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Abstract

Examples are presented of minimal subshifts with positive entropy, and their
Afraimovitch-Pesin capacities are computed. It is shown that the lower capacity
can be strictly smaller than the entropy.

1 Introduction

Let T be a continuous transformation of a metric space (X, d). In [1], Afraimovich pro-
poses the following fractal dimension-like strategy. For a set U C X, let

7(U) =inf{n > 0; T"(U)NU # 0}

be the return time of U to itself. (If 7"(U) N U = @ for all n, we set 7(U) = oo by
convention.) This quantity can be used to compute a measure of the space:

ma(X) = ling inf y e TW)e
e—0 U Ueu

where the infimum is taken over all covers ¢« whose elements U have diameter diam(U) =
Sup, yer d(7,y) < €. (By convention e~>* = 0.) The critical dimension «, of the space
X is defined as

o, = sup{a; mqy(X) = 0o}.

This setup is analogous to the definition of Hausdorff dimension, and fits in Caratheodory’s
construction, see Pesin’s book [10]. It is noticed that . in many cases coincides with the
topological entropy of (X, d, T), although e~"(U) is not the same quantity as n(U) in [10,
page 68], which was shown to lead to a dimension-theoretic definition of entropy.
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The motivation for this note were discussions with and questions raised by Penné, Saus-
sol and Vaienti. In [9] they study the properties of . (which they call the Afraimovich-
Pesin or AP-dimension of X). Let us make a few remarks:

e The covers U are not sufficiently determined; one can think of open covers, closed
covers, covers of arbitrary sets, covers of Borel measurable sets, etc. In [9] the first
three possibilities are studied. In this note X will be a subshift on two symbols, i.e.
a compact shift-invariant space of {0,1}" or {0,1}2. The metric used is d(z,y) =
don 6(;3’3(‘) where 0(z,,z,) = 0 if z,, = y, and 1 otherwise. Therefore it is natural
to consider covers consisting of cylinder sets.

e Instead of covers with sets U with diam(U) < ¢, one could take covers with sets U
with diam(U) = ¢. This gives rise to the quantities

mAX) = li inf —7(U)a
Ma(X) =limoup, nf D¢

and
m,(X) =liminf  inf Ze_T(U)”a

e—=0  U,diam(U)=¢
veu
and the Afraimovich-Pesin upper and lower capacities
0c(X) = sup{a; Mo (X) = oo},

and
a,(X) = sup{a; m, (X) = oo}

We have the obvious inequality

a.(X) <«

< 0,(X) < @(X). &

e In [9] the special role of periodic points of (X,7T) becomes apparent. If x € X is
n-periodic, then 7(U) < n for any U > z, irrespective its diameter. This causes
mq(X) to be strictly positive for & > «,. This is unlike the situation encountered
in Caratheodory’s construction, cf [10, page 12 A2.|, and it is the reason why «.
cannot be defined as inf{a; m,(X) = 0}.

Another aspect of periodic points is its relation to entropy. The growthrate of the
number of periodic points is given by ¢ = limsup,, = log #{z; T"(z) = z}. In many
systems (e.g. subshifts of finite type, continuous interval maps) ¢ coincides with
the topological entropy. On the other hand, it is shown [9, Proposition 4.1], that
¢ = a.(X), provided one works with covers of arbitrary sets, while if (X, d,T) is a
subshift of finite type and U/ are open covers,

C = ac(X) = htop(X)a
see [9, Theorem 5.1].



This raised the question how o, and hy,, are related if there are no periodic points. We
will give subshift examples. Let 35 denote the one or two-sided shift of 2 symbols.

Theorem 1 (Main). For all subshifts ¥ of s, (X)) < hiop(X). However, there exist
minimal subshifts ¥ of Lo such that a.(X) # hiop(X).

The Theorem of Jewett-Krieger [7, 8] assures the existence of minimal (even strictly
ergodic) subshifts of positive entropy. Concrete examples were given in [6] and (more
simple) [3]. In [4] and [5] Grillenberger and Shields present examples with additional
properties (K-automorphism, Bernoulli). See also [11, Section 4.4] and references therein.

Proof: 'This follows directly from Theorem 2 and Proposition 3.2 below, and formula
(1). O

2 The Upper Bound

We will work with a one-sided shift space ¥5 = {0, 1}, but the methods are easily seen
to apply to two-sided shifts as well. Let o denote the left-shift. A subshift ¥ is a closed
shift-invariant subspace of Y. A block B is a string of symbols; its length is denoted by
|B|. If |B| =, B is called an [-block. By abuse of terminology we will treat block and
cylinder as synonyms. In this setting

1
hiop = li}n 7 log #{different [-blocks in ¥}

is the usual definition of topological entropy.

