the intervals
in figure 10.7

|DfSm (cf )| ≥ 0.95`
df

m

dm

|J |
|j| ≥ 0.95`

df
m

dm

|L|
|T |

|R|
|l|

|t|
|r| ≥ 0.95`

df
m

dm

dm

dQ2(m)

dQ2(m) − dm

zf
m

≥ 0.95
df

m

zf
m

(

df
m

df
Q2(m)

)
1
`

logΛf
m ≥ df

m

zf
m

(

df
m

df
Q2(m)

)
1
`

,

where we have used Lemma 10.2 for the last step. For the second inequality, we
use the intervals in figure 10.8.

Figure 10.8
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|DfSm (cf )| ≤
√

2`
df

m

dm

|R|
|r| ≤

√
2`
df

m

dm

|T |
|L|

|J |
|j|

|l|
|t|

≤
√

2`
df

m

dm

dm

zQ(m+1)

dm − zQ(m+1)

zf
m+1

zf
m − zf

m+1

zf
m

≤ 2
df

m

zf
m+1

log
df

m

zf
Q(m+1)

.

This proves the lemma. �

Lemma 10.6. DfSn (cf ) is bounded and bounded away from 0. Moreover
zf

n−1

zf
n

is

bounded.

Proof. We first proof that
zf

n−1

zf
n

is bounded. Then we use Lemma 10.5 to prove the

first statement.
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Take n such that zn−1 < dn, i.e. Q(n + 1) < n. Next take M minimal such that
zn−M+1 > dn. As Q(n + 1) ≥ n − N + 1, it follows that M ≤ N . Decompose
DfSn (cf ) into M factors as follows:

DfSn (cf ) = DfSn−1 (cf ) ·DfSQ(n) (df
n−1)

= DfSn−2 (cf ) ·DfSQ(n−1) (df
n−2) ·DfSQ(n) (df

n−1)

...
...

= DfSn−M (cf ) ·DfSQ(n−M+1) (df
n−M) · · · · ·DfSQ(n) (df

n−1).

We apply Lemma 10.5 on the first factor and Lemma 10.4 on the other factors.

|DfSn (cf )| ≤ 2
df

n−M

zf
n−M+1

log
df

n−M

zf
Q(n−M+1)

·

df
n−M+1

df
n−M

36N 2(3N + 2) log4(µf
n−M+1)

(

µf
n−M+1

)
12N+2

` ·

...
...

df
n−1

df
n−2

36N 2(3N + 2) log4(µf
n−1)

(

µf
n−1

)
12N+2

` ·

df
n

df
n−1

36N 2(3N + 2) log4(µf
n)
(

µf
n

)

12N+2
`

≤ 2 · 36MN2M(3N + 2)M log4M+1(µf
n)
(

µf
n

)

(12N+2)M
` .

As M ≤ N and by the first part of Lemma 10.5,

df
n

zf
n

≤ 2 · 36NN2N (3N + 2)N log4N+1(µf
n)
(

µf
n

)

(12N+2)N+1
` .

If Q(n+ 1) < n, then
zf

n−1

zf
n

≤ df
n

zf
n

. If Q(n+ 1) = n, then, as f is non-renormalizable

(see Lemma 2.3) and Q(k) > k − N , there exists j0 ≤ N such that Q(n + j) = n

for 0 < j < j0, and Q(n+ j0) < n. Hence
zf

n−1

zf
n

≤ df

n+j0

zf

n+j0

, and for µf
∞ = lim supn µ

f
n,

µf
∞ ≤ 2 · 36NN2N (3N + 2)N log4N+1(µf

∞)
(

µf
∞

)

(12N+2)N+1
` .

Hence for ` sufficiently large, µf
∞ < ∞.

In general zQ(n+1) < dn < dQ2(n) < zQ(Q2(n)+1)−1 ≤ zQ(n+1)−3N and zQ(n+1)−1 >
dn > zn−N . It follows by Lemma 10.5 that

0 < (µf
∞)−

3N
` ≤ |DfSm (cf )| ≤ (µf

∞)N logµf
∞,

for m sufficiently large. �
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Figure 10.9
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n

uf

Q(n+1)+1

≥ K > 1 for n sufficiently large.

Proof. We will use the expansion of the cross-ratio for the intervals in figure 10.9.
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=
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≥
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≥
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1−
df
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df
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)

≥
uf
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df
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(

1− 1

Λf
Q(n+1)

)

.

