Dimensions of recurrence times and minimal subshifts

Henk Bruin
Department of Mathematics
California Institute of Technology
bruin@cco.caltech.edu

March 28, 2001

Abstract

Examples are presented of minimal subshifts with positive entropy, and their Afraimovitch-Pesin capacities are computed. It is shown that the lower capacity can be strictly smaller than the entropy.

1 Introduction

Let T be a continuous transformation of a metric space (X, d). In [1], Afraimovich proposes the following fractal dimension-like strategy. For a set $U \subset X$, let

$$\tau(U) = \inf\{n > 0; T^n(U) \cap U \neq \emptyset\}$$

be the return time of U to itself. (If $T^n(U) \cap U = \emptyset$ for all n, we set $\tau(U) = \infty$ by convention.) This quantity can be used to compute a measure of the space:

$$m_{\alpha}(X) = \lim_{\varepsilon \to 0} \inf_{\mathcal{U}} \sum_{U \in \mathcal{U}} e^{-\tau(U)\alpha},$$

where the infimum is taken over all covers \mathcal{U} whose elements U have diameter diam $(U) = \sup_{x,y \in U} d(x,y) < \varepsilon$. (By convention $e^{-\infty \alpha} = 0$.) The critical dimension α_c of the space X is defined as

$$\alpha_c = \sup\{\alpha; m_\alpha(X) = \infty\}.$$

This setup is analogous to the definition of Hausdorff dimension, and fits in Caratheodory's construction, see Pesin's book [10]. It is noticed that α_c in many cases coincides with the topological entropy of (X, d, T), although $e^{-\tau(U)}$ is not the same quantity as $\eta(U)$ in [10, page 68], which was shown to lead to a dimension-theoretic definition of entropy.

The motivation for this note were discussions with and questions raised by Penné, Saussol and Vaienti. In [9] they study the properties of α_c (which they call the Afraimovich-Pesin or AP-dimension of X). Let us make a few remarks:

- The covers \mathcal{U} are not sufficiently determined; one can think of open covers, closed covers, covers of arbitrary sets, covers of Borel measurable sets, etc. In [9] the first three possibilities are studied. In this note X will be a subshift on two symbols, *i.e.* a compact shift-invariant space of $\{0,1\}^{\mathbb{N}}$ or $\{0,1\}^{\mathbb{Z}}$. The metric used is $d(x,y) = \sum_{n} \frac{\delta(x_n,y_n)}{2^{-|n|}}$ where $\delta(x_n,x_n) = 0$ if $x_n = y_n$ and 1 otherwise. Therefore it is natural to consider covers consisting of cylinder sets.
- Instead of covers with sets U with $\operatorname{diam}(U) < \varepsilon$, one could take covers with sets U with $\operatorname{diam}(U) = \varepsilon$. This gives rise to the quantities

$$\overline{m}_{\alpha}(X) = \limsup_{\varepsilon \to 0} \inf_{\mathcal{U}, diam(U) = \varepsilon} \sum_{U \in \mathcal{U}} e^{-\tau(U)\alpha}$$

and

$$\underline{m}_{\alpha}(X) = \liminf_{\varepsilon \to 0} \inf_{\mathcal{U}, \, diam(U) = \varepsilon} \sum_{U \in \mathcal{U}} e^{-\tau(U)\alpha},$$

and the Afraimovich-Pesin upper and lower capacities

$$\overline{\alpha}_c(X) = \sup\{\alpha; \overline{m}_\alpha(X) = \infty\},\$$

and

$$\underline{\alpha}_c(X) = \sup\{\alpha; \underline{m}_{\alpha}(X) = \infty\}.$$

We have the obvious inequality

$$\alpha_c(X) \le \underline{\alpha}_c(X) \le \overline{\alpha}_c(X).$$
 (1)

• In [9] the special role of periodic points of (X,T) becomes apparent. If $x \in X$ is n-periodic, then $\tau(U) \leq n$ for any $U \ni x$, irrespective its diameter. This causes $m_{\alpha}(X)$ to be strictly positive for $\alpha > \alpha_c$. This is unlike the situation encountered in Caratheodory's construction, cf [10, page 12 A2.], and it is the reason why α_c cannot be defined as $\inf\{\alpha; m_{\alpha}(X) = 0\}$.

