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Abstract

We investigate the dynamics of unimodal maps f of the interval restricted to the
omega limit set X of the critical point for cases where X is a Cantor set. In
particular many cases where X is a measure attractor of f are included. We give
two classes of examples of such maps, both generalizing unimodal Fibonacci maps
[LM, BKNS]. In all cases fix is a continuous factor of a generalized odometer
(an adding machine-like dynamical system), and at the same time fjx factors
onto an irrational circle rotation. In some of the examples we obtain irrational
rotations on more complicated groups as factors.

1 Introduction

Let f :[0,1] — [0,1] be a C*-unimodal map with critical point ¢, and denote by X
the omega limit set of ¢, i.e. the set of all accumulation points of the forward orbit of
c. It is well known that X is either

e a cycle of exact intervals, i.e. a finite union of intervals that are cyclically per-
muted under the action of f and for which the restriction of f? to each of these
intervals is topologically exact (p denotes the period of the cycle), or

e a zero-dimensional set. In this case X may be

— a periodic orbit (attracting or repelling),
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— a solenoidal attractor, i.e. the intersection of an infinite nested sequence of
cycles of intervals, or

— a Cantor set that has no arbitrarily small invariant neighbourhoods. Al-
though in such a situation the set of points with omega limit equal to X is
of first category (i.e. a topological null set), there are some examples where
this set has full Lebesgue measure [BKNS, Bru]. In this case we call X a
wild attractor.

If X is a wild attractor, then fix is topologically minimal [BL, M]. The same is true, of
course, if X is a limit cycle or a solenoidal attractor. Throughout this paper, a strong
version of minimality of fix (Q(k) — oo, see below) will be our basic assumption on
f, although a few assertions are valid without it.

The simplest case of a map with a solenoidal attractor is the Feigenbaum map. It
has a nested sequence of interval cycles of length 2", and it is not hard to see that fix
is conjugate to the dyadic adding machine, i.e. to the addition of 1 in the group of
dyadic integers. Similarly, the dynamics on other solenoidal attractors are conjugate
to generalized adding machines. In the case of wild attractors, a particularly well
studied example is the Fibonacci map. By a Fibonacci map we mean a unimodal map
from a particular topological conjugacy class that we describe in some detail in Section
3. It was proved in [BKNS] that Fibonacci maps have a wild attractor provided the
order of the critical point is sufficiently high. The topological dynamics of fix for
Fibonacci maps was clarified before [LM]: fix is conjugate to a symbolic dynamical
system (Q,T') which is similar to an adding machine, although it fails to be invertible
at the critical point ¢ where it has two preimages. Indeed (see [GLT]), (2,7 is just
the S—odometer built from the sequence of Fibonacci numbers or, equivalently, the adic
transformation on the golden mean subshift of finite type, and it has the circle rotation
by the golden ratio 52_1
conjugacy, because it is invertible except on the backwards trajectory of ¢ under fx.
In order to investigate the dynamics of f|x in other cases, we study a particular class
of (generally nonstationary) adic transformations in Section 2 and relate them to the

as a continuous factor. This factor map is in fact nearly a

dynamics of fix. A closer look at two ways to generalize the Fibonacci case is taken
in the next two sections. First we construct examples based on properties of Pisot—
Vijayaraghavan (PV) numbers, and in a second construction we exploit convergence
properties of continued fractions. Our main results can be summarized as follows:

We construct examples of S—odometers corresponding to unimodal maps f for which
X is a wild attractor. These examples have the following spectral properties:

1. For d = 1,2,3 we find S—odometers generalizing the Fibonacci case which are
measure theoretically isomorphic to irrational rotations on the d-dimensional
torus. The isomorphism is continuous from the sequence space ) onto the torus.
For d > 4, however, this construction leads to weakly mixing S—odometers (cf.

Theorems 3 and 4).
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2. For any d > 1 we find S—odometers which have irrational rotations on d-
dimensional tori as continuous factors and are measure theoretically isomorphic
to them (Theorem 5).

3. For each irrational p with continued fraction of bounded type!) we find an S-
odometer with the rotation by p on the circle as a continuous factor. Again the
factor map is a measure theoretical isomorphism (Theorem 6).

4. We find an S—odometer which has simultaneously an irrational rotation on a
solenoidal group and the addition of 1 in the dyadic adding machine as continuous
factors (Theorem 7).

In all these examples the continuous factor maps from (€2, 7') onto the group rotations
factorize over (X, fix) in such a way that fjx has the same spectral properties as
(2, 7). The factor maps from (X, fix) onto the group rotations are measure theoretical
isomorphisms in cases 1.-3.

During our research we learned that Marco Martens, using a different method, ob-
tained similar results.

Acknowledgments: We would like to thank the referee whose valuable comments
significantly helped to improve the previous version of this paper. We are also greatful
to Prof. Schinzel for drawing our attention to reference [Sel].

2 Adic transformations associated with
unimodal maps

Let f:[0,1] [0,1] be a unimodal map. We construct a tower by defining its level
sets D,, as D1 = [e, ¢1] and for n > 2,

D . f(D'rL—l) lf Dn—l % C,
" [en, @l if D,.13c.

The numbers n such that ¢ € D, are called the cutting times (Sk)kzo- Observe that
So = 1 and that D, = [¢,, ¢u—s,_,] for Sy < n < 5.