Now
uf

Q(Q(n+1)+1)+1

df

Q(n+1)

≥ zf

Q(Q(n+1)+1)+1

zf

Q(Q(n+1)+1)−1

≥ 1

(µf
∞)2

, and by Lemma 10.2, Λf
Q(n+1) ≥ 3.

Therefore by Lemma 10.6

df
n

uf
Q(n+1)+1

− 1 =
df

n − uf
Q(n+1)+1

uf
Q(n+1)+1

≥ 2

3

1

(µf
∞)2

> 0.

This proves Lemma 10.7. �

11. Some Counter-Examples

In this section we give the counter-examples which complete the proof of Proposition
3.1.

Example 11.1. This example gives the kneadings of a unimodal map satisfying
the property (C7) (which is equivalent to rn(c1) → 0), but failing condition (C6).
More precisely, we construct the kneadings of a map such that

- Mn(c1) ⊃ (z0, ẑ0) 3 cn+1 infinitely often, and d(cn+1, {z0, ẑ0}) → 0 for these
values of n.

- For every ε > 0 there exists only finitely many n’s such that Mn(c1) ⊃ (z0 −
ε, ẑ0 + ε).

- For those n for which Mn(c1) 3 c but Mn(c1) 6⊃ (z0, z0), d(c, ∂Mn(c1)) → 0.
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Start with Q(0) = Q(1) = Q(2) = 0, and k0 = 1 and k1 = 3. Then we define
inductively,

Q(ki) = ki−1,

Q(ki + 1) = 0,

Q(ki + 2) = ki−1 + 2,

Q(ki + 3) = ki + 2,

Q(ki + 4) = ki,

Q(ki + 5) = 1,

Q(ki + 5 + j) = Q(j) for j = 1, 2, ..., ki−1 + 3,

and

ki+1 = ki + ki−1 + 9.

Example 11.2. We construct the kneading map of a unimodal map having the
properties:
- Rn(c1) 6→ 0,
- d(c, ∂Mn(c1)) → 0 as n→ ∞ and Mn(c1) 3 c.

In other words, if Mn(c1) 3 c, then at least one end-point of Mn(c1) must be close
to c for n large. Therefore condition (C5) is satisfied, but (C3), or equivalently
(C4), fails. The kneading map is as follows: Q(0) = Q(1) = 0 and for k > 1

Q(k) =











0 if k ≡ 0 mod 3,

k − 2 if k ≡ 1 mod 3,

k − 1 if k ≡ 2 mod 3.

Example 11.3. We construct the kneading map of a unimodal map that satisfies
condition (C6), but fails (C5). It has the properties:
- There exist infinitely many n’s such that Mn(c1) ⊃ (z0, ẑ0) and cn+1 /∈ [z0, ẑ0].

(Notice that in Example 11.1, cn+1 ∈ (z0, ẑ0) for the comparable iterates.)
- For every ε > 0 there exists only finitely many n’s such that Mn(c1) ⊃ (z0 −
ε, ẑ0 + ε).

- For those n for which Mn(c1) 3 c but Mn(c1) 6⊃ (z0, z0), d(c, ∂Mn(c1)) → 0 as
n→ ∞.

The kneading map is as follows: Q(0) = Q(1) = 0 and for k > 1

Q(k) =











0 if k ≡ 0 mod 4 or k ≡ 3 mod 4,

k − 3 if k ≡ 1 mod 4,

k − 1 if k ≡ 2 mod 4.

Before we can prove that the examples really do what they are supposed to, we
have to discuss a few properties of cutting and co-cutting times. For more details we
refer to [B2,B3]. We will mainly consider the combinatorial side of these notions.
Let ν = e1e2e3e4... = 10e3e4... be the kneading invariant. The cutting times can be
found by decomposing ν into blocks that repeat the head of ν. Therefore S0 = 1
and Sk = min{j > Sk−1 | ej 6= ej−Sk−1}. Writing 0′ = 1 and 1′ = 0, we get

(11.1) eSk−1+1eSk−1+2...eSk−1eSk
= e1e2...eSQ(k)

e′SQ(k)
,
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where Q is as ever the kneading map. Recall that admissibility in terms of the
kneading map is guaranteed by

(2.3) {Q(k + j)}j≥1 � {Q(Q2(k) + j)}j≥1.