Another aspect of periodic points is its relation to entropy. The growthrate of the number of periodic points is given by $\zeta = \limsup_n \frac{1}{n} \log \#\{x; T^n(x) = x\}$. In many systems (e.g. subshifts of finite type, continuous interval maps) ζ coincides with the topological entropy. On the other hand, it is shown [9, Proposition 4.1], that $\zeta = \alpha_c(X)$, provided one works with covers of arbitrary sets, while if (X, d, T) is a subshift of finite type and \mathcal{U} are open covers,

$$\zeta = \alpha_c(X) = h_{top}(X),$$

see [9, Theorem 5.1].

This raised the question how α_c and h_{top} are related if there are no periodic points. We will give subshift examples. Let Σ_2 denote the one or two-sided shift of 2 symbols.

Theorem 1 (Main). For all subshifts Σ of Σ_2 , $\alpha_c(\Sigma) \leq h_{top}(\Sigma)$. However, there exist minimal subshifts Σ of Σ_2 such that $\alpha_c(\Sigma) \neq h_{top}(\Sigma)$.

The Theorem of Jewett-Krieger [7, 8] assures the existence of minimal (even strictly ergodic) subshifts of positive entropy. Concrete examples were given in [6] and (more simple) [3]. In [4] and [5] Grillenberger and Shields present examples with additional properties (K-automorphism, Bernoulli). See also [11, Section 4.4] and references therein.

Proof: This follows directly from Theorem 2 and Proposition 3.2 below, and formula (1).

2 The Upper Bound

We will work with a one-sided shift space $\Sigma_2 = \{0, 1\}^{\mathbb{N}}$, but the methods are easily seen to apply to two-sided shifts as well. Let σ denote the left-shift. A subshift Σ is a closed shift-invariant subspace of Σ_2 . A block B is a string of symbols; its length is denoted by |B|. If |B| = l, B is called an l-block. By abuse of terminology we will treat block and cylinder as synonyms. In this setting

$$h_{top} = \lim_{l} \frac{1}{l} \log \#\{\text{different } l\text{-blocks in } \Sigma\}$$

is the usual definition of topological entropy.

Theorem 2. For any subshift $\Sigma \subset \Sigma_2$, the Afraimovitch-Pesin upper capacity $\overline{\alpha}_c \leq h_{top}$.

Proof: Let $h = h_{top}$ and let $\varepsilon > 0$ be arbitrary. Let N_l be the number of different l-blocks in Σ . The sequence $\{\log N_l\}$ is subadditive, so

$$h = \lim_{l} \frac{1}{l} \log N_l = \lim_{l} \inf_{l} \frac{1}{l} \log N_l = \inf_{l} \frac{1}{l} \log N_l.$$

Therefore there exists l_0 such that $N_l < e^{(h+\varepsilon)l}$ for all $l \ge l_0$. Obviously, if $\mathcal{U} = \{U\}$ is a cover of l-cylinders of Σ ,

$$\sum_{U \in \mathcal{U}} e^{-\tau(U)\alpha} \le \sum_{m=1}^{l} e^{-m\alpha} \#\{U \in \mathcal{U}; \min(\tau(U), l) = m\}. \tag{2}$$

If $\tau(U) = m < l$, then for $x \in U$, $x_{m+i} = x_i$ for every $1 \le i \le l - m$. It follows that $\#\{U \in \mathcal{U}; \tau(U) = m\} \le N_m$. This gives for the right hand side of (2):

$$\sum_{m=1}^{l} e^{-m\alpha} \# \{ U \in \mathcal{U}; \min(\tau(U), l) = m \} \leq \sum_{m=1}^{l} e^{-m\alpha} N_m
\leq \sum_{m=1}^{l_0} e^{-m\alpha} 2^m + \sum_{m=l_0+1}^{l} e^{(h+\varepsilon-\alpha)m}.$$

This is finite independently of l whenever $\alpha > h + \varepsilon$. As ε is arbitrary, $\overline{\alpha}_c \leq h_{top}$.

