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ABSTRACT. Let T, be the tent-map with slope a. Let ¢ be its
turning point, and u, the absolutely continuous invariant proba-
bility measure. For an arbitrary, bounded, almost everywhere con-
tinuous function g, it is shown that for almost every a, [gdu, =
limy, 00 % Z?Z_OI g(Ti(c)). As a corollary, we obtain that the critical
point of a quadratic map is generically not typical for its absolutely
continuous invariant probability measure, if it exists.

1. INTRODUCTION

Let T, : I — I be the tent-map with slope a. Brucks and Misi-
urewicz [BM] showed that for a.e. a € [v/2,2], the orbit of the turning
point is dense in the dynamical core. It is well-known that for a > 1,
the tent-map 7, has an absolutely continuous invariant probability
measure (acip), e, and that p, is ergodic. By Birkhoff’s Ergodic
Theorem,

(1) [ o= Jim 23 o(Ti@) paae

n—o00 M 4

Here wetakeg € G = {h : I — R | h is bounded and continuous a.e.}.
Because p, is absolutely continuous with respect to Lebesgue mea-
sure, (1) holds Lebesgue a.e. If (1) holds for a point z, then z is called
typical with respect to g. Although most points are typical, it is very
difficult to identify a typical point. It is natural to ask if the turning
point ¢ of T, is typical. We will prove
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Theorem 1 (Main Theorem). Let g € G. Then

(2) /gdua = lim © ig(Ti(C)),

n—yoo N 4

for a.e. a €[1,2].

It follows that for a.e. a € [1,2], (2) holds for every bounded Rie-
mann integrable function simultaneously. This answers a question of
Brucks and Misiurewicz [BM]. Schmeling [Sc]| recently obtained sim-
ilar results for g-transformations. In our proof, as well as in [BM],
the properties of the turning point are used in a few arguments. We
think, however, that Theorem 1 is true not only for ¢, but also for an
arbitrary point y € I.

The tent-map T, has topological entropy log a. Hence one can state
Theorem 1 as: For a.e. value of the topological entropy, the turning
point of T, is typical. Because the measure u, actually maximizes
metric entropy [M], this has a striking consequence for unimodal maps
in general:

Corollary 1. For a.e. h € [0,log2], if f is a unimodal map with
hiop(f) = h, then the turning point of f is typical for the measure of
maximal entropy.

A result by Sands [Sa] states that for a.e. h € [0,log2], every S-
unimodal map f with hyop(f) = h satisfies the Collet-Eckmann con-
dition, and therefore has an acip. For an S-unimodal map, however,
the acip in general doesn’t maximize entropy, because if it did, and
if f is conjugate to a tent-map, the conjugacy ¥ would be absolutely
continuous. But then 1) has to be C1T too in a large neighbourhood
of the critical point, as [MS, Exercise 3.1 page 375] indicates. (In [M]
an argument is given for unimodal maps with a nonrecurrent critical
point.) As a consequence, all periodic points have to have the same
Lyapunov exponent, which is very unlikely. The only exception we are
aware of is the full quadratic map x — 4z(1—=z). Hence combining the
Corollary 1 with Sands’ result, we obtain a large class of S-unimodal
maps satisfying the Collet-Eckmann condition, but for which c is not
typical for the acip. In contrast, Benedicks and Carleson [BC, The-
orem 3] show that for the quadratic family f,(z) = az(1 — z) there
is a set of parameters of positive Lebesgue measure for which f, is
Collet-Eckmann and c is typical for the acip.! Thus we are led to
the conclusion that the entropy map a — hyop(fs), even when we
disregard its flat pieces, has very bad absolute continuity properties.

! Thunberg [T] showed another kind of typicality: for a positive measured set of
parameters, f, has an acip which can be approximated weakly by Dirac-measures
on super-stable orbits of nearby maps.
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The proof of the Main Theorem goes in short as follows. First
we introduce some induced map of the tent-map. We show that if a
point is typical in some strong sense for this induced map, it is also
typical for the original tent-map, Proposition 1. In sections 4 and
5 we prove certain properties of the induced map. Finally we show,
using a version of the Law of Large Numbers (Lemma 8), that the
turning point is indeed typical in this strong sense for a.e. parameter
value (sections 7 to 9).

Acknowledgments. I want to thank Karen Brucks for many
discussions and Gerhard Keller for his help with Lemma 6. I am also
grateful to the referee for the attentive comments.

2. PRELIMINARIES

The tent-map Ty, : I = [0, 1] — I is defined as T, (z) = min(az, a(1—
z)). For a < 1, the dynamics is uninteresting, and for a € (1,v/2],
T, is finitely renormalizable. By considering last renormalization in-
stead of T, we reduce to the case a € (v/2,2]. Let us only deal with
ac (V2,2].

The point ¢ = 1 is the turning point. We write ¢, = ¢, (a) = T (c).
Another notation is ¢, (a) = To*(c). The core [ca(a),c1(a)] will be
denoted as J(a).

For a € [v/2,2], T, has an absolutely continuous invariant measure
e (acip for short). Its precise form can be found in [DGP], although
we will not use that paper here. p,|s(,) is equivalent to Lebesgue

measure.

In the Main Theorem we considered g € G. Using a well-known
fact from measure theory (e.g. [P, page 40]), it suffices to prove the
following: Let B be the algebra of subsets of I whose boundaries have

zero Lebesgue measure (or equivalently p,-measure), and let B € B.
Then for a.e. a € (v/2,2],

to(B) = lim %#{0 <i<n|Tic) e B}.

n— o0
It is this statement that we are going to prove.