It is well known (see e.g. [H], or for a more recent exposition [MS, p.108]) that there is
amapping @ : N\ {0} — N (called the kneading map of f) such that Sy —Si_1 = Sgu).
For every n, Q(n) < n, and @ satisfies the admissibility condition

{Q(k+7)}is1 = {QQ*(F) + )}z (1)

UThe boundedness of the continued fraction is not necessary for the construction of the factor. It
is only used to guarantee that the corresponding f may have X as a wild attractor.
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for all k£, where > denotes the lexicographic order on sequences of integers. On the
other hand, each map @ : N\ {0} — N satisfying (n) < n and the admissibility
condition (1) can be realized within each full family of unimodal maps, in particular
so by some map from each of the families (f,,: 0 <a < 1) for £ =2,3,4.5,..., where
fap(z) =1— a2z — 1.

Recall now that X denotes the omega limit set of the critical point of f. If Q(k) — oo,
then ¢ is recurrent and fx is topologically minimal, see e.g. [Bru]. Moreover |D,| — 0.
In this paper we are interested in a particular class of kneading maps that can be
realized by unimodal maps with wild attractors.

Theorem 0 ([Bru]) Suppose Q is a kneading map and there are N, ki € N such thal
for all k > ki holds:

Qk)>k—N and Q(k+1)>Q*k)+1.

Then there is {((N) € N such that for { > ((N) there is a parameter a = a({,Q) for
which X s a wild atlractor of the map f, 4.

One can show that Q(k+1) > Q*(k)+1 eventually, if Q(k) is eventually nondecreasing
and f is not infinitely renormalizable (no solenoidal attractor).

In order to understand the dynamics of fix, we relate this dynamical system to a
symbolic system (Q,7') defined in terms of the sequence S = (S,,),>0 and called an S—
adic machine or S—odometer in [GLT]. We follow the presentation from [GLT] but note
that there is a strong connection to the work of Vershik [Ve] and others [VL, L1, Sol].

Given a nonnegative integer n let k be the unique integer satisfying Sy < n < Si41.
There exist integers (n); and ri(n) with n = (n)g - Sk +ri(n) and 0 < ri(n) < Sk, and
by iteration we get the S—expansion of n

n={(n)So+ -+ (n)rSk (2)
where the digits (n); satisfy 0 < (n); < ngi This is the greedy algorithm (see e.g.

[Fr]). As for our particular sequences ng” < 2, the digits take only the values 0 and 1.

The expansion (2) is uniquely determined provided Zf:0<n>2-52- < Sy for 0 < 5 < k.
Setting (n); = 0 for j > k we obtain a sequence (n) = ((n););s0 in {0,1}". Let
(N) := {(n) : n € N}, and denote by Q the closure of (N) in {0,1}". Then

J
Q= {w € {0,1}N : ZCUZSZ < Sj-l-l V] > 0} .

=0

and we have
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Lemma 1
Q={w=(wW)ien€{0,1}":Vj >0 :w;=1=w,=0(Q(U+1)<i<j-1)},
and if Zf:o w;S; = Sk41 — 1 for some k >0 with Q(k 4+ 1) > 0, then Z?:((];H)_l w;S; =

Sqe+1) — 1.

Proof: To prove “C” just observe that Y72} w;S; < Siy1 — 55 = Sq(j+1) for each
w € Q. For the reverse inclusion fix an index j, let j' = Q(5+ 1) — 1, and suppose that
wj = 1. Then

! !

J 3! J J J
ZwiSi = ZLUZSZ + Z w;S; = ZCUZSZ + SJ' = ZWZSZ — S]’/+1 + Sj+1 . (3)
=0 =0 i:Q(j-I—l) =0 =0

If 2;“:0 w;S; < Spy1 for all k£ < g, this continues to be true for & = j. If w; = 0, then
S qwiS; = Zf:_é w; S < S < Sj41. As weSy < 51, the induction is complete.

To prove the additional assertion, fix an index k& and let ;7 < k be the maximal index
with w; = 1. If Sk ywiS; = Sip1 — 1, then it follows from (3) that

Qi+1)-1
Spet — 1= > wiSi— Sgi+1) + Sit1 < Sjy1 — 1 < Spqr — 1
=0
with equality if and only if 7 = £ and Z?:(éﬂ)_l wiS; = So@i+1) — 1. O

Next we define an “addition of 17 on (N):
T{n):=(n+1).

Lemma 1 suggests a way how this addition can be described in a purely symbolic way
by means of an “add & carry” operation: Given an w € (N) proceed as follows:

add one : Only one of the first two digits of w can be one. If the first digit is 0, replace
it by 1, if it is 1, shift it to the right (i.e., replace 10 by 01). In general the
result will be no element of () anymore.

carry :  Beginning with the smallest [ such that w; = 1 take the following steps: There
is at most one & € N with Q(k+1) =1 and wy = 1. If such a k exists replace
wi, and w; by 0 and w41 by 1. (In this case k equals min{s > [ : w; = 1})
Then restart the carry operation with [ = k& + 1. If there is no such k, then
the procedure stops.

In the next lemma we collect some facts about T' proved in [GLT].
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Lemma 2 [f Q(k) — oo then T extends uniquely to a continuous map T : @ — Q.
Moreover T is well defined on Q\ (0), T is surjective, and T is minimal.

Proof: If Q(n) — oo there are, for each fixed j, only finitely many k such that
Q(k+ 1) =1 = j. Therefore the continuity of T' follows from [GLT, Theorem 1] and

the rest from Proposition 1(iii) and Theorem 2 of the same reference. O

Remark 1 The map 7' defined in the two preceeding lemmas is just the adic trans-
formation on € in the sense of Vershik [Ve], see [GLT, Proposition 2].

Let p € [0,1] and R, : T' — T! be the rotation by angle p. Define II, : Q@ — T*! by

I, (w) = ZwkSkp (mod1)

k>0

For x € R let ||z|| denote the distance of x to the closest point in Z. Variants of the
following lemma, whose short proof we include for completeness, are well known.