3 Constructions

We start by giving a general method to build minimal subshifts of positive entropy. It resembles Grillenberger's [3] construction; because we do not aim for the precise value of the entropy, nor for a strictly ergodic subshift, our construction is simpler. It consists of a three step algorithm:

- Let \mathcal{E}_1 be a collection of n_1 different l_1 -blocks. Let A_1 be one of these blocks.
- Given the collection \mathcal{E}_{i-1} of n_{i-1} different l_{i-1} -blocks, there are $n_i = n_{i-1}$! ways to concatenate the l_{i-1} -blocks into an l_i -block ($l_i = l_{i-1}n_{i-1}$), such that this l_i -block contains each l_{i-1} -block precisely once. Let \mathcal{E}_i be the collections of these concatenations, and let A_i be one of them.
- Let a be the concatenations $A_1A_2A_3A_4...$, and let $\Sigma = \omega_{\sigma}(a)$, i.e. the set of accumulation points of $\{\sigma^n(a); n \in \mathbb{N}\}$.

We claim that (Σ, σ) is a minimal shift space of positive entropy. By construction, each l_i -block returns within l_{i+2} iterations of σ , so (Σ, σ) is uniformly recurrent. This is equivalent (see [2]) to (Σ, σ) being a minimal system. As for the entropy, we will calculate a lower bound of $\frac{1}{l} \log N_l$. Indeed, by Sterling's formula

$$\frac{1}{l_i} \log N_{l_i} \ge \frac{1}{l_i} \log \#\mathcal{E}_i = \frac{1}{l_i} \log n_i = \frac{1}{l_{i-1}n_{i-1}} \log n_{i-1}!$$

$$\ge \frac{1}{l_{i-1}} \log n_{i-1} e^{-1} \ge \frac{1}{l_{i-1}} \log \#\mathcal{E}_{l_{i-1}} - \frac{1}{l_{i-1}}.$$

By taking n_1 large enough compared to l_1 , and using the fact that $l_i \to \infty$ very rapidly, we get that $\lim_i \frac{1}{l_i} \log \# E_i > 0$. Because $\{\log N_l\}$ is subadditive, we get $h_{top} = \lim_i \frac{1}{l} \log N_l \ge \lim_i \frac{1}{l_i} \log \# \mathcal{E}_i > 0$.

Lemma 3.1. Let \mathcal{A} be an alphabet of n letters. Let $\mathcal{F} \subset \mathcal{A}^n$ be the set of n-blocks such that if $B = b_1 \dots b_n \in \mathcal{F}$, there exists j, $1 \leq j \leq n$ such that $b_{j+1} = b_k$ for some $k \leq j$ and $b_s \neq b_t$ whenever $1 \leq s < t \leq j$ or $j+1 \leq s < t \leq n$. (If j=n, then B is just a permutation of the letters of \mathcal{A} .) The cardinality $\#\mathcal{F} = n!2^{n-1}$.

Proof: There are $\frac{n!}{(n-j)!}$ choices for the first j letters. If j < n, then we have j possibilities for the j+1-th letter and $\frac{(n-1)!}{((n-1)-(n-(j+1)))!} = \frac{(n-1)!}{j!}$ choices for the remaining letters. This adds up to

$$#\mathcal{F} = n! + \sum_{j=1}^{n-1} \frac{n!}{(n-j)!} \cdot j \cdot \frac{(n-1)!}{j!}$$

$$= n! + n! \sum_{j=1}^{n-1} \binom{n-1}{j-1} = n! \left[1 + \sum_{j=0}^{n-2} \binom{n-1}{j} \right]$$

$$= n! \sum_{j=0}^{n-1} \binom{n-1}{j} = n! 2^{n-1}.$$

This proves the lemma.