The induced map that we will use is closely related to the Hofbauer-
tower (Markov extension) of the tent-map. This object was intro-
duced by Hofbauer (e.g. [H]). It is the disjoint union of intervals
{Dp}n>2, where Dy = [c2, ¢1] and for n > 1,

5 { T,(D,) ifDnFc
mr [cnt1,c1] if D, >c

Hence the boundary points of D,, are forward images of ¢, one of
which is ¢,. If D,, 5 ¢, then we call n a cutting time. We enumerate
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them by Sk: S1 = 2, and by abuse of notation Sy = 1. In this way
we get Dg, 11 = [cs,+1,c1] and an inductive argument shows that
D, = [Cn, cn_gk] if Sp <n < Sk-l—l-

The action T, on the tower is as follows. If z € D,,, then

@ =T ef o (e alore=c=c,
’ DT+1 if ¢ € (Cna HT],

where r is determined as follows: Clearly ¢ € (c,,x] implies that
c € D,. So n is a cutting time, say Si. Then we set r = S — Sk_1-
In fact, it is not hard to show that r itself is a cutting time. One can
define a function @) : N — N by

r = SQ(k) = Sk - Sk—l-

The function @ is called the kneading map. For more details see [B2].

The tower can be viewed as a countable Markov chain with the
intervals D,, as states. There is a transition from D,, to D, for
each n and a transition from Dg, to D1+SQ(k) for each k. This will
be used in section 5 to estimate the number of branches of our induced
map.

One other property of the tower is that if U is an interval in the
tower, then T |y is continuous if and only if 7|y is monotone.

3. THE INDUCED MAP F,

Definition. Let F, be the first return map to Dy in the Hofbauer-
tower. The induced map F, is the unique map such that © o F, =
F,or.

For a.e. x we can define the transfer-time s(x) as the integer such
that F,(z) = T, (w), F, has the following properties:

- Each branch of F}, is linear.

- The image closure of each branch is Dy = [ca, ¢1] = J(a). If a < 2,
then D5 is the only level in the tower that equals J(a). Hence s(z)
is the smallest positive integer n such that there exists an interval
H,z € H C J(a), such that T*(H) = J(a) and T7*| g is monotone.

- F, has countably many branches. The branch-domain will be de-
noted by J;(a). They form a partition of J(a). Lemma 1 below
shows that |J(a) \ U, Ji(a)| = 0.

- 8|y, is constant. Let us denote this number by s;.

Let also

P (a) = Fy (cs(a)).

The third iterate of c is chosen here, because F}' is well-defined in it
for most parameter values, see Lemma 3.
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Lemma 1. For everya € [v/2,2] and everyn € N, F™ is well-defined
for a.e. x € J(a).

Proof. The tent-map T, admits an acip p, with positive metric en-
tropy loga. According to [K], ¢ can be lifted to an acip i on the
tower. Furthermore, fi(D3) > 0, and due to Birkhoff’s Ergodic The-
orem, a.e. x in the tower visits D infinitely often. Hence for every
n € N, F is defined a.e. [

Lemma 2. For each ay € (\/2,2] there exists a neighbourhood U > a
and a constant Cy such that for all a € U

Zsi\Ji|:/s(m)da:§C’1.
- J

Proof. Y, si|Ji| = [;s(x)dz < oo follows from the existence of the
acip [B]. In our case, the uniform bound follows because there exist
U 3 ag, Cy > 0 and r € (0,1) such that for every a € U,

(3) D il < Cor™.

We will prove this in Lemma 7. [

The induced map F, preserves Lebesgue measure, because every
branch of Fj, is linear and surjective. The invariant measure p of 7,
can be written as:

s;—1

p(B) = C 33 [T (B) N Al

where C' is the normalizing factor. By Lemma 2, u(I) = C ), s;|J;| <
o0, and the measure can indeed be normalized:

ZSZ|J1| = é

?

Fix B € B. We call z very typical with respect to B if
i) Forallie Nand 0 < j < s,
1 ; 1 .
lim —#{0 S kE<n | Ff(.’l?) € Ta_J (B)ﬂJZ} = m|Ta_J (B)ﬂJZ|
2 — C1

n—oo N ‘

In particular, this limit exists.
ii) For every branch-domain J; of F,,
1 1 .
7|Jz| = lim —#{0 < j <n | Faj(ﬂf) € JZ},
lca — ¢ n—oo N
and
iii)
1 1 n—1
5=l = lim ST s(Fi@)).
i

1=0
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Proposition 1. If x is very typical with respect to B, then

w(B) = lim #{o<k<n|Tk()eB}.

n—oo n

In other words, x is typical with respect to B for the original map.

Proof of Proposition 1. Choose € > 0 arbitrary. Let z be very typi-
cal. Because of (3), there exists L such that Zsj>L sjld;| < e. De-

fine Ni(z) = ZZ _0 s(Fi(x)). By condition iii), limy, e N"n(w) =3.

