SUBCONTINUA OF FIBONACCI-LIKE INVERSE LIMIT SPACES.

H. BRUIN

ABSTRACT. We study the subcontinua of inverse limit spaces of Fibonacci-like unimodal maps. Under certain combinatorial constraints no other subcontinua than points, arcs and $\sin \frac{1}{x}$ -curves are shown to exist. From the way these $\sin \frac{1}{x}$ -curves accumulate onto each other, a method of partially distinguishing the Fibonacci-like inverse limit spaces is proposed.

1. INTRODUCTION

The classification of inverse limit spaces of unimodal map is a tenacious problem. The main conjecture, posed by Ingram, is

> If f and \tilde{f} are two non-conjugate unimodal maps, then the corresponding inverse limit spaces (I, f)and (I, \tilde{f}) are non-homeomorphic.

Let us restrict the unimodal map $f: I \to I$ to its core $I = [c_2, c_1]$, where c is the turning point and $c_k = f^k(c)$. We assume that f is locally eventually onto. Any such map is conjugate to a tent map T_s with slope $\pm s$ (where $\log s = h_{top}(f)$), and the resulting inverse limit space (I, f) is an indecomposable continuum.

The classification (and an affirmative answer to Ingram conjecture) have been obtained for maps with a finite critical orbit [9, 10, 12, 3], but for the case that orb(c) is infinite, and especially when c is recurrent, few results are known, see [1, 4, 2, 11].

1

²⁰⁰⁰ Mathematics Subject Classification. Primary 37B45; Secondary 37E05, 54H20.

Key words and phrases. Inverse limit space, interval map, subcontinuum.

This paper grew from a presentation at the 40th Annual Spring Topology and Dynamical Systems Conference in Greensboro, NC. Also the support of EPSRC grant GR/S91147/01 is gratefully acknowledged.

H. BRUIN

In this paper, we extend the study of one example in [4], the Fibonacci map, and use subcontinua as a tool for partial classification of Fibonacci-like unimodal inverse limit spaces.

Fibonacci-like unimodal maps are defined combinatorially by a condition on their kneading maps Q, or equivalently their *cutting* times $\{S_k\}_{k\geq 0}$. Cutting times are those iterates n of the map such that the central branch of f^n maps onto c; they satisfy a recursive relation $S_0 = 1$ and $S_k = S_{k-1} + S_{Q(k)}$, where $Q : \mathbb{N} \to \mathbb{N} \cup \{0\}$ is called the *kneading map*. In the sequel it will be more convenient to use

$$R(k) := Q(k+1)$$
, so $S_{k+1} = S_k + S_{R(k)}$.

If $Q(k) = \max\{k - 2, 0\}$, then the Fibonacci map is obtained (and the S_k s are the Fibonacci numbers, hence the name). We will consider unimodal maps are like Fibonacci map in the sense that $Q(k) \to \infty$. For such maps, it is known that c is recurrent and the critical omega-limit set $\omega(c)$ is a minimal Cantor set [6]. As a result, (I, f) will have uncountably many end-points which densely fill a Cantor set, but away from this Cantor set, (I, f) is locally homeomorphic to a Cantor set cross and arc, see e.g. [7]. We will make further restrictions, reducing the complexity of the subcontinua in (I, f) even more, but there remains a rich structure and variety in the (arrangement of) subcontinua, so that some coarse classifications is still possible.

It is well-known that if orb(c) is finite, then the only proper subcontinua of (I, f) are points and arcs. The same is true if f is *long-branched*, see [4]. In this paper we will mainly encounter *arc* + ray continuum which consist of a ray (or half-ray) and two (or one) arcs. The simplest such continuum is the $\sin \frac{1}{x}$ -curve, but more complicated arc + ray subcontinua can be found in many unimodal inverse limit spaces, see [4]. The arc(s) of an arc + ray continua are also called the bar(s) of the continuum \mathcal{H} . We will denote this bar by $bar(\mathcal{H})$.

Theorem 1.1. If f is a unimodal map such that

(1)
$$Q(k) \to \infty \text{ and } R(1+k) > 1 + R^2(k)$$

for all k sufficiently large, then the only proper subcontinua of (I, f) are points, arcs and $\sin \frac{1}{r}$ -curves.

Let \hat{f} denote the induced homeomorphism on (I, f).

 $\mathbf{2}$

3

Theorem 1.2. If (1) is satisfied, then there is a one-to-one correspondence between \hat{f} -orbits of $\sin \frac{1}{x}$ -curves in (I, f) and infinite backward R-orbits in \mathbb{N} .

The following corollaries are immediate.