Theorem 2. For any subshift ¥ C Xq, the Afraimovitch-Pesin upper capacity 0, < higp.

Proof: Let h = hy,, and let ¢ > 0 be arbitrary. Let N; be the number of different [-blocks
in . The sequence {log N;} is subadditive, so

h = lilm % log N, = limlinf % log N, = iI}f % log N;.

Therefore there exists ly such that N; < e for all | > ;. Obviously, if U = {U} is a
cover of [-cylinders of X,

Y e <N et {U € Usmin(r(U), 1) = m}. (2)
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If 7(U) = m < [, then for x € U, x4y = x; for every 1 < i <[ —m. It follows that
#{U e U;7(U) = m} < N,,. This gives for the right hand side of (2):

l

l
Z e ™ #{U € U;min(r(U),l) =m} < Z e "Ny,
m=1

m=1
lo !
< Z e~magm Z e(h—l—s—a)m.
m=1 m=lp+1
This is finite independently of | whenever o > h + €. As ¢ is arbitrary, @, < hyop. O

3 Constructions

We start by giving a general method to build minimal subshifts of positive entropy. It
resembles Grillenberger’s [3] construction; because we do not aim for the precise value of
the entropy, nor for a strictly ergodic subshift, our construction is simpler. It consists of
a three step algorithm:

e Let £ be a collection of n; different /;-blocks. Let A; be one of these blocks.

e Given the collection &;_; of n;_; different [;_;-blocks, there are n; = n;_;! ways
to concatenate the [;_;-blocks into an [;-block (I; = l;_1m;—1), such that this /;-
block contains each [;_;-block precisely once. Let & be the collections of these
concatenations, and let A; be one of them.

e Let a be the concatenations A; Ay A3A,..., and let ¥ = w,(a), i.e. the set of accu-
mulation points of {o™(a);n € N}.

We claim that (3, o) is a minimal shift space of positive entropy. By construction, each [;-
block returns within /; 5 iterations of o, so (3, o) is uniformly recurrent. This is equivalent
(see [2]) to (X, 0) being a minimal system. As for the entropy, we will calculate a lower
bound of %log N;. Indeed, by Sterling’s formula

1 1 1
—logN;, > —log#& = —logn; = logn;_1!
l; l; l; li1mi 1
1
> logn; 1e ' > —log#&,_, — —
lica lica ' lica

By taking n, large enough compared to /1, and using the fact that [; — oo very rapidly, we
get that lim; ilog #E; > 0. Because {log N;} is subadditive, we get h;,, = lim % log N; >
lim; %log #E > 0.



Lemma 3.1. Let A be an alphabet of n letters. Let F C A™ be the set of n-blocks such
that if B = by ...b, € F, there emists 7, 1 < j < n such that bj;1 = by for some k < j
and bs # by whenever 1 < s<t<jorj+1<s<t<mn. (Ifj=n, then B is just a
permutation of the letters of A.) The cardinality #F = n!2"!.

Proof: There are (n"—' choices for the first j letters. If j < n, then we have j possibilities

—9)!
for the j + 1-th letter and ((n_l)(j’(;)(!j = (";!1)! choices for the remaining letters. This
adds up to
uF n ”Z‘l o (n=1)!
= (n =) 7!
n—1 n—2
-1 -1
e B >l )
_ j—1 . J
j=1 7=0
n—1 n—1
= n! Z ( , ) nlont
J=0 J
This proves the lemma. 0

Proposition 3.1. The above example satisfies 0 = higp.

Proof: Let i be arbitrary. For each B € &;, 7(B) < |B| = l;. This is because ;41 contains
blocks C', Cs ending, respectively starting with B. Hence &;,5 contains a block in which
C1C5 and therefore BB appear as subblocks.

Let F; be the concatenations B of n; blocks from &; (not necessarily different) that
appear in Y. If we picture the blocks in F; as n;_; letter words with the /;_;-blocks of
E;_1 as letters, i.e.

B=b;.. .anl (b] € 8i,1),

then there exists a unique j, 1 < j < n,;_q, such that by = b;;1 for some k£ < j and b, # b,
whenever 1 <s<t<jorj+1<s<t<n; . Notethat B € ¢, if and only if j = n;_;.
Hence we are in the situation of Lemma 3.1 which gives #F; = n;_12%-171 = $£;2mi-171,

Let H; be the set of all [; — I;_1-blocks appearing in 3. Each C € H, fits in at least one
block B € F;, so 7(C) < 7(B), and if B can be chosen in &;, then 7(C) < I;.

