THE COMPLEXITY OF FIBONACCI-LIKE KNEADING
SEQUENCES

H. BRUIN AND O. VOLKOVA

ABSTRACT. The Fibonacci(-like) unimodal maps that have been studied in recent
years give rise to a zero-entropy minimal subshift on two symbols, generated by
the kneading sequence. In this paper we computed the word-complexity of such
subshifts exactly.

1. INTRODUCTION

Topological entropy was introduced in the 1960s [1] as a way of classifying dynam-
ical systems (as a topological invariant) and measuring their complexity. When
studied from a symbolic viewpoint, the topological entropy indicates the exponen-
tial growthrate of the number of symbolic codes p(n) that describe trajectories of
length n in some alphabet. Also if the rate is 0 (e.g. substitution systems, piecewise
isometries or polygonal billiards), p(n) remains a useful measure of the complexity
of the system, see [11] for a survey.

Let us fix our alphabet {0,1}. A (one-sided) subshift ¥ is a shift-invariant, closed
(in product topology) subset of {0, 1}I. In this paper, we will only consider minimal
subshifts, i.e. ¥ = {0"(s)}, for each s € ¥, where o denotes the right-shift. The
language L of ¥ is the collection of all finite words w (including the empty word ¢)
which are subwords of some (and hence all) s € 3. The complezity of the language
L is the function

p(n) =#{we L: |w|=n},

where |w| indicates the length of the word.

It is well-known [13] that p(n) > n+ 1 unless ¥ consists of a single cycle of periodic
strings. The complexity p(n) = n + 1 is obtained by the Sturmian sequences which
describe, among other things, the behavior of circle rotations. Sublinear complexity
(i.e. p(n) < Cn for some C > 1) is shared by substitution subshifts [21, 9, 2].
For instance, the Fibonacci substitution sequence 1011010110110... generated by
the substitution 1 — 10, 0 — 1 has complexity p(n) = n + 1, because it happens
to coincide with the Sturmian sequence describing the golden ratio circle rotation.
Mossé et al. [16, 20] has worked out methods to compute the complexity in the
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case of substitutions of constant length, and J. Cassaigne, e.g. [8], has given more
general methods, relying on the counting of left and right-special words. But for
many cases to compute the complexity exactly remains an unsolved problem.

In this paper we study the complexity of a different class of subshifts, which stem
from interval maps with specific combinatorial properties. Let f : [0,1] — [0, 1] be
a unimodal map, e.g. f(z) = az(1l — z). The map has a unique critical point ¢ = %,
and f|[0, c) is increasing and f|(c, 1] is decreasing. Let us call J a branch of f™ if it
is a maximal closed interval on which f" is monotone. The branch is called central if
c € 0J. Because f is assumed to be symmetric, the image D,, := f™(J) is the same
for both central branches. We call n a cutting time if D,, ¢, and we write them in
increasing order as {Sy}, starting with S; = 1. The combinatorial properties of f
are completely determined by its cutting times. The maps that we are interested in
satisfy the relation

Sk - Sk:—l = max{l, Slc—d} for a fixed d Z 1. (1)

For d = 1, Sy = 2%, and the corresponding map is the Feigenbaum map. For
d = 2, the S, are the Fibonacci numbers, and the corresponding map is known as
Fibonacci map, [15]. For any d > 1, there exists a unimodal map fy satisfying (1).
The critical point ¢ is recurrent, and its omega-limit set w(c) is a minimal Cantor
set. Fibonacci(-like) maps have drawn attention in the past decade because of their
exceptional measure-theoretic properties, see [18, 6] and the general reference on
unimodal maps [19]. For each d, there are unimodal polynomials satisfying (1) such
that w(c) is an attracting Cantor set [6, 4]. In [7], the spectral properties of f|w(c)
were investigated; it was shown that f|w(c) is isomorphic to a d — 1-dimensional
torus rotation for d = 2,3, 4, whereas for d > 5, f|w(c) is weakly mixing. (For d =1
(i.e. the Feigenbaum map) f acts on w(c) as a dyadic adding machine.) In addition,
it was shown that f|w(c) is an almost one-to-one' factor of an (adic) enumeration
system and for d > 2 also an almost one-to-one factor of a subshift on d symbols
generated by 1 — 1d, 2 —> 1, ...,d — d — 1. See [5] for generalizations.

