SUBCONTINUA OF FIBONACCI-LIKE INVERSE
LIMIT SPACES.

H. BRUIN

ABSTRACT. We study the subcontinua of inverse limit spaces
of Fibonacci-like unimodal maps. Under certain combinato-
rial constraints no other subcontinua than points, arcs and
sin %—curves are shown to exist. From the way these sin %—
curves accumulate onto each other, a method of partially dis-
tinguishing the Fibonacci-like inverse limit spaces is proposed.

1. INTRODUCTION

The classification of inverse limit spaces of unimodal map is a
tenacious problem. The main conjecture, posed by Ingram, is

If f and f are two non-conjugate unimodal maps,
then the corresponding inverse limit spaces (I, f)
and (I, f) are non-homeomorphic.

Let us restrict the unimodal map f : I — I to its core I = [ca, c1],
where c is the turning point and ¢ = f¥(c). We assume that f is
locally eventually onto. Any such map is conjugate to a tent map
T with slope £s (where log s = hiop(f)), and the resulting inverse
limit space (I, f) is an indecomposable continuum.

The classification (and an affirmative answer to Ingram con-
jecture) have been obtained for maps with a finite critical orbit
[9, 10, 12, 3], but for the case that orb(c) is infinite, and especially
when c is recurrent, few results are known, see [1, 4, 2, 11].
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In this paper, we extend the study of one example in [4], the Fi-
bonacci map, and use subcontinua as a tool for partial classification
of Fibonacci-like unimodal inverse limit spaces.

Fibonacci-like unimodal maps are defined combinatorially by a
condition on their kneading maps @, or equivalently their cutting
times {Sk }x>0. Cutting times are those iterates n of the map such
that the central branch of f™ maps onto c; they satisfy a recursive
relation So = 1 and Si = S—1 + So(r), where @ : N — NU {0} is
called the kneading map. In the sequel it will be more convenient
to use

R(k):=Q(k+1), so Ski1=Sk+ SR(k)-

If Q(k) = max{k — 2,0}, then the Fibonacci map is obtained (and
the Sis are the Fibonacci numbers, hence the name). We will
consider unimodal maps are like Fibonacci map in the sense that
Q(k) — oo. For such maps, it is known that ¢ is recurrent and
the critical omega-limit set w(c) is a minimal Cantor set [6]. As a
result, (I, f) will have uncountably many end-points which densely
fill a Cantor set, but away from this Cantor set, (I, f) is locally
homeomorphic to a Cantor set cross and arc, see e.g. [7]. We will
make further restrictions, reducing the complexity of the subcon-
tinua in (I, f) even more, but there remains a rich structure and
variety in the (arrangement of) subcontinua, so that some coarse
classifications is still possible.

It is well-known that if orb(c) is finite, then the only proper
subcontinua of (I, f) are points and arcs. The same is true if f is
long-branched, see [4]. In this paper we will mainly encounter arc
+ ray continuum which consist of a ray (or half-ray) and two (or
one) arcs. The simplest such continuum is the sin %—curve, but more
complicated arc + ray subcontinua can be found in many unimodal
inverse limit spaces, see [4]. The arc(s) of an arc + ray continua
are also called the bar(s) of the continuum H. We will denote this
bar by bar(H).

Theorem 1.1. If f is a unimodal map such that
(1) Q(k) — oo and R(1+ k) > 1+ R*(k)

for all k sufficiently large, then the only proper subcontinua of (I, f)

are points, arcs and sin %—curves.

Let f denote the induced homeomorphism on (1, f).
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Theorem 1.2. If (1) is satisfied, then there is a one-to-one cor-

respondence between f-orbits of sin %—CUT’U@S in (I, f) and infinite
backward R-orbits in N.

The following corollaries are immediate.

Corollary 1.1. If R is eventually surjective, then there are only
countably many sin%-cumes in (I, f). In particular, if Q(k) =
max{0, k —d}, then there are d—1 distinct f-orbits of sin %—curves.

However, we do not know if (I, f) are distinct for different values
of d.

Corollary 1.2. If #R~'(k) > 2 for all sufficiently large k, then
are uncountably many f-orbits of sin %—cumes in (I, f).