By the above arguments, at least a 1/2"-1~! proportion of the blocks in H; fits in a
block B € &;. Let h = hi,, and € > 0 be arbitrary. Analogous to the proof of Theorem 2,
we can assume that N; > e~ whenever | > [; and i sufficiently large. Therefore

1 . 1 L
e—’T(U)a 2 4 — #%ie—lla 2 ' — le_ll_le l,,a
omn—1—1 gni—1—1
UeH;

1

76(/1*6)(%*1@'71)*[{04
2n¢_1—1 )
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li—1

Because ; and "llz‘l — 0 as © — o0, the right hand side tends to infinity whenever
a < h — €. Because ¢ is arbitrary, we get @, > h. The other inequality is supplied by
Theorem 2. O

We conjecture that for this simple example the AP-dimension and upper and lower
capacities all coincide: a, = a, = @, = hy,p,. For the next example, a, is strictly less than
the entropy. The example is an adjustment of the previous one.

e Let & be the collection of different /;-blocks B all starting with 001000, and such
that the string 00 appears nowhere else in B. Assume that n; = #&; is even and
fix a special block A; € &;.

e For a block B of any length, let B’ be the block that emerges after replacing all
strings 001000 into 001100 and vice versa. We call the strings 001000 and 001100

flags.
Given the collection &;_; of l;_; blocks, say B;, j = 1,...,n,_1, and special block
By = A;_1, let &; consists of all concatenations of the form

Br(1)Br2)Br(3)Bra) - - - Brni_1-1)Br(ni_y)»

where 7 denotes a permutation of {1,...,n; 1} fixing 1. So each block in &; starts
with A;_;. Fix a special block A; € &;.

The rest goes the same as in the previous example, including the minimality proof and
the calculation of entropy. Note that we now have n; = (n;_; — 1)! and I; = n;_1l;_;.

Proposition 3.2. The above example satisfies 2a,, < 0 = hygp.

We start with a lemma and corollary.

Lemma 3.2. For any i and any B € & UE] holds: 7(B) is a multiple of 2|B| = 21;.

Proof: By induction on . For i = 1 the statement is clear because B € £, U&] starts with
a flag and in X, the flags 001000 and 001100 appear alternatingly.

Now for the induction step, if B € £;UE], then it starts with A;_; (or A}_;; the argument
is the same for A}_,). By induction, A;_; returns only at multiples of 2/;_;. But all other
blocks in B are different from A;_;, so A;_; can only return after /; iterates. Therefore
7(B) must be a multiple of /;, but because of the alternating flagging, it returns actually
at a multiple of 2l;. O

Corollary 3.2.1. Let F; be the set of concatenations B in ¥ of n; 1 (not necessarily
different) blocks from &_1UE]_,. For all B € F;, 7(B) is a multiple of 2|B| = 2.



Proof: Each B € F; appearing in ¥ has the block A;_; or A, , at a fixed position.
Therefore the previous proof can be used with the obvious adjustments. O

Proof of Proposition 3.2: For each i, each I; + [;_1-block B in ¥ contains a block
C € F;, so 7(B) > 7(C) = 2l;. Using the notation of the proof of Theorem 2, we get for
any € > 0 and ¢ sufficiently large:

E e—T(B)Oc S e(h-}—E)(li—li,l)—ZliOz.
|Bl=li+l;—1

h+5

i

Because ¢ is

Because — 0 as © — o0, this expression tends to 0 whenever a >

arbltrary, g < htop

Now we compute @,. For R € N, let Fg; be the set of blocks B in ¥ which consist
of R blocks in &_1 UE! |. Hence |B| = Rl;_;. We claim that if B € Fg; consists of R
different blocks and none of them is 4;_; or A ,, and also R < n; is odd, then

7(B) < (R +2)lis w|B|

Indeed, if B= ClCé .. .C&_ICR, Cj S 51'_1, then there are blocks Dl,DQ € gz', D2 75 Ai,
such that D; ends with BC| and D, starts with A;,_;B' for some Cy € &;. If B =
C{C2...C’R_1C}z, Cj € &;,_1, then there are blocks D, Dy € &;, Do 75 A;, such that
D, ends with B and D, starts with A; 1C{B’ for some Cy € &;. In both cases, the
concatenation D; D), contains the block B twice at the right distance. This proves the
claim.

If R < n;, this claim applies to at least half of the blocks in Fg;. Any (R—1)l;,_1-block
C appearing in ¥ is contained in a block B € Fg;, and therefore at least half of them
satisfies 7(C) < 7(B) < (R + 2)l;_1 = ££2|C|. This gives for ¢ > 0 arbitrary and i
sufficiently large:

1 1
Z e—T(C)OL Z EN(R—l)li_le (R-I—Q)lz 1 2 5 (h 6)(R—1)li_1—(R+2)li_1a.
[Cl=(R—1)l;—1
For any a < £=5(h — ¢), this tends to infinity as 7 — oo. Because £ > 0 and R € N are
arbitrary, we get &, > hy,,. The other inequality is supplied by Theorem 2. O
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