Abbreviate v(n,i) = #{(k,j) | 0 < k < n,0 < j < s;, FF(z) €
J; and T? o F¥(x) € B}.

s;—1
=C- ZZ|T I(B)N Ji]

sz—l

=C- Zznlggo #{O<k<n\Fk( )ETa_j(B)ﬂJi}

1
=C- ani)ngo Ev(n, 7)

<C- anggoﬁv(nz )+ C - Zsz hm #{0<k<n|FF2z) e}

s;<L s;i>L
1
<C- i — ; .7
<C- lim ~ D wni)+C Y sil il
31,<L 31>L

< C-limsup — Z n,i) + Ce

n—00

< C - limsup — #{0<k<N (z) | TF(x) € B} + Ce

n—00

—C- lim N”(x) lim sup

n—oo 7N n—00 Nn(x)
1
= limsup ——#{0 < k < N, (z) | T*(z) € B} + Ce.
n—00 Nn(aj)

. . . N, —N, .
Because ¢ is arbitrary, and also lim,, M = 0, we obtain

w(B) < limsup — #{O<k<N|Tk( ) € B}.

N—oo

Combining properties i) and ii) gives

lim l;éyé{o <k<n|F¥z)eT,7(I\B)NJ;} = |T,7(I\ B)N J;|.

n—oo N

Therefore we can carry out the above computation for the comple-
ment I\ B as well. Because #{0 < k < N | T¥(z) € BU(I\B)} =1,

———#{0 <k < N,(z) | T¥(z) € B} + Ce
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it follows that p(B) = limy_yeo +#{0 < k < N, | T¥(z) € B}, as as-
serted. [

Remark: Since F, is also an induced (in fact first return) map over
T,, we can use the same argument to show that z € D, is typical
with respect to B C | |,, D,, and lifted measure fi, on the tower. It
was shown in [B], that many induced maps over (T, I) correspond to
first return maps to some subset A in the tower. As x is typical with
respect to % and the first return map to A, it immediately follows

that z is typical for these induced maps.

In order to prove the Main Theorem, we need to show that ¢, or
rather cg, satisfies conditions i) to iii) for a.e. a. This will be done in
Propositions 2 and 3.

4. SOME MORE PROPERTIES OF J;, ¢, AND ®,,.

Lemma 3. If orb(c(a)) is dense in J(a), then ®,(a) is defined for
every n € N.

It immediately follows by [BM] that
Corollary 2. ®,(a) is defined for all n for a.e. a € [V/2,2].

Proof of Lemma 3. Let k be such that there exists H, c3 € H C J(a),
such that T¥|f is monotone and T*(H) = J(a). Let p be the nonzero
fixed point of T,,. Let

Co < Cop < e <P < e < Cyyg < Cy1

be pre-turning points closest to p, where v > k. As orb(c(a)) is
dense in J(a), there exists m such that ¢, € (c—y,c_y—1). Take m
minimal. Let H' 3 c3 be the maximal interval such that Tgn_?’\ H
is monotone. Because T 3(H') C orb(c(a)) and m is minimal,
Tr=3(H') D [c_y,c_yp_1]- Because T 2([c_y,c_y_1]) = [co,c1], We
have for k' = n—3+v+2 > k that T* | 5/ is monotone and T* (H') =
J(a). It follows that ®™(a) is defined for alln € N. [

The previous lemmas showed that there exists a full-measured set
A C [V/2,2] of parameters for which ®,,(a) is defined for every n. In
particular, ¢ is not periodic for every a € A. Let us assume from now
on that a is always taken from A. The next lemma shows that all
branches of ®,, : (v/2,2] — J(a) are onto.

Lemma 4. Let a € A, and suppose ®,,(a) = Ta"(c3(a)). Then there
exists an interval U = [a1,a2] D a, such that ¢my3 maps U mono-
tonically onto [c1(ay),ca(as)] or [ca(ar),c1(az)].

Proof. By definition 7! o ®,,(a) N Dy is the n-th return in the tower
of cg € Dy to Dy. Suppose @, (a) = ¢m3(a) € int J(a). Because any
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point in 7~1(¢) is mapped by T, to a boundary point of some level
in the tower, and because boundary points are mapped to boundary
points, it follows that ¢;(a) # ¢ for j < m + 3. Hence ¢y, 43 is a
diffeomorphism in a neighbourhood of a. Since this is true for every
point a’ such that ®,,(a’) € int J(a'), the existence of the interval U
follows. [

For any C' function f, let dis(f, J) = sup, ,¢; Ig;gg} be the distor-
tion of f on J.

Lemma 5. Let U, C [V/2,2] be an interval on which ,, is monotone.
Then
sup  dis(on,Un) — 1 as n — oo.
U, C[V?2,2]
Moreover £, (a) = O(a™).
Proof. See [BM]. O

Corollary 3. There exists K > 0 with the following property. Let
x = x(a) € I be such that T"(x) = c(a) for some n and T (x) # c(a)
for j < m. Moreover fix the itinerary of x up to entry n. Then
2| < K.

Proof. Write G(a,z) =T} (z) — ¢, then

d 0 0 dz 0 dz

il i Zn o n®

= 30 0n) = 5, T (@) + 5 Ta@) g, = 5, T (@) + e
As T is an degree n polynomial with coefficients in [0, 1], |8%T;‘| <
Ka™. The result follows. O

The boundary points of J;(a) are preimages of c. As long as J;(a)
persists, |J;(a)| = a%|J(a)| and J;(a) moves with speed O(1) as a
varies. Take n large and let U, be such that ¢,|y, is monotone. By
Lemma 5, the dis(¢n,Uy) is close to 1. There exists K (K — 1 as
n — 00) such that

|on " (Ji(a)) N Uy
|Un|

< K|Ji(a)| = Ka~*|J(a)|.