Corollary 1.1. If R is eventually surjective, then there are only countably many $\sin \frac{1}{x}$ -curves in (I, f). In particular, if $Q(k) = \max\{0, k-d\}$, then there are d-1 distinct \hat{f} -orbits of $\sin \frac{1}{x}$ -curves.

However, we do not know if (I, f) are distinct for different values of d.

Corollary 1.2. If $\#R^{-1}(k) \ge 2$ for all sufficiently large k, then are uncountably many \hat{f} -orbits of $\sin \frac{1}{x}$ -curves in (I, f).

Although the subcontinua presented here are all $\sin \frac{1}{x}$ -curves, they can be used, to some extent, to distinguish inverse limit spaces by the way they (or rather their bars) accumulate onto each other.

Proposition 1.3. For each $k \in \mathbb{N}$ that appears in infinitely many backward *R*-orbits there is a $\sin \frac{1}{x}$ -curve whose bar is the limit of the bars of other $\sin \frac{1}{x}$ -curves.

The orbit structure of R can be expressed by a tree with vertices labelled by \mathbb{N} and arrows $k \to l$ if l = R(k), see e.g. Figure 1. The tree is rooted at 0. Although R(0) = 0, we do not write the arrow $0 \to 0$. A backward R-orbit is an infinite backward path in this tree.

Based on an idea of Raines [11], and using Proposition 1.3, we can define the equivalent of Cantor-Bendixson depth for $\sin \frac{1}{x}$ -curves. We say that the *depth* of a $\sin \frac{1}{x}$ -curve is 0 if its bar *B* is not the accumulation of a sequence of bars of other $\sin \frac{1}{x}$ -curves (even though a sequence of bars may accumulate to a proper subset of *B*). We continue inductively, saying that a $\sin \frac{1}{x}$ -curve has *depth d* if, after removing all $\sin \frac{1}{x}$ -curves of lower depth have been removed, its bar is not the accumulation of a sequence of bars of other $\sin \frac{1}{x}$ -curves. The $\sin \frac{1}{x}$ -curves that are never removed in this process are said to have *depth* ∞ .

Example 1: Figure 1 gives an example of a backward tree of the map R, and indicates the depths of some of its $\sin \frac{1}{x}$ -curves. The vertices in the lower half of the picture (including the leftmost

FIGURE 1. Example of a backward tree of R with the depths of each vertex indicated.

vertex) all have two preimages, and therefore infinitely many backward R-orbits. Hence all the subcontinua corresponding to such a backward R-orbit have depth ∞ . The vertices in the upper half, excluding the uppermost path, have only one backward R-orbit; the corresponding subcontinua have depth 0. After removing these subcontinua (and hence the corresponding backward R-orbits), the vertices in the remaining uppermost have only one backward R-orbit and the vertices in the remaining uppermost have only one backward R-orbit and the vertices in the remaining uppermost have only one backward R-orbit and the vertices in the remaining uppermost have only one backward R-orbit and the vertices in the remaining uppermost have only one backward R-orbit and the vertices in the remaining uppermost have only one backward R-orbit and the vertices in the remaining uppermost have only one backward R-orbit and the vertices in the remaining uppermost have only one backward R-orbit and the vertices in the remaining uppermost have only one backward R-orbit and the vertices is the remaining uppermost have only one backward R-orbit and the vertices in the remaining uppermost have only one backward R-orbit and the vertices in the remaining uppermost have only one backward R-orbit and the vertices is the vertices in the verti

Example 2: Let $k_1 = 1$, $k_2 = 3$ and $k_i = k_{i-1} + i = \frac{i(i+1)}{2}$ be the *i*-th triangular number. Define two unimodal maps f and \tilde{f} by means of their functions R and \tilde{R} respectively:

$$\begin{cases} R(1) = R(2) = 0; \\ R(k_i) = k_{i-1} \text{ for } i \ge 2; \\ R(k_i + l) = k_{i-1} + l \text{ for } 1 \le l < i; \\ R(k_i + i) = k_{i-1} + i - 1, \end{cases}$$

and

$$\begin{cases} R(1) = R(2) = 0; \\ \tilde{R}(k_i) = k_{i-1} \text{ for } i \ge 2; \\ \tilde{R}(k_i + l) = k_{i-1} \text{ for } 1 \le l < i; \\ \tilde{R}(k_i + i) = k_{i-1} + i - 1. \end{cases}$$

~ (a

· ~ ...