Lemma 3 1 If 3 ||pSk|| < oo, then 11, is well defined, continuous and I, 0T =
R,oll,.

2. If ¢+ (Q,T) — (T, R,) is a nonconstant conlinuous homomorphism and if
#(0) = 0, then Y1 ||pSk|| < o0 and ¢ =11,,.

Proof: The first assertion is obvious. We prove the second one: Let (n;) be any strictly
increasing sequence of integers such that (n;) — (0) as j — oco. Then by continuity of

P,

> nj)kSkp = njp = Ry (0) = R (¢(0)) = &(T™(0)) = ¢{n;) — $(0) =0

k

as j — o0o. As this is true for any such sequence (n;), it follows that >, ||pSk|| < co. In
particular, IT, is well defined. Furthermore, as (¢ —11,)oT" = ¢—1I, for all n, ¢ —11, is
constant by continuity and topological transitivity of (Q,7'), and as ¢(0) = 0 = I1,(0),
we conclude that ¢ = 1II,. O

In later sections we discuss classes of kneading maps @ which satisfy 37,5 [|pSk|| < o0
for suitable numbers p. But first we relate the dynamics of such S—odometers to those
of the corresponding fx.

Lemma4 [If ¢ : (N,7T) — (Y,5) is a continuous factor map onto some invertible
dynamical system (Y, S) and if v is an ergodic, invariant Borel-probability for S, then
the cardinality #¢~'(y) is the same for v—a.e. y € Y (it may be infinite).
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Proof: Denote by Z, the family of cylinder sets of rank n of . Then Y = ¢(Q) =
Uzez,d(Z). Define F, 1Y — Zoas I, = Y zcz lyz). As all $(7) are compact, the F,
are measurable. Obviously Fy < F, < F5 < ... such that F., := sup,, F}, is measurable
and for each y € Y and k € Z holds: F(y) > k if and only if #¢~'(y) > k. Hence
#67'(y) = Fo(y) is a measurable function of y. Furthermore,

#o™ (Sy) S #T™'¢7'(Sy) = #6757 (Sy) = #67'(y)
whence S~y : #¢7y) > k} C {y : #¢7'(y) > k} for each k € Z. By ergodicity

of v all these sets have either v—-measure 0 or 1, which means that #¢~!(y) is v—a.s.
constant. O

Let us introduce some more dynamical notions. A point z is called a closest precritical
point if (z,¢) is the maximal interval on which f” is monotone for some n. Clearly
z is indeed a precritical point. Taking also n maximal, then f"[z,¢] 3 ¢. It follows
from our tower construction that f*[z,¢] = Ds, for some k and z € f~%-1(c). We can
enumerate the precritical points as z; € f~%(c) and zy < 2; < ... < ¢. Of course, the
symmetric points Z; are closest precritical points too.

Because Spi11 — Sk = Sg(x+1) is the maximal iterate such that Foew+n |[
monotone, it follows that

] is still

CiCsy

Cs, € [ZQ(k+1)—172Q(k+1)] U [éQ(k+1)72Q(k+1)—1] .

Define for 2 < 5._1 < n < S} the lower interval of D,, as
B(Dn) = Dn_sk—l :

Lemma 5 Ifn > 2, then 3(D,) 2 D,,.

Proof: Let additionally z_; := 0. First we claim that Dg, C DSQ(k) for all £ >
1. Indeed, f%-1(c) € [zg)-1.c] or [c, 2g(k)-1], whence [f**=1(c),c] C [zq()-1,¢] or
[¢, 2g(r)—1)- Taking the Sg;)—th iterate on this inclusion, we obtain

D, = 5w ¥t (c), £ (e)] = [£5(c), f320)(€)] C /59 (sqqyr), 1520 (c)]
= [fFamSami (c), f390)(0)] = [ (¢), 520 ()] = Dy,

which yields the claim.

Now let Sp_1 < n < S and assume by contradiction that 3(D,) C D, properly.
Take the (S; — n)-th iterate of both intervals. Then

Ds, = [>7(D,) D [ ™(B(D,)) = B(Ds,) = Dsgpy -

This contradicts the claim. O
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We can also define # as a map on (N) (or N) as follows: If w € (N) \ {(0)}, then
B(w) € (N) is the sequence that appears after changing the last 1 of w into a 0. On
N\ {0} this is equivalent to 3(n) =n — Sg_y for Sp_; <n < Sp. So B(n)=0ifnisa
cutting time, and

ﬁ(Dn) = Dﬁ(n) for n ¢ {Sk ck Z 0} . (4)

This relation will be used in the next theorem to determine the position of ¢, for n
large: We can construct a nested sequence of intervals D, = D,,, C D,, C ... C Dg,
for some k such that 8(n;) = njy1. We proceed to define a factor map 7 : @ — X.

Theorem 1 Define m: (N) — orb(c) as n((k)) = cx. Then 7 is uniformly continuous
— X = w(c) such that (X, f) is a continuous

and has a continuous extension m :

factor of (0, T). Moreover m='(c) = (0).

Proof: Take € > 0 arbitrary. Because |D,| — 0, there exists ro such that |D,| < ¢/2
for all n > S,,. Let m be arbitrary, and let U be an e-neighbourhood of ¢,, = w({m)).
Take 7 € N minimal such that 8'(m) =: k < S,,. So (k) coincides with (m) up to entry
ro — 1, and has only 0’s elsewhere. If m < S, , i.e. ¢+ = 0, then simply & = m, and
¢m € Digs, . If m > S, , then B (m) = k + S, for some r > rg. It follows by (4)
that 3°~Y(D,,) = Dyys,, and by Lemma 5, ¢,, € Dyys, .