Let us now try to analyze how the branch-domains J;(a) are born
and die if the parameter varies. As |J;(a)| = a=%|c1(a) — c2(a)|,

d

1 —8; . _
(@) = 307 (20— 1 sifa~ 1),

It is easy to see that for s; > 5 and a € [v2,2], L|J;(a)] < 0.
These branch-domains shrink as a increases, and therefore cannot
be born in a point. The only way a branch-domain can be created
is by merging (countably) many smaller branch-domains, with larger
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transfer-times, into a new one. This happens whenever c is n-periodic,
and the central branch of T? covers a point of T !(c). This is the
same moment on which the central branch of T"*2 covers (ca,c1).

As the kneading invariant (and topological entropy) of T, increases
with a, branch-domains cannot disappear either, except in this merg-
ing process.

5. THE PROOF OF STATEMENT (3)

Lemma 6. For every ag € (v/2,2] for which c is not periodic under
T.,, there exists C2,0 > 0 such that for every a € (ap—6/2,a0+9/2)
and everyn > 1,

#{Jj | sj(a) = n} < Cz(ap — 0)".

Proof. It is shown in [H] that a = exp htop(T,) is the exponential
growth-rate of the number of paths in the tower starting from Ds.
Let G(a,n) = #{j | sj(a) = n} be the number of n-loops from
Dy to Dy that do not visit Dy in between. We will choose § >
0 below such that the combinatorics of the tower up to some level
remains the same for all a € (ag — 0,a09 + 0). Then we argue that
the exponential growth-rate limsup,, = log G(a,n) for all a € (ag —
0/2,a0 + 0/2) is smaller than hyop(To,—s) = log(ao — 6). ;From this
the lemma follows. We will compute these exponential growth-rates
by means of the characteristic polynomials of well-chosen submatrices
of the transition matrix corresponding to the tower.

Choice of §: The assumption ag > +/2 implies that cs lies to
the left of the non-zero fixed point of T, . It is easy to verify that
for some integer u > 0, cs, ..., c2,+2 lie to the right of ¢ while cgy43
lies to the left again. This corresponds to the fact that T,, is not
renormalizable. In terms of the kneading map renormalizability is
equivalent to the statement ([B2, Proposition 1]): There exists k£ > 1
such that

Q(k)=k—1and Q(k+j) > k—1forall j > 1.

Here Sy is the period of renormalization. In our case, this formula is
false for S, = S7; = 2. Therefore there exists © > 0 such that

Q) =0,Q(U)=1for2<j<u+1,Qu+2)=0.

Take § maximal such that the cutting times Sy, . .., Sy,+2 are the same

for all a € (ap—9,a9+0). As cis not periodic under Ty, § is positive.

A lower bound for the entropy: The tower L, >2D),, gives rise
to a countable transition matrix M = (m; ;)75_,, where m; ; = 1 if
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and only if a transition D; — D; is possible. Therefore m; ;11 = 1
and mg, 1454, = 1 for all 7, k, and all other entries are zero. For
a € (ag — d,a0 + 9) let M(u) be the (2u + 2) x (2u + 2) left upper
submatrix of M. Denote the spectral radius of this matrix by po(u).
For example,

1 1.0 0 0 O
0 01 0 00
01 01 00
M(2) = 0 00 010
01 0 0 01
10 0 0 0 O

Because M (u) is the transition matrix of L2“£?D,,, log po(u), the
2u+3D

exponential growth-rate of the paths from Dy in U 25D, is less
than or equal to the exponential growth-rate of the paths from D,
in the whole tower. Therefore log po(u) < inf{hiop(T,) | @ € (ap —
d,a9 +0)} = log(ap — 9).

An upper bound for G(a,n): In order to estimate G(a,n), we
use a larger submatrix of M. Assume that Sy 13 = Syt+2+v = 2u+3+
v. Let M(u,v) be the (2u+2+v) X (2u+2+v) left upper submatrix
of M in which we set mgo = mo3 = 0 and Moyy34v20+4 = 1+

M2y+3+v,2u+4- Denote the spectral radius by pi(u,v). For example,

0000 0 O0O0O0TO0O0
0 01 000 O0O0TO0OO0
0101 0O0O0UO0O0O0
00001 0O0O0TO0O0
~ 010001 O0O0O00O0
M(2,4) = 10 000 01 000
0000 0 O0O0OT1TTUO0O@®O
0000 0O0O0OO0T1@O0
0000 0 0 O0O0TO0T1
KO 001 00100 0/

