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Abstract. We study the subcontinua of inverse limit spaces
of Fibonacci-like unimodal maps. Under certain combinato-
rial constraints no other subcontinua than points, arcs and
sin 1

x
-curves are shown to exist. From the way these sin 1

x
-

curves accumulate onto each other, a method of partially dis-
tinguishing the Fibonacci-like inverse limit spaces is proposed.

1. Introduction

The classification of inverse limit spaces of unimodal map is a
tenacious problem. The main conjecture, posed by Ingram, is

If f and f̃ are two non-conjugate unimodal maps,
then the corresponding inverse limit spaces (I, f)

and (I, f̃) are non-homeomorphic.

Let us restrict the unimodal map f : I → I to its core I = [c2, c1],
where c is the turning point and ck = fk(c). We assume that f is
locally eventually onto. Any such map is conjugate to a tent map
Ts with slope ±s (where log s = htop(f)), and the resulting inverse
limit space (I, f) is an indecomposable continuum.

The classification (and an affirmative answer to Ingram con-
jecture) have been obtained for maps with a finite critical orbit
[9, 10, 12, 3], but for the case that orb(c) is infinite, and especially
when c is recurrent, few results are known, see [1, 4, 2, 11].
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In this paper, we extend the study of one example in [4], the Fi-
bonacci map, and use subcontinua as a tool for partial classification
of Fibonacci-like unimodal inverse limit spaces.

Fibonacci-like unimodal maps are defined combinatorially by a
condition on their kneading maps Q, or equivalently their cutting
times {Sk}k≥0. Cutting times are those iterates n of the map such
that the central branch of fn maps onto c; they satisfy a recursive
relation S0 = 1 and Sk = Sk−1 + SQ(k), where Q : N → N ∪ {0} is
called the kneading map. In the sequel it will be more convenient
to use

R(k) := Q(k + 1), so Sk+1 = Sk + SR(k).

If Q(k) = max{k − 2, 0}, then the Fibonacci map is obtained (and
the Sks are the Fibonacci numbers, hence the name). We will
consider unimodal maps are like Fibonacci map in the sense that
Q(k) → ∞. For such maps, it is known that c is recurrent and
the critical omega-limit set ω(c) is a minimal Cantor set [6]. As a
result, (I, f) will have uncountably many end-points which densely
fill a Cantor set, but away from this Cantor set, (I, f) is locally
homeomorphic to a Cantor set cross and arc, see e.g. [7]. We will
make further restrictions, reducing the complexity of the subcon-
tinua in (I, f) even more, but there remains a rich structure and
variety in the (arrangement of) subcontinua, so that some coarse
classifications is still possible.

It is well-known that if orb(c) is finite, then the only proper
subcontinua of (I, f) are points and arcs. The same is true if f is
long-branched, see [4]. In this paper we will mainly encounter arc
+ ray continuum which consist of a ray (or half-ray) and two (or
one) arcs. The simplest such continuum is the sin 1

x
-curve, but more

complicated arc + ray subcontinua can be found in many unimodal
inverse limit spaces, see [4]. The arc(s) of an arc + ray continua
are also called the bar(s) of the continuum H. We will denote this
bar by bar(H).

Theorem 1.1. If f is a unimodal map such that

(1) Q(k)→∞ and R(1 + k) > 1 + R2(k)

for all k sufficiently large, then the only proper subcontinua of (I, f)
are points, arcs and sin 1

x
-curves.

Let f̂ denote the induced homeomorphism on (I, f).
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Theorem 1.2. If (1) is satisfied, then there is a one-to-one cor-

respondence between f̂-orbits of sin 1
x
-curves in (I, f) and infinite

backward R-orbits in N.

The following corollaries are immediate.

Corollary 1.1. If R is eventually surjective, then there are only
countably many sin 1

x
-curves in (I, f). In particular, if Q(k) =

max{0, k−d}, then there are d−1 distinct f̂-orbits of sin 1
x
-curves.

However, we do not know if (I, f) are distinct for different values
of d.

Corollary 1.2. If #R−1(k) ≥ 2 for all sufficiently large k, then

are uncountably many f̂-orbits of sin 1
x
-curves in (I, f).

Although the subcontinua presented here are all sin 1
x
-curves,

they can be used, to some extent, to distinguish inverse limit spaces
by the way they (or rather their bars) accumulate onto each other.

