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Abstract

We discuss the inverse limit spaces of unimodal interval maps
as topological spaces. Based on the combinatorial properties of the
unimodal maps, properties of the subcontinua of the inverse limit
spaces are studied. Among other results, we give combinatorial con-
ditions for an inverse limit space to have only arc+ray subcontinua
as proper (nontrivial) subcontinua. Also maps are constructed whose
inverse limit spaces have the inverse limit spaces of a prescribed set
of periodic unimodal maps as subcontinua.
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1 Introduction

Inverse limit spaces of one-dimensional maps commonly appear as attrac-
tors in dynamical systems. In 1967, R.F. Williams [24] showed that hy-
perbolic one-dimensional attractors are inverse limits of maps on branched
one-manifolds. The full attracting sets for certain maps in the Hénon fam-
ily are homeomorphic to inverse limits of unimodal maps of an interval [7].
Barge and Diamond [6] show that if a C'° diffeomorphism of the plane
F has a hyperbolic fixed point p with a ‘same-sided’ homoclinic tangency
such that the eigenvalues of DF(p) satisfy a nonresonance condition, then
any unimodal continuum (inverse limit space where all bonding maps are
unimodal maps) appears as a subcontinuum of the closure of the unstable
manifold of the fixed point p. For other examples, see [1, 2, 18|.

Given that such inverse limit spaces commonly appear as attractors, one
is interested in the topology of these spaces. In particular, when are such
inverse limit spaces homeomorphic as topological spaces? Partial results
exist, see [4, 9, 15, 20, 23]. Most recently, Barge and Diamond [4] proved that
for transitive Markov maps f and g of an interval I, if (I, f) is homeomorphic
to (I, g) then the algebraic extensions Q(a) = Q(/) are equal, where o and
[ are the spectral radii of the transition matrices for f and g respectively.
However, it can be difficult to determine whether Q(«) = Q(f); for related
work see [14, 22].

It is unknown whether the inverse limit spaces of two non-conjugate tran-
sitive unimodal maps can be homeomorphic. Such inverse limit spaces can,
at first glance, locally look like a Cantor set cross an arc. However, this
is not the case. To begin, endpoints are very common phenomena and the
number of endpoints is a topological invariant. Let f be unimodal with
turning point ¢ and core I (a reminder of the definition of ‘core’ is given
in the next section). From [8] and [13] follows a first approximation to
a classification of these spaces: if ¢ is n-periodic, then (I, f) has exactly n
endpoints, if ¢ is recurrent but not periodic, then (Z, f) has uncountably
many endpoints, and if ¢ is not recurrent, then (I, f) has no endpoints (the
only exception is the full tent-map; here (0,0,0,...) is indeed an endpoint
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of (I, f)).

In this paper we look at inverse limit spaces (I, f) where the bonding
map f : I — I is unimodal. We attempt to distinguish such inverse limit
spaces via their proper subcontinua. The existence and abundance of non-
trivial proper subcontinua is established by Barge et al. [3]. Working with
the family of tent maps {7,} (a is the slope), they exhibit a residual full
Lebesgue measure set of slopes such that if 7, is a tent map with such a
slope, then (I,T,) is nowhere locally homeomorphic to the product of a
Cantor set and an arc. More precisely, every open set in (/,7}) contains a
homeomorphic copy of every inverse limit space (I,7,,) appearing in this
family of inverse limit spaces (the slopes a; are allowed to vary). Hence,
there is a form of self-similarity and local recapitulation of the entire family
of inverse limits of tent maps within (7, Ty).

In this work, we try to describe which sorts of subcontinua can be found
in (I, f) depending on the combinatorial structure of f. The simpliest sub-
continua are points and arcs. In Section 3, for any subcontinuum H of (I, f)
which is not simply a point, we construct a dense ray Ry within H. When
H \ Ry consists of one or two arcs, we call H an arc+ray continuum. The
sin %—continuum is an example of an arc+ray continuum. In Section 4 we
give combinatorial conditions on f under which (/, f) has only arcs or only
arc+ray subcontinua. Three examples are given in Section 4. It is easy to
prove that if f is longbranched, then all proper subcontinua of (I, f) are
points or arcs (see Sections 2 and 4). We provide an example of a map g
which is not longbranched, but such that all proper subcontinua of (I, g)
are points or arcs. In the second example the (I, f) constructed contains
an MW-continuum (a non-homeomorphic variation of the sin I-continuum).
From this example and the proof of Theorem 1 one can easily construct ex-
amples to obtain other non-homeomorphic variations of the sin %—continuum
as subcontinua. Lastly, we completely describe the proper subcontinua of
(I, f) when f has the Fibonacci combinatorics.

In Section 5, we apply the framework of kneading maps to obtain sub-
continua that are homeomorphic to a given unimodal map with fixed com-
binatorial structure. This leads to the following result: Let F be a finite or
infinite sequence of maps with periodic turning points. We supply a map
g such that for each f € F, (I, g) contains a subcontinuum H(f) homeo-
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morphic to (I, f). Moreover, every non-arc or non-arc+ray subcontinuum
of (I, g) is homeomorphic to (I, f) for some f € F.

We conjecture that the possible subcontinua are determined by the asymp-
totic combinatorial structure of the bonding map. To be precise, if the
kneading maps of f and g eventually agree, then (I, f) and (I, g) have the
same proper subcontinua.

2 Preliminaries

Given continuous maps f; : I; — I;_1, the associated inverse limit space
with bonding maps f; is

(Li, fi) = {(21, 22, 23, ...) | w21 = fi(w;) for i > 2};

we assume that {|[;|}; is bounded. It has the metric d(z,y) = 3, k”l?;j‘”'
The i-th projection is denoted as m; : (I, fi) — I;. In general, (I;, f;) is a
continuum, i.e. a compact connected metric space. It is one-dimensional

and chainable, see [21]. The induced homeomorphism, f, of (I;, f;) is given
by: f((z1, 22, 3,...)) = (f1(21), 71, T2, T3, . ..). Set fij=[fix10...0f

A continuous map f : [0,1] — [0,1] is called unimodal if there exists a
unique turning or critical point, c, such that f|j ) is increasing (decreasing)
and f|(,1 is decreasing (increasing). We denote the forward images of ¢ by
¢; = fi(c). To avoid trivial cases, we assume that c lies between ¢; and c;.
We will discuss the case where there is a single unimodal bonding map f.
If the map f : [0,1] — [0, 1] is not onto, then ([0,1], f) = (K, f|x) where
K =g, f*(]0,1]). When dealing with a single bonding map f we assume
that f is unimodal and that f(0) = 0 when f has a maximum at ¢ or that
f(1) =1 when f has a minimum at ¢. Then N2, f([0, 1]) is either [0, ¢4]
or [c1, 1], depending on whether f has a maximum or minimum at c¢. For
ease of discussion, assume f has a maximum at c. When we write (I, f)
we assume that f : [0,1] — [0,1] is unimodal with f(0) = 0 and we set
I = [0,¢1]. Notice that the interval [co, c;] is invariant and f maps [ca, ¢1]
onto itself; the interval [cs, ¢1] is called the core of the map f. The inverse
limit space (I, f) is identical to ([co, ¢1], f) except possibly for an additional
arc which is an infinite ray entwined with ([co, ¢1], f).
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We further assume that f|,,] is locally eventually onto (leo), i.e., for
every subinterval J C [cg, ¢1], there exists N such that f™(J) = [cg, ¢1] for
all n > N. This condition is not as restrictive as it may first appear as
(1, f) is homeomorphic to (I, g) whenever f and g are topologically conju-
gate. Moreover, any unimodal map without restrictive intervals, periodic
attractors, or wandering intervals is topologically conjugate to a tent map
with slope > /2, see e.g. [19], and these tent maps are leo. We say a
unimodal map f has a periodic turning point provided f™(c) = ¢ for some
n.

An arcis the continuous one-to-one image of the interval [0, 1]; a ray is the
continuous one-to-one image of (0,1) or (0,1]. Let [a,b] denote an interval
with endpoints a and b, irrespective whether a < bor b < a. Set T,(z) = ax
for 0 <z < 5 and Ty(z) = a(l — z) for 3 <z < 1. We call Ty the full tent
map. The one-parameter family {7, | a € [0,2]} is referred to as the tent
family.