For a symbolic approach we use standard kneading theory. For x € [0, 1], define the
itinerary e(x) = e1(x)ea(x) ... by

1 if f*(z) > ¢,
ex(r)=< Oand 1 if f*(z) =,
0 if fk(z) <ec.

The itinerary of ¢, denoted as K = ejeqes... is called the kneading sequence. For
example, for the Fibonacci map is

K =1001110110010100111001001110110011 . .. (2)
The cutting times can be retrieved from K because they satisfy:

So =1and Sk—|—1 = mln{z > Sk 1€ 7£ 6,5,5]6} for £ > 0.

IThis means that a dense set of points in the factor space has only one preimage under the
factor map.
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The subshift corresponding to K is ¥4 = {0"(K) },>1. We call (X4, 0) the Fibonacci
kneading shift, or Fibonacci-like kneading shift for d > 3, in order to distinguish it
from the Fibonacci substitution shift (based on substitution 1 — 10, 0 — 1) and

the Fibonacci subshift of finite type (with transition matrix (1 é)) Note that
(34, 0) is an almost one-to-one extension of (w(c), f): the critical point and all its
preimages have two itineraries, but all other points in w(c) have only one.

The purpose of this paper is to compute the complexity of ¥; for each d > 1.

Theorem 1.1. The complexity of the Fibonacci kneading subshift satisfies: p(1) = 2,
p(2) =4, p(3) =7, and if | > 4, then:

4] — Sp_1 — 2 Zf S <1< S;+ Si_3 k s even,
(l) 41— 5,1 -3 ’Lf Sk <l < Sk + Skfg k s Odd,
pit) = . .
30+ Spy — 2 if Sk 4+ Sk—3 <1 < Skiq k is even,

Zf S+ Sp3 << Sk+1 k 1s odd.

The complexity of the case d = 1, i.e. the Feigenbaum map was computed earlier
by Rauzy [22]. We include it for completeness.

Theorem 1.2. The complezity of the Feigenbaum subshift satisfies: p(1) = 2, p(2) =
3, and if | > 3 and for k such that 2% <1 < 2k+1:
(0) = 20 — 2k for 2k <] < 2k 4 2k=1
Tl l+2k for 2F 4 2k—1 <[ < 2K+

Remark: The Feigenbaum kneading sequence can be constructed in many other
ways. It is the fixed point of the substitution 1 — 10, 0 — 11, see [2], as well as
a Toeplitz sequence. It also appears in studies on Beatty sequence, cf. [23]. The
complexity of all possible itineraries (i.e. not restricted to w(c)) is known, see [3,
Exercise 9.3.10].

Theorems 1.2 and 1.1 are special cases of the following result.

Theorem 1.3. If ¥, is the subshift corresponding to S, — Sp_1 = Sk_q4, then if
I > Sqi1 the complexity function satisfies
2d Jor Sp—gro +1t <1< Sp_gyo+ Sk—says +1 —1,
p(l+1)—p(l) =
2d—1  for Sg—ay2 + Sk—3d43 T+t <1 < Sp_gp1 +t— 1.

for t = k mod d, where k mod d denotes the remainder in {0,1,...,d — 1} under
division by d.

Remark: Being a factor of a substitution shift (see above), results of Durand
[10] show that any Fibonacci-like unimodal map has sublinear complexity (and is
uniquely ergodic). The above theorem gives the exact complexity. Note that the
number of subsequent I’s where p(l + 1) — p(l) = 2d is Sy for some k.
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Corollary 1.1. The system ¥4 has sublinear complexity; more precisely: 2d — 1 <
liminf; p(1)/l < limsup,; p(1)/1l < 2d.