Proposition 1.3. For each k ∈ N that appears in infinitely many
backward R-orbits there is a sin 1

x
-curve whose bar is the limit of

the bars of other sin 1
x
-curves.

The orbit structure of R can be expressed by a tree with vertices
labelled by N and arrows k → l if l = R(k), see e.g. Figure 1. The
tree is rooted at 0. Although R(0) = 0, we do not write the arrow
0 → 0. A backward R-orbit is an infinite backward path in this
tree.

Based on an idea of Raines [11], and using Proposition 1.3, we can
define the equivalent of Cantor-Bendixson depth for sin 1

x
-curves.

We say that the depth of a sin 1
x
-curve is 0 if its bar B is not

the accumulation of a sequence of bars of other sin 1
x
-curves (even

though a sequence of bars may accumulate to a proper subset of B).
We continue inductively, saying that a sin 1

x
-curve has depth d if,

after removing all sin 1
x
-curves of lower depth have been removed,

its bar is not the accumulation of a sequence of bars of other sin 1
x
-

curves. The sin 1
x
-curves that are never removed in this process are

said to have depth ∞.
Example 1: Figure 1 gives an example of a backward tree of

the map R, and indicates the depths of some of its sin 1
x
-curves.

The vertices in the lower half of the picture (including the leftmost
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Figure 1. Example of a backward tree of R with
the depths of each vertex indicated.

vertex) all have two preimages, and therefore infinitely many back-
ward R-orbits. Hence all the subcontinua corresponding to such a
backward R-orbit have depth ∞. The vertices in the upper half,
excluding the uppermost path, have only one backward R-orbit;
the corresponding subcontinua have depth 0. After removing these
subcontinua (and hence the corresponding backward R-orbits), the
vertices in the remaining uppermost have only one backward R-
orbit left, so their depths are 1.

Example 2: Let k1 = 1, k2 = 3 and ki = ki−1 + i = i(i+1)
2 be

the i-th triangular number. Define two unimodal maps f and f̃ by
means of their functions R and R̃ respectively:















R(1) = R(2) = 0;
R(ki) = ki−1 for i ≥ 2;
R(ki + l) = ki−1 + l for 1 ≤ l < i;
R(ki + i) = ki−1 + i− 1,

and














R̃(1) = R̃(2) = 0;

R̃(ki) = ki−1 for i ≥ 2;

R̃(ki + l) = ki−1 for 1 ≤ l < i;

R̃(ki + i) = ki−1 + i− 1.

Then (I, f) and (I, f̃ ) are non-homeomorphic. Indeed (I, f) has

sin 1
x
-curves of Cantor-Bendixson depth 0 and 1, whereas (I, f̃) only
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Figure 2. The backward trees of R and R̃ with
the depths of each vertex indicated.

has sin 1
x
-curves of Cantor-Bendixson depth 0. This can be seen

from the trees of the backward orbits of R and R̃ respectively, see
Figure 2.

Acknowledgement: I would like to thank the referee for pointing
out some inclarities in an earlier version of this paper.

2. Preliminaries

The tent map Ts : [0, 1] = [0, 1] with slope ±s is defined as

Ts(x) =

{

sx if x ≤ 1
2 ,

s(1− x) if x > 1
2 .

We fix s ∈ (
√

2, 2] and call f = Ts. Write c = 1
2 and ck = fk(c).

Let I = [c2, c1] be the core of the map. It is well-known that f
is locally eventually onto, i.e., for every non-degenerate interval J ,
there is n such that fn(J) = I.

The inverse limit space (I, f) is

(I, f) = {x = (x0, x1, x2, . . . ) : I 3 xi = f(xi+1) for all i ≥ 0},
equipped with metric d(x, y) =

∑

n≥1 |xn− yn|2−n and induced (or

shift) homeomorphism

f̂(x0, x1, x2, . . . ) = (f(x0), x0, x1, x2, . . . ).