Lemma 1 If H is a subcontinuum of (I, f) then m;H is an interval for each
i. If m;H > c for only finitely many i, then H is an arc or a point.

Proof: As 7; is continuous for each ¢, m; H is compact and connected. Let n
be so large that ¢ ¢ m; H for i > n. Then H can be parametrized by a single
variable t € 7, H. O

Lemma 2 A subcontinuum H C ([co, 1], f) is proper if and only if |7, H| —
0 as 1 — oo.

Proof: The if-direction is trivial. Suppose now that there exists € > 0 and a
sequence {m;} such that |m,, H| > ¢. By passing to a subsequence, we can
assume that 7, H O J for some interval with |.J| > 5. Since f is leo, there
exists N such that f(J) = [ca, c1]. It follows that m,,,_yH D [ca, ;] for all
1. Hence H is not a proper subcontinuum. O

Apart from points and arcs, far more complicated subcontinua may be
present. One class pertains to the subcontinua consisting of a ray and one or
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two arcs. We call such a continuum an arc+ray continuum. This arc+ray
continuum is one-sided if it is the closure of the graph of an oscillating
function & : [0,1) — [0,1]. Examples are the sin Z-continuum and the M-
continuum [21, page 41]. The two-sided arc+ray continuum is the closure
of the graph of an oscillating function A : (0,1) — [0, 1] (infinitely many
oscillations near both 0 and 1).

For z < ¢, let Z > ¢ be the point such that f(z) = f(z). It will be useful
to have a symbolic description of (I, f). For z € (I, f), let v(z) € {0, *, 1},
called the itinerary of x, be defined as

0 ifmi(z) <ec
vi(z) =4 * ifmj(z) =c
1 ifnmi(z) >ec.

Let f™ be some iterate of f and let J be any maximal subinterval on which
f™|s is monotone. Then f": J — [ is called a branch of f™. A map is called
long-branched if there exists € > 0 such that |f"(J)| > ¢ for every n and
every branch f":J — I of f. For example, since df"(J) C orb(c) U {0},
any map with a finite critical orbit is long-branched.

A branch f™:J — I is called a central branch if ¢ € 0J. Hence there are
always two central branches, the images of which are the same. An iterate
n is called a cutting time if the image of the central branch of f™ contains
c. The subsequent cutting times are denoted by Sp, Si,Ss,...(So = 1). If
% + J — I is the left central branch of f°¢, then there is a unique point
2 € J such that f%(z;) = c. By construction, z; has the property that
Uo<j<s, /7 (¢) N (2, ¢) = 0 and is therefore called a closest precritical point.
The symmetric point Z; is also a closest precritical point. It can be proven
that the difference of two subsequent cutting times is again a cutting time.
Hence we can write

Sk — Sk—1 = Sq(x), (1)

where () : N — N is an integer function, called the kneading map. An
equivalent statement is

£ (e) € (2ur+1)-15 2Qee+1)] U [Zoei41): Z@ei+1)-1)- (2)
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The kneading map was introduced by Hofbauer, see e.g. [16, 17]. A
survey of this tool can be found in [12]. Clearly every unimodal map has a
kneading map. Conversely, an integer map @) is admissible, i.e. is realized
as the kneading map of some unimodal map, if the following admissibility
condition holds:

{Q(k+5)}i>1 = {Q(Q*(K) 4 7)}j»1 for all k > 1. (3)

Here > denotes the lexicographical ordering. The kneading map (or cut-
ting times) determine the combinatorics of f completely, and therefore the
topology of the inverse limit space. Here it is important to have f leo, so
that ambiguities involving e.g. stable periodic orbits cannot occur, see [19,
Section IL.3].

3 Dense Rays

For a subcontinuum H C (I, f), let {n;};>1 be the set of critical projections,
i.e. the integers m; such that ¢ € intm, H. By applying f‘l to H, we
may assume that n; = 1. Only the asymptotic behaviour of the critical
projections is important.

Lemma 3 Let H C (I, f) be a subcontinuum with critical projections {n;}.

1. For each © > 2, there exist k; such that n; —n;_y = Si,. Moreover
Cski S 87Tni_1H.

2. For each v > 1, j > 0, either n; — Sk,+; s a critical projection, or
n; — S]ci_lr_j <ni.

Proof: For i > 2, let k; be minimal such that 2y, or 2;, € m,, H. Because z,
is a closest precritical point, n; — Si, = max{n < n; | 7, H > ¢}. Therefore
n; — Sk, = mi_1. Since ¢; € Om,, 1H and fi(m,, 1H) # c for j < Sk, also
csy, € Omy,  H. This proves the first statement. We now have m, H O [z, c|
or ¢, 2,]. Therefore also m,, H 5 2,4 or 2y, for each j > 0. It follows that
[t (m,, H) 2 ¢, ie. n; — Sg,4; € {nm} for each j > 0 or n; — Sy,4; < n1.
|
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Definition 1 Let H C (I, f) be a subcontinuum with critical projections
{n;}. Fori > 1 let M,, be the closure of a component of m,,H \ {c} such
that

fskl(Mm) =T, H. (4)

and let L, be the closure of the remaining component.

In Definition 1, it may be the case that the closure of each component of
mn, H \ {c} satisfies (4). In this case, let L,, be the component containing

Cgki+1.
Proposition 1 Let H C (I, f) be a subcontinuum. Then H is a point or
contains a dense ray.

Proof: Let ¢y : [0,1] — 7y, H be linear, onto, and such that ¢;(1) = cg,_.
Set ap = 0 and By = 1. Recursively define ¢; : [@it1, Biv1] — 7, H to
be a continuous monotone map such that f%% o @;|ja;.5] = Pi-1][as,6] With
vi([ay, Bi]) = M,,, and such that ¢; : (@1, Biv1] \ |4, Bi] = Ly, is linear
and onto. The a; and §; are chosen so that —1 < ..oy < az3 < ay < o <
B3 < B4... < 2, and so that |a;11 — ;| = 0 and |Gip1 — Gi] = 2—12 or vice
versa for all .. Let o = lim;_,, o; and 8 = lim;_,,, §;. For a fixed m > 1
and z € (o, 3), set 4o = min{i | z € |41, Fi+1] and m < n;}. Then, by
construction, f™ ™o ;(z) = f™o ™oy, () for i > iy. Hence, we can take
limits and define @ : (o, 8) — H as

By = lim f ™o ;.
1—00

As @ is one-to-one and continuous, R = ®((a, 3)) is a ray. By construction,

m,R = 7, H for each n. Hence, R lies dense in H. O

Given a map f and integers {n;}, the next proposition gives combinatorial
conditions on f and {n;} which allow a subcontinuum H C (I, f) with
critical projections precisely {n;}. In fact, H is the largest subcontinuum of
(I, f) with this set of critical projections, i.e., if H' is another subcontinuum,
then H' C H if and only if the critical projections of H' are a subset of the
critical projections of H.
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Proposition 2 Let f and a set of integers {n;}i>1 satisfy:

1. For each © > 2, there exists k; such that n; —n;_y = Sk, withny =1,
2. For each such k;, Q(Q(k;) +1) < ki1,

3. For each i > 2, {Sk,4;}j>0 = {ni — ni—j—1}j>0, where = denotes the
lexicographical ordering.

Then there exists a subcontinuum H C (I, f) whose critical projections are
precisely {n;}i>1. If additionally k; — oo, then H is a proper subcontinuum.

Proof: We construct the subcontinuum H by constructing the projections
moH. For n < ny let
T H = fn2_n([zk2—11 C])

Because [zx,_1, ¢| is a maximal interval on which fS is monotone, m, H
c for ni < n < ny, but m,, H = f%([z4,-1,¢]) = [csq(kz),cst] S c.
Also m,,—1H > ¢1. Let M,, be the interval adjacent to [c, cs, ] such that
f(M,,) = mn,—1H, and let

Tny H = Mp, Ulc, cs;, |-
Then 7, H C [2ky—1,2ky—1)- Indeed, M,, is one of [zx,_1,c| or [¢, Zx,—1]
since f%z |y, is monotone and [z,_1,¢] is a monotonicity interval of f .