Although the subcontinua presented here are all sin %—curves,
they can be used, to some extent, to distinguish inverse limit spaces
by the way they (or rather their bars) accumulate onto each other.

Proposition 1.3. For each k € N that appears in infinitely many
backward R-orbits there is a sin %-cume whose bar is the limit of

the bars of other sin %—curves.

The orbit structure of R can be expressed by a tree with vertices
labelled by N and arrows k — [ if | = R(k), see e.g. Figure 1. The
tree is rooted at 0. Although R(0) = 0, we do not write the arrow
0 — 0. A backward R-orbit is an infinite backward path in this
tree.

Based on an idea of Raines [11], and using Proposition 1.3, we can
define the equivalent of Cantor-Bendixson depth for sin %—curves.
We say that the depth of a sin %—curve is 0 if its bar B is not
the accumulation of a sequence of bars of other sin %—curves (even
though a sequence of bars may accumulate to a proper subset of B).
We continue inductively, saying that a sin %—curve has depth d if,
after removing all sin %—curves of lower depth have been removed,
its bar is not the accumulation of a sequence of bars of other sin %-
curves. The sin %—curves that are never removed in this process are
said to have depth cc.

Example 1: Figure 1 gives an example of a backward tree of
the map R, and indicates the depths of some of its sin %-curves.

The vertices in the lower half of the picture (including the leftmost
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Ficure 1. Example of a backward tree of R with
the depths of each vertex indicated.

vertex) all have two preimages, and therefore infinitely many back-
ward R-orbits. Hence all the subcontinua corresponding to such a
backward R-orbit have depth co. The vertices in the upper half,
excluding the uppermost path, have only one backward R-orbit;
the corresponding subcontinua have depth 0. After removing these
subcontinua (and hence the corresponding backward R-orbits), the
vertices in the remaining uppermost have only one backward R-
orbit left, so their depths are 1.

Example 2: Let k1 =1, ks =3 and k; = ki1 +1 = i(igl) be
the i-th triangular number. Define two unimodal maps f and f by
means of their functions R and R respectively:

R(1) = R(2) = 0;

i) = ki—q for i > 2;
l)=ki—1+1for1<1<i;

i) =ki1+i—1,

R(k
R(k; +
R(k; +
and
R(1) = R(2) = 0;
(k‘z)—kz 1 for i > 2;
R(k:z—l—l)—kz Lfor 1< 1<
(ki

Then (I, f) and (I, f) are non-homeomorphic. Indeed (I, f) has
sin %-curves of Cantor-Bendixson depth 0 and 1, whereas (I, f) only
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FIGURE 2. The backward trees of R and R with
the depths of each vertex indicated.
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from the trees of the backward orbits of R and R respectively, see
Figure 2.

Acknowledgement: 1 would like to thank the referee for pointing

out some inclarities in an earlier version of this paper.

has sin =-curves of Cantor-Bendixson depth 0. This can be seen

2. PRELIMINARIES

The tent map T : [0,1] = [0, 1] with slope +s is defined as

ST ifz < l,
s(1—xz) ifz> 3.

We fix s € (v/2,2] and call f = T,. Write ¢ = £ and ¢, = f*(c).
Let I = [ca,c1] be the core of the map. It is well-known that f
is locally eventually onto, i.e., for every non-degenerate interval J,
there is n such that f™(J) = I.

The inverse limit space (I, f) is

(I, f) =A{x = (vo,z1,22,...) : I D x; = f(x;41) for all ¢ > 0},

equipped with metric d(z,y) = >, < |2n — yn|27" and induced (or
shift) homeomorphism B

f(l‘o, T1,T2,... ) = (f(x(]), Lo, L1,T2,... )
Let m : (I, f) — I, mi(x) = x be the k-th projection map.