Let (n) be such that it coincides with (m) up to the (ro — 1)~th position. Then there
exists i’ such that 87 (n) = 8'(m) = k. This means that also 7 ~'(n) = k45, for some
r' > ro. By (4), 5i1_1(Dn) = Dyys, and by Lemma 5, ¢, € Diys,. So ¢ € Diys, and
¢ € Dyys, forr, r’ > rg. Since Dyys, and Dys, have ¢, as common boundary point,
this yields ¢, € U. Hence 7 is uniformly continuous. The existence and continuity of
the extension follows.

Now suppose (0) # w = wow; ... € @ and m(w) = ¢. Let r, s be the first two integers
such that w,, w, = 1. Clearly s exists, otherwise m(w) = ¢,. It follows from Lemma 5
that m(w) € Dg,+s,. So if 7(w) = ¢, then ¢ € Dg, 1s,, and S, + S is a cutting time,
say S;. But then s =1 — 1 and r = Q(¢), which is forbidden by the construction of €.
O

The final goal of this section is to define a factor map 7, : X — T' which makes the
following diagram commute:

(2,7)
-

(X,/)

(T, &,)

Theorem 2 Suppose that Y, ||pSk|| < oo such that 11, is well defined and continuous
by Lemma 3. Then #11,(7="{z}) =1 for all x € X, and if the unique element of this
set is denoted by m,(x) this defines a continuous factor map 7, : (X, f) = (T', R,).
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Proof: Let M := {x € X : #1,(x {z}) > 1}. We claim that if z € M then the
closure of the orbit of z is contained in M. Since (X, f) is minimal it follows that M

is either void or equal to X, and as ¢ € M by Theorem 1, this proves that =, is well
defined.

Suppose x € M. Then there exist w,w’ € Q such that: 7w = 7w’ = = and [I,w #
II,w’. Then
II,(T"w) = Rinrw # Rinw' = II,(T"W)
T(T"w) = ffrw = fr70’ = =n(T"),
whence orb(z) C M. Now let y be any limit point of orb(z) and a sequence (ny)gex
be given with f™x — y. Since € is compact we can assume that 7w and T w'
converge simultaneously against some wy resp. wy in ). From continuity of 7 follows
that mwy = mw) = y and from continuity of 1, together with the fact that R, is an
isometry we get dist(Il, wo, I, w})) = dist(Il, w, [1,w") # 0. This shows that y € M and
proves the claim.

Since the map 7 : & — X is continuous, surjective and closed (£ is compact), X
carries the final topology of @ with respect to 7. So continuity of 7, follows from
continuity of II, = m o 7. O

Remark 2 Call p € N an eventual divisor of (S,,),, if p| S, except for at most finitely
many n. By Lemma 3, p is an eventual divisor of (5,,), if and only if (Z,, addition of 1)
is a factor of (,7T). By Theorem 2, 11, , factorizes over (X, f). In particular, P, :=
{7T1_/1p(k) :k=0,...,p— 1} is a finite partition of X into open and closed sets which
are cyclically permuted. In fact, p is an eventual divisor of (5,), if and only if (X, f?)
is not minimal. It follows that (X, f) is totally minimal (i.e. (X, f?) is minimal for all
p > 0) if and only if 1 is the only eventual divisor of (S,,),.

Suppose now that p = (p1,p2,ps,...) is a sequence of eventual divisors of (S5,),
and that p;|p;4q for all 2. Then all (Z,,, “addition of 1”) are factors of (€2,7'), and as
Mijpiy, = p;tl - Iy /p,, also the inverse limit of these finite rotations, namely the adding
machine (Zp, “addition of 17), is a factor of (2, 7"). Denote the factor map by II .
As all 11, ,,, factorize over (X, f), the same is true for Il /5. In particular, P, is finer

than P, for all :. We will come back to this in Theorem 7.

3 Examples based on PV—numbers

We start this section with S—odometers given by a kneading map of the type Q(n+1) =
n — d for a fixed d.

For d = 0 we obtain the classical dyadic adding machine, i.e. the addition of 1 on
the group of dyadic integers. In the context of unimodal maps it is conjugate to the
action of a Feigenbaum map on its attractor.
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For d = 1 we obtain the Fibonacci S—odometer. It was described by Lyubich and
Milnor [LM] who proved that it is conjugate to the action of a Fibonacci map on
the omega limit X of its critical point?). Furthermore, the golden circle rotation is
a factor of the Fibonacci S—odometer, and the factor map is 1-1 except on the set

Ursr T7H(0)}-

For all d > 1, there is a close connection with substitution spaces.

Lemma 6 For d > 1, Q s homeomorphic lo the shift space ¥, on d + 1 symbols,
generated by the substitution y: 0 - 01,1 = 2,...,d—1—d, d— 0.

Proof: Let Z;={Zy. 0, 710..0,-- -5 7%0..01} be the collection of cylinder sets of rank d.
For each w € 0, we can define the itinerary a(w) € {0,...,d}" with respect to Z; as

ai\w) = k if TZ(CU) € ZO...OIO...O (1 at entry k € {1, e ,d})

Clearly a : © — a(Q) is continuous and if o is the shift, then a o T = o 0 a. Let
us prove that a is injective, and therefore homeomorphic. We have seen before that
T is injective on Q \ T7'(0). Furthermore, each preimage of (0) lies in a different
element of Z;. This shows that if w,w’ € T7"(0) for some n > 1 and w # ', then
a(w) # a(w'). We use the induction hypothesis (Hy): If w,w’ € © are such that w; = W}
for i < k and wi # wy, then a(w) # a(w'). For & < d this is obviously true, because
then w and w' lie in different elements of Z;. So assume that (Hy_q) is true, and that
w,w’ € Q are such that w; = w! for 1 < k and wy # wj. By the above remark, we can
assume that 7" (w) # T™(w') for all n > 0. Assume w; = 0, then N = Y, wiS; =
SichwhS; < Sp_q. Tt is easy to check that (T%k-a"Nw);, = (T5-a=Nu'), for i < k —d
and (T%=a=Ny), 4 =1 # (T%-a"Nw"),_,. So (Hy) follows, proving the induction.