Assumption 3. and Lemma 3-1. imply that Si,;1 > n3 — n; and therefore
that Q(kg + 1) Z kg. Hence, CSkg € [zkz—h 2]92_1].

Let us continue the construction under the inductive assumption that
TnH C [2ki—1, Zr—1] and cg, | € Omy H. (5)
This holds, as we just checked, for i = 2. For n;_; < n < n; let,
muH = F5 (M),

where M, is the maximal interval adjacent to [c, CSkM] such that f5% (M,,) =
T, H. Now f5 maps [2, 1, ¢] monotonically on [cSQw,),cSki], and because
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Q(Q(k:) + 1) < ki1, [esyq,) €8] D [2hi1-1,¢sy,]- Therefore M, is well-
defined and contained in [zg,_1, Z,—1]. Let

T, H = M, Ulc, 05k¢+1]'

Again, (use assumption 3. and Lemma 3-1.) Skis1+1 = Nip1 — i1 implies
Q (ki1 +1) > k;, and hence CSyy € [2k;—1, Zk;—1]- This proves the induction
hypothesis (5) for i 4+ 1, and we can continue the construction.

In this way we obtain a sequence of compact projections 7, H with the
property that f(m,H) D m,_1H. It remains to show that f(m,H) C 7, 1H.
In fact, it suffices to check that f*i([c,cs,, ]) C mn,_, H.

We know that [c, s | - 7n, H. Now f5i([e, 65k¢+1]) = [csy, CSki+1+Ski] is
an interval that overlaps with m,,_ H. If Sy, 11 > nip1 —ni_1 = Sk, + Sk,
then [cski , 65k¢+1+5k¢] 7 c. Therefore this interval is contained in ,, , H.

If Ski\i41 = Niy1 —Nie1 = Sk, + Sk;, then [cski’cski+1+ski] 3 c. The piece
¢, ¢g, | is contained in 7, . H. But the piece [c, cg, is not yet accounted
[c, kl] i1 p » CSh; +1 y
for. However, if we take another Sy, , iterates and compare S, , 1o with
Skisr+1 + Sk;_,, using assumption 3., we can repeat the above arguments.
This shows that H is a subcontinuum.

Finally, because m,,H C [2k,_1,2k;,—1], the Lemma 2 together with the
assumption k; — oo give that H is indeed a proper subcontinuum. O

4 Arc+Ray Subcontinua

In this section we give sufficient conditions for a subcontinuum H to be
an arc+ray continuum. In [11] it is shown that f being long-branched is
equivalent to @ being bounded. Hence, by (2), when f is longbranched, the
cs,’s are bounded away from c.

Proposition 3 If f is long-branched, then the only proper subcontinua of
([e2, 1], f) are points and arcs.
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Proof: Let H be a subcontinuum with critical projections {n;}. If {n;} is
finite, then H is an arc or point, see Lemma 1. Assume therefore that {n;}
is infinite. By Lemma 3, m,,H D |[c, CSki+1]' Because f is long-branched,
CShiry is bounded away from c. Therefore |7, H| /4 0 and, by Lemma 2, H
is not, proper. O

The next theorem makes it clear that there are non-long-branched maps
with only arcs as proper subcontinua.

Theorem 1 Let H be a subcontinuum with critical projections {n;} and
T, H = My, U Ly, as in Definition 1. If there exists 1y such that for every
i > 19 and i > j > iy we have ¢ ¢ int f""i(L,,), then H is a point, an arc,
a sin i—contmuum or two sin %—continua glued together at their rays.

Remark: If the subcontinuum H has been constructed as in Proposition
2, then the hypotheses of Theorem 1 are met when there exists iy such that
for every k; (recall: n; — n;—1 = Sk,) we have S, 1 > n; — ng,.

Proof: By applying f ~(ni=nis) we can shift n;, into n;. We may assume that
¢ is not periodic; in the periodic case every proper subcontinuum is an arc
or a point, as one may derive from Proposition 3.

Let ® : (o, 3) — R be the parametrization of the dense ray constructed
in Proposition 1. It suffices to consider cl ®((fy, 3)), since cl ®((a, ap)) is
similar.

Suppose that i, j are such that §; < Biy1 = 5; < B+1. Then @, ([6;, Bit1]) =

©i([Bi, Biv1]) = Ly, and @4, ([8), Bj11]) = [ " (Ly;) C Ly,. Hence, by in-
duction, it follows that for each m € N, {®,,([5;, Bi+1]) | ni > m, B; # Biy1}

is a nested sequence of closed intervals. Moreover, if §; < s,t < (3, then
vj(®(s)) = vj(®(t)) for all j < n;.

Define 9 : ®([3y, 3)) — R? as
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Then ¥ (®[Fy, 3)) is the graph of an oscillating function A : [5y, 8) — [c2, 1],
such that h([8;, Bit1]) = ©1([Bi, Bi+1]). We show that ¢ is uniformly contin-
uous. Fore > 0let D > 0 be such that 2 < £. Set D' = min{i > D | 3; #
Bit1} and D" = min{i > D' | B; # Bit1}. Let ny = min{|L,,| | ¢ < D} and
n, = min{|A4| | i < D", A C M,, and f5(A) = L,, ,}. We may assume
that f is Lipschitz with Lipschitz constant L > 2. Let

Y T2 }
’ LnD/ 2”D'+1+1, 27ZDII '

0= min{%

If z,y € ®([fo,F)) have distance less than J, then clearly |mz — my| <
6 < £. Hence, it suffices to show that [®~'(z) — & '(y)| < 5. Assume that
&~ !(z) < &7 (y), and let ¢ be such that ®~'(x) € [B;, Biz1)- If i > D, then
obviously [®7(z) — ®7'(y)| < B — 3 < 27P < £. So assume that ¢ < D.
We distinguish three cases:

o & (y) € [B;, Bit1)- Since Py, |(3,6:,1] = @il[s,,5i,1] 1 @ linear map onto
L,,, it follows

i1 — B 27t ¢

13 (z) — d ' (y)| = Mm.m — Ty < =—2M6 < =

T 2
e d(y) € [B;,B;+1], where j is such that 841 = B; < Bj41. Now
gpj|[ﬁi,ﬂj+1] is monotone, where cpj\[ﬂj,gjﬂ] is a linear map onto Lnj, and
7™ 0 ;18,8011 = @ili,8i41] 15 @ linear map onto L,,. Hence the

. . [Ln, | | L, |
slope of ©;]s,4,,,] is larger than min{ el (ﬂi+1—ﬂi)Lnj_ni} > oy
It follows that

L' |, & — . "
271 ) — 07! y)| < T ]

D/ £
2My < —.
m m 2

e 7 1(y) > Bj41, where B = B; < Bj41- Let k be such that §;11 =
Br < Br+1. (Note that £ < D".) Because {®,, ([3,fi+1]) | | >
k and (B, # (41} are nested intervals, m,,y € L,,. Also m,,x € M,,
and [m,,z, c| contains the interval A that is mapped onto L, by f™~".
Therefore |, x — 7, y| > |A| > 1 and d(z,y) > %7 > §. This con-
tradicts the choice of x and y.
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This proves that 9 is uniformly continuous and therefore we can extend %
to the closure of R. Because cl R is compact, it is homeomorphic to an arc if
Ni>1,8:#6:41 P1([Bi, Bit1]) s a point, and homeomorphic to a sin t-continuum
if Ni> 1,881 P1([Bi, Bit1]) is a non-degenerate interval. O

Closely related to the kneading map is the Hofbauer-tower [16]. Given
a unimodal map f, the associated Hofbauer-tower is the disjoint union of
intervals { D, }n>2, where Dy = [c9, ¢1] and for n > 2,

Do = f(Dy) ifc¢ D,
" e, ] if ¢ € Dy,

By (1) it follows that for k£ > 2

Dsk = [Csk, CSQ(k)]' (6)

As the core is compact, an equivalent formulation of leo is: for every € > 0,
there is a positive integer N such that if U is an open subinterval of the
core with |U| > ¢, then for every n > N, f*(U) = [cq, ¢1]. Hence, leo, (2),
and (6) give

lim Q(k) = oo = lim |Dy,| =0, (7)

k—o00

where () is the kneading map of f.