We claim that for a € (ap — /2, ap + d2), i.e. u fixed,
1

lim sup — log G(a,n) < max{log p1(u,v) | v =1,2,4,...,2u, 2u+2, 2u+3}.
n

Clearly G(a,1) = 1 and for n > 2, G(a,n) is the number of paths
of length n — 1 from D3 to D, that do not visit Dy in between.
The total number of paths of length n — 1 from D3 to Dy is mg,gl,
the appropriate entry of the matrix M"~!. By putting mas =
mo3 = 0 we avoid counting the paths that visit D, in between.
The tower Ll,>2D), can be pictured as a graph; the branchpoints
are the cutting levels Dg, . ;From Dg,  , there is a path Dg, ., — D3
and a path upwards in the tower. This path splits again at Ds,,
into a path to D1+SQ(U+3) and another to Diys, ,. This gives two
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paths Dg, ., = Dits,,, and Dg,., = Di154(,,, both of length
v = Sou+3) € {1,2,4,6,...,2u,2u + 2,2u + 3}. At the branch-
u+3 -
D1+Su+4 and D5u+3 — D1+5Q(u+4), both of length v = SQ(U+4) €
{1,2,4,6,...,2u,2u+ 2,2u+ 3,2u+ 3 + v}. The number of paths of
length n from D5 increases if the path-lengths between branchpoints
decrease. Therefore the choice v/ = 2u+ 3+ v will give smaller values
of G(a,n) for n large than the choice v’ = 2u + 3. And if v is chosen
such that G(a,n) is maximized (i.e. the largest values for G(a,n) are

point Dg, ., the same situation occurs: there are paths Dg

obtain for those a for which Sg(443) = v), then choosing v = v (i.e.
choosing a such that Sg(u44) = v) will also maximize G(a,n). By
induction we should take the same value for S, for each k£ > u+ 3.
Therefore we can identify all branchpoints Dg, , K > u+ 3. This gives
rise to the transition matrix M (u,v) and hence proves the claim.

The rome-technique: To prove the lemma, it suffices to show
that p1(u,v) < po(u). The spectral radius is the leading root of the
characteristic polynomial. We will compute the characteristic poly-
nomials of M (u) and M (u,v) (denoted as cpy and cp; respectively)
by means of the rome-technique from [BGMY, Theorem 1.7]. Let M
be some n x n matrix with nonnegative integer entries. A path p is
a sequence po . . .py of states such that m,, | ,, >0forall 1 <¢ < /L.
The length of the path is £(p) = £ and w(p) = Hf(:pl) My, _,.p; 1S the
width. A rome R = {ry...1}, i.e. #(R) = k, is a subset of the states
with the property that every closed path (i.e. pg = py) contains at
least one state from R. A path p = pg...pe is simple if po,py € R
but p; ¢ Rfor 1 <i < /.

Theorem (Rome Theorem). The characteristic polynomial of M

equals
(=1)"*z"™ det(Ag(z) — I),

where I is the identity on R¥ and A = (ai,j)f,jﬂ is the matriz with
entries a; j = Zp w(p)z—t®) . Here the sum runs over all simple paths
Jrom r; to r;.

The characteristic polynomials: Let D; —; D, stand for a
path of length k from D; to D;. For M (u), the states Dy and D3 form
a rome. The corresponding simple paths are Dy —1 Dy, Dy —1 D3,
D3 —9y+1 Dy and D3 —; D3 for j = 2,4,..,2u. Therefore the
characteristic polynomial of M (u) is

1 1 2u+3 2u+1

1_7 1 T — 2z -1
ch(U)—x2 2det( 1 1 1 ])—

ZuFT g2 et aw — z+1

For M (u,v) we distinguish four cases.
a) v = 1. In this case {Djy, D3, Do, 14} forms a rome and the sim-
ple paths are D3 —ay41 D2, D3 —2ut1 Dayya, D3 —; D3 for
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j =2,4,...,2u, D2u+4 —1 Dy and D2u+4 —1 D2u+4. We give the
characteristic polynomial the sign that makes the leading coeffi-
cient positive.

-1 0 0
—ep1(u,1) = —2® 3 det | w2+t 2w -1 —mgr
i o
B $2($2u+2 o 21.2’(1, + 1)
N (x+1)

Hence —2cp;(u,v) — cpo(u) = 1. Because 1

it follows that po(u) > p1(u,1).

b) v = 2. In this case {Dq, D3, Doy 4} forms a rome and the sim-
ple paths are D3 —72u+1 Dz, D3 —72u+1 D2u+4, D3 —j D3 for
J=2,4,...,2u, Doytsa —2 D3 and Doy g —+9 Doyy4. The char-

is positive on (1, 00),

acteristic polynomial is

-1 0 0
ep1(u,2) = —2®* T odet | oir A+t — 1 oo
0 el -1
= p(z® 3 — 222 L —1).

Therefore 2cpy(u,v) — (z + 1)epo(u) = z, which is positive on
(1,00). Because also
p1(u,2).

c) v =4,6,...,2u. Here {Dy, D3, D, 1, Doy 4} forms a rome and
the paths are D3 —,_9 Dyy1, D3 —; D3 for j = 2,4,...,v — 2,
Duy1 —j Dy for j = 2,...,2u — v+ 2, Dus1 —2u—vis Dausa,
Dyt1 —ou—vt3 D2, Doyys —y Doyqa, Doyya — Dyq1 and
Dyyt4 —9 Doy y4. The characteristic polynomial is

8= |

and z + 1 are positive on (1,00), po(u) >

cp1 (u’ U) — w2u+v+2.
-1 0 0 0
dot (1) ””_1? + ..+ ””%21 -1 (1)
i Tt o= 1l e
0 0 = -
oz — 1) (2 - 222t L+ 1) ’ )
(=D - 1)

It follows that mcpl (u,v) — (x+1)epo(u) = (x+2), which

z(z¥—1)
(z—1)(x%—1)

2@ =) and z+1 are also positive

is positive on (1, 00). Because
in (13 OO), p()(’u,) > pl(’U,,’U)-
d) v =2u+ 3. Again {D2, D3, D, 4} forms a rome. The paths are