Let a := a(0) denote the itinerary of (0). It is easy to verify that the string

x*(0) has length Sy and coincides with aq,...,as, ;. Moreover, as, ,,...,as, 1 =
Qgy---,0s5,_5,_,—1- Since x*(0) converges to the unique fixed point of y, this fixed
point coincides with a. As the orbit of (0) is dense in Q, a(2) equals ¥, which by
definition is the orbit closure with respect to the shift of the fixed point a. O

Remark 3 The substitution y on X, is conjugate to the right shift ¢ := w +— 0w on
Q. Indeed,

aot(n) = ao(X;(n)S:) = a(Xn)iSip1) = o2lMiSH(q)

Observe that Lyubich and Milnor show that X is never an attractor for quadratic Fibonacci maps.
However, in [BKNS] it is proved that for Fibonacci maps with a critical point of higher order X is
indeed an attractor.

2)
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Furthermore y o ¢”(a) = 0" (a), where ¢, = #{0 < i < n : o; = 0}. Since
QS sy Q51 = OQ,...,08,_5, ,—1, we have tg, =tg,_, + LSg - By induction we
get s, = Sq(r41) and finally ¢, = Zi<n>iSQ(i+1), whence ¢, + n =Y ;(n);Sit1. Now

xoa{n) = yoo'(a) = Jzz‘(”)"s"“(a) = ao(n)

This relation extends immediatly from (N) to €. O

Now we investigate the cutting times for d > 1,

Sy = k41 Ck=0,...d—1
Sit1 = Sk + Sk—a , k2>d.

According to Theorem 5 in [GLT] these particular S—odometers are uniquely ergodic.

The characteristic polynomial Pj(z) = 29! — 2% — 1 of this recurrence has d + 1
distinct roots Ao, ..., Ag, therefore the sequences (A§ )50, - - -, (A5)r>0 form a fundamen-
tal system of solutions. To get a nice formula for Sy it is more convenient to consider
first the sequence (sj)x>0 obtained from the initial condition (so,...,sqs) = (0,...,0,1).
The solution is s, = Y0_g ¢, - Ak, where ¢! = Hf:07y¢ﬂ(A# - X)) =X 4+d/X,. So we
have

: k 2d )‘idH
Sk:5k+2dzzcﬂ-/\u , where €, = ¢, - A T4 (5)
n=0 ©

For the following analysis we need some information about the roots of the charac-
teristic polynomial.

Lemma 7 [Sel, NV]

(d)

i) Fvery polynomial Py(x) has a unique positive root Ay’ which is greater than 1.

ii) Let Oq := {p € {0,...,d} : |A,] > 1}. Then Oy = {0} iff d € {1,2,3}. In all
other cases #04 > 3. (In fact #0; = min{2k +1: k€N, 2k +1 > %})

we) If d £ 4 (mod6), then Py(x) is trreducible. If d = 4 (mod6), then Pj(z) =
) If d # 4 (mod6), (z) tble. If ( ) (2)
(22 —x + 1) - Py(x) for some irreducible P; € Z[z].

w) If d £ 4 (mod6), then the Galois group of Py acts as the full permutation group
on the d + 1 roots of Pj.

Proof: 1),1ii), and iii) follow from [Sel] with some additional elementary considerations.
iv) is from [NV], see also [O, Corollary 2]. 0

So for d = 1,2,3 the root /\éd) is an algebraic integer greater than 1 whose conjugates
have modulus less than 1. Such numbers are called Pisot-Vijayaraghavan numbers (cf.
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[Pi], [Sal] and [Sie]). Henceforth we fix some d and write A, instead of /\ . Observe
that for each u

d
SEAL = C AP 4 Z CNNE = Sy + 37 CL 8 — AD)AE (6)
v#u Z;i

Therefore the factor map 11, : @ — T! from the last section is well defined for p = A}
if Ag is a PV—number, i.e. in cases d = 1,2,3. As P;(z) is the minimal polynomial of
Ao in these cases, the numbers Ag, ..., Al are rationally independent. Therefore (2, T')
factors onto the d-torus equipped with the rotation Ry, x --- X ng via the factor map
g x - x M.

The next theorem shows that these are essentially all rotations we can get as con-
tinuous factors of (2, 7").

Theorem 3 Let (2,T) be as above.

1. Suppose d € {1,2,3}. If ¢ : (,T) — (T, R,) is a continuous factor map,
then there are qo,...,qq € Z such that p = qo + qiho + -+ + g\ and & factors
over II), x -+ X HAg via ¢ = qill, + -+ + quAg- In fact, there are no other
L?—eigenfunctions of T than these functions ¢.

2. If d > 4 the system (Q,T) is weakly mizing with respect to its unique invariant
probability measure, but not mixing.

Proof: Let m denote the unique invariant probability measure for 7' (see [GLT, Theo-
rem 5]). Suppose that ¢ : (Q,7T) — (T, R,) is a measurable homomorphism, i.e. e?™%
is an L2 —eigenfunction of 7. In view of Lemma 6 we can apply Theorem 1.4 of [Ho]
from which it follows that ¢ coincides a.e. with a continuous map. So we may assume

that ¢ is continuous.