Corollary 1 Suppose f is such that Q(Q(k) + 1) is bounded. Then every
proper subcontinuum of ([ca, 1], f) is a point, an arc, or a sin%—continuum.

Proof: The ‘geometric’ meaning of this bound is as follows. From (6), the
Sk-th level in the Hofbauer-tower is Ds, = [cs,, cs,,,]- Using (2),
CSau € (Za@m+1)-1: 2e@m+n] Y 2w +1) Za@k)+1-1)-

Thus Q(Q(k) + 1) bounded means the cs,,,,’s are uniformly bounded away
from c.

Suppose that Q(Q(k) + 1) < B for all k. Let H be a subcontinuum with
critical projections {n;}. We may assume that {n;} is infinite; otherwise H
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is a point or arc by Lemma 1. Using Lemma 2 and applying f , We may
assume that

|Tn, H| < |¢ — zs,| for all 4. (8)
If for some ia S fSki([Q Csk¢+1])’ then (use (6)) [Csk¢+1+1’ch(ki+1+1)] C
mn,_ H contradicting (8). Hence, Theorem 1 applies with L,, = |[c, cski+1]
for all 2 and therefore H is a point, an arc, or a sin%-continuum. O

Corollary 2 Let H be a proper subcontinuum satisfying the hypotheses of
Theorem 1. If additionally limy_,o, Q(k) = oo, then H is either a point or
an arc.

Proof: If H is homeomorphic to a sin%—continuum or to two sin %—Continua
glued together, then NM;>1, g 24,,, ®1([Bi, Bit1]) = J with J a non-degenerate
interval. The construction of J implies that |D,| 4 0, contradicting (7). O

Example 1: We give a map f (or rather its kneading map Q) such that f
is not longbranched, but all proper subcontinua of (I, f) are arcs or points.
Let {k;} be a sequence such that k; — k; 1 > 3. Let @) be a kneading map

such that
Qk+1)<10 if £ ¢ {k;},
{ Q(kz + 1) — ki—l — Q.

As @ is not bounded, f is not longbranched. Let H be a subcontinuum with
critical projections {n;}. It follows from Lemmas 2 and 3 that n;, — n;_; €
{Sk; }; for all but finitely many . For simplicity assume that n; —n;_1 = Sk,
for all ¢ (passing to a subsequence if needed). Let iy be such that Q(k;+1) >
ki—1+1for all+ > 4. Then it follows by induction that n;—Sk, 11 < n;, for all
i > ig. In fact (n;—mn;,) — Sk, 41 — —oo. Therefore the condition of Theorem
1 is satisfied. Write J; = @y, ([a;, aiy1]) = fri™o([c, 05k¢+1])' Then J; are
nested intervals, and S, ,+1) — (n — ni) = min{j | f7(J;) > c}. Because
SQki+1) —n1 — 00, |Ji—1| = 0. As was shown in the proof of Theorem 1,
H = cl R is an arc.

Theorem 2 Let H be a subcontinuum with critical projections {n;} and
T, H = My, U Ly,, as in Definition 1. If there erists a sequence {i(m)}
such that for every m, every i > i(m) and every 1 < j < i(m), ¢ ¢
int f" (Ly,), then H is an arc+ray continuum or an arc.
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Proof: We may assume that ¢ is not periodic. Let ®((«, #)) be the dense
ray in H constructed in Proposition 1. Again it suffices to deal with
R = ®([6o, 8)). By assumption int @, ([Bim), B8)) # ¢ for i(1) < j < i(m).
Therefore, for all s,t € [Bigm), f) and all n;q) < j < Nigmy, v(P(s)) =
vj(®(t)). Let A = {x € H | thereexistt; € (b, ) with lim; ,ot; =
B and lim;_,o ®(t;) = x}. If 7,y € A, then v;(x) = v;(y) for all j > nyq).
Therefore #{n | m,(4) > ¢} < oo and hence A is contained in an arc compo-
nent [6, Lemma 2.8]; thus A is connected since (I, f) is atriodic [21]. Hence,
A is an arc or point by Lemma 1. O

Corollary 3 Let H be a subcontinuum with critical projections {n;} and
o, H = M, UL, as in Definition 1. If there exists a sequence {i(m)} such
that for every m > 1, 1 > i(m) and j > 0, either n; — Sy, > Nym) or

n; — Sk;+5 < ny1y. Then H is an arc or an arc+ray continuum.

Proof: Let R = ®([fy,3)) be as in Proposition 1. We show that the hy-
pothesis of Theorem 2 holds. To be precise, we show that for every m > 2,
i(1) <l <i(m) and i > i(m),

int f*7"(L,,) # c. 9)

Fix m > 2. We argue by induction on i. First take i = i(m). By assumption
SQ(ki(m)+1+1) = Ski(m)+1—|—1 - Ski(m)+1 > ni(m)ﬂ — nz(l) — (ni(m)+1 _ nz(m)) —
Mi(m) — Ni(1)- Lherefore CStimyrs € [2r, 2, for some 7 such that S, > 1) —

Ni1) > Nigm) — M. Hence Ly, = |c, CStiim) 1] and int fmiem ™ (L, ) & c.

+

Assume now by induction that (9) holds for all ¥', i(m) < i’ < i. Assume
by contradiction that f" ™ (L, ) > c. Assume also that [ is the largest
integer < 4(m) with this property. Let z € f~ (") (c)N L, andlet J>
be the corresponding monotonicity interval of f™~™. Then there exist 0 <
a < b < n; —n such that ¢ € f%(J),0f°(J). By the assumption on [, in
fact a,b < n; — njm). More precisely, n; —a = ny and b —a = S, 1, for
some i(m)+1 <4’ <iand j > 0, and we get f*(J) = [z, 4, ] or [c, 2k, 4]
Hence

fa+Ski’ (J) = [fSkil (zkil +j)7 CSki, ]7

and
cE f(”i'—1_”l)+(a+5ki/)(J) C fni’—l_”l.
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This contradicts f™™|; monotone and the induction hypothesis (9). O

Example 2: We call H an MW -continuum if it is homeomorphic to the
closure of the graph {(z, h(3)) | = € (0,1]} where h(x) = sinz +sin 3z. The
shape of the graph explains the name, cf. the M-continuum in [21, Exercise
3.32]. We give the kneading map of a map f such that (I, f) has an MW-
continuum as proper subcontinuum. Suppose {k;}; is an integer sequence,
and () satisfies:

Qks + 1) = ko,

Qks +1) = k3, Q(ks +2) = ko,

Qki+1)=Fki 1,Q(ki+2)=k; o+2,Q(k;+3)=5,Q(k; +4) > 1, ifi>4iseven,
Qki+1)=Fki1+2,Q(ki+2)>1, if i > 4 is odd.

Let {n;}; be such that n; —n;,_; = S,, and let H be the subcontinuum with
critical projections {n;}; as constructed in Proposition 2.

A

25

~

ﬁi*? ﬂ£+llﬂi+2

z5

Figure 1: m,, o ®: (o, 3) — I, i is odd.

Let ® be the parametrization of the ray R. We sketch why H = cl R is
an MW-continuum. First observe that

n— . — Sk;42, 1if1>41is even,
YT Skg1,  ifd > 4 s odd.

This can be shown by induction. Theorem 2 applies (with i(m) = 2m)
since Sk, 11 = n; — nj_o for i > 4 even. Note also that (cf. Proposition 2),
Ly, = [c,cs, ] for each i. Therefore L,,_, = @;—1([fi-1, 3i]) for all 4. In
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particular 3,1 < (; while o;_1 = «; for each 7 > 1. We finish the sketch
by computing m,, o ®|s,_, s, for each i, see Figure 1. We use (2) repeatedly
here.

e ¢ is odd. Now n;_1 —ny = Sk,41 — Sk, = Sk;_;+2 and f™~17™ maps
Ly, , monotonically onto [cs, ,,,¢Cs, ,]. Because Q(k; +2) > 1 —
00, €g,.,, — € as i — oo. However Q(kj_; +3) = 5, and because
Q(ki—1+4) > i—1 — oo, we can derive cg,_ L4» —* %5 O Z5 as 1 — 00.

i

e i is even. This time f“%-1 maps L,,_, onto [cski_l,CSki+Ski_1] =
[cs, s sy, 41) D ¢ Afterwards f™-2"™ maps [c,cs,. ] = Ln,_, onto
[CS4;_y10s CSk,_ 41) 2 [#5:¢] or [c, 25] as in the previous case. The other
component [c, cs,_,,] is mapped monotonically onto [cs, ,,: Csy 1148, ,10] =
€S, 40 Sy, 4n)- Because Q(ki—o +3) = Q(k; + 3) = 5, this interval
contains [zs, Z5]. (Because both Q(k;_s + 4) and Q(k; + 3) — oo the
intervals [cs,. .,,Cs; ,,] converge to [z5, Z5] as ¢ — 00.)