Then (I, f) and (I, \tilde{f}) are non-homeomorphic. Indeed (I, f) has $\sin \frac{1}{x}$ -curves of Cantor-Bendixson depth 0 and 1, whereas (I, \tilde{f}) only

5

FIGURE 2. The backward trees of R and \tilde{R} with the depths of each vertex indicated.

has $\sin \frac{1}{x}$ -curves of Cantor-Bendixson depth 0. This can be seen from the trees of the backward orbits of R and \tilde{R} respectively, see Figure 2.

Acknowledgement: I would like to thank the referee for pointing out some inclarities in an earlier version of this paper.

2. Preliminaries

The tent map $T_s: [0,1] = [0,1]$ with slope $\pm s$ is defined as

$$T_s(x) = \begin{cases} sx & \text{if } x \le \frac{1}{2}, \\ s(1-x) & \text{if } x > \frac{1}{2}. \end{cases}$$

We fix $s \in (\sqrt{2}, 2]$ and call $f = T_s$. Write $c = \frac{1}{2}$ and $c_k = f^k(c)$. Let $I = [c_2, c_1]$ be the *core* of the map. It is well-known that f is *locally eventually onto*, i.e., for every non-degenerate interval J, there is n such that $f^n(J) = I$.

The inverse limit space (I, f) is

$$(I, f) = \{x = (x_0, x_1, x_2, \dots) : I \ni x_i = f(x_{i+1}) \text{ for all } i \ge 0\},\$$

equipped with metric $d(x, y) = \sum_{n \ge 1} |x_n - y_n| 2^{-n}$ and induced (or shift) homeomorphism

$$f(x_0, x_1, x_2, \dots) = (f(x_0), x_0, x_1, x_2, \dots).$$

Let $\pi_k : (I, f) \to I$, $\pi_k(x) = x_k$ be the k-th projection map.

To describe the combinatorial structure of f, we recall the definition of cutting times and kneading map from [8, 6]. If J is a maximal (closed) interval on which f^n is monotone, then $f^n: J \to f^n(J)$ is called a *branch*. If $c \in \partial J$, $f^n: J \to f^n(J)$ is a *central branch*. Obviously f^n has two central branches, and they have the same image if n is sufficiently large. Denote this image (or the largest of the two) by D_n . If $D_n \ni c$, then n is called a *cutting time*. Denote the cutting times by $\{S_i\}_{i\geq 0}$, $S_0 < S_1 < S_2 < \ldots$ If the slope s > 1, then $S_0 = 1$ and $S_1 = 2$. It can be shown that there is a map $Q : \mathbb{N} \to \mathbb{N} \cup \{0\}$, called *kneading map* such that $S_k - S_{k-1} = S_{Q(k)}$ for all $k \geq 1$. This map satisfies Q(k) < k plus other conditions that will not be of our concern in this paper. Recall that R(k) = Q(k+1).

In this paper we are interested in maps with kneading map $Q(k) \to \infty$. In this case, the critical omega-limit set $\omega(c)$ is a minimal Cantor set [6]. We call z a closest precritical point if $f^n(z) = c$ for some $n \ge 1$ and $f^m((c, z)) \not\supseteq c$ for m < n. It is not hard to show (see [6]), that the integers n for which this happens are exactly the cutting times, so we write z_k when $n = S_k$. Moreover, $z_{R(k)}$ is the closest precritical point with smallest index in $[c, c_{S_k}]$. (There is a closest precritical point of the same index at either side of c; we will denote the one in $[c, c_{S_k}]$ by $z_{R(k)}$ and the other by $\hat{z}_{R(k)}$.) Since $|c - c_{S_k}| \le |c - z_{R(k)-1}| \to 0$ as $R(k) \to \infty$, the condition $\lim_{k\to\infty} R(k) = \infty$ obviourly implies that $|c - c_{S_k}| \to 0$ as $k \to \infty$.

We will use the following terminology: A ray is a continuous copy of (0, 1); a half-ray is a continuous copy of [0, 1). A continuum is a compact connected metric space and a subcontinuum \mathcal{H} is subset of a continuum which is closed and connected itself. The $\sin \frac{1}{x}$ -curve is the homeomorphic image of the graph $\{(t, \sin \frac{1}{t}) : t \in (0, 1]\}$ together with the arc (called bar) $\{0\} \times [-1, 1]$. Given a subcontinuum \mathcal{H} of (I, f), its critical projections times are the integers n such that $\mathcal{H}_n \ni c$.

Lemma 2.1. If $\mathcal{H} \subset (I, f)$ is a subcontinuum that is not an arc or point, there there is an infinite sequence of critical projections times $\{n_i\}_{i>0}$ such that

- (1) If \mathcal{H} is a proper subcontinuum, then $|\mathcal{H}_n| \to 0$ as $n \to \infty$.
- (2) $n_i n_{i-1} = S_{k_i}$ for some k_i and $k_i \to \infty$ as $i \to \infty$.
- (3) $\pi_{n_{i-1}}(\mathcal{H}) \supset [c, c_{S_{k_i}}].$
- (4) $k_{i-1} \leq R(k_i) \leq k_i$ for all i, so $\{k_i\}_{i>1}$ is non-decreasing.