The co-cutting times can be found using the other splitting: T0 = min{j > 1 | ej =
1}, and Tk = min{j > Tk−1 | ej 6= ej−Tk−1}. Hence

(11.2) eTk−1+1eTk−1+2...eTk−1eTk
= e1e2...eSQ̃(k)

e′SQ̃(k)
,

Define

S〈n〉 := max{Sj | Sj < n}, T 〈n〉 := max{Tj | Tj < n}.

Geometrically speaking, Mn−1(c1) 3 c if and only if n is a cutting or co-cutting
time. The iterate n is a cutting time if fn−1(Hn(c1) ∩ (0, c1)) 3 c, and n is a co-
cutting time if fn−1(Hn(c1) \ (0, c1)) 3 c. One can prove that Tl − S〈Tl〉 is always
a cutting time. (In fact, will prove this inductively in these heuristics.) Suppose
that Sk−1 = S〈Tl〉, and that Tl − S〈Tl〉 = Sr , then (11.1) and (11.2) yield

eSk−1+1eSk−1+2...eTl
...eTl+1... ...eSk−1eSk

=

e1e2...eSr
...eSr+1... ...eSQ(k)−1e

′
SQ(k)

.

This implies that for the subsequent co-cutting times Tl, Tl+1,... (as long as they
are smaller than Sk), Tl − Sk−1 = Sr , Tl+1 − Sk−1 = Sr+1,... In particular, if
Tl′ = T 〈Sk〉, then

(11.3) Tl′ = Sk−1 + SQ(k)−1 = Sk − SQ2(k),

and between Sk − SQ2(k) and Sk are no co-cutting times.

In order to find the co-cutting time Tl′+1, we have to take a closer look at (2.3).
Let β(k) > 0 be such that Q(k + j) = Q(Q2(k) + j)) for 0 < j < β(k), and
Q(k + β(k)) > Q(Q2(k) + β(k))). Hence Sk+j = SQ2(k)+j for all j < β(k) and
Sk+β(k) > SQ2(k)+β(k). Therefore

eSk−S
Q2(k)+1

...eSk
...eSk+1 ... ...eSk+β(k)−1

...eSk+β(k)−1+Sn
...eSk+β(k)

=

e1...eS
Q2(k)

...eS
Q2(k)+1

... ...eS
Q2(k)+β(k)−1

...e′S
Q2(k)+β(k)

e1e2...,

where Sn = SQ2(k)+β(k) − SQ2(k)+β(k)−1 = SQ(Q2(k)+β(k)). Therefore

(11.4) Tl′+1 = Tl′ + SQ2(k)+β(k),

and

(11.5) Tl′+1 − Sk+β(k)−1 = Tl′+1 − S〈Tl′+1〉 = SQ(Q2(k)+β(k)).
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Lemma 11.1. Suppose Rn(c1) ≥ ε, then there exists K = K(ε) such that {n +
1, ..., n+ K} contains a cutting or a co-cutting time. If rn(c1) ≥ ε, then {n +
1, ..., n+K} contains a cutting and a co-cutting time. In particular, this holds if
n+ 1 is a cutting or co-cutting time.

Proof. Follows immediately from the Contraction Principle. �

The reverse need not be true. IfMn(c1) 3 zk, then n+Sk is a cutting or a co-cutting
time, but it gives no information on the size of Mn(c1). However, if Q(k) = r, then

MSk−1−1(c1) ⊂ (c, zr−1). Likewise if Q̃(l) = r.
The next corollary is straightforward.

Corollary 11.2. Let S+〈n〉 := min{Sk | Sk > n} and T+〈n〉 := min{Tl | Tl > n}.
If

lim
n∈{Sk}∪{Tl}, n→∞

max{S+〈n〉 − n, T+〈n〉 − n} = ∞,

then rn−1(c1) → 0.

This gives us enough luggage to prove that the examples do what they are supposed
to do.