Proposition 3.1. The above example satisfies $\overline{\alpha}_c = h_{top}$.

Proof: Let i be arbitrary. For each $B \in \mathcal{E}_i$, $\tau(B) \leq |B| = l_i$. This is because \mathcal{E}_{i+1} contains blocks C_1, C_2 ending, respectively starting with B. Hence \mathcal{E}_{i+2} contains a block in which C_1C_2 and therefore BB appear as subblocks.

Let \mathcal{F}_i be the concatenations B of n_i blocks from \mathcal{E}_i (not necessarily different) that appear in Σ . If we picture the blocks in \mathcal{F}_i as n_{i-1} letter words with the l_{i-1} -blocks of \mathcal{E}_{i-1} as letters, i.e.

$$B = b_1 \dots b_{n_{i-1}} \quad (b_j \in \mathcal{E}_{i-1}),$$

then there exists a unique $j, 1 \leq j \leq n_{i-1}$, such that $b_k = b_{j+1}$ for some $k \leq j$ and $b_s \neq b_t$ whenever $1 \leq s < t \leq j$ or $j+1 \leq s < t \leq n_{i-1}$. Note that $B \in \mathcal{E}_i$ if and only if $j = n_{i-1}$. Hence we are in the situation of Lemma 3.1 which gives $\#F_i = n_{i-1}!2^{n_{i-1}-1} = \#\mathcal{E}_i 2^{n_{i-1}-1}$.

Let \mathcal{H}_i be the set of all $l_i - l_{i-1}$ -blocks appearing in Σ . Each $C \in \mathcal{H}_i$ fits in at least one block $B \in \mathcal{F}_i$, so $\tau(C) \leq \tau(B)$, and if B can be chosen in \mathcal{E}_i , then $\tau(C) \leq l_i$.

By the above arguments, at least a $1/2^{n_{i-1}-1}$ proportion of the blocks in \mathcal{H}_i fits in a block $B \in \mathcal{E}_i$. Let $h = h_{top}$ and $\varepsilon > 0$ be arbitrary. Analogous to the proof of Theorem 2, we can assume that $N_l > e^{(h-\varepsilon)l}$ whenever $l \geq l_i$ and i sufficiently large. Therefore

$$\sum_{U \in \mathcal{H}_i} e^{-\tau(U)\alpha} \geq \frac{1}{2^{n_{i-1}-1}} \# \mathcal{H}_i e^{-l_i \alpha} \geq \frac{1}{2^{n_{i-1}-1}} N_{l_i - l_{i-1}} e^{-l_i \alpha}$$
$$\geq \frac{1}{2^{n_{i-1}-1}} e^{(h-\varepsilon)(l_i - l_{i-1}) - l_i \alpha}.$$

Because $\frac{l_{i-1}}{l_i}$ and $\frac{n_{i-1}}{l_i} \to 0$ as $i \to \infty$, the right hand side tends to infinity whenever $\alpha < h - \varepsilon$. Because ε is arbitrary, we get $\overline{\alpha}_c \ge h$. The other inequality is supplied by Theorem 2.

We conjecture that for this simple example the AP-dimension and upper and lower capacities all coincide: $\alpha_c = \underline{\alpha}_c = \overline{\alpha}_c = h_{top}$. For the next example, $\underline{\alpha}_c$ is strictly less than the entropy. The example is an adjustment of the previous one.