2+27

This proves Figure 1.

As remarked in the preliminaries, if maps f and g are topologically con-
jugate, then their inverse limits spaces (I, f) and (I, g) are homeomorphic.
Hence, in the next example one may assume that f is a tent map.

Example 3: Let f have the Fibonacci combinatorics, i.e., Q(k) = max {0, k—
2}, see e.g. [19]. The cutting times {Si }x>¢ are precisely the Fibonacci num-
bers: Sp =1, 5, =2, and Si1 = Sk + Sk_1- An image ¢, is a closest return
of ¢ provided ¢; ¢ [c,, ¢, for 0 < j < n. For the map f, closest returns
occur iff n € {Sk}r>0. We construct two proper subcontinua of (I, f), E
and F', with the following properties:

1. The continuum F' is an arc and F' C FE.

2. Let R = ®([0,00)) be the ray from Proposition 1 for the subcontinuum
E. Then RN F = () and lim;_,, d(®(t), F) = 0.

3. The continuum E is an arc+ray continuum.
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4. Let B be a non-arc proper subcontinuum of (7, f). Then there exists
an integer ¢ and an arc A such that f*(B) C EU A.

First we construct E. Set k; = ¢ —1 and n; — n;_1 = S, for ¢ > 2. Let
T E = [bi,cskm] for i > 1, by = ¢4, and M,,, = [c,b;] for ¢ > 1. Tt follows
from (2) and (6) that E can be constructed as stated; see Figure 2.

C1

by

Cs

C3

Co

Figure 2: Critical Projections m, F for 1 <7 <5

Next we construct F'. Again, k; =4 — 1 and n; — n;_qy = Sy, for ¢ > 2.
Set m,, F = [csm,cskm], for 4 > 1; here M,, = |c, 65k¢+1] for all i. By
construction, F' C E; see Figure 3. For all i > j we have int " " (L,,) % c
and therefore, by Theorem 1, F' is an arc.

Cs Cs

C3
Co

Figure 3: Critical Projections 7, F for 1 <7 <5
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It follows from the proof of Proposition 1 that the points x = (z1, z2, x3, - - -
R are precisely those x € (I, f) for which there exists | € N with z,,, € M,fi
for all n; > 1. For E, My = [c,b] all i. For F, M = [c,cs,, ] all i. Thus
ME n M} = {c}. Hence the second property holds.

For the third property, let x = (z1, %9, 3,...) € E\ F; then there exists
an i such that x,, ¢ F,,. Hence, z,; ¢ F,, for all j > i. But for each j,
F,; D ij. Thus, z,; € Mf; for all j > i. Therefore z € R.

For the fourth property, assume that B is a proper subcontinuum of
(I, f) and that B is not an arc. Let {m;} be its critical projections with
mg; —m;_1 = Sli-

Claim 1: We have that [, > [; for i > 1.

Proof: Because 7, B D [c, CSz,-+1] and m;_q is the previous critical return,
fS = fmi=mi-1 is monotone on |c, cSlHl]. But by (2) and the fact that
Q(k) = k—2, we have that cs, & [21,,,-1, Z,4,—1]. Therefore, 5, < 5,1,
as was claimed. In particular, as k; =7 —1, [; > k; for all + > 2.

Claim 2: Fori > 1, [cg,  ,¢] C my E.

Proof: The closest returns ¢, to ¢ occur when n is a cutting time [11, 19].
Since 111 > ki1, we get ‘Cslm —cl < \cSkiJrl —¢|. Now 7, F = [CSkH_l’bi]
and because f°%([c, Csy,,,]) 1s properly contained in m,_, E = (e, b)),
we get |b; — ¢| > |CSki+1 — ¢|. This proves claim 2.

Claim 3: Suppose that I; = k; =1 — 1, or that [; > ¢ + 1, for some 1.
Then 7, B C 7, ,E.

Proof: Suppose first that l; = k; = 7 — 1 for some 7. Because k; = j — 1,
lj+1 > 1 for all j, and Iy > 1 we obtain that I; = k; for all 2 < j <. As
[c, by is a maximal interval of monotonicity of f™*, and using Claim 2, it
follows that m,, ,B C m,, ,E.

Secondly, if I; > ¢ 4+ 1, then because m; and m;_; are consecutive crit-
ical projections for B and m; — m;_y = 5, it follows that m,, ,B C
Ds, = [cs;, ¢s9(;)] = les;s cs;_,] for some j > i+ 1. Recall that m,, B =
[csy,» bim1] = [cs;_,, bi—1] and that [b;—1 —¢| > |cs,_, — c|. Because closest re-
turns occur only at cutting times, we get |cs;, —c| < |cs,_, —¢| < [eg,_, —¢| <
|bi—1 — c|, and thus 7, _,B C m,,_, E. Claim 3 is now complete.
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Recall that I; > k; = ¢ — 1 for all 7 and hence [; > ¢ — 1 for all 7. If for
infinitely many ¢ we have that [; € {i — 1,i+ 1,i+ 2,71+ 3,7+ 4,...}, then,
by Claim 3, m,, B C 7y, E for infinitely many 7 and hence B C E.

Lastly, assume that I; € {i—1,i+1,i+2,i+3,i+4,...} for only finitely
many i. Set 49 = min{j | i > j = ; = i}, n = n;,41, and m = m;,. Let
Apiy = Ty B\ Tny 1 B If Ay, = 0, then 7, B C my,, E for all i > ig and
therefore for all i € N. In this case, B C f* ™(E). If Ap,, # 0, then for
every i > ig Am; = T, B\, E issuch that f™ ™o (A,,,) = Ay, - Because
{m;} are the only critical projections, in fact f™~™io|A,, is monotone. Let
A C (I, f) be such that m,,,A = A,,, for i > i;. By Lemma 1, A is an arc
and B C f*™(E)UA.

5 Subcontinua

In this section we study subcontinua that are more complicated than arc+ray
continua. In [3] a method was demonstrated to construct subcontinua
that are homeomorphic to the entire inverse limit space of some unimodal
map. A key observation is that the map f : 7, H — 7, _ H is a
rescaling of a unimodal map. Under the assumption that the rescalings
of f5% : m, H — m,,_,H are sufficiently close to a fixed unimodal map
g : J — J (where the sufficient closeness depends on i), H was proven to be
homeomorphic to (J, g). In Proposition 4, we give two conditions, one com-
binatorial and the other analytic, on sequences of unimodal maps {f;} and
{g:} to guarantee that (I;, f;) and (J;, g;) are homeomorphic. We then re-
late the combinatorial condition of Proposition 4 to the properties of cutting
times. Lastly in Theorem 3, given JF a finite or infinite sequence of unimodal
maps with periodic turning points, we provide a unimodal map ¢ such that
the non arc+ray subcontinua of (I, g) are precisely the subcontinua from
the collection {(I, f)} rer.

Based on the construction in Theorem 3, we conclude that there are
uncountably many non-homeomorphic unimodal inverse limit spaces. This
uncountability is also established in [5]; however they use renormalizable
maps whereas our maps need not be renormalizable.
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Throughout this section for any (I;, f;) we assume each f; : I; — I;_; is
onto and unimodal. Similar to Definition 1, let M, be the closure of the
component of I; \ {c} such that f;(M;) = I;_1, and let L; be the closure
of the remaining component. Again, if there is a choice, set L; to be the
component containing f;+1(c). For convenience, let ¢ represent the turning
point of each f;; allowing ¢ to vary with 1.