Therefore, these subshifts are no counter-example to the question raised in the Ph.D.
thesis of Heinis [14]. There are known subshifts such that « := lim,,_,, p(n)/n exists
and is integer. Heinis showed that there is no subshift for « € (1,2), leaving open
the problem for non-integer values of o greater than 2.

Corollary 1.2. Ifd < d, then Y 18 not a continuous factor of Xq.

A word w € L is called right-special if both successors w0 and w1 belong to L. It
is well-known that p(n + 1) — p(n) is precisely the number of right-special words of
length n.

Theorem 1.4. Let ¥, be the Fibonacci-like subshift and B, = e; ...ey, the initial
m-word of the Fibonacci-like kneading sequence. Then the word w of length | > Sy
1s right-special if w is a suffix of the word:

Bs, ., 1 for Sp_1 <1 < Sy,
6Sk+d+1*t' Ce eSk+dBSkBSk—d+2*1 fOT Skfd_|_2 +1 S [ S Sk7d+2 + Sk + t'—1

where t = k mod d and t' = (k — 1) mod d.

Acknowledgement: We would like to thank the referees for valuable suggestions
and for drawing our attention to some papers in the bibliography.

2. THE LOWER BOUND FOR THE NUMBER OF RIGHT-SPECIAL WORDS

Let 34 be the subshift associated to the unimodal maps with cutting times satisfying
S() =1 and

Sk — Slc—l = max{l, Sk—d}
Let K = K; = ejezes ... be the kneading sequence and B,, = e;1...ey,_16, the

prefix of K of length m. Let also B;, = e;...e,_1€], be the same prefix with the
last symbol changed to e}, ;=1 — e;,.

Lemma 2.1. The kneading sequence can be constructed by the rule

BSd =100...0 and Bsk = BSk—lB»,Sk—d fO’f' k > d.

Proof. Because 1,2, ...,d+1 are all cutting times, ¢; > 0 and D; = [¢;, ¢1] with ¢; < ¢
fori=2,...,d+ 1. Hence K starts with ejes...e4sr1 = 100...0. For the induction
step, assume that Bg, , for £ > d is given, and Dg, > c. Since Sy = Sk_1 + Sk_4
is the next cutting time, fS¢-¢ is monotone on (c,cs, ,). Therefore, Ds,_,,; # c for
t=1,...,5,-4— 1, and hence eg,_,4+; = e;. However, Dg,_ 3 ¢, so eg, # es,_,- O
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Lemma 2.2. Ift = k mod d, then

€S,—t+1---€5, = 65k+1—t+1 c. 65k+1
and

€5, —t 7& €Spy1—t-

Proof. Using a decomposition rule from Lemma 2.1 several times we get:

Bs, = Bs,_,Bg,

k

= BSk,lBSk—dleSk*Zd
= ... B,S'k_(n_nd—lB( :

Sk—nd
_ ")
= .. 'BSt

where Bglz .

_ /!
Bsk+1 - BSkBSk+1_d

= BSk BSk—dBSk+1—2d
")

Sk+1-nd

denotes Bg if n is even and Bj otherwise.
—nd k—n k—nd

= ...Bs, , ,.B
= ...BY

Si41

It is easy to see that for t = 0: Bg, =1, Bs, = 10, Bg, =0, Bg, = 11 and therefore
€Syt 7 €Sy, —t- For 1 <t < d, Lemma 2.1 gives

Bg, =100...0, Bs,,, =100...0 and Bfgt=100...01, Bi?t+1 =100...01.

t zeroes t+1 zeroes t—1 zeroes t zeroes

Therefore eg,_¢y1...€5, = €5, ,—t41---€s,,, and eg,_ # €g5,,, ¢ O

In this section we present candidates of words w with two successors.
Proposition 2.1. (Case A) Given | > d and k such that Sy_1 <1 < Sy, then the

I-suffizes of Bs, 1, Bs, 1, -+, Bsy,4_,-1 are right-special and all different.