- Let \mathcal{E}_1 be the collection of different l_1 -blocks B all starting with 001000, and such that the string 00 appears nowhere else in B. Assume that $n_1 = \#\mathcal{E}_1$ is even and fix a special block $A_1 \in \mathcal{E}_1$.
- For a block B of any length, let B' be the block that emerges after replacing all strings 001000 into 001100 and vice versa. We call the strings 001000 and 001100 flags.

Given the collection \mathcal{E}_{i-1} of l_{i-1} blocks, say B_j , $j = 1, \ldots, n_{i-1}$, and special block $B_1 = A_{i-1}$, let \mathcal{E}_i consists of all concatenations of the form

$$B_{\pi(1)}B'_{\pi(2)}B_{\pi(3)}B'_{\pi(4)}\dots B_{\pi(n_{i-1}-1)}B'_{\pi(n_{i-1})},$$

where π denotes a permutation of $\{1, \ldots, n_{i-1}\}$ fixing 1. So each block in \mathcal{E}_i starts with A_{i-1} . Fix a special block $A_i \in \mathcal{E}_i$.

The rest goes the same as in the previous example, including the minimality proof and the calculation of entropy. Note that we now have $n_i = (n_{i-1} - 1)!$ and $l_i = n_{i-1}l_{i-1}$.

Proposition 3.2. The above example satisfies $2\underline{\alpha}_c \leq \overline{\alpha}_c = h_{top}$.

We start with a lemma and corollary.

Lemma 3.2. For any i and any $B \in \mathcal{E}_i \cup \mathcal{E}'_i$ holds: $\tau(B)$ is a multiple of $2|B| = 2l_i$.

Proof: By induction on i. For i = 1 the statement is clear because $B \in \mathcal{E}_1 \cup \mathcal{E}'_1$ starts with a flag and in Σ , the flags 001000 and 001100 appear alternatingly.

Now for the induction step, if $B \in \mathcal{E}_i \cup \mathcal{E}'_i$, then it starts with A_{i-1} (or A'_{i-1} ; the argument is the same for A'_{i-1}). By induction, A_{i-1} returns only at multiples of $2l_{i-1}$. But all other blocks in B are different from A_{i-1} , so A_{i-1} can only return after l_i iterates. Therefore $\tau(B)$ must be a multiple of l_i , but because of the alternating flagging, it returns actually at a multiple of $2l_i$.

Corollary 3.2.1. Let \mathcal{F}_i be the set of concatenations B in Σ of n_{i-1} (not necessarily different) blocks from $\mathcal{E}_{i-1} \cup \mathcal{E}'_{i-1}$. For all $B \in \mathcal{F}_i$, $\tau(B)$ is a multiple of $2|B| = 2l_i$.

Proof: Each $B \in \mathcal{F}_i$ appearing in Σ has the block A_{i-1} or A'_{i-1} at a fixed position. Therefore the previous proof can be used with the obvious adjustments.

Proof of Proposition 3.2: For each i, each $l_i + l_{i-1}$ -block B in Σ contains a block $C \in \mathcal{F}_i$, so $\tau(B) \geq \tau(C) = 2l_i$. Using the notation of the proof of Theorem 2, we get for any $\varepsilon > 0$ and i sufficiently large:

$$\sum_{|B|=l_i+l_{i-1}} e^{-\tau(B)\alpha} \le e^{(h+\varepsilon)(l_i-l_{i-1})-2l_i\alpha}.$$

Because $\frac{l_{i-1}}{l_i} \to 0$ as $i \to \infty$, this expression tends to 0 whenever $\alpha > \frac{h+\varepsilon}{2}$. Because ε is arbitrary, $\underline{\alpha}_c \leq \frac{1}{2}h_{top}$.