Let πk : (I, f)→ I, πk(x) = xk be the k-th projection map.
To describe the combinatorial structure of f , we recall the defini-

tion of cutting times and kneading map from [8, 6]. If J is a maxi-
mal (closed) interval on which fn is monotone, then fn : J → fn(J)
is called a branch. If c ∈ ∂J , fn : J → fn(J) is a central branch.
Obviously fn has two central branches, and they have the same
image if n is sufficiently large. Denote this image (or the largest
of the two) by Dn. If Dn 3 c, then n is called a cutting time.
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Denote the cutting times by {Si}i≥0, S0 < S1 < S2 < . . . If the
slope s > 1, then S0 = 1 and S1 = 2. It can be shown that
there is a map Q : N → N ∪ {0}, called kneading map such that
Sk − Sk−1 = SQ(k) for all k ≥ 1. This map satisfies Q(k) < k
plus other conditions that will not be of our concern in this paper.
Recall that R(k) = Q(k + 1).

In this paper we are interested in maps with kneading map
Q(k)→∞. In this case, the critical omega-limit set ω(c) is a mini-
mal Cantor set [6]. We call z a closest precritical point if f n(z) = c
for some n ≥ 1 and fm((c, z)) 63 c for m < n. It is not hard to show
(see [6]), that the integers n for which this happens are exactly the
cutting times, so we write zk when n = Sk. Moreover, zR(k) is
the closest precritical point with smallest index in [c, cSk

]. (There
is a closest precritical point of the same index at either side of c;
we will denote the one in [c, cSk

] by zR(k) and the other by ẑR(k).)
Since |c − cSk

| ≤ |c − zR(k)−1| → 0 as R(k) → ∞, the condition
limk→∞ R(k) =∞ obviourly implies that |c− cSk

| → 0 as k →∞.
We will use the following terminology: A ray is a continuous copy

of (0, 1); a half-ray is a continuous copy of [0, 1). A continuum is a
compact connected metric space and a subcontinuum H is subset of
a continuum which is closed and connected itself. The sin 1

x
-curve

is the homeomorphic image of the graph {(t, sin 1
t
) : t ∈ (0, 1]} to-

gether with the arc (called bar) {0}×[−1, 1]. Given a subcontinuum
H of (I, f), its critical projections times are the integers n such that
Hn 3 c.

Lemma 2.1. If H ⊂ (I, f) is a subcontinuum that is not an arc
or point, there there is an infinite sequence of critical projections
times {ni}i≥0 such that

(1) If H is a proper subcontinuum, then |Hn| → 0 as n→∞.
(2) ni − ni−1 = Ski

for some ki and ki →∞ as i→∞.
(3) πni−1(H) ⊃ [c, cSki

].

(4) ki−1 ≤ R(ki) ≤ ki for all i, so {ki}i≥1 is non-decreasing.

Proof. If there are only finitely many critical projections times, say
n is the largest, then H can be parametrised by t ∈ Hn, so that
H is a point or an arc. Therefore subcontinua other than arcs or
points have infinitely many critical projections times. Let us prove
the other statements:
1. The first statement follows because f is locally eventually onto.
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If lim infn |Hn| := ε > 0, then there is an interval J that belongs
to infinitely many Hn. Take N such that fN (J) = I. Then I ∈
Hn−N = fN(H) infinitely often, so H = (I, f).
2. Let ki be the lowest index of closest precritical points in Hni

.
Then the next iterate such that Hn 3 c is ni−1 = ni − Ski

iterates.
3. Follows immediately from 2.
4. As Hni−1 ⊃ [c, cSki

] 3 zR(ki), Ski−1
= ni − ni−1 ≤ SR(ki)), and 4.

follows. �

For each i there are closed intervals Mni
and Lni

such that

Hni
= Mni

∪ Lni
, Mni

∩ Lni
= {c} and fni−ni−1(Mni

) = Hni−1

Lemma 2.2. Every subcontinuum H contains a dense ray

ray(H) := {x ∈ H : xni
∈Mni

for all i sufficiently large}.
Proof. This proof is given in [4], but we include it for completeness.
We will define a parametrisation ϕ : R → H of a subset of H and
show that ϕ(R) lies dense inH. For the construction of ϕ, it suffices
to construct

ϕi : R→Hni
such that ϕj = fni−nj ◦ ϕi

for all 1 ≤ j ≤ i. We do this inductively. First let ϕ0 : [−1, 1] →
Hn0 be any homeomorphism, and set a0 = −1 and b0 = 1.