To describe the combinatorial structure of f, we recall the defini-
tion of cutting times and kneading map from [8, 6]. If J is a maxi-
mal (closed) interval on which f™ is monotone, then f™ : J — f"(J)
is called a branch. If ¢ € 9J, f™ : J — f"(J) is a central branch.
Obviously f™ has two central branches, and they have the same
image if n is sufficiently large. Denote this image (or the largest
of the two) by D,. If D, 3 ¢, then n is called a cutting time.
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Denote the cutting times by {S;}i>0, So < S1 < S2 < ... If the
slope s > 1, then Syp = 1 and S7 = 2. It can be shown that
there is a map @ : N — N U {0}, called kneading map such that
Sk — Sk—1 = Sgu for all k > 1. This map satisfies Q(k) < k
plus other conditions that will not be of our concern in this paper.
Recall that R(k) = Q(k + 1).

In this paper we are interested in maps with kneading map
Q(k) — oo. In this case, the critical omega-limit set w(c) is a mini-
mal Cantor set [6]. We call z a closest precritical point if f™(z) = ¢
for some n > 1 and f™((c, z)) Z ¢ for m < n. It is not hard to show
(see [6]), that the integers n for which this happens are exactly the
cutting times, so we write zx when n = Si. Moreover, zp,) is
the closest precritical point with smallest index in [c,cg,]. (There
is a closest precritical point of the same index at either side of ¢;
we will denote the one in [c, cs, ] by 2gr@) and the other by Zpy.)
Since [¢ — ¢g,| < [¢ = zpk)—1] — 0 as R(k) — oo, the condition
limy, . R(k) = oo obviourly implies that |c — cg, | — 0 as k — oo.

We will use the following terminology: A ray is a continuous copy
of (0,1); a half-ray is a continuous copy of [0,1). A continuum is a
compact connected metric space and a subcontinuum H is subset of
a continuum which is closed and connected itself. The sin %—curve
is the homeomorphic image of the graph {(t, sm%) :t € (0,1]} to-
gether with the arc (called bar) {0} x[—1,1]. Given a subcontinuum
H of (I, f), its critical projections times are the integers n such that
H, > c.

Lemma 2.1. If H C (I, f) is a subcontinuum that is not an arc
or point, there there is an infinite sequence of critical projections
times {n;}i>o such that
(1
(2
(3
(4

Proof. If there are only finitely many critical projections times, say
n is the largest, then H can be parametrised by ¢ € H,,, so that
‘H is a point or an arc. Therefore subcontinua other than arcs or
points have infinitely many critical projections times. Let us prove
the other statements:

1. The first statement follows because f is locally eventually onto.

If H is a proper subcontinuum, then |H,| — 0 as n — oo.
n; — nj—1 = Sk, for some k; and k; — oo as 1 — oo.

i1 (H) O [c, CSk,L-]'

ki1 < R(ki) < k; for alli, so {k;}i>1 is non-decreasing.

— —
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If liminf, |H,| := € > 0, then there is an interval J that belongs
to infinitely many H,. Take N such that fN(J) = I. Then I €
Hn-n = fV(H) infinitely often, so H = (I, f).

2. Let k; be the lowest index of closest precritical points in Hy,.
Then the next iterate such that H,, > cis n;—1 = n; — Sy, iterates.
3. Follows immediately from 2.

4. As Hm—l D) [C, CSki] =) ZR(k;)> Ski_l =n; —ni—1 < SR(kz))v and 4.

7

follows. [
For each ¢ there are closed intervals M,,, and L,,, such that
Hp, = My, U Ly, My, N Ly, ={c}and " "1 (M,,) = Hn,_,
Lemma 2.2. Every subcontinuum H contains a dense ray
ray(H) == {z € H : &, € M,, for all i sufficiently large}.

Proof. This proof is given in [4], but we include it for completeness.
We will define a parametrisation ¢ : R — H of a subset of H and
show that ¢(R) lies dense in H. For the construction of ¢, it suffices
to construct

@i : R — H,, such that ¢; = f"7" oy

for all 1 < j <. We do this inductively. First let ¢¢ : [-1,1] —
Hy, be any homeomorphism, and set ag = —1 and by = 1.