Proof. If there are only finitely many critical projections times, say n is the largest, then \mathcal{H} can be parametrised by $t \in \mathcal{H}_n$, so that \mathcal{H} is a point or an arc. Therefore subcontinua other than arcs or points have infinitely many critical projections times. Let us prove the other statements:

1. The first statement follows because f is locally eventually onto.

7

If $\liminf_{n} |\mathcal{H}_{n}| := \varepsilon > 0$, then there is an interval J that belongs to infinitely many \mathcal{H}_{n} . Take N such that $f^{N}(J) = I$. Then $I \in \mathcal{H}_{n-N} = f^{N}(\mathcal{H})$ infinitely often, so $\mathcal{H} = (I, f)$.

2. Let k_i be the lowest index of closest precritical points in \mathcal{H}_{n_i} . Then the next iterate such that $\mathcal{H}_n \ni c$ is $n_{i-1} = n_i - S_{k_i}$ iterates. 3. Follows immediately from 2.

4. As $\mathcal{H}_{n_{i-1}} \supset [c, c_{S_{k_i}}] \ni z_{R(k_i)}, S_{k_{i-1}} = n_i - n_{i-1} \leq S_{R(k_i)}$, and 4. follows.

For each *i* there are closed intervals M_{n_i} and L_{n_i} such that

$$\mathcal{H}_{n_i} = M_{n_i} \cup L_{n_i}, \ M_{n_i} \cap L_{n_i} = \{c\} \text{ and } f^{n_i - n_{i-1}}(M_{n_i}) = \mathcal{H}_{n_{i-1}}$$

Lemma 2.2. Every subcontinuum \mathcal{H} contains a dense ray

 $\operatorname{ray}(\mathcal{H}) := \{ x \in \mathcal{H} : x_{n_i} \in M_{n_i} \text{ for all } i \text{ sufficiently large} \}.$

Proof. This proof is given in [4], but we include it for completeness. We will define a parametrisation $\varphi : \mathbb{R} \to \mathcal{H}$ of a subset of \mathcal{H} and show that $\varphi(\mathbb{R})$ lies dense in \mathcal{H} . For the construction of φ , it suffices to construct

$$\varphi_i : \mathbb{R} \to \mathcal{H}_{n_i}$$
 such that $\varphi_i = f^{n_i - n_j} \circ \varphi_i$

for all $1 \leq j \leq i$. We do this inductively. First let $\varphi_0 : [-1,1] \rightarrow \mathcal{H}_{n_0}$ be any homeomorphism, and set $a_0 = -1$ and $b_0 = 1$.

If $\varphi_{i-1} : [a_{i-1}, b_{i-1}] \to \mathcal{H}_{n_{i-1}}$ is defined, let $\varphi_i[a_{i-1}, b_{i-1}] \to M_{n_i}$ be such that $\varphi_{i-1} = f^{n_i - n_{i-1}} \circ \varphi_i$. Then either $\varphi_i(a_{i-1}) = c$ or $\varphi_i(b_{i-1}) = c$.

- If $\varphi_i(a_{i-1}) = c$, then set $a_i = a_{i-1} 1$ and $b_i = b_{i-1}$. Extend φ to $[a_i, a_{i-1}]$ such that it maps homeomorphically on L_{n_i} . Then going inductively downwards from j = i - 1 to 1, define $\varphi_j : [a_i, a_{i-1}] \to \mathcal{H}_{n_j}$ such that $\varphi_j = f^{n_{j+1} - n_j} \circ \varphi_j$.
- If $\varphi_i(b_{i-1}) = c$, then set $b_i = b_{i-1} + 1$ and $a_i = a_{i-1}$. Extend φ to $[b_{i-1}, b_i]$ such that it maps homeomorphically on L_{n_i} . Then going inductively downwards from j = i - 1 to 1, define $\varphi_j : [b_{i-1}, b_i] \to \mathcal{H}_{n_j}$ such that $\varphi_j = f^{n_{j+1} - n_j} \circ \varphi_j$.

If $a_i \to -\infty$ and $b_i \to \infty$, then this defines the ray. If $\inf a_i > -\infty$ and/or $\sup b_i < \infty$, then φ parametrises a half-ray or arc. In this case, we can restrict φ to $(\inf a_i, \sup b_i)$.