We first rule out the possibility that p € Q\ Z. To this end assume that p = 2—9
(p,q) =1, ¢ > 1. As T is minimal (Lemma 2), it follows that the restriction of R,
to #(£) is minimal such that ¢(Q2) = {R’;(O) :k=0,...,qg—1}. Hence (Z,,+1) is a
factor of (2,7 and in view of Remark 2, ¢ must be an eventual divisor of (S5,)n>0, a
contradiction to the definition of 5,,.

From Lemma 3 it follows that >, ||pSk|| < co. Let Iy = {0,...,d} \ O4. As S, =
S per, CudE + Y co, CuAE by (5), we find that

D

k

<Z||P5k||+ZEP [ Pulf <o

pelg k

ZpC/\k

p€0g
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It follows from [Ma, Lemma 2] that pC, € Q(X,) for all p € O4. As C, € Q(A,) by
(5), we conclude that p € Q(X,) for all p € O,.

Ist case: d =4 (mod6)

Then (2* —x+1)|Py(z) so that %(1:!:@\/§) e{d e} Aspe Rﬂ@(%(lii\/?_))),
it follows that p € Q, and because of the introductory part of this proof, p € Z. So
(T, ) is weakly mixing. The non mixing assertion follows in both cases from [DK,
Theorem 2] together with Lemma 6.

2nd case: d # 4(mod6)
Now P; is irreducible by Lemma 7. As p € Q(A,,) for all 4 € Oy, there are polynomials

Q. € Z[z], Qu(z) = XL, quix’, and g, € Z\ {0} such that Q,()\,) = qup. If p € Q,
then as before, p € Z and ¢ = 0 is constant. Otherwise p ¢ Q and the Q,(z) are
nonconstant.

For u € Oy and k € N it follows from (6) that
Sk‘],up = SkQ,u EQ#, Sk (7)

d
- Z(]p ZSk-}—z + qu Z C - /\;)/\5 + Zqﬂyi Z CV(/\L - )\Z/)/\llf ”
vely i=0 v€0\{n}
and since 3 ||, Sepll < 1qul 2ok [|Skp|| < 00, we conclude that for p € Oy

(-0 o

v€0a\{n}

2

k

=:Au

If A,, # 0 for some p,v € Oy, then |A,| < 1 by [Ma, Lemma 2], which contradicts
p € O4. Hence A,, = 0 for all y,v € Oy, ice. Qu(X,) = Qu(N,) for all p,v € O,.
(This part of the proof is similar to arguments leading to Theorem 2 of [L.2], see also

[So4, Theorem 2.2].)

For the rest of the proof we adapt an argument from [So4, Corollary 2.3]. Let F
be the splitting field of P;(z) and denote o := Qo(Ag). Let A := {v € {0,...,d} :
Qo(A,) = a}. Then Oy C A. If 7 is any automorphism of F' over Q, then Qo(TA,) =
7Qo(A,) = Ta for all v € A such that TA= A (if ra =a) or TANA =0 (if Ta # ).
But as the Galois group of P;(z) allows all permutations of {)g,...,As} (Lemma 7),
and as Qo(z) is a nonconstant polynomial of degree at most d, this is possible only if
#A = 1. But then #0,; = 1, too, and hence d € {1,2,3} by Lemma 7. This proves
the theorem for d > 4, d # 4 (mod 6 ).

Rewriting (7) for g = 0 yields

Skp_ZQOZSk+2+Z (ZQOZ /\2_/\2)) /\l]f

=0 vel; \+=0
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As ||Skp|| — 0, it follows that 2%, 248, € Z for sufficiently large k. Suppose this is

q
true for k > ko. Then it is also true f(gr k = ko — d in view of the recurrence relation for

the Sk, and by induction it follows that it holds for & > —2d. Evaluating this relation

for k = —2d,...,—d and observing that S_y5 =---=5_43.1=0,5_4=---=5;=1
yields successively ¢o|qo,a; 90|q0,d=1; - - -+ Qo|g00, t-€. go = 1 and p = Qo(A,). Now the
conclusions of the theorem follow immediately. a

The isomorphism onto the 2 and 3—torus

Theorem 4 ([VL, GLT]) For d = 2,3, the factor map ¢ is a melric isomorphism
onto the 2— and 3—dimensional torus, respectively.

Proof: For d = 2 we can use [GLT, Theorem 6 and Remark 5|, because Hypothesis
B of that paper is satisfied. This hypothesis requires a certain uniform control on
“backward carries” when adding numbers (5,,) to elements w € . In our terminology
it reads:

There is b € N such that for all K € N, all m > k+ b+ 2 and all w € Q) with
Wit1 = -+ = wiyppr = 0 holds: (T5mw); = w; for 1 =0,..., k.

Observing that 25,, = Sp414+Sm—2+Sm—7, Sm+Sm+1 = Sma2+Sm—3,and S, + 5,12 =
Smas for d = 2, 1t 1s not hard to check this with b = 6. For d = 3 the hypothesis fails
however.

We can prove both cases using a result of Vershik and Livshits [VL, Theorem 3].
Recall that for d = 2,3, the space ) is homeomorphic to the shift space generated by
the substitution 0 — 01, 1 — 2, 2 — 0, respectively 0 — 01,1 — 2,2 — 3,3 — 0.