Proof of Example 11.1. We first check (2.3).
i r = ki. Then Q(r + 1) = 0 = Q(ki−2 + 1) = Q(Q2(r) + 1) and Q(ki + 2) =
ki−1 + 2 > ki−3 + 2 = Q(Q2(r) + 2).

ii r = ki + 1. Then Q(r + 1) = ki−1 + 2 > 0 = Q(1) = Q(Q2(r) + 1).
iii r = ki + 2. Then Q(r + 1) = ki + 2 > ki−2 + 2 = Q(Q2(r) + 1).
iv r = ki + 3. Then Q(r + 1) = ki > 0 = Q(ki + 1) = Q(Q2(r) + 1).
v r = ki + 4. Then Q(r + 1) = 1 > 0 = Q(ki−1 + 1) = Q(Q2(r) + 1).
vi r = ki+5. By construction Q(r+j) = Q(j) = Q(Q2(r)+j) for j = 1, ..., ki−1+3.

But Q(r + ki−1 + 4) = Q(ki+1) = ki > ki−1 = Q(Q2(r) + ki−1 + 4).
This settles admissibility.

We will show that Mn(c1) ⊃ (z0, ẑ0) 3 cn+1 infinitely often. Let

an := fn−1(∂Hn−1(c1) ∩ (0, c)), bn := fn−1(∂Hn−1(c1) \ (0, c)).

Hence (an, bn) = Mn−1(c1). Abbreviate r = ki + 4. Then Q(r + 1) = 1, so

cSr
∈ A1 ∪ Â1. Also aSr

= cSQ(r)
= cSki

and as Q(ki + 1) = 0, aSr
∈ A0 ∪ Â0. The

other endpoint bSr
= cS

Q2(r)
= cSki−1

. As Q(ki−1 + 1) = 0, also bSr
∈ A0 ∪ Â0.

Hence MSr−1(c1) ⊃ (z0, ẑ0) 3 cSr
for every i. In particular RSr−1(c1) 6→ 0.

However |cSr
− bSr

| → 0 as we shall prove. It follows by (11.3) that T+〈Sr〉 =
Sr + SQ(Q2(r)+1) = Sr + 1. By construction of Q,

(11.5)

T+〈Sr + 1〉 = Sr+1 + SQ(Q2(r+1)+1) + ...

...+ SQ(Q2(r+1)+ki−1+3) + SQ(Q2(r+1)+ki−1+4)

= Ski+ki−1+8 + Ski−1 .

Hence T+〈Sr + 1〉 − (Sr + 1) → ∞ and f(cSr
) → c as i→ ∞.

On the other hand bSr
= cS

Q2(r)
= cSki−1

, and f(bSr
) = cSki−1

+1 = cSki−1+1 .

Q(ki−1 + 2) = ki−2 + 2 → ∞, and therefore also f(bSr
) → c as i → ∞.

Combining these facts, we get |cSr
− bSr

| → 0, as asserted.
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Finally we have to check that rn(c1) → 0. Due to the Contraction Principle,
it suffices to consider the cutting and co-cutting times only. Let us start with the
cutting times:

vii r = ki. Then T 〈Sr〉 = Sr − SQ2(r) = Sr − Ski−2 . T+〈Sr〉 = Sr + SQ(Q2(r)+1) +
SQ(Q2(r)+2) = Sr + 1 + Ski−3+2. Therefore T+〈Sr〉 − Sr = 1 + Ski−3+2 → ∞ and
|bSr

− cSr
| → 0 as i → ∞.

viii r = ki + 1. Similar to vii.
ix r = ki+2. Sr−S〈Sr 〉 = SQ(r) = Ski−1+2. Because Q(ki−1+2+1) = ki−1+2 → ∞

as i → ∞, also aSr
→ c as i→ ∞. Because Q(r+1) = ki +2 → ∞, also cSr

→ c
and therefore |aSr

− cSr
| → c as i→ ∞.

x r = ki + 3. Similar to ix.
xi r = ki + 4. This case we treated above.

xii r = ki + 4 + j for j = 0, 1, ..., ki−1 + 3. From (11.5) it follows that T+〈Sr〉 =
Ski+ki−1+8 + Ski−1 . Therefore T+〈Sr〉 − Sr ≥ Ski−1 → ∞ and bSr

→ cSr
as

i → ∞.
Finally, we have to look after the co-cutting times.

xiii Ski−1 < Tl < Ski
. Then S+〈Tl〉−Tl ≥ SQ2(ki) = Ski−2 → ∞ and |aTl

−cTl
| → 0.

xiv Ski
< Tl < Ski+1 is impossible, because Q(ki + 1) = 0.

xv Ski+1 < Tl < Ski+2. See xiii.
xvi Ski+2 < Tl < Ski+3. See xiii.