Proof. Take i € {k,...,k+d— 1}. Clearly weg, := eg,_;...egs, is the suffix of Bg,.
By Lemma 2.1, Bs,,, = Bs,,, ,Bs, has suffix we.. Therefore both w0 and wl
appear in £, proving that w is right-special.

The words w found this way are all different, because they have different suffixes,
see Lemma 2.2.

Since Bg,_; is a suffix of Bg,_ ,_1, there are no more right-special words of this
form. O

Proposition 2.2. (Case B) Given | > d and k such that
Sk—di2 +t <1< Sk + Sk—ayo +t' — 1, (3)
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fort =kmodd and t' = (k — 1) mod d. Then the l-suffix of

€Sprat1—t' €S g2t - - - 65k+dBSkBSk—d+2_1

is right-special. Moreover, if two different values of k satisfy (3), then the corre-
sponding l-suffixes are different.

Proof. Using Lemma 2.1 repeatedly we get that

BSk+2d+Sk7d+2 = Bsk+2dBSk7d+2

!
Bsk+2d—1 BSk+d BSk—d+2
BSk+2d—1 BSk+d—1 BSk BSk—d+2 )

and

B5k+d+1+5k—2d+2 = B5k+d+1 BSk—2d+2

_ !
- B5k+dBSk+1BSk—2d+2

- BSk+dBSkBSk—d+lBSk—2d+2
_ ’
= ng+dBSkB

Sk—d+2"

By Lemma 2.2, €5, ., | ¢41-- €5 4 = €S4pyt'41---€8,,, fOrt' = (k+d—1) mod d
and eg, ., ,—v # es, ,—v. Therefore,ifwisasuffixofes, ,_yi1...€s5,,,B8s,Bs, 401
then both w0 and w1l appear in £, so w is right-special. By Lemma 2.2, these suffixes
w are different for different values of £ mod d when |w| > d.

In order to find out if these words are different from the right-special words in Case A,
we decompose Bgs, ., 1 = Bg,, Bs, ., 1- ByLemma2.2,e5 . 41...€5.,Bs, ,.,1
is the longest suffix of Bg, , 1 that is identical to a suffix of Bg, Bg, ,.,-1 for
t = kmod d. Therefore, for Case B to be disjoint from Case A, the length of
the suffix should be at least Sy 4,0 + t. O

Proof of Theorem 1.4 . This is a direct combinations of Propositions 2.1 and
2.2. Case A gives the suffixes of Bs, ,1 and case B is responsible for the suffixes of

€Sppat1-t' - - '65k+dBSkBSk—d+2_1 [

3. THE UPPER BOUND FOR THE NUMBER OF RIGHT-SPECIAL WORDS

Proposition 3.1. Let ¥, be the subshift for Sy = Sk_1 + Sk_q. Then for n suffi-
ciently large, there are at most 2d right-special words of length n.

Given an n-word w, the n-cylinder set I, is the set of points z whose itinerary i(z)
starts with w. Each cylinder set is an open interval?, say I, = (c_q,c_p) for some
0 < a < b< n, where c_, and c_; indicate the appropriate points in f~%(c¢) and
f7%(c) respectively. The n-cylinder sets partition the interval [0,1], but w € Ly

2Except when I, is adjacent to the boundary of [0, 1].
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only if I, intersects orb(c). More specifically, w € L, is a right-special word if I,
contains a point c_, € f~"(c) and both components of I,, \ {c_,} intersect orb(c).

Remark: From this observation, it follows that #{w : w is right-special of length n} >
#{f(c)Nw(c)}. In fact, #{f™(c) Nw(c)} = d for each n sufficiently large (this
follows from the construction of adic transformations factoring over (w(c), f), see
[7]). The corresponding words w are precisely the d right-special words of Case A,
see Proposition 2.1.