Let (I, f;) be given and for ¢ > 1 and z € I; set,

1 if z € (Ca fi-l—l (C)]a
vi(z) =% x ifz=c¢,

0 ifzé e firi(o)]

For x = (x1, 22, x3,...) € (I;, f;) set
v(x) = ((21), D2 (x2), I3(23), - - ),

and define

T(x)={ye (U fi) | v(x)=20(y)}

Set
Ti(z) = {m(y) | y € T(=)}.

As in the proof of Lemma 1, each T'(x) is either a point or an arc and
hence each Ti(x) is a point or a non-degenerate subinterval of I;. For
convenience let D|;(x) = 1(z1),...,0(x;) for x € (I, fi) and 7;(2) =
ﬁl(fi,l(z)); cee ﬁz—l(fz(z)); l?Z(Z) for z € I;. For 7 > 1 set

C;=0I;U U fZ,_Jl(C) C I;.

1<j<i

Each C; defines a partition of I;, which we denote by P;. When more than
one inverse limit space is being discussed, we use C’if and CY etc.

Definition 2 We say (I;, f;) is combinatorially equivalent to (J;, g;), writ-
ten (I;, f;) = (Ji, gi), provided that for each i there exists a monotone bijec-
tion h; : CI — C9 such that D|;(a) = |;(hi(e)) for each o € C! and such
that hi(c!) = 9.
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In [6, Corollary 1.1] a different definition of combinatorial equivalence is
given.

For ease of notation, in the statement and proof of Proposition 4 we as-
sume that f;(c) € Mj_, and g;(c) € MY_, for all4, i.e, that I; = [fis0,(c), firri(c)]
and J; = [gi42,(c), gi+1,i(c)] for all i. Assuming no f; nor g; is the full uni-
modal map, we have that fi13;(c) and g;y3:(c) are in the interior of I;
respectively J;.

Proposition 4 Let (I;, f;) and (J;, g;) be given such that
(Li, fi) = (Ji, 9i)- (10)

Suppose that al 5, b]_5 € C, are such that f;;_s(c) € [a]_s,b] 3] = clPL,
for some PL, € PL,. Write AL ; = fi 51(al ;) and B, = fi 51(b]5).
Let af_5, b)_5, AY 5 and BY_5 be the corresponding points for (J;, g;). If for
all © sufficiently large

\Bif_?, — fia(c)| < |B{_3 — gia(c)] <(1+ l)
BL— ALy~ [BL— ALy ~ 2

|Bz'f—3 - fi,1(0)|
1B, — AL

(1-3) (11)

then (I;, f;) is homeomorphic to (J;, g;).

Proof: We first show that for each = € (I;, f;) there exists y € (J;, g;) such
that (z) = »(y); similarly it will follow that for each y € (J;, ¢;) there
exists x € (I;, f;) such that o(y) = v(z).

Let x = (z1,29,23,...) € (I;, f;). If D(z) contains at least one *, then,
from (10), there is a unique y € (J;, g;) such that 2(y) = #(x). Hence,
we assume that 2(z) does not contain an *. Then for each i > 2 we can
uniquely choose, use (10), P/ € P{ such that v|;(xz) = 7|;(z) for each z € PY.
Set J = N>z i1 (PY); note that the sequence {g;1(P{)}i>o is nested. There
exists a y € (J;, g;) such that #(y) = v(z) <= J # {c}. But, by (11),
J=A{c} <= Niso fin(h; 'P?) = {c} = z1 = c. Hence, J # {c} as x1 # ¢

since there is no * in o(z).

We have shown that for each x € (I, f;), there exists y € (J;, g;) such that
p(z) = 0(y). If z; € C for some i, then the point y is unique. Otherwise,
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we need to show that T/ (z) and T?(y) are comparable in size. So assume
from now on that z; # ¢ for all ¢ > 1, and that o(z) = o(y).

Let ig be such that (11) holds for all7 > 4y. Let K~ = mln{‘gl'f#| P e
ig,1

PZJ;} and Kt = max{%ﬂo—| PepP } where h;, is from Definition 2.

For each i let, P/ (z) € Pf be such that z; € P/(z). Let P/(y) be the same
object for y. In fact h;(OP]) = OP!(y).

Let 4, = 4;(z) be the largest integer bigger than i such that f;, _o, (PZ-J:,2 (x)) #
Pf( ). This means that f; +1,,-2(c) € inthjlc o(z) and ¢ € 8P1+1(x). In

partlmﬂar fh,u 3(P ( )) (fll,ll 3() zfl 3) and iy iv— 3(Pg(y)) (gll,i1—3(c)’b?1—3)'
Thus, from

9 PEW)| _ 191 (PAWD] 1gn-31(PE_5())| fis-30 (P} _3())]
i (PL@)] 19030 (Bl_aW)] |fis 31 (PL_s(@)] | fian il( )|

it follows by (11) that

(1- 2y (9io (B W) lgaa (P W))] _ <1+ |9i0,1 (P (1))

i \fio,l(Pi’;(x))\ T faaPl@)l T R | fien (P @)]

Next find iy = io(z) > 44 maximal such that f;, o, (P; ( ) # Pf(a:) and
repeat the argument. In this way we find for every i, (z ) > 1p, and in fact
for every 7 > iy,

1 P} i Py 1 P}
T (- )Igo, 1 z;(y))| < lgia zf(y))| < T 2)|90, 1(Po @)l
m>io [fion(Pig @)~ 1fin(Bf (@) mzie ™7 |fion (P (fv)()| |
12
Note that this is also true if i,,(x) does not exist for some n, because in that
case fi;_, (P/(z)) = Pz-{z_l(x) for all i > in_1. Set K1 = K™ [nsio(1 — =)

m2

and Ky = K [[,,54, (1 + -17). Because (12) is uniform in i, this gives in the
limit, i.e. for T} (z) = Ny fi1 (P (z)) and T¢(y) = Nigi1 (P (y)):

K\|T{ (z)] < |Tf (y)| < K|T{ (x)].

We now have the following two possibilities. Let x = (x1, 29, 3,...) €
(I;, f;)- If D(x) contains at least one *, then there exists a unique y =
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(y1,Y2,Y3,.-.) € (Ji,9;) such that o(z) = 0(y). In this case, the homeo-
morphism will simply take z to y, i.e. h(x) = y. If D(x) contains no x,
then T} (y) is independent of the y chosen with (z) = 7(y). In this case
we define the homeomorphism as follows. Let 9, : cl T} (z) — 1 T¢(y) be
linear onto and orientation preserving (i.e. the endpoint of T/ () closest to
f2(c) is mapped onto the endpoint of 77 (y) closest to go(c)). Note that the
slope of v, lies between K; and K. Now define h(x) as

h(z) = z, where z € (J;, g;) is such that ¥(z) = #(2) and m(2) = ¥, (m1(2)).

Finally we show that h and h~' are continuous. Suppose {z/}; C (I;, f;)
and 7 — x. Then 7;(z]) — D;(x;) whenever 0;(z;) # *. Let 3/ = h(z’) and
y = h(z). Because v(27) = #(y’) and 0(z) = (y), it suffices to prove that
yi =y

Pick n > iy large and suppose that z, € clP/(x)

Pl(z) € Pf. Write T/ (z) = [p/(z),¢’ ()] and I T (y ): [
We have

[al,b]], where
'(y), ¢ (y)]-

e =P 90 _ A9

€xr1— f T .
By defintion of v, ‘q"”(l )p;(g()y‘)‘ |q|f(1w)fp(f()w|)‘. The arguments leading to (12)
give that for all ¢ >

L faa (Pl @) _ 191 (PY(v)] i1 (P (2))]
H(l__) |B£—A£| S|B79L—A%|Sml_>[n(1+_) |Bn— ‘7

m>n

whence for the limit [p?(y), ¢?(y)] = cl (Migi1 P? (v)),

1 ¢/ () = ¢/ (z)] _ |¢°(y) — p*(y)] 1 |¢/(z) — p/(2)]
H(l_ﬁ) |B) — Al = |Bi — Al STEL(H@) B — Al

m>n

By the same arguments, also

1 [pf(x) — ALl [p?(y) — Af 1 |pf(z) — Al
1—— nl < ol T (1 4+ —) 22\ = Aal
ngn( ) |B — Al| — |Bf— Al _ngn( ) 1B — Al
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The same estimates can be derived for # € AT (z9) = [pf (29), ¢/ («7)] and
yi € AT{(y) = [p*(y7), ¢ (4)]. Therefore

iy =il = |y — A9| - |yl - A3
|1 B;, — Al 1 :
< E g - Al ([T 5) — 1) = e — AL+ (1= T (
|B7ZLr - A£| " r};ln m? ' " wgn
; 1 1
< K flo—2+ [[0+—=) - [[0==)| =0
m>n m m>n m
as j — oo and n — oo. This proves continuity of hA. By the same ar-
guments also ‘yl - y{‘ 2 Kl |:|$1 - .’13]1| + l_[mZn(1 + #) - HmZn(l - #)]a
which yields continuity of A7 O

The next definition is a straightforward generalization of the cutting times
discussed in the preliminaries.