Now we compute $\overline{\alpha}_c$. For $R \in \mathbb{N}$, let $\mathcal{F}_{R,i}$ be the set of blocks B in Σ which consist of R blocks in $\mathcal{E}_{i-1} \cup \mathcal{E}'_{i-1}$. Hence $|B| = Rl_{i-1}$. We claim that if $B \in \mathcal{F}_{R,i}$ consists of R different blocks and none of them is A_{i-1} or A'_{i-1} , and also $R < n_i$ is odd, then

$$\tau(B) \le (R+2)l_{i-1} = \frac{R+2}{R}|B|.$$

Indeed, if $B = C_1 C_2' \dots C_{R-1}' C_R$, $C_j \in \mathcal{E}_{i-1}$, then there are blocks $D_1, D_2 \in \mathcal{E}_i$, $D_2 \neq A_i$, such that D_1 ends with BC_0' and D_2 starts with $A_{i-1}B'$ for some $C_0 \in \mathcal{E}_i$. If $B = C_1' C_2 \dots C_{R-1} C_R'$, $C_j \in \mathcal{E}_{i-1}$, then there are blocks $D_1, D_2 \in \mathcal{E}_i$, $D_2 \neq A_i$, such that D_1 ends with B and D_2 starts with $A_{i-1}C_0'B'$ for some $C_0 \in \mathcal{E}_i$. In both cases, the concatenation D_1D_2' contains the block B twice at the right distance. This proves the claim.

If $R \ll n_i$, this claim applies to at least half of the blocks in $\mathcal{F}_{R,i}$. Any $(R-1)l_{i-1}$ -block C appearing in Σ is contained in a block $B \in \mathcal{F}_{R,i}$, and therefore at least half of them satisfies $\tau(C) \leq \tau(B) \leq (R+2)l_{i-1} = \frac{R+2}{R-1}|C|$. This gives for $\varepsilon > 0$ arbitrary and i sufficiently large:

$$\sum_{|C|=(R-1)l_{i-1}} e^{-\tau(C)\alpha} \ge \frac{1}{2} N_{(R-1)l_{i-1}} e^{-(R+2)l_{i-1}\alpha} \ge \frac{1}{2} e^{(h-\varepsilon)(R-1)l_{i-1}-(R+2)l_{i-1}\alpha}.$$

For any $\alpha < \frac{R-1}{R+2}(h-\varepsilon)$, this tends to infinity as $i \to \infty$. Because $\varepsilon > 0$ and $R \in \mathbb{N}$ are arbitrary, we get $\overline{\alpha}_c \geq h_{top}$. The other inequality is supplied by Theorem 2.

References

- [1] V. Afraimovich, Pesin's dimension for Poincaré recurrences, Chaos 7 (1997) 12-20
- [2] W. H. Gottschalk, G. A. Hedlund, Topological dynamics, New Haven (1955)
- [3] C. Grillenberger, Construction of strictly ergodic systems I. Given entropy, Z. Wahrscheinlichkeitstheorie 25 (1972/73) 323-334

- [4] C. Grillenberger, Construction of strictly ergodic systems I. K-systems, Z. Wahrscheinlichkeitstheorie 25 (1972/73) 335-342
- [5] C. Grillenberger, P. Shields, Construction of strictly ergodic systems III. Bernoulli systems, Z. Wahrscheinlichkeitstheorie 33 (1975/76) 215-217
- [6] F. Hahn, Y. Katznelson, On entropy of uniquely ergodic transformations, Trans. Amer. Math. Soc. **126** (1967) 335-360
- [7] R. Jewett, The prevalence of uniquely ergodic systems, J. Math. Mech. 19 (1969/70) 717-729
- [8] W. Krieger, On unique ergodicity, Proc. 6-th Berkeley Sympos. Math. Statist. and Probab. Univ. of California (1970/71)
- [9] V. Penné, B. Saussol, S. Vaienti, Dimensions for recurrence times: topological and dynamical properties, Preprint Marseille (1998)
- [10] Y. Pesin, Dimension theory in dynamical systems, Chicago Univ. Press, Chicago and London (1997)
- [11] K. Petersen, Ergodic theory, Cambridge Univ. Press (1983)