A point in z € f"(¢) is called a closest precritical point if f™|(c, z) is monotone. If z
is a closest precritical point, then n is a cutting time. Indeed, if J is a central branch
of f*, then J 3 z and ¢ = f"(2) € f"(J). Let z;, denote the closest precritical points
with n = Si, where the context should make clear if z; is to the left or to the right
of c.

Lemma 3.1. If I, = (c—q,c—) is an n-cylinder and 0 < a < b < n, thenb—a is a
cutting time. If w is right-special, then c_, € I, for some c_, € f~"(c), and both
n—0b and n — a are cutting times.

Proof. The interval (c,c,_3) = f*(I,) is contained in the central branch of f°~¢.
Because ¢ = f*7%(c,-p) € f07%(J), b— a is a cutting time,

If w is right-special, then both w0 and w1l are allowed words, and hence f"(I,)
must intersect both [0,¢) and (¢, 1]. Hence f~"(c) NI, # (. Both components of
I, \ {c_,} are n + 1-cylinders, so by the above arguments, both n —a and n — b are
cutting times. O

Lemma 3.2. Recall that the image-closure of the central branch of f* is D, =
[Cns Cam)] for B(n) = n —max{S, < n}. For every n, Dgm) D D,.

Proof. This was proven by induction in [7, Lemma 5. O

In the next lemma, we will use the notation (k) = max{0, k — d}, so Sy — Sk—1 =
Sak)-

Lemma 3.3. The point cs, € (2gk+1); 2Q(k+1)-1), and if v is such that S, < S, +
Sk < Spi1, then 2gui1) € Ds,1s, if and only if Q(r +1) = k + 1. (In this case,
Csi+5, € (2QMh+1)+1, 2QUh+1)) -

Proof. Let | be minimal such that z; € (¢,cs,) C Dg,. Then Sy + S; = Sk is the
first cutting time after S;. But this means that S; = Sy 1 — Sp = Sg+1). This
proves the first statement.

For the second statement, notice that Dg, 15, = f5(c,cs,), and ¢ ¢ Ds, 1s5,. More-
over, by Lemma 3.2 DSH-Sk C Dsk. If 2Q(k+1) € D5T+5k, then S, + Sp + SQ(k—H) =
Sy + Ska1 is the first cutting time after S,. In other words, Q(r+ 1) = k+ 1. In this
case, fSQ(k+1)(ZQ(1c+1)+1) = 2Q(Q(k+1)+1), Whereas ¢s, , € (2g(r+2), 2Q(r+2)-1)- Because
QUR(+1)+1) = QQ(r+1) + 1) < Q(r +2), 200101 & Do, 5,
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Now for the reverse implication of the “if and only if” statement, assume that
Q(’r‘+ 1) =k+1. Then Sr—l—l = Sr —f—SQ(r_H) = Sr +Sk+1, SO Sr—|—1 - (ST —f—Sk) = Sr +
Sk+1 — (Sr 4+ Sk) = Sq(k+1)- Therefore Dg, 5, must contain a point in 5w (c).
But f~5e+1(c) N (2Q(k+1)s 2Qe+1)—1) = O because of the construction of closest
precritical points. Therefore Dg, (s, 3 2Q(k+1)-

Note that because @) is onto and is strictly increasing for £ > d+ 1, there is one and
only one 7 such that Q(r +1) = k + 1. O

A word w € ¥, of length n is right-special only if the corresponding cylinder set I,
has the property that c_, € I, and both components of I, \ {c_,} contain a point
from orb(c), say c¢;, and cg respectively. In Figure 1, we drew the possibilities for
the configurations of the corresponding sets D and Dg.

cr Dr  cr D, ¢ CR Dp
I, I,
Case A C_n Case B Cn
Dy, cr, Dg Cr
Dg Cr CL, Dy,
I, I,
Case C Cn Case D Con

Ficure 1. Configurations of Dy and Dg with respect to I,,.