If ©i—1 [(Zl;l,bl;l] — Hni71 is deﬁned, let @i[aifl,bifl] — Mnl
be such that ¢; 1 = f™ ™-1 o ¢;. Then either y;(a;—1) = ¢ or
gOi(bifl) = C.

o If p;(a;—1) = ¢, then set a; = a;—1—1 and b; = b;_;. Extend
¢ to [a;,a;—1] such that it maps homeomorphically on L.
Then going inductively downwards from j = ¢ — 1 to 1,
define @; : [a;, a;—1] — H,, such that p; = f+17" o ;.
o If p;(bi—1) = ¢, then set b; = b;_1+1 and a; = a;—1. Extend
¢ to [bi—1,b;] such that it maps homeomorphically on L.
Then going inductively downwards from j = ¢ — 1 to 1,
define @; : [bj—1,b;] — Hy, such that p; = f+17" o ;.
If a; — —oo0 and b; — oo, then this defines the ray. If infa; > —oo
and/or sup b; < 0o, then ¢ parametrises a half-ray or arc. In this
case, we can restrict ¢ to (inf a;,supb;).

To show that ¢(R) is dense in H, take € > 0 and i so large that

27" < e. Now, for any = € H, take ¢t € R such that ¢;(t) = x,,.
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Then ¢(t), = x, for n <n; and d(x, p(t)) < 2,5, 27" =2"" <
E. O

3. PROOF OF THE MAIN RESULTS

Proof of Theorem 1.1. Let H be a proper subcontinuum of (7, f)
which is more complicated than an arc, so it has infinitely many
critical projections times {n;};>1 and Sk, = n; —n;—1. By applying
f ~1 repeatedly (which has the effect of subtracting a large fixed
number from the critical projection times n;), we can assume that
(1) holds for all k& > k.

Let i be arbitrary; we know that (c,cg, | is one component of
Hp,_, \ {c}. Suppose n;—y is such that My, , = [c¢,cg, ]. Then
ni—1— Ni—2 = Sk,_; = Sgr(,), and

(2) Hn,_y = [CSki_NCSHki] = [CSR(ki)7csl+ki] - {zR2(k‘¢)>zR(l+ki)}'

Therefore k;—o = min{R?(k;), R(1+k;)} = R*(k;) by (1). It follows

that My, , = [c,csp, ] and Ln,_, = [c,cg,,,,]. We obtain by

induction that M, = |c, cSij] and k; = R(kjy1) for all j <.
This leaves us with two cases:

Case A: There are 7 arbitrarily large such that M,,. |, = [c, cSki], and
therefore M, , = [c,cg, ] for all 7, or
Case B: Ly, , = [c,cg, ] for all i sufficiently large.

We tackle Case B first. Let us call 7,,, , = [2g,),cs,,] the tip of
Hp, - We claim that f™-! is monotone on 7, ,
If ki,1 = R(kl), then

S
ZR(14+k;) € [67 CS1yk, ] =f hi 1(7;%—1) - Hni—l‘
is the closest precritical point with lowest index in f Ski1 (Tn;_,)-
So to prove the claim, we need to show that Sg(i44,) > ni—2. Using

(1) and Lemma 2.1 (part 4) respectively, we find for any j,

Sotk; = Sitk; T SRA+E)
Sl-i—k; + 52+R2( ) > Sl+1€ + 52+k

\%
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Using this repeatedly, we obtain

SQ‘FkifQ > Sl+ki—2 + 52+ki—4
> Sl+ki—2 + Sl+ki—4 + S2+ki—6

v

Sl+ki—2 + Sl+ki—4 + Sl+ki76 + Sl+ki—8 +..
Therefore, using Lemma 2.1 and (1) once more,

Sk‘i—z + Ski—3 + Ski—4 + Sk‘i—s + Sk‘i—s + Ski—7 s

Ski,Q + SR(]CZ'_Q) + Ski74 + SR(ki_4) + Ski76 + SR(ki—G) to
Sl+ki—2 + Sl+ki—4 + Sl+ki—6 s

ni—2

INIA A

Sotki—a < S14R2 (k) < SRO+k:)>

as claimed. If k;—1 < R(k;), then the same computation gives strict
inequality n;—2 < Sgr(14k,)-

We can picture the behaviour of f™~" : L, — I as a strip
of paper that is folded over and over again, see Figure 3 with the
property that whenever a piece of strip is folded, only one subpiece
is folded again.