D3 —oyq1 Do, D3 —ayq1 Doyqs, D3 —; D3 for j = 2,4,...,2u



FOR ALMOST EVERY TENT-MAP, THE TURNING POINT IS TYPICAL3

and Dy 4 —2y4+3 Dayta. This last path has width 2. We obtain

-1 0 0
—epr(u,2u+3) = 25 det | b S A+ -1 b
2
0 0 prres
B $($2u+3 _ 2)($2u+2 _ 2$2u + 1)
CY

Therefore —ﬁff_g}dcpl(u,v) — ¢po(u) = 1. Because Wl?)—z and
x — 1 are positive on (2ﬁ ,00) and cp0(2ﬁ) < 0 it follows that
po(u) > p1(u, 2u + 3).
Hence in all cases po(u) > p1(u,v). Therefore limsup = log G(a, n) <
max{p1(u,v) |v=1,2,4,6,...,2u,2u+ 2,2u+ 3} < po(u) < ag — 4,
proving the lemma. [

Lemma 7. For every ag € [V/2,2], there exists Ca,6 > 0 and r €
(0,1) such that for every a € (ag —9/2,a0 + 3/2),

3) S 1Jia)] < Car™

S;j=n

Proof. Because |J;(a)| = |ca(a) — c1(a)la™% < a~%, the statement
follows immediately from Lemma 6. We can take § and Cs as in

Lemma 6 and r = a‘;"_}% <1l. O

6. PROBABILISTIC LEMMAS

For each n € N we consider the set of branch-domains of the map
®,, as partition Z, of the parameter space [v/2,2]. For m < n,
Z, is finer than Z,,, and \/n Z, contains no nondegenerate inter-
vals. An element of Z,, will be denoted by Z.,¢,...c,, where e; = 4 if
(bj—l(Zele2...en) C Jz(a)

Lemma 8. Let {X,,} be a sequence of random wvariables with the

following properties:

a) There exists V. < oo such that for every m € N, Var(X,, |
Zeres..en,) <V for every branch-domain Ze,e,. e, -

b) Xm—1 is constant on each interval Z,, .. -

¢) There exist M € R, N € N and € > 0 such that for every m > N,

‘M — E(Xm‘Ze1e2---em)‘ <e.

Then
1 m—1
limsup |M — — Z Xi| <e a.s.
m—00 m 0

Notice that the random variables X,, are not independent, but
only “eventually almost independent”. We will use this lemma twice
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in the next two sections. In the next section however, we will consider
only a subsequence of the branch-domain partitions {Ze, ., }. This
does not effect the validity of the lemma.

Proof. Define Y,,, = X, —E(X1n | Zeses..e,, ). Then E(Ys, | Zeien..c,) =
0and Var(Yo | Zejes..e,) = B(Y,2 | Zejey..e,,) <V for all m and all
branch-domains Ze, ¢, e, Let S, =Y 0 _ Yo, s0 E(S?) = E(Y{?) <

V. By property b), S,,_1 is constant on each set Z., ., . Suppose by
induction that E(S2 ;) < (n— 1)V, then

E(S2) =E(S2_;) + E(Y,}) + 2E(Yn Sn—1)

S=-1V+V+2 Y EYySnilZ,.ec,)
Z

e1...en

<nV+2 Y SuoE(Ya | Zey.e,) =nV.

Ze1e2...en

By the Chebyshev inequality P(S, > nd) < 7?2—‘g2 = n—‘gQ. In par-
ticular P(S,2 > n26) < —Y. Therefore Y, P(S,2 > n%%) < oo
and by the Borel-Cantelli Lemma, P(S,2 > n2§2i.0.) = 0. As § is
arbitrary, iLf — 0 a.s. For the intermediate values of n, let D, =
maxp? <k<(nt+1)2 |Sk - Sn2|. Because |Sk - Sn2| = |Z§=n2+1 le,
E(|Sx — Snz|?) < (k —n?)V < 2nV. Hence

(n+1)2 -1 (n+1)%2-1
EDZ) <E( Y |Se—Se2l)< Y. 2V =4’V
k=n2+1 k=n2+1

Using Chebyshev’s inequality again we obtain P(D,, > n?§) < 4;5126‘2’ =

4V . By the Borel-Cantelli Lemma, P(D, > n2§i.0.) = 0, and

n262-

Dy — 0 a.s. Combining things and taking n? < k < (n + 1)2, we get

Because X,,, € V,,, + [M — e, M +¢| for m > N,

1& 1 & 1 &
lim sup — X; = limsup — X,; + limsup — X;
n—)oopniz:; ’ n—)oopn; ’ n—)oopni:%;_l ’
. 1 , 1 —
< limsup —Sy + limsup — Z (Y, + M +¢)

n n
n—00 n—o0 i=N+1

n—N

1
< limsup — Sy + lim sup (M+¢e) <M +e.

n—oo N n—00
The other inequality is proved similarly. [l

An additional lemma is needed to deal with the a-dependence of the
acip.
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Lemma 9. Let A be an interval, and let M : A — R and g, : A > R
be functions with the following properties:

a) M is continuous a.e. on A.

Let A(ap,e) = {a € A | limsup,,_, ., |gn(a) — M(ap)| < e}.

b) Ife > 0, then a.e. ag € A is a density point of A(ag,¢).

Then limy, o0 gn(a) = M (a) a.e.