The assumptions of their theorem are satisfied for Ag = {(8)1, ((1)(1))2, ((1);(2))1} and

A _ r[1 0120 _ () 01 012 0123 A
A= {(1)1’ (2001)2} when d = 2, and for Ag = {(0)1’ (10)2’ (120)2’ (1230)4}’ A=
{ 1 2 3 1230 01230 1230010 01201230 010120123 0101201230

1/ \2/1° \3/1> \8012/)5° \30012/ 4 \3001012/4> \23001012/5> \120123001/)5° \3001012012/ 5

(;33?833?3;)2}, when d = 3. Here (Z)k denotes a pair of balanced blocks and &k the num-

ber of substitutions needed before a decomposition in elements of Ax U A is possible.
O

Additionally we give an elementary geometric proof of Theorem 4 for d = 2, which at
the same time makes explicit the relation to a certain tiling of the plane. It bears some
resemblance with [Ra] where the recurrence S,.; = S, + S,—1 + S,_2 is treated. We
try to understand the nature of the factor map
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My x I : Q@ — T2

w = Zwk (Sk)\o,Sk)\g) (mod 7 X 7 ) .

k>0

0

We will prove the following:

The projection II, x II,z is almost everywhere one-to-one with respect
to the Lebesgue measure on the 2-torus. More precisely: For x € Q let
Zro..z,_, denote the cylinder of order n consisting of all w € € such that
w; = z; for 1 = 0,...,n — 1. Then for fixed n the images of two different
sets Zyy. 2, and Z,, ., . are closed subsets of the torus which intersect

only in a set of Lebesgue measure zero.

Since according to (6) we have SpA§ — Sy, = Kl(p)/\]lC+4 + ](2(7))/\]2hL4

K](-p) := ¢;(Ag — A}), the factor map can be decomposed in the following way:

, where we defined

1. A map )
m: Q@ - C
w Zwk/\lfH (8)
k>0

which creates a “fractal” set P := ﬁ(ﬂ) in the shape of a five legged poodle, cf.
Figure 1.

2. A linear deformation P — gb(f)) —: P, where
¢ : C~R? —» R?
c o (Gl = (KD 4 KDz KO KO

3. and finally the canonical projection mp2 from R? onto T2

Lemma 8 i) Fizn > 2. Then every sel Prg...xn_l = ﬁ(Z'ro...xn_l) is up to a translation
identical with one of the three sets NP, A\{*'P or \iT?P. More precisely:

i AP 00
Pooowy s = Z e AT+ AT P S if the string xo. .. 7,1 ends with {10 3. (9)
i=0 /\?-1-2 P 01

ii) The poodle P is self-similar in the sense of [Hu], i.e. il coincides with the unique
nonvoid compact set invariant under the three contractions

1/)00:21—>/\fz, 1/)100:21—>/\‘11—|—/\:1)’z and ¢0100:2|—>/\§—|—/\‘112,

which map P to 1500, Pioo and Poroo respectively. These three sets form a partition of
P modulo a null set.

iii) The translates koA + k1 A} + P, k; € Z, of the poodle intersect only in null sets.
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o.zn_y 18 1dentical with

Proof: i) If zg...2,-1 ends with 10 or 01 then the set Z,
Zrgan_i0 and Zy . oo respectively, since any two ones have to be separated by at
least two zeroes. So consider only the case where xzq...x,_; ends with 00. In this case
0"(Zsy...,_, ) €quals @ where o denotes the left shift on Q. Now for any w € Z,

we have ﬁ(w) =S e AT /\?ﬁ(a”w), which proves (9).

ii) Clearly, © = Zoo U Z100 U Zo100, so the first assertion follows from (9). To prove the
second one we show that the Lebesgue measure ,LL(lN)) equals ,u(lsoo) —|—,LL(15100) —I—,u(lsomo):
According to i), ,LL(lNDOO) + ILL(PH)O) + ,u(lsgloo) = (|A22 4+ X312 + [M1]?) - ,u(ls), whence it
suffices to verify /\%/\%—|—/\:15/\12)’—|—/\‘11/\‘21 =1. But /\f/\g—l—/\:{’/\%—l—/\‘ll/\%—l = /\52+/\53—|—/\54—1,
since AgA; Ay = 1. The right hand term, multiplied by A3, is equal to A2+ g +1— A3 =
—(Ao+1)(Ag =M —1)=0.

Q0+ Tpn—1

iii) First we have to estimate the shape of the poodle in order to prove that only
adjacent poodles can intersect®: For fixed n let d,, := max{|TI(w)] ‘ wr = 0,Vk > n}.
Then | S psn @A™ < M1 oo du| M ™ = [Mi]" - dn /(1 — [X|*) =: r,, holds for any
w € Q, so the set P is contained in the union of S, balls of radius r,,, centered at the
points TI((k)), 0 < k < S,. For n = 9 the estimates are good enough to show that this
union is contained in the parallelogram { a+3X; | a € [—0.79,0.90], 5 € [—0.84,1.12] }.
whose sides are strictly smaller than 2 resp. 2 |A;|. So two poodles kg + ki1 A + P and
k. + KX\ 4+ P can only intersect if |k; — k| < 1,1 =1,2.

In order to prove iii) it remains to show that the sets 15, 1—|—15, A +Pand 14+ A 4P are
mutually disjoint up to a null set. The clue to the proof is the observation that these
four poodles can already be found “en miniature” after a similarity transformation
z+ Az in different parts 151‘0...'1‘“_1 of the original poodle P:

7
~ AT

p — /\If) = 130000000
~ ./\”1f' ~ ~

1+P — )\I + )\IP = Pooo1000
~ .)\’lf' ~ ~

A+ P — /\Ef + /\IP = Poooo100

~ .le' ~ ~ ~
I+M+P — /\I + /\515 + /\IP C  Pioo00100 YU P1ooooooo -

Here we made use of the “carry rule” M+! = X5 4 X5=2 {6 convert the “illegal” sums
in the middle row into “legal” ones and of equation (9). By ii), these parts intersect
only in null sets. O

As an immediate consequence of Lemma 8 we get the following: For any n € N the
sets IND(k)O...(k)n_l, k=0,...,5, — 1, form a partition of P modulo null sets. Since all
points z € C which have more than one preimage in w have to lie in at least two distinct
sets Pyy. 0., and Py, for some n € N, the set of all those points has Lebesgue
measure zero.