Definition 3 Let (I;, fi) be given. The cutting times {S;x} of (L, fi), are
given by: S;p =1, and
Sijr1 =min{m > Sip | fios, i-mlc, fiios,.(0)]) 3 ¢},

fori > 2.

Lemma 4 Let (I;, f;) and (Ji,g:) be given with respective cuiting times
{Sz{k} and {S{,} such that for each i:

{Ssz} = {S%q,k}a (13)
and
fi(e) € LL, and gi(c) € L{_,. (14)
Then (I, f;) = (Ji, 9i)-

Proof: We need to construct the monotone bijections, A;, as in Definition 2.
Easily h; exists. Assume that h;_; exists, we construct h;. For a € Cz-f ﬂMif
set

hi(@) = g7 'as © hiz © fi(a). (15)

1
1=z

)
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As fi wf and g;| my are onto monotone maps and h;_; satisfies the conditions
of Definition 2, it follows that h; satisfies the conditions of Definition 2 on
cf nm/!.

Let v/ = LI\ {¢} and 49 = AL\ {c}. By (14) we have that v/ = fi,1(c)
and that 7/ = g;11(c). Thus, it follows from (13) that f,(%) € J,) and
9i(77) € hi—1(Jy()) for some J,;) € Pl |, all i. Thus we can define h; on
¢/ n L! by replacing g; |M¢9 in (15) with g; | Le- O

Lemma 4 can fail if we require only (13); thus having the same cutting
times is not enough to guarantee combinatorial equivalence. If we replace
(14) with f;(c) € L, <= gi(c) € L{_,, then it is not necessarily true that
(1;, fi) = (J;, gi); counter-examples exist when f;(c) € Mif, 1- In the proofs
of Lemma 5 and Theorem 3 condition (14) holds since we defined I = [0, ¢4]
for (I, f) with f(0) =

Lemma 5 Let f be a unimodal map with cutting times {Sk} and kneading
map Q. Assume that for a unimodal map f with cutting times {Sx} and
kneading map Q there exists an infinite (increasing) sequence {k;} such that
the following properties hold:

e Let ny be arbitrary and set n; = n;_1 + Sk,. For alli > 2,
QQk:) + 1) < k1. (16)
e Forallj>1 suchthati—§j21

QUki +7) = ki_g,_, + Q). (17)

Then there exists a proper subcontinuum H of (I, f) that is combinatorially
equivalent to (I, f).

Proof: The construction of H is the same as in Proposition 2. Assumptions
1. and 2. of Proposition 2 follow immediately from (16). Assumption 3. of
Proposition 2 follows from (17).
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Again, H = (1, H, f) is homeomorphic to (m,, H, f**). So, let us focus
on H in this last form. We use Lemma 4. From the definition of 7 = [0, ¢1]
statement (14), as discussed above, holds. Hence, we show that (13) holds.
We claim: For every r and every j > 0 such that r — S’j > 1 holds:

ny — Skr+j = nr—S'j (18)

We argue by induction, both on r and on j. Note that r — 5']- >1=0<
Jj <r—2. Forr = 2, we only have to check 7 = 0, and indeed ny — Sk, = n;.

Suppose that (18) holds for all " < 7 and all j > 0 such that r' — S; > 1.
For j =0, i.e. S; = 1, we again have n, — Sy, = n,_;. So let us assume that
(18) holds for 7' < r and also for 7' = r and all ;' < j. Then

Ny = Skptj4l = N — Skotj — SQkr+j+1) (by (1))

= nr—S‘j - SQ(kr+j+1) (by induction)
= nrfgj - Skr_gj-f-é(j-f—l) (by (17))
= Mg Ga = MG (by induction and (1))

proving the induction and the claim. Hence {S,{’k} ={Sux} =15k} = {5}
for all n. The lemma follows now from Lemma 4. O

In the next theorem we work with unimodal maps for which the critical
point is periodic. Within the tent family the set parameters for which the
critical point is periodic is a dense countable set.

Theorem 3 Let F be a finite or countably infinite sequence of unimodal
maps, each of them having a pertodic critical point. There exists g such
that for each f € F, (I,g) contains a subcontinuum H(f) homeomorphic
to (I, f). Moreover, every proper subcontinuum H C (I,g) that is not an
arc or arc+ray continuum is homeomorphic to (I, f) or ([ce, c1], f) for some

ferF.

Proof: For simplicity we will assume that the maps f € F and g are tent-
maps. If f has a periodic critical point, say of period p, then f;; ,(c) =
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fP(c) = c for all 4 > p. Here we have written (I, f) = (I;, f;) where I; = I
and f; = f for all 7. In particular there exists [ such that p = 5;; for all
i > p. Brown [9] showed that if f; are sufficiently small perturbations of f;,
(L;, fi) and (I;, f;) are homeomorphic. Let S; x be the cutting times of (Z;, f;).
We will choose these perturbations f, such that fw(c) #cforalli>j>1,
and f;;_,(c) lies on that side of ¢ that makes p = S;; a cutting time. By
taking f, sufficiently close to f; we can guarantee that ,SN’,-,,c = Sir = S for
k <l and 5},1 is also the largest cutting time for ;. Brown’s result can be
translated for our purpose into: There exists {¢;} such that if the above
described perturbations f; satisfy |fi;_,(c) — ¢| < &i|Ii_p|, then (I, f;) is
homeomorphic to (I;, f;).

We have to construct a map g such that for each map f € F, there exists
a sequence {k;}; satisfying the assumptions of Lemma 5. Moreover we want
to keep these sequences sufficiently disjoint so that the different subcontinua
won’t interfere with each other.

Let {vs,;}s,>1 be positive integers such that v,; < v, if and only if s+17 <
t+jors+i=1t+jand s <t. Hence

V1,1 <012 <21 <V13<U22<U31<V14---

The subscript s will index F. The precise values of v,; will be determined
along with the construction of g, but at least v, ; > 3v,;, whenever v, ; > v, ;.
We define g by defining its kneading map Q.

e Fix s and let f = f; be the s-th map from F. Consider the per-
turbation (I;, fi) of (I, f) as above. Let Sy = S;; and @ denote the

corresponding cutting times and kneading map. For 7,j such that
j>landi—95;>1, set

Q(usi + ) = v,;-5,_, + Q) (19)
and if j is minimal such that 5 — S; < 1, then

Q(Us,i + .7) = Us; — 2. (20)

e Repeat the above for all other s in the index set.
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e For all other integers n, Q(n) < 10 is chosen such that @) as a whole
becomes admissible.

Let us check that (19) and (20) allow the kneading map @ to be admis-
sible. We check the admissibility condition (3). Let 7 be arbitrary, and let
r,7 be such that »r > 0, 7 > 1 and 7 — S,H- > 1. Write k; = vy;. Then by
(19) and using the convention that k; = vs; = 0 for ¢ < 0:

{QUki + 7+ 1)}Yjz1 = {kig,,,_, + QUr +1)}j>

and

{Q@Q(ki+7)+ )}z = {QQK,_s , +Q(r) + 1)}z
= {Qlhis,_,_s,,, , T Q) +5)}ix
= {kis, 550 1Sy, T Q@) + D) i
= (ki 5, Sgu ., 45000, T QQ() +5) )1

If j = 1, then, because Q satisfies

(3)-
Qli+r+1)=k; 5 +Q(r+1) >k, 5 +Q(Q*(r)+1) = Q(Q*(ki+7)+1).