To show that $\varphi(\mathbb{R})$ is dense in \mathcal{H} , take $\varepsilon > 0$ and i so large that $2^{-n_i} < \varepsilon$. Now, for any $x \in \mathcal{H}$, take $t \in \mathbb{R}$ such that $\varphi_i(t) = x_{n_i}$.

H. BRUIN

Then $\varphi(t)_n = x_n$ for $n \le n_i$ and $d(x, \varphi(t)) \le \sum_{m > n_i} 2^{-m} = 2^{-n_i} < \varepsilon$.

3. PROOF OF THE MAIN RESULTS

Proof of Theorem 1.1. Let \mathcal{H} be a proper subcontinuum of (I, f) which is more complicated than an arc, so it has infinitely many critical projections times $\{n_i\}_{i\geq 1}$ and $S_{k_i} = n_i - n_{i-1}$. By applying \hat{f}^{-1} repeatedly (which has the effect of subtracting a large fixed number from the critical projection times n_i), we can assume that (1) holds for all $k \geq k_1$.

Let *i* be arbitrary; we know that $(c, c_{S_{k_i}}]$ is one component of $\mathcal{H}_{n_{i-1}} \setminus \{c\}$. Suppose n_{i-1} is such that $M_{n_{i-1}} = [c, c_{S_{k_i}}]$. Then $n_{i-1} - n_{i-2} = S_{k_{i-1}} = S_{R(k_i)}$, and

(2)
$$\mathcal{H}_{n_{i-2}} = [c_{S_{k_{i-1}}}, c_{S_{1+k_i}}] = [c_{S_{R(k_i)}}, c_{S_{1+k_i}}] \supset \{z_{R^2(k_i)}, z_{R(1+k_i)}\}.$$

Therefore $k_{i-2} = \min\{R^2(k_i), R(1+k_i)\} = R^2(k_i)$ by (1). It follows that $M_{n_{i-2}} = [c, c_{S_{R(k_i)}}]$ and $L_{n_{i-2}} = [c, c_{S_{1+k_i}}]$. We obtain by induction that $M_{n_j} = [c, c_{S_{k_{j+1}}}]$ and $k_j = R(k_{j+1})$ for all j < i.

This leaves us with two cases:

Case A: There are *i* arbitrarily large such that $M_{n_{i-1}} = [c, c_{S_{k_i}}]$, and therefore $M_{n_{i-1}} = [c, c_{S_{k_i}}]$ for all *i*, or Case B: $L_{n_{i-1}} = [c, c_{S_{k_i}}]$ for all *i* sufficiently large.

We tackle Case B first. Let us call $\mathcal{T}_{n_{i-1}} = [z_{R(k_i)}, c_{S_{k_i}}]$ the *tip* of $\mathcal{H}_{n_{i-1}}$. We claim that $f^{n_{i-1}}$ is monotone on $\mathcal{T}_{n_{i-1}}$. If $k_{i-1} = R(k_i)$, then

$$z_{R(1+k_i)} \in [c, c_{S_{1+k_i}}] = f^{S_{k_{i-1}}}(\mathcal{T}_{n_{i-1}}) \subset \mathcal{H}_{n_{i-1}}.$$

is the closest precritical point with lowest index in $f^{S_{k_{i-1}}}(\mathcal{T}_{n_{i-1}})$. So to prove the claim, we need to show that $S_{R(1+k_i)} \ge n_{i-2}$. Using (1) and Lemma 2.1 (part 4) respectively, we find for any j,

$$S_{2+k_j} = S_{1+k_j} + S_{R(1+k_j)}$$

$$\geq S_{1+k_j} + S_{2+R^2(k_j)} \geq S_{1+k_j} + S_{2+k_{j-2}}.$$

Using this repeatedly, we obtain

$$S_{2+k_{i-2}} \geq S_{1+k_{i-2}} + S_{2+k_{i-4}}$$

$$\geq S_{1+k_{i-2}} + S_{1+k_{i-4}} + S_{2+k_{i-6}}$$

$$\vdots \qquad \vdots$$

$$\geq S_{1+k_{i-2}} + S_{1+k_{i-4}} + S_{1+k_{i-6}} + S_{1+k_{i-8}} + \dots$$

Therefore, using Lemma 2.1 and (1) once more,

$$n_{i-2} = S_{k_{i-2}} + S_{k_{i-3}} + S_{k_{i-4}} + S_{k_{i-5}} + S_{k_{i-6}} + S_{k_{i-7}} \dots$$

$$\leq S_{k_{i-2}} + S_{R(k_{i-2})} + S_{k_{i-4}} + S_{R(k_{i-4})} + S_{k_{i-6}} + S_{R(k_{i-6})} \dots$$

$$\leq S_{1+k_{i-2}} + S_{1+k_{i-4}} + S_{1+k_{i-6}} \dots$$

$$\leq S_{2+k_{i-2}} \leq S_{1+R^2(k_i)} \leq S_{R(1+k_i)},$$

as claimed. If $k_{i-1} < R(k_i)$, then the same computation gives strict inequality $n_{i-2} < S_{R(1+k_i)}$.