Lemma 3.4. Let I, = (c_q,c_p) be an n-cylinder set containing c_,,. If ¢; is such
that c; € I, and D; 3 c_,, then there exists i such that c; is a boundary point of D;
and c_, € D; C I,.

Proof. If D; C 1,,, then we can take 7 = j and there is nothing to prove. Otherwise,
D; contains a boundary point of I, say ¢, € D;. It follows that D;,, > ¢ and
Ca—n € (¢, ¢j1q), and there are no closest precritical points of lower order between c;,
and cq_p. Obviously, j+ais a cutting time, say Sk, 80 Coa—n = 2Q(k+1)- By Lemma 3.3,
there exists r such that ¢,_, € Dg, s, C (¢, cgs,]. But then Dg s, = Dg,+; D ¢_p;
this is the required interval. O

Corollary 3.1. Cases C and D reduce to Case A in Figure 1.
Proof. In Case C, the previous lemma gives an interval D; C Dg such that D; > c_,,

and the endpoint cg(;) of D; equals cg. Hence the interval D; is in Case A. A similar
argument works for Case D. O
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Proof of Proposition 3.1. The above discussion showed that whenever w is
a right-special word, there are D; and Dy as in Figure 1, Case A or B. (They
correspond to Cases A and B in the previous section.

Case A: Since ¢, € Dy C I,,, f™ maps Dr monotonically onto Dg,,, > c. Hence
Sk-1 < R < R+ n = 5 for some cutting time S, and w = eg,_p...€5,1 is
the suffix of Bg,_;. Because the suffix of length n are the same for Bg,_; and
Bsg, -1 = Bs,_,-1 for each k (provided n < Sgk) — Sqk)-1), there are at most d
different words w of this type. In the previous section, we saw that there are exactly
d different words w of this type.

Case B: Let us assume that a < band Dg 3 ¢_. (Otherwise we interchange the role
of D and Dy.) Assume also that cg is closest to ¢_, among all ¢; between ¢_,, and
c_p such that D; 5 c_p. This means that Dgry D I,. Indeed, Dgr) = [Cﬂz(R), Cg(R)]
and if cg2r) € (c_p,Cp), then cg was not closest to c_,, contradiction the above
assumption. If cg2(g) € (c_q, c_pn), then, due to Lemma 3.3, we can reduce this case
to Case A.

Apply the iterate f®. Then the picture is as Figure 2. Rename R' = R + a, and

Dgry = Ds,
Cp2(R!) CB(R') = Cs,
DL+a DR+a = Dp
ClL+a Cr CB(R")
Jil) ¢

FiGURE 2. Case B after applying iterate f.

note that S(R') = B(R) + a. Because Dggy > c_q, Dgry 3 ¢, so B(R') =: S, is a
cutting time, with b —a = Sg(u4+1) and n — a = Sg(u+1)+1- This follows because c,_p
and c¢,_, are adjacent closest precritical points. By Lemma 3.3, R' = S, + S; where
Q(t+1) =u+ 1. It follows that

n—b=n-a—(b-a)=Su++1 — SQu+1) = SQQu+1)+1) = SQ@Q(t+1)+1)-
Since R+b =R + (b—a) = Sy + S; + Sg(u+1) = St + Sut1 = Si41, we have

W=E€R...€CR4pER+b+1---€R4n—-1 = €811 —bt+1---€5,,,€1 ... 1-

€So@2et1y+~
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Using Lemma 2.1 repeatedly, we get

BSHlJFSQ(Cﬂ(t+1)+1)_1 - BSﬁﬂLlBscz(c»zz(t+1)+1)_1
— BB

~9Q(t+1)Bsc»z(c.22(t+1)+1)*1

B, Bsgsn-1Bs

Bs,Bsguin- B

Q2(t+1)BSQ(Q2(t+1)+1)_1

S@2(t+1)+11

= BSk+dBSkBSk7d+2*1’
for k = Q(t 4+ 1) —1 = u. Therefore w is a suffix of Bs, . ,Bs,Bs,_,.,—1, and
n=|w|>n—a= Sk 4+1- The maximal possible length is given in Proposition 2.2.
O