Now assume that, Q(r+j) = Q(@2(7') +7") for all 1 < j' < j. Then using
again (3) for @:

QP (ki+7)+J) = kig_3

Sg2(m+j—11562(r)

+Q(Q°(r) +

7)
i=Sr41-562(1)1j-1156 (41 H552(r) + (Q (r) +7)
+Q

= ks (Q*(r) + 4)
7)

Il
?r'

z_SH'l_552(r)+j—1+SQ(Q2(T)+1)+SQ2(T)

L T T S (23] (5

5Q2<r>+a—1+SQ2(r)+1

= kg, , +Q@Q(r)+))
ks, +Qr+7)=Qki+r+j).

Finally, if for fixed 7, Q(k; + 7 + j) = Q(Q?(k; 4+ 1) + j) for all j such that
t— Sp4j > 1, then we have to turn to the minimal j such that ¢ — S,,; < 1.

<
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For this j, (20) gives Q(k; +7 +j) = ki —2 > Q(n) for all n < k; +r + .
Therefore Q(k; + 7+ j) > Q(Q*(k; + r) + 7). This shows that (3) holds for
@ too, whence g indeed exists. Note also that Q(k) < k£ — 1 for all & > 1.
Therefore, see [12], @ doesn’t belong to a renormalizable unimodal map.
Hence () is indeed the kneading map of some tent-map; denote this tent
map by ¢ and let J = [0, g(c)].

To ensure that (J, g) contains the requested subcontinua, define for the
s-th map f € F a sequence {n;} by n1 = 1 and n; — n;_1 = Sg; = S, ;-
Therefore Lemma 5 yields a subcontinuum H (f) of (J, g) with critical pro-
jections {n;}, that is combinatorially equivalent to (I, f). To prove that
H(f) and (I, f) are homeomorphic, we need to check assumption (11) of
Proposition 4. For clarity, set (J,g) = (J;, g;) where J; = J and g; = g for
each ¢. In particular g, ,, = ¢"™ : Jp, — Iy

Recall that p is the period of the critical point of f and hence p is fixed;
say p > 3. Take i > p. Assume g, n, ,(¢) € (an;_y,bn;,_5) = Pn,_, for some
P,,_, € Pn,_,. Let j be maximal such that 7 — S’j > 1. Because p = Sl is

the largest cutting time, j = I. Clearly g,,_,n,_,(Pn;_;) C P,,_, for some
Py,_, € Py,_,- Note that the boundary points of g,,_,n,_,(Py,_;) liein Cy,_,

or are points of the form g, »,_,(c). Because Sy, ; = n; — n;_p is the largest
cutting time for n;, c is one boundary point of gn;_; n;_, (Pn;_,)-

By construction, cs, ,, = gnin;,(c) and by (20), Q(vsi+1+1) = Q(ki+1+
1) = k; —2; thus gn, », ,(c) becomes arbitrarily close to ¢ (recall (2)). At the
same time, gn, 5 n,_, (an;_s) € Cni—p and hence Ini_pns (gni—:s,m—p (an;_3)) = ¢
for some 1 < 7 < i — p; therefore |gn,_,n,_,(Gn,_,) — c| has definite size.
Hence, by taking v,; = k; sufficiently large we can make sure that

|C - gni,ni_p (C)| _ |gnz 33Mi— p(b’l%i_?,) - gniani—p (C)|
|C_ gni—Sani—p(a’%i—3)| |gn1 3,M5— p(bnl 3) gni—s;”i—p(a%i—ii)l
Next, choose the perturbation f; of f; such that |c — fi;_,(c)| = €|c —
fisip(a 53)| < e|I,_,|. Here fi; s(c) € (al_s,b ;) is the obvious partition

=& <g;.

element of P _5. Because € < €i this perturbation stays within the scope of
Brown’s result. As g,,_,1 and fz_p,l are piecewise linear,

‘gni—s,nl (bzl_g) - gni;'ﬂl (C)‘ — |fz 31( 17— 3) fz 1( )|
|9ni g1 (Bhizs) — Gni_g,ma (a1 5))] | fizaa (b Z-_3) fizsa(a 7))
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The above proves (11).

Any number of the form S, ;; with i — S; > 1 can be decomposed as

_ s s
S'Us,i+j - ni - ni—gj
S S S S S S
(ni —ni 1)+ (i —niy)+...+ (”i_§j+1 - ni_gj)
= Sugs t S Tt S 5

and this is also the decomposition in “lowest terms”. Indeed, because v,; >
vy,; implies vs; > 3y 4, it is not possible to decompose any of these terms into
smaller terms of the form S, ;. In general S,, ,,; can be written in several
ways as the sum of number of the form S,, ... But for any of the terms
t = s. We call this set of properties the unique decomposition property.

Let us finally show that there are no other non-arc+ray subcontinua than
the H(f)’s in (J,g). Suppose H is a proper subcontinuum of (J, g), and
the corresponding critical projections are {m;}. Because H is proper, m; —
my_1 — 00, and by applying ¢, we may assume that m; — m;_1 > Syo for
all £ > 2. We claim that for ¢ > 4,

my—Mmy1 = S’Ua(t),ﬂ(t)—l—’y(t)? (21)

where 0 < (t) < 3(t) is such that () — S, > 1 (here S, is the y(t)th
cutting time for the map f,)). Indeed, by Lemma 3, my — my—y = S5;,. If
Q(l; + 1) < 10, then (by Lemma 3 and (2)) my—1 — my—2 < Sgq,+1) < Sho;
contradicting m; 1 —my;_ o > Sio. Hence there exist a(t), 3(t), and (t) such
that l; + 1 = va),8¢) + 7(t) with one of (19) or (20) holding; either way we
have (21). This proves the claim.

Next we claim that, if j is maximal such that S,
say Sva(t),ﬂ(t)+7(t)+j = m; — m,, then

a(t),8(t) Y (E)+i < my —my,

alt)=alt—1)=...=a(r+1).
If j = 0, then the statement is true by default. So assume j > 1. Take any
1 S j, S ] and Write Sva(t),ﬂ(t)+7(t)+j’ == mt - m,,-l and Sva(t),ﬂ(t)‘k')’(t)"‘j’*l =
my — m,». Then
SQuaw.sw O+ = Sva(t),ﬁ(t)—g'y(t)+j',1+Q(7(t)+jl) = M

= (m,,.u — mr”—l) + (mru_l — mru_g) —+ ...+ (mr:+1 — m,,-l).



QLuvloiiviiiua UL 1HYVCLoC LT O PJallo

By the unique decomposition property,
at)=a()=alr" —1)=...=a(r' +1).

This proves the second claim. Let us call {m;} monochrome, if for each
t € N, a(t) from(21) has the same value. The claims imply that {m;}
consists of monochrome blocks, and if N = {mg,mg_1,...,mp} is such a
monochrome block, say of color s, then for each a > ¢ > b and each j,

Sveitj <My —my or Sy, 15 > My —my.

If {m;} consists of finitely many finite monochrome blocks and one infinite
block, say of color s, then the tail of {m; + z} is a subsequence of the
tail of {m$} for some z € Z. Therefore H C ¢=*(H(f)). Because f is
long-branched, Proposition 3 shows that either H = ¢g=*(H(f)) or H is a
point or arc. If there are infinitely many finite monochrome blocks, then
the numbers my for each block form sequence as described in Theorem 2.
In this case, H is an arc+ray subcontinuum. O

Corollary 4 There are uncountably many non-homeomorphic unimodal in-
verse limit spaces.

Proof: Let F denote the subfamily of tent maps for which the turning point
is periodic. As was pointed out in the introduction, if f is such that c is
periodic of period n and g is such that c is periodic of period m, with m # n,
then (I, f) is not homeomorphic to (I, g). Hence the corollary follows as the
power set of F is an uncountable set. O

We point out that one can also generate uncountably many non-homeomorphic
inverse limits spaces via constructions as in Example 2.
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