xvii Ski+3 < Tl < Ski+4. See xiii.

xviii Tl = Ski+4 + 1. Then Tl−1 = Ski+4 − SQ2(ki+4) = Ski+4 − Ski−1 . Therefore

Tl−Tl−1 = SQ̃(l) = Ski−1 +1 = Ski−1+1. Because Q(Q̃(l)+1) = Q(ki−1+1+1) =

ki−2 + 2 → ∞, bTl
→ c as i → ∞. Furthermore, Q̃(l+ 1) ≥ ki−1, also cTl

→ c as
i → ∞. Hence |bTl

− cTl
| → 0.

xix By construction of Q, there are no cutting times between Ski+5 and Ski+1−1.

This finishes the proof. �

Proof of Example 11.2. First we check admissibility condition (2.3)

- If k ≡ 0 mod 3, then Q(k + 1) = k − 1 > 0 = Q(Q2(k) + 1).

- If k ≡ 1 mod 3, then Q(k + 1) = k > 0 = k − 3 = Q(k − 3) = Q(Q2(k) + 1).
- If k ≡ 2 mod 3, then Q(k+ 1) = 0 = Q(k− 2) = Q(Q2(k) + 1), and Q(k+ 2) =
k > k − 3 = Q(k − 1) = Q(Q2(k) + 2).

Hence Q is admissible.

Because lim infkQ(k) = 0, MSk−1(c1) ⊃ (z0, c) or (c, ẑ0) infinitely often. Hence
Rn(c1) 6→ 0.

Let U some neighbourhood of c. We claim that Mn(c1) ⊃ U at most finitely often.
Let Mn−1(c1) = (an, bn) = (cn−S〈n〉, cn−T 〈n〉) as in the previous proof.

- If k ≡ 0 mod 3, then, using (11.3), T 〈Sk〉 = T 〈Sk−1〉 = Sk−1 − SQ2(k−1) and
T+〈Sk〉 = Sk−1+SQ(Q2(k−1)+1)+SQ(Q2(k−1)+2) = Sk+Sk−4. Therefore T+〈Sk〉−
Sk → ∞ and |bSk

− cSk
| → 0 as k → ∞. Because Q(k + 1) = k − 1 → ∞, also

cSk
→ c.

- If k ≡ 1 mod 3, then T 〈Sk〉 = Sk − SQ2(k) = Sk − Sk−3 and T+〈Sk〉 = Sk +
SQ(Q2(k)+1) = Sk + SQ(k−2) = Sk + Sk−3. Therefore T+〈Sk〉 → ∞ and |bSk

−
cSk

| → 0 as k → ∞. Because Q(k + 1) = k → ∞, also cSk
→ ∞.

- If k ≡ 2 mod 3, then aSk
= Sk−1 and Q(k − 1 + 1) = k − 1 → ∞ as k → ∞.

Hence aSk
→ c.
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Finally we check the co-cutting times. Let Tl be a co-cutting time, and Sk = S+〈Tl〉.
Then k ≡ 1 mod 3 or k ≡ 2 mod 3, and in either case Q2(k) = k − 3. Hence
S+〈Tl〉 − Tl ≥ Sk−3 → ∞ as l → ∞. Therefore aTl

→ cTl
as l → ∞. This proves

the claim. By the Contraction Principle, it follows that rn(c1) → 0. The proof is
finished. �

Proof of Example 11.3. For the large part we can copy the proof of Example 11.2.
This shows that d(c, ∂Mr(c1)) → 0 if r → ∞, Mr(c1) 3 c and r 6= S4i+3 for some i.
For r = Sk−1 := S4i+3−1, the situation is different: As Q(k+1) = Q(Q(k)+1) = 0,

cSk
∈ A0 and aSk

= cQ(k) ∈ Â0. Therefore Mr(c1) ⊃ (z0, ẑ0). Furthermore,

T 〈Sk〉 = T 〈Sk−1〉 = Sk−1 − SQ2(k−1) = Sk−1 − Sk−5,

and
T+〈Sk〉 = Sk−1 + SQ(Q2(k−1)+1) + SQ(Q2(k−1)+2) + SQ(Q2(k−1)+3)

= Sk + 1 + Sk−5.

Therefore T+〈Sk〉 − Sk → ∞ and d(bk, z0) → 0. This concludes the proof. �
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