3)The calculations are tedious but straightforward, so the reader may prefer to just have a quick

glance at Figure 2 in order to be convinced of this assertion.
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Figure 1: The poodle P with the parts Poo, Pigo Figure 2: The deformed poodle P and its eight
and Pg1o0 shaded differently. For better compari- immediate neighbours.
son between Figures 1 and 2 we plotted —R(z) ver-

sus —S(z).

Now the only thing left is to show that by the map w2 o ¢ the set P is squeezed
nicely into the torus, in such a way that only boundary points? of P become identified
(compare fig. 2). To do this one just has to transform the corresponding result for p
in Lemma 8 iii). Since

, . 0, 0<k+p<?2

or(A]) = [Xfp)/\zf + [\2(p)/\§ = Sk-aAg — Skp—a = { -1, 2<k _|_§ <4

the images of A\] and A} are ¢(\]) = — (}) and ¢(A]) = — ((1)) This shows that the
projection my2 : P — T? is one-to—one except possibly on the boundary of P. Since the
factor map II,, x II2 induces a semi-conjugacy between T' and an irrational rotation
on the torus, the image mp2(P) must be the whole torus.

Fractal tilings of the plane by sets like the poodle and their connection to Pisot
numbers and finite state automata are investigated in numerous papers, see e.g. [Th,
Ba, BG]. The poodle itself was studied also by [Ge]. For tilings in dimension d > 2
see [So02].

4By “boundary” we mean the intersection of two adjacent poodles.
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Factor maps onto d—dimensional tori

A generalization of the previous construction leads to

Theorem 5 For every d € N there exist rationally independent irrationals py,. .., pq
and a unimodal map f such that the torus rotation (xy,...,xq) = (x1+p1,...,Ta+pd)
is a conlinuous factor of f|x. The factor map is also a measure theorelic isomor-
phism. Furthermore, the map f is not renormalizable, and can be chosen to have a
wild attractor.

Proof: let ag > ay > ... > a; > 1 be integers and let A, ..., Ay be the roots of the
equation

e —apx? — - —ay=0.

According to [Bral, the largest root Aq is an irrational PV-number. Hence the numbers
pi = A, for i = 1,...,d are rationally independent irrationals. Let (Ry)n>0 be the
sequence of integers satisfying

okt it 0<k<d
k+1 = aoRr + -+ agRi_q4 if k> d.

According to Solomyak [So3], the odometer based on the numbers R; is measure theo-
retic isomorphic to the torus rotation (x1,...,xq) = (21 + p1,..., T4 + pa)-

Next we construct a sequence (m;);>o and cutting times (5;);>o with the property

that S,,, = R;. Let A= (E?:o a;) — 1 and

i it 0<i<d
mi:{mi_l—l—A:(i—d)A—kd it Q> d.
Let A : {1,---,A} = {0,---,d — 1} be defined as
h(1) = h(2) = - = h(ag— 1) = 0.
h(ag) = h(ag+1)=---=h(ag+a; —1)=1.
h(ao+ -+ ag_1) =hlag+ -+ ag-1+1)=---=h(A) = d.

Next let the kneading map

Q(m) =0 if m <d.
Q(mi+ ) = mi_n) if 1>d and 1<j5 <A

A straightforward calculation shows that ) satisfies the admissibility condition (1), as
well as the conditions of Theorem 0. Moreover, S,,, = R;. It is shown in e.g. [Bru,
Lemma 2.3] that f is renormalizable if and only if there exists & > 1 such that

Qk+j)>k forall j>1. (10)



ADDING MACHINES AND WILD ATTRACTORS 19

This is clearly not the case, so f is not renormalizable. By the construction of (R;);
and the fact that Ao is a PV-number it follows that |p, Rr — Ri4+.| — 0 exponentially.
Therefore -, ||p- S| < oo. Indeed, for 1 < j < A and 1 > d,

d
sz‘-}-j = Z ekJSmi—kv
k=0

for integers 0 < e;; < B := max; a;. Hence

A A d
SllerSull < d+ 143D NorSmaill Sd+133"3 erjllorSmas |
m i>d j=1 i>d j=1 k=0
< d+AB(d+1) Y |p.Ri|| < .
i>0

This shows that there is a continuous factor map. Finally, in order to apply the result
in [So3], let us show that the R-odometer and the S—odometer are homeomorphic.
Any integer n > 0 can be represented in both number systems: n =37, b;R; = 3, a;5;.
The sequences (a;); and (b;); can be expressed in terms of each other; in fact b, =
bi(@m,, Gm,41,...) and a; = a;(by,bgq1,...), where k is such that m;p <7 < mgyr. So
the transformation relating (a;); to (b;); is uniformly continuous in both directions,
and therefore extends to a homeomorphism between the whole R—-odometer and S-—
odometer. O

4 Examples based on continued fractions

Let p € [0,1] \ Q and [0,a4,az,...] be its continued fraction. The convergents will

be written as Z—: Hence 5—2 = %, % = i and in general p; = a;p;i_1 + p;_2 and
i1

¢i = aiqi—1 + gi—2. 1t follows by induction that p;qit1 — piy1¢;i = (—1)"t'. Furthermore

P2 o < P21 Cwhence |p — 2| < ——.
g2z 92:+41 93 ' — 9539541

Theorem 6 For ecvery p € [0,1]\Q there exists a sequence of cutting times (Sk)r such
that I, : Q — S' is continuous. The sequence (Sy) is admissible, the corresponding
map [ is non—renormalizable and its kneading map Q(k) tends to infinity. Moreover,
the map 11, ts one-to—one, except in the preimages of 0, where il is two-to-one.

The construction of this kind of examples is related to so—called almost