Proof. Set By, = {a € A |limsup,_, |gn(a) — M(a)| > 1+ }. Assume

by contradiction that there exists k such that [By| > 0. Take ¢ < 5=

and let ap € By be a density point, both of By and of A(ag,e¢).
Assume also that M is continuous in ag. Let A’ be a neighbourhood

of ag which is so small that

- [M(a) — M(ap)| < e forallaec A,

- |A" N A(ao, €)| > 2|A’| and

A0 Byl > Ba)

Then a € A’ N A(ag,€) N By, # () and for all a € A’ N A(ag, e) N By,

tm sup g1 (a) ~ M (a)| < Tim sup g5 ()M (a0) |+1M (a) ~ M{ao)| < 26 < 1.

n— 00 n—00

This contradicts that a € By, proving the lemma. [

7. CONDITION 1)
Choose B € B. Hence 0B is a closed zero-measured set.

Lemma 10. Choose e > 0, ag € A, k1 € N and 0 < ky < s, (ao)
arbitrary. Let for a close or equal to ag, B'(a) = T; %2 (B) N Jg, (a).
Then there exists a neighbourhood A > ag such that

hTILIi)S£p %#{0 <i<mn | (I)i(a) c B’(a)} B ‘LBJI((;ZO))” .

Proof of Lemma 10. Suppose we have chosen ag € A and € > 0.

Let J = {J;}; be the partition of J(a) into branch-domains of Fy,.

The partition J V F.'J V F; 27 V ... contains no nondegenerate

intervals. Furthermore, as B € B, also 0B'(ay) is a closed set of zero

Lebesgue measure. Therefore we can find N and an neighbourhood

U of 0B'(ap) with the following properties:

- U< §

- U consists of a finite number of intervals, say U;, 1 = 1, ..., L.

- The boundary-points of each U; are boundary points of cylinder-
setsin JVF TV .. VFNT.

In this way, we have chosen at most 2L cylinder sets, say K;, i =

1,...,2L which determine the neighbourhood U in a topological way:

U can be defined persistently under small changes of the parameter.

Let us write U = U(a).
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Let Zc,e,...e, C A denote a branch-domain of ®,,. Fix R € N and an

interval A > ag such that

- Ji, (a) persists as a varies in A.

- dis(Pp, Zey  e,) <1+ 1 for every » > R and every branch-domain
Ze, ..o, such that Z,, . NA#0.

- The intervals K;, i = 1, ..., 2L, persist as a varies in A, and |U(a)| <
7 for all a € A.

r

- |||JL?:1)I |JB(,:’;‘;)||| < 7 foralla € A.
Let
S _ { 1 if ®,.(a) € B'(a) UU(a),
" 0 otherwise.
and

o { 1 if &,.(a) € B'(a) \ U(a),
~ 1l 0 otherwise.

r

Hence XﬂE are constant on Z,
Z€162...er C A7

erin- We claim that for any set
1B, | +e
|/ (ao)]

Here the expectation is taken with respect to normalized Lebesgue
measure on A. Indeed, we have

E(X | Zeyey..c,) <

€,|B'(a) UU(a)|

Ze .e <(1
e., |Bl| e
< (14 2)(Zal 4 =
ey, [Ba, B, |
< (14 )( —) < +e.
T(ao)] |/ (ao)]
Similarly one shows that
L~ | B!,
E X Ze ...€p 2 20 -
The variances of f( T and X’ — are clearly bounded. We can use Lemma,

BI
8 for M = ||J(a0;| X; + = Xﬁv +i and the corresponding partitions

{Ze,...ciny; }- It follows that

1 m—1
1m
M —e<liminf = Y X; <hmsup—ZX+<M+s.
e M m—oo T 570

Since this is true for j =1, 2, ..., N, also

M—e<11m1nf—ZX <11msup—ZX+<M—|—e.

m—oo M m
i—0 m—00 —0

Because
m—1 R m—1 -
ZX;S#{O§i<m\@i(a)€B¢l;}§ ZX;—’
i=0 =0

the lemma follows. O
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Proposition 2. Let B, J,, B’ and A be as above. Then for a.e.
a€ A,

iy _ Bal
nlinéo#{0<k<"|®’“()EBQ}_|J(G)|'

Proof. Combine the previous lemma and Lemma 9. Clearly a —
||JB()Z)|| is continuous in A and we can indeed use Lemma 9, with

M(a) = 'ﬁ(g“))l' and g, = 1#{0<i<n|®(a) € B'(a)}. O

8. CONDITION II)
Condition ii) can be proved exactly as condition i). In fact, we
recover it by taking B =1, i =1 and j = 0 in condition i).
9. CONDITION 1III)

Let for a € A, M(a) = )_, si(a)|J;(a)|. Let as before Z,, ., be
the set of parameters a such that ®;_;(a) € Je,(a) for 1 < j <m.

Lemma 11. Let ag € A. For every € > 0 there exists N, a neigh-
bourhood A > ay and sets W,, C A such that

- For everyn > N, |W,| < O(ay")|A|,

- For everyn > N and Z., ., C A

|E(S S (I)n | Zel...en \Wn) - M(a0)| S €.
- Moreover, there exists V', independently of €, such that

Var(so®@y, | Zey..ep, \Wn) < V.