If ϕi−1 : [ai−1, bi−1]→ Hni−1 is defined, let ϕi[ai−1, bi−1]→Mni

be such that ϕi−1 = fni−ni−1 ◦ ϕi. Then either ϕi(ai−1) = c or
ϕi(bi−1) = c.

• If ϕi(ai−1) = c, then set ai = ai−1−1 and bi = bi−1. Extend
ϕ to [ai, ai−1] such that it maps homeomorphically on Lni

.
Then going inductively downwards from j = i − 1 to 1,
define ϕj : [ai, ai−1]→Hnj

such that ϕj = fnj+1−nj ◦ ϕj .
• If ϕi(bi−1) = c, then set bi = bi−1+1 and ai = ai−1. Extend

ϕ to [bi−1, bi] such that it maps homeomorphically on Lni
.

Then going inductively downwards from j = i − 1 to 1,
define ϕj : [bi−1, bi]→Hnj

such that ϕj = fnj+1−nj ◦ ϕj .

If ai → −∞ and bi →∞, then this defines the ray. If inf ai > −∞
and/or sup bi < ∞, then ϕ parametrises a half-ray or arc. In this
case, we can restrict ϕ to (inf ai, sup bi).

To show that ϕ(R) is dense in H, take ε > 0 and i so large that
2−ni < ε. Now, for any x ∈ H, take t ∈ R such that ϕi(t) = xni

.
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Then ϕ(t)n = xn for n ≤ ni and d(x, ϕ(t)) ≤∑

m>ni
2−m = 2−ni <

ε. �

3. Proof of the Main Results

Proof of Theorem 1.1. LetH be a proper subcontinuum of (I, f)
which is more complicated than an arc, so it has infinitely many
critical projections times {ni}i≥1 and Ski

= ni−ni−1. By applying

f̂−1 repeatedly (which has the effect of subtracting a large fixed
number from the critical projection times ni), we can assume that
(1) holds for all k ≥ k1.

Let i be arbitrary; we know that (c, cSki
] is one component of

Hni−1 \ {c}. Suppose ni−1 is such that Mni−1 = [c, cSki
]. Then

ni−1 − ni−2 = Ski−1
= SR(ki), and

(2) Hni−2 = [cSki−1
, cS1+ki

] = [cSR(ki)
, cS1+ki

] ⊃ {zR2(ki), zR(1+ki)}.

Therefore ki−2 = min{R2(ki), R(1+ki)} = R2(ki) by (1). It follows
that Mni−2 = [c, cSR(ki)

] and Lni−2 = [c, cS1+ki
]. We obtain by

induction that Mnj
= [c, cSkj+1

] and kj = R(kj+1) for all j < i.

This leaves us with two cases:

Case A: There are i arbitrarily large such that Mni−1 = [c, cSki
], and

therefore Mni−1 = [c, cSki
] for all i, or

Case B: Lni−1 = [c, cSki
] for all i sufficiently large.

We tackle Case B first. Let us call Tni−1 = [zR(ki), cSki
] the tip of

Hni−1 . We claim that fni−1 is monotone on Tni−1 .
If ki−1 = R(ki), then

zR(1+ki) ∈ [c, cS1+ki
] = fSki−1 (Tni−1) ⊂ Hni−1 .

is the closest precritical point with lowest index in f Ski−1 (Tni−1).
So to prove the claim, we need to show that SR(1+ki) ≥ ni−2. Using
(1) and Lemma 2.1 (part 4) respectively, we find for any j,

S2+kj
= S1+kj

+ SR(1+kj)

≥ S1+kj
+ S2+R2(kj) ≥ S1+kj

+ S2+kj−2
.
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Using this repeatedly, we obtain

S2+ki−2
≥ S1+ki−2

+ S2+ki−4

≥ S1+ki−2
+ S1+ki−4

+ S2+ki−6

...
...

≥ S1+ki−2
+ S1+ki−4

+ S1+ki−6
+ S1+ki−8

+ . . .

Therefore, using Lemma 2.1 and (1) once more,

ni−2 = Ski−2
+ Ski−3

+ Ski−4
+ Ski−5

+ Ski−6
+ Ski−7

. . .

≤ Ski−2
+ SR(ki−2) + Ski−4

+ SR(ki−4) + Ski−6
+ SR(ki−6) . . .

≤ S1+ki−2
+ S1+ki−4

+ S1+ki−6
. . .