We can picture the behaviour of $f^{n_i-n_1}: L_{n_i} \to I$ as a strip of paper that is folded over and over again, see Figure 3 with the property that whenever a piece of strip is folded, only one subpiece is folded again.

It follows that the number of branches of $f^{n_i-n_1}|L_{n_i}$ grows linear in *i*. Let us distinguish between "long branches" (i.e., the ones whose image contains *c*, and "short ones", whose image does not contain *c*. Then there is an easy recurrence relation between their cardinalities l_i and s_i :

$$\binom{l_1}{s_1} = \binom{1}{0}, \quad \binom{l_i}{s_i} = \binom{l_i+1}{l_i+s_{i-1}-1}.$$

This gives $l_i + s_i = i + \frac{(i-1)(i-2)}{2} = \frac{i(i-1)}{2} + 1$. Furthermore, if $k_j = R(k_{j+1})$ for all j < i, then the parts of L_{n_i} that are folded at step n_j map to

$$f^{n_{j+1}}(\mathcal{T}_{n_{j+1}}) = f^{n_j}([c, c_{S_{1+k_{j+2}}}]) = [c_{S_{Q(2+k_{j+2})}}, c_{S_{2+k_{j+2}}}].$$

These are nested intervals, and their diameters tend to 0 as $j \to \infty$. Therefore the limit set of ray(\mathcal{H}) is a spiralling arc; it is the set of points $x \in \mathcal{H}$ that belong to L_{n_i} infinitely often (in fact, every other i).

This shows that \mathcal{H} is an arc + ray continuum. We postpone the proof that \mathcal{H} are $\sin \frac{1}{x}$ -curves until we have treated Case A:

9

FIGURE 3. Impression how the critical projections of ray(\mathcal{H}) in Case B are parametrised. The sequence of points $\{y_i\}$ is explained in the proof of Theorem 1.2.

 $M_{n_{i-1}} = [c, c_{S_{k_i}}]$ (and hence $k_{i-1} = R(k_i)$) for all *i*. By (2), $L_{n_{i-1}} = [c, c_{S_{1+k_{i+1}}}]$, see Figure 4. We claim that $f^{n_{i-1}}|L_{n_{i-1}}$ is monotone. Since $z_{R(1+k_{i+1})}$ is the closest precritical point of lowest index in $L_{n_{i-1}}$, this claim follows from $S_{R(1+k_{i+1})} \ge n_{i-1}$, but this the same as the computation of Case B with i-2 replaced by i-1. The image $f^{S_{R(1+k_{i+1})}}(L_{n_{i-1}}) = [c_{S_{R(1+k_{i+1})}}, c_{S_{2+k_{i+1}}}]$ is an interval whose length tends to 0 as $i \to \infty$. Since $f^{n_{i-1}}(L_{n_{i-1}})$ is a preimage of this, also $|f^{n_{i-1}}(L_{n_{i-1}})| \to 0$ as $i \to \infty$. This shows (cf. Figure 4), that $\{f^{n_i}(L_{n_i})\}_{i \text{ even}}$ and $\{f^{n_i}(L_{n_i})\}_{i \text{ odd}}$ are nested sequence of intervals converging to points as $i \to \infty$. Using a parametrisation analogous to the one of Lemma 2.2, we find that \mathcal{H} is a (spiralling) arc after all.

Remark: In fact, the arc of Case A is the bar of the arc + ray subcontinuum of Case B. This is because the subcontinua of Case A and B are the only ones with infinitely many critical projection times, and any Case A arc has a ray converging onto it as explained

FIGURE 4. Impression of the critical projections of \mathcal{H} in Case A. The points u_{n_j} and v_{n_j} feature in the proof that the subcontinuum of Case B is a $\sin \frac{1}{x}$ -curve.

in the proof of Theorem 1.2 below.