It follows that the number of branches of f™~"1|L,,. grows linear
in 4. Let us distinguish between “long branches” (i.e., the ones
whose image contains ¢, and “short ones”, whose image does not
contain c¢. Then there is an easy recurrence relation between their
cardinalities {; and s;:

()= () -Gili)

This gives l; +s; = @ + (i_l)Q(i_Q) = i(igl) + 1. Furthermore, if
kj = R(kj41) for all j < i, then the parts of Ly, that are folded at
step n; map to

anl (Zlﬂl) = fnj ([Cv CSl+kj+2]) = [CSQ(2+kj+2) ’ CS2+kj+2]'

These are nested intervals, and their diameters tend to 0 as j — oo.
Therefore the limit set of ray(H) is a spiralling arc; it is the set of
points z € H that belong to L, infinitely often (in fact, every other

This shows that H is an arc 4+ ray continuum. We postpone

the proof that H are sin %-curves until we have treated Case A:
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ray(H)n,; s ray(H)n,_, ray(H)n;_, ray(H)n,
CS’%‘+1
nz 3 nz 2 nz 1 an
ki_o ki—1
c
Yi—3 Yi—2 Yi—1 Yi

Ficure 3. Impression how the critical projections
of ray(H) in Case B are parametrised. The sequence
of points {y;} is explained in the proof of Theo-
rem 1.2.

My, , = [c,cs, | (and hence k;—1 = R(k;)) for all i. By (2), Ln, , =
[c, CSl+ki+1]’ see Figure 4. We claim that f™-!|L,, , is monotone.
Since 2p(14k,,,) 1S the closest precritical point of lowest index in
Ly,_,, this claim follows from Sg(144,,,) = ni—1, but this the same
as the computation of Case B with ¢ — 2 replaced by ¢ — 1. The
image fSR(lJrkHl) (Lni—1) =
length tends to 0 as i — oo. Since f™~1(L,,_,)is a preimage of this,
also |f™=1(Ly,_,)| — 0 as i« — oco. This shows (cf. Figure 4), that
{f™(Ln;)}i even and {f™(Ly,)}si 0aa are nested sequence of intervals
converging to points as ¢ — oo. Using a parametrisation analogous
to the one of Lemma 2.2, we find that H is a (spiralling) arc after
all.

Remark: In fact, the arc of Case A is the bar of the arc + ray
subcontinuum of Case B. This is because the subcontinua of Case
A and B are the only ones with infinitely many critical projection
times, and any Case A arc has a ray converging onto it as explained

[CSR(1+ki+1) ) CSa,,,) 1S an interval whose
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Hn,; 5 Hn,; Hn, Hn,
CS}"’i—Z CS’%‘
Un;_3 Un;_q
MHFS CSl-Hci MnFl CS1+A-,H2
Un;_o
fski—2 fski—l Uiy fski
-~ -~ -~
&
Un;_3 Mni—z
cSlJr’%:—l cSl+ki+1

ki1

FIGURE 4. Impression of the critical projections of
H in Case A. The points u,; and vy, feature in the
proof that the subcontinuum of Case B is a sin %—
curve.

in the proof of Theorem 1.2 below.

We finish by proving that the subcontinuum H from Case B is in-
deed a sin %—curve. A sin %—curve H can be characterised (and thus
distinguished from other arc + ray continua) by the following prop-
erty: For all u # v in the interior of B := bar(H) and all disjoint
neighbourhoods U > u and V' 3 v, there are neighbourhoods U’, U”
with uw € U” C U’ C U such that for every = € ray(H) N U", if we
follow the ray from x in at least one direction, we visit V' before
returning to U’. In other words, we can parametrise ray(H) by
¢ : R — H such that 2 = ¢(0), and if ¢ty = infy~g p(t) ¢ U’, and
fy = supysy, 9([to, 1)) NU” = 0, then p([to, t2]) NV 0.