≤ S2+ki−2
≤ S1+R2(ki) ≤ SR(1+ki),

as claimed. If ki−1 < R(ki), then the same computation gives strict
inequality ni−2 < SR(1+ki).

We can picture the behaviour of fni−n1 : Lni
→ I as a strip

of paper that is folded over and over again, see Figure 3 with the
property that whenever a piece of strip is folded, only one subpiece
is folded again.

It follows that the number of branches of f ni−n1 |Lni
grows linear

in i. Let us distinguish between “long branches” (i.e., the ones
whose image contains c, and “short ones”, whose image does not
contain c. Then there is an easy recurrence relation between their
cardinalities li and si:

(

l1
s1

)

=

(

1

0

)

,

(

li
si

)

=

(

li + 1

li + si−1 − 1

)

.

This gives li + si = i + (i−1)(i−2)
2 = i(i−1)

2 + 1. Furthermore, if
kj = R(kj+1) for all j < i, then the parts of Lni

that are folded at
step nj map to

fnj+1(Tnj+1) = fnj ([c, cS1+kj+2
]) = [cSQ(2+kj+2)

, cS2+kj+2
].

These are nested intervals, and their diameters tend to 0 as j →∞.
Therefore the limit set of ray(H) is a spiralling arc; it is the set of
points x ∈ H that belong to Lni

infinitely often (in fact, every other
i).

This shows that H is an arc + ray continuum. We postpone
the proof that H are sin 1

x
-curves until we have treated Case A:
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Figure 3. Impression how the critical projections
of ray(H) in Case B are parametrised. The sequence
of points {yi} is explained in the proof of Theo-
rem 1.2.

Mni−1 = [c, cSki
] (and hence ki−1 = R(ki)) for all i. By (2), Lni−1 =

[c, cS1+ki+1
], see Figure 4. We claim that fni−1 |Lni−1 is monotone.

Since zR(1+ki+1) is the closest precritical point of lowest index in
Lni−1 , this claim follows from SR(1+ki+1) ≥ ni−1, but this the same
as the computation of Case B with i − 2 replaced by i − 1. The

image f
SR(1+ki+1)(Lni−1) = [cSR(1+ki+1)

, cS2+ki+1
] is an interval whose

length tends to 0 as i→∞. Since fni−1(Lni−1) is a preimage of this,
also |fni−1(Lni−1)| → 0 as i → ∞. This shows (cf. Figure 4), that
{fni(Lni

)}i even and {fni(Lni
)}i odd are nested sequence of intervals

converging to points as i→∞. Using a parametrisation analogous
to the one of Lemma 2.2, we find that H is a (spiralling) arc after
all.

Remark: In fact, the arc of Case A is the bar of the arc + ray
subcontinuum of Case B. This is because the subcontinua of Case
A and B are the only ones with infinitely many critical projection
times, and any Case A arc has a ray converging onto it as explained
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Figure 4. Impression of the critical projections of
H in Case A. The points unj

and vnj
feature in the

proof that the subcontinuum of Case B is a sin 1
x
-

curve.

in the proof of Theorem 1.2 below.

We finish by proving that the subcontinuum H from Case B is in-
deed a sin 1

x
-curve. A sin 1

x
-curve H can be characterised (and thus

distinguished from other arc + ray continua) by the following prop-
erty: For all u 6= v in the interior of B := bar(H) and all disjoint
neighbourhoods U 3 u and V 3 v, there are neighbourhoods U ′, U ′′

with u ∈ U ′′ ⊂ U ′ ⊂ U such that for every x ∈ ray(H) ∩ U ′′, if we
follow the ray from x in at least one direction, we visit V before
returning to U ′. In other words, we can parametrise ray(H) by
ϕ : R → H such that x = ϕ(0), and if t0 = inft>0 ϕ(t) /∈ U ′, and
t1 = supt>t0

ϕ([t0, t]) ∩ U ′ = ∅, then ϕ([t0, t1]) ∩ V 6= ∅.
Take u 6= v in the interior of B. Then there is i such that

at critical projection πni
(B), there are no “folds” overlapping at

uni
and vni

, i.e., π−1
ni

(uni
) ∩ B = u and π−1

ni
(vni

) ∩ B = v, see
Figure 4. Take neighbourhoods U 3 u and V 3 v disjoint but
arbitrary otherwise. Let J ⊂ Bni

be a neighbourhood of uni
such
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that π−1
ni

(J) ∩ B ⊂ U and #(π−1
ni

(y) ∩ B) = 1 for each y ∈ J .