We finish by proving that the subcontinuum \mathcal{H} from Case B is indeed a sin $\frac{1}{x}$ -curve. A sin $\frac{1}{x}$ -curve \mathcal{H} can be characterised (and thus distinguished from other arc + ray continua) by the following property: For all $u \neq v$ in the interior of $B := \operatorname{bar}(\mathcal{H})$ and all disjoint neighbourhoods $U \ni u$ and $V \ni v$, there are neighbourhoods U', U''with $u \in U'' \subset U' \subset U$ such that for every $x \in \operatorname{ray}(\mathcal{H}) \cap U''$, if we follow the ray from x in at least one direction, we visit V before returning to U'. In other words, we can parametrise $\operatorname{ray}(\mathcal{H})$ by $\varphi : \mathbb{R} \to \mathcal{H}$ such that $x = \varphi(0)$, and if $t_0 = \inf_{t>0} \varphi(t) \notin U'$, and $t_1 = \sup_{t>t_0} \varphi([t_0, t]) \cap U' = \emptyset$, then $\varphi([t_0, t_1]) \cap V \neq \emptyset$.

Take $u \neq v$ in the interior of B. Then there is i such that at critical projection $\pi_{n_i}(B)$, there are no "folds" overlapping at u_{n_i} and v_{n_i} , i.e., $\pi_{n_i}^{-1}(u_{n_i}) \cap B = u$ and $\pi_{n_i}^{-1}(v_{n_i}) \cap B = v$, see Figure 4. Take neighbourhoods $U \ni u$ and $V \ni v$ disjoint but arbitrary otherwise. Let $J \subset B_{n_i}$ be a neighbourhood of u_{n_i} such that $\pi_{n_i}^{-1}(\overline{J}) \cap B \subset U$ and $\#(\pi_{n_i}^{-1}(y) \cap B) = 1$ for each $y \in J$. Construct a "tubular neighbourhood" of $\pi_{n_i}^{-1}(J)$ by setting

$$U' = \{ x \in \mathcal{H} : \pi_{n_i}(x) \in J \text{ and } d(x, \pi_{n_i}^{-1}(J)) < \varepsilon \},\$$

where ε is so small that $U' \subset U$ and

$$\{x \in \mathcal{H} : \pi_{n_i}(x) = v_{n_i} \text{ and } d(x, v) < \varepsilon\} \subset V.$$

Next let $U'' \ni u$ be so small that for every $x \in U'' \cap \operatorname{ray}(\mathcal{H})$, when following the ray from x in either direction, we visit U' at least once more.

Note that the "folds" of both B and $\operatorname{ray}(\mathcal{H})$ (taken sufficiently close to the bar) project to the same points under π_{n_i} , namely points of the form $f^{n_j-n_i}(c)$ for j > i. There are no such points between u_{n_i} and v_{n_i} , so $\pi_{n_i}^{-1}([v_{n_i}, u_{n_i}]) \cap \{x \in \mathcal{H} : d(x, B) < \varepsilon\}$ consists of a countable collection of arcs, each of which projects onto $[u_{n_i}, v_{n_i}]$ under π_{n_i} . It follows that for each $x \in \operatorname{ray}(\mathcal{H}) \cap U''$, when following the ray from x in the direction of v, we visit Vbefore returning to U''. This completes the proof. \Box

Proof of Theorem 1.2. Let \mathcal{H} be a proper subcontinuum that is not a point or an arc. From Theorem 1.1 we know that its sequence k_i satisfies $R(k_i) = k_{i-1}$ for all *i* sufficiently large. By applying \hat{f}^{-1} sufficiently often, we can assume that $R(k_i) = k_{i-1}$ for all *i*. Hence \mathcal{H} corresponds to a backward *R*-orbit.

Conversely, given a backward *R*-orbit $\{k_i\}$, construct the subcontinuum \mathcal{H} of Case B with $n_1 = 0$, $n_i = \sum_{j=1}^i S_{k_j}$ (so $n_i - n_{i-1} = S_{k_i}$), and

$$\mathcal{H}_{n_i} = [c_{S_{k_{i+1}}}, y_i] \ni c$$

such that $L_{n_i} = [c, c_{S_{k_{i+1}}}]$ and $M_{n_i} = [c, y_i]$. The points y_i will be chosen inductively to satisfy

- $|y_i c| > |c_{S_{k_{i+1}}} c|$, so M_{n_i} is larger than L_{n_i} , and $M_{n_i} \ni \hat{z}_{B(k_{i+1})}$;
- $\hat{z}_{R(k_{i+1})};$ { $z_{R(k_{i+1})-1}, \hat{z}_{R(k_{i+1})-1}$ } $\notin [c, y_i]$, so that \mathcal{H}_{n_i} maps indeed homeomorphically for $S_{k_i} = S_{R(k_{i+1})}$ iterates;
- $f^{S_{k_i}}(y_i) = y_{i-1}$.