4. THE REMAINING PROOFS

Proof of Theorem 1.3. Proposition 2.1 gives d right-special words of length [
observing Case A. By Proposition 2.2, a right-special word of Case B ”appears” for
l = Sk_g+2+ (k mod d), and ”disappears” again at | = Sy + Sk_g42 + (kK — 1 mod d).
Write ¢t = (k mod d). The smallest number > Sy_445 +t of the form S; + S;_,., +
((]{3 — 1) mod d) is Sk—d+1 + Sk—2d+3 + (k‘ mod d) = Slc—d+2 + Slc—3d+3 + (k‘ mod d)
Therefore the number of right-special [-words is maximal (= 2d) if Sg_gi0+t <1 <
Slc—d—|—2 -+ Slc—3d+3 +t—1fort=kmodd. O

Proof of Theorems 1.1 and 1.2. Theorem 1.2 follows directly from Theo-
rem 1.3. For Theorem 1.1, Theorem 1.3 implies that if Sy + Sx. 3 < | < Sgi1
(or Sg + Sk—3 <l < Sk41 depending on whether k is even or odd), there have been
k — 2 blocks of length Sy, S, . .., Sk—3 where p(i+1) — p(i) = 4. It follows by induc-
tion that Y22 S; = Sy ; — 2. For other values of i (4 <i < 1), p(i + 1) — p(i) = 3.

=0
Therefore p(l) = 3l + Sx_1 + C, and a single check shows that the constant C' = —2.
A similar argument gives p(l) for other values of [. O

Proof of Corollary 1.1. The cutting times satisfying Sy — Sx_1 = Sk_g4 increase
exponentially. Between Si_4i2 + (K mod d) and Sx_443 + (k + 1 mod d) there is
a block of length Sy_3443 where p(i + 1) — p(i) = 2d and a block of length ~
Sk—2d+3 — Sk_3d4+3 = Sk_2d+2 where p(i + 1) — p(i) = 2d — 1. The length of these
blocks are comparable to Si_g412. Therefore

.. p(l) p(Sk_d+2 + (k‘ mod d))
1 f— =1
1Inlln l llgn Sk—d+2 + (k mod d)

< lim P(Sk-d+2 + Sk 3443 + (kmod d) — 1) _ lim sup Pl)

k Sk_gio + Sk—3d+3 + (k‘ mod d) —1 ! T,




THE COMPLEXITY OF FIBONACCI-LIKE KNEADING SEQUENCES 11

and 2d — 1 < liminf; p(1)/l < limsup, p(1)/l < 2d. O

Proof of Corollary 1.2. It is well-known (see e.g. [17]) that if ¢ : ¥ — ¥; is a
semiconjugacy, then ¢ is generated by a sliding block code ¢(z); = ®(z; ... Tiyn)
for some N, independently of z. Therefore (cf. [12] and [2, Corollary 3.1.1]), each
l-word w € L is uniquely determined by an [ + N-word v € Ly:

wy...wp=P(vy.ovyn) . P(v L o).

It follows that px_.(I) < ps, (I + N) for all [, contradicting Theorem 1.3. O

Remark: Recall that for the Fibonacci map f, (w(c), f) is a factor of the Fibonacci
substitution shift 3. Yet the complexity of ¥, is p(l) = [+ 1 (it is a Sturmian
subshift), whereas the Fibonacci kneading subshift ¥y has complexity p(l) > 3i
for [ sufficiently large. This shows that the factor map 7 : ¥,,, — w(c) does not
extend to a continuous factor map 7 : Y, — Yo. Indeed, as ¢ has two itineraries
i(c) ={0K(f)m, 1K(f)}) in X9, defining 7 = i o 7y, makes it double-valued. One
can remedy this by giving ¢ only one itinerary, say 0K (f), but then i o 7y, is not
continuous anymore.
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