Proof. Let ag € A. Choose € arbitrary. By Lemma 7, one can find
C3,6 > 0, such that for every a E (ao —6/2,a0 + 6/2) we have
|Usj (a)=n Ji(a)| < Cor™, where r = - 5/2 < 1. Choose tg so that

(4) ZZST S@

t>to s>t

Next choose NV so large that 35— > a2 and also so large that for
every n > N and every Z., ., satisfying Z., . N (ag— /2,00 +
5/2) # 0,

n

dis(®| Ze, . 0,) <1+ —

Z8( | 1e-- n) + 801
Here C1 is taken from Lemma 2, so it is an upper bound for ), s;|J;(a)|
for each a € (ap — 0/2,a09 + 0/2). Finally choose a neighbourhood
ag € A C (ap—96/2,a0+0/2) so small that for every a € A, and every



18 HENK BRUIN

J such that s; < to, Jj(a) persists in A, no new branch-domain of
transfer-time s; < t¢ is created, and

e @)
5 — - < <1+
©) 85,5 = [Ti(ao)] =

88j2j )

Take from now on n > N and a € A. Let J;(a) > ®,(a). If s; < to,
then by (4) and (5),

9 9

(1 .
8sj2a)( T3¢y

€ € | Zey...enjl
; 1— (1— < ndl | 1
|Jj(a)|( 8S]_QJ)( 801) Sz o] S |Ji(a)|(1+

If s; > to, we don’t know whether J;(a) persists in A. An extra
set of arguments is necessary.

Let (a1,a2) = Ze, .., C Abe any cylinder. By Lemma 4, there ex-
ists m such that ¢p, (a1) = c1(a1) or c2(a1). Hence ca(a1) € T, 17 (c)
for v € {1,2}. Let z(a) be the continuation of this preimage in
(al, az). Let

Wel...en - {a E Zel...en ‘ ¢n(a) < x(a)}'

As |z(az) — ca(as)| & | Ze,.. e, |, it follows that |We, o |~ [Ze;. e, |
Next take W,, = UZel___e cAWer.en- As |Ze, . e,| < a7, it follows
that W, < O(a=")|A|, as asserted.

(From now on we concentrate on parameters a € Z., .. \ Why.
Assume ®,,(a) € J;(a), where s; > to. We will try to reconstruct
what happens to J;(a) as a moves down to a;. Because J;(a) > z(a)
we can indeed trace back J; and remain in the core [ca(a), c1(a)]- As
we remarked in section 4, - |J;(a)| < 0. If J;(a) already existed at
a1, then |J;(a1)| > |Ji(a)|. If J;(a) is created between aq and a, then
it was created from countably many merging branch-domains with
larger transfer-times. Each of these domains may have been created
in another merging process and so on. But in any case, way arrive at

U k@< U da) < Y.

s;>t si>t s>t

Using the small distortion of ®,,, we obtain

g
Z t|Zel...enj| S C'2‘Ze1...en \Wel...en‘ Z(l + @)Srs
s; >t >t 1
J= s>
Zel...enjzwel...en
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Combining all this, we get

E(S((I)n(a)) | Zey...en \Wn)

‘Zel...e _7| |Zel...e _7‘
< n . n
S22 p Wit X g W

t<to s;=t t>to s>t
Zel...e"jﬁwel...en

Ze,..e,|
< sildi(a 1n 1+
Sj;O J| J( 0)| |Z€1---€n \ Wel~~~en|(

€ S
+ Z 23(1 + 8—01)02T
t>to s>t

37 5ilJ5(a0)|(1 + O1)| Ze,..c, |) + g < M(ap) +e.

s;<to

€ €
-) (1
88j2])( + 801)

IN

A similar proof shows that also E(s(®y,(a)) | Ze,...e, \Wan) > M(ap) —
e. For the variance one obtains:

Var(s(®n(a) | Ze,...e, \ Wn) <E(s(®n(a))? | Zey..c, \ W)

<0(1) Z Z s20yr® < oo.

t s>t
Ul
Proposition 3. For a.e. a € [V2,2],
i L3 (@) = (o)1)
im — ) s(®;(a)) =) s;(a)|lJ;i(a)l
"m0 i

In other words, condition iii) is fulfilled for x = c3(a) for a.e. a €

[V2,2].

Proof. Take ag as in the previous lemma. Apply Lemma 8 with X,,, =
$(®m(ap)) on A\ U,>n Wn- Then the conditions of Lemma 8 are
satisfied. For every € > 0

n—1
) 1
(6) hmnsup\g Z s(®i(a)) — M(ag)| <& forae ac A\ ] W
1=0 n>N
|Un>N Wnl —n —N
Now —=£f— < 01)> ,>ya ™ = O0@@?) = 0as N — oo
Because (6) is true for every N, we indeed obtain
1 n—1
li — P, -M < for a.e. a € A.
1mnsup|n ; s(®;(a)) (ag)| <e for a.e. a

Let us show that M : [v/2,2] — R is continuous in ag. Let 7 > 0 be
arbitrary. Find a neighbourhood A > ag such that for each a € A the
following properties hold:
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The integer N > 0 (by Lemma 7) such that

> si@)ia) < 3,

sj(a)>N

No interval J; with s; < IV are created as a varies in A.
For each j such that s;(a) < N,

U
175(@)] = j(ao)l| < o5

Then it follows that |M(a) — M(ap)| < n for all a € A, proving
continuity.

Hence we can apply Lemma 9, with g, (a) = = Z?:_ol s(®;(a)). The

proposition follows. [

[BC]

[BGMY]
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