Because Q is non-decreasing and $Q(k) \to \infty$,

$$|c_{S_{1+k_{i+1}}} - c| < |c_{S_{k_i}} - c| = |\hat{c}_{S_{k_i}} - c| < |c_{S_{Q(k_i)}} - c|.$$

FIGURE 5. Points in \mathcal{H}_{n_i} and their images under $f^{S_{k_i}}$.

The interval $[\hat{c}_{S_{1+k_{i+1}}}, \hat{z}_{R(k_{i+1})}]$ is mapped homeomorphically onto $[c_{S_{1+k_i}}, c_{S_{Q(k_i)}}]$ by $f^{S_{k_i}}$, see Figure 5. Therefore, for any point $y_{i-1} \in [\hat{c}_{S_{k_i}}, c_{S_{Q(k_i)}}]$, there is a point $y_i \in [\hat{c}_{S_{1+k_{i+1}}}, c_{S_{Q(k_{i+1})}}]$ such that $f^{S_{k_i}}(y_i) = y_{i-1}$. Thus we can indeed find a sequence $\{y_i\}$ satisfying the conditions above. The resulting subcontinuum \mathcal{H} is a $\sin \frac{1}{x}$ -curve according to Theorem 1.1.

Proposition 1.3. Since $R(k) \to \infty$, $\#R^{-1}(k) < \infty$ for each k. Suppose that k_1 appears in infinitely many backward R-orbits. Using the pigeon hole principle, we can find an infinite backward R-orbit $k_1 \stackrel{R}{\leftarrow} k_2 \stackrel{R}{\leftarrow} \dots$ such that for each j, there is another infinite backward R-orbit that coincides with it up to at least k_j . Let \mathcal{H} and $\{\mathcal{H}^j\}_{j\in\mathbb{N}}$ be the corresponding type B subcontinua, as constructed in Theorem 1.2. Then \mathcal{H} and \mathcal{H}^j have the same critical projections times up till n_{j-1} . As $n_{j-1} - n_{j-2} \to \infty$, and hence $|\mathcal{H}_{n_k}|, |\mathcal{H}_{n_k}^j| \to 0$, this means that $\operatorname{bac}(\mathcal{H}^j) \to \operatorname{bac}(\mathcal{H})$.

Conversely, if there is a sequence $\{\mathcal{H}^j\}_j$ of disjoint subcontinua (having distinct sequences of critical projection times), such that $\operatorname{bar}(\mathcal{H}^j) \to \operatorname{bar}(\mathcal{H})$, then for each k, there is j_0 such that the critical projection times of \mathcal{H} and \mathcal{H}^j coincide up to k for all $j \geq j_0$. This implies that k_1 belongs to infinitely many different backward Rorbits. \Box

References

- M. Barge, K. Brucks, B. Diamond, Self-similarity in inverse limit spaces of the tent family, Proc. Amer. Math. Soc. 124 (1996) 3563–3570.
- [2] M. Barge, W. Ingram, Inverse limits on [0, 1] using logistic bonding maps, Topology and its Applications, 72 (1996) 159-172.

H. BRUIN

- [3] L. Block, S. Jakimovik, J. Keesling, L. Kailhofer, On the classification of inverse limits of tent maps, Preprint 2005.
- K. Brucks, H. Bruin, Subcontinua of inverse limit spaces of unimodal maps, Fund. Math. 160 (1999) 219–246.
- [5] K. Brucks, B. Diamond, A symbolic representation of inverse limit spaces for a class of unimodal maps, in Continuum Theory and Dynamical Systems, Lect. Notes in Pure and Appl. Math. 149 (1995) 207–226.
- [6] H. Bruin, Combinatorics of the kneading map, Int. Jour. of Bifur. and Chaos 5 (1995) 1339–1349.
- H. Bruin, Planar embeddings of inverse limit spaces of unimodal maps, Topology and its Applications, 96 (1999) 191–208.
- [8] F. Hofbauer, G. Keller, Quadratic maps without asymptotic measure, Commun. Math. Phys. 127 (1990) 319–337.
- [9] L. Kailhofer, A partial classification of inverse limit spaces of tent maps with periodic critical points, Ph.D. Thesis, Milwaukee (1999).
- [10] L. Kailhofer, A classification of inverse limit spaces of tent maps with periodic critical points, Fund. Math. 177 (2003) 95–120.
- B. Raines, Inhomogeneities in non-hyperbolic one-dimensional invariant sets, Fund. Math. 182 (2004) 241–268.
- [12] S. Štimac, A classification of inverse limit spaces of tent maps with finite critical orbit, Preprint 2005.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF SURREY, GUILDFORD, SURREY, GU2 7XH, UK

E-mail address: h.bruin@surrey.ac.uk

14