Construct a “tubular neighbourhood” of π−1
ni

(J) by setting

U ′ = {x ∈ H : πni
(x) ∈ J and d(x, π−1

ni
(J)) < ε},

where ε is so small that U ′ ⊂ U and

{x ∈ H : πni
(x) = vni

and d(x, v) < ε} ⊂ V.

Next let U ′′ 3 u be so small that for every x ∈ U ′′ ∩ ray(H), when
following the ray from x in either direction, we visit U ′ at least once
more.

Note that the “folds” of both B and ray(H) (taken sufficiently
close to the bar) project to the same points under πni

, namely
points of the form fnj−ni(c) for j > i. There are no such points
between uni

and vni
, so π−1

ni
([vni

, uni
]) ∩ {x ∈ H : d(x,B) < ε}

consists of a countable collection of arcs, each of which projects
onto [uni

, vni
] under πni

. It follows that for each x ∈ ray(H) ∩ U ′′,
when following the ray from x in the direction of v, we visit V
before returning to U ′′. This completes the proof. �

Proof of Theorem 1.2. Let H be a proper subcontinuum that is
not a point or an arc. From Theorem 1.1 we know that its sequence
ki satisfies R(ki) = ki−1 for all i sufficiently large. By applying f̂−1

sufficiently often, we can assume that R(ki) = ki−1 for all i. Hence
H corresponds to a backward R-orbit.

Conversely, given a backward R-orbit {ki}, construct the subcon-

tinuum H of Case B with n1 = 0, ni =
∑i

j=1 Skj
(so ni − ni−1 =

Ski
), and

Hni
= [cSki+1

, yi] 3 c

such that Lni
= [c, cSki+1

] and Mni
= [c, yi]. The points yi will be

chosen inductively to satisfy

• |yi− c| > |cSki+1
− c|, so Mni

is larger than Lni
, and Mni

3
ẑR(ki+1);
• {zR(ki+1)−1, ẑR(ki+1)−1} /∈ [c, yi], so that Hni

maps indeed
homeomorphically for Ski

= SR(ki+1) iterates;

• fSki (yi) = yi−1.

Because Q is non-decreasing and Q(k)→∞,

|cS1+ki+1
− c| < |cSki

− c| = |ĉSki
− c| < |cSQ(ki

) − c|.
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ĉSki
yi−1

cSQ(ki)

@
@

@R
? ? ?

XXXXXXXXXXXXz

�
�

�
��+

�
�

�
��+

Figure 5. Points in Hni
and their images under fSki .

The interval [ĉS1+ki+1
, ẑR(ki+1)] is mapped homeomorphically onto

[cS1+ki
, cSQ(ki)

] by fSki , see Figure 5. Therefore, for any point yi−1 ∈
[ĉSki

, cSQ(ki)
], there is a point yi ∈ [ĉS1+ki+1

, cSQ(ki+1)
] such that

fSki (yi) = yi−1. Thus we can indeed find a sequence {yi} satisfying
the conditions above. The resulting subcontinuum H is a sin 1

x
-

curve according to Theorem 1.1. �

Proposition 1.3. Since R(k) → ∞, #R−1(k) < ∞ for each k.
Suppose that k1 appears in infinitely many backward R-orbits. Us-
ing the pigeon hole principle, we can find an infinite backward R-

orbit k1
R← k2

R← . . . such that for each j, there is another infinite
backward R-orbit that coincides with it up to at least kj . Let H
and {Hj}j∈N be the corresponding type B subcontinua, as con-
structed in Theorem 1.2. Then H and Hj have the same critical
projections times up till nj−1. As nj−1 − nj−2 → ∞, and hence

|Hnk
|, |Hj

nk
| → 0, this means that bar(Hj)→ bar(H).

Conversely, if there is a sequence {Hj}j of disjoint subcontinua
(having distinct sequences of critical projection times), such that
bar(Hj)→ bar(H), then for each k, there is j0 such that the critical
projection times of H and Hj coincide up to k for all j ≥ j0. This
implies that k1 belongs to infinitely many different backward R-
orbits. �
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