Take u # v in the interior of B. Then there is ¢ such that
at critical projection 7,,(B), there are no “folds” overlapping at
Up, and vy, ie., 7, (up,) N B = u and 7, (vs,) N B = v, see
Figure 4. Take neighbourhoods U > u and V > v disjoint but
arbitrary otherwise. Let J C B, be a neighbourhood of u,, such
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that 7,1(J) N B C U and #(m,'(y) N B) = 1 for each y € J.
Construct a “tubular neighbourhood” of 7, 1(J) by setting

U'={zxeH:m, () €Jand d(x,wgil(J)) < e},
where ¢ is so small that U’ C U and
{r e H :mp,(z) = vy, and d(z,v) <e} C V.

Next let U” 5 u be so small that for every z € U” Nray(H), when
following the ray from z in either direction, we visit U’ at least once
more.

Note that the “folds” of both B and ray(H) (taken sufficiently
close to the bar) project to the same points under m,,, namely
points of the form f"~"i(¢) for j > i. There are no such points
between uy,, and vp,, 80 T, ([Un,, un,])) N {z € H : d(z,B) < €}
consists of a countable collection of arcs, each of which projects
onto [uy,, vy,] under m,,. It follows that for each = € ray(H) NU",
when following the ray from z« in the direction of v, we visit V
before returning to U”. This completes the proof. O

Proof of Theorem 1.2. Let H be a proper subcontinuum that is
not a point or an arc. From Theorem 1.1 we know that its sequence
k; satisfies R(k;) = k;_1 for all i sufficiently large. By applying f~!
sufficiently often, we can assume that R(k;) = k;_1 for all i. Hence
‘H corresponds to a backward R-orbit.

Conversely, given a backward R-orbit {kz}, construct the subcon-
tinuum H of Case B with n; = 0, n; = 23:1 Sk; (so ni —mnji—1 =
Sk, ), and

Hni = [CSki+17yi] =X
such that L,, = [c, CskiJrl] and M, = [c,y;]. The points y; will be
chosen inductively to satisfy
o lyi—c| >|cs,,  —cl, so My, is larger than Ly, and My, >
ZR(kis1)) . )
i {ZR(ki+1)—1¢ZR(ki+1)—l} ¢ [Cv yi]v so that Hm maps indeed
homeomorphically for Sk, = Sgy,, ) iterates;
o [i(yi) = i1
Because @ is non-decreasing and Q(k) — oo,

|CSl+ki+1 —cl < ’CSki —c = ’éSki —cl < ’cSQ(ki) —c|.
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Hn, CS:’C"'+1 : : — CS:’C"'+1 yl —
ZR(kiy1) € ZR(kit1) ZR(kit1)
™ M l l l
CSy, sy, Yi-1
Hp, , — . b
¢ CS14n; €Squr)

FIGURE 5. Points in H,, and their images under f.

The interval [¢g, +ki+1,zAR(ki .| is mapped homeomorphically onto

sy, » CSQ(ki)] by fi, see Figure 5. Therefore, for any point y;_; €

[égki,cSQ(ki)], there is a point y; € [651+ki+1’cSQ(ki+1)] such that

f% (y;) = yi_1. Thus we can indeed find a sequence {y;} satisfying
the conditions above. The resulting subcontinuum H is a sin %—
curve according to Theorem 1.1. O

Proposition 1.3. Since R(k) — oo, #R (k) < oo for each k.
Suppose that ki appears in infinitely many backward R-orbits. Us-
ing the pigeon hole principle, we can find an infinite backward R-

orbit kq & ko & . such that for each j, there is another infinite
backward R-orbit that coincides with it up to at least k;. Let H
and {H7};en be the corresponding type B subcontinua, as con-
structed in Theorem 1.2. Then H and H’ have the same critical
projections times up till n;_1. As nj_1 — n;_2 — oo, and hence
|Hp,. |, |H2, | — 0, this means that bar(H’) — bar(H).

Conversely, if there is a sequence {H?}; of disjoint subcontinua
(having distinct sequences of critical projection times), such that
bar(H’) — bar(H), then for each k, there is jy such that the critical
projection times of H and H7 coincide up to k for all j > jo. This
implies that k; belongs to infinitely many different backward R-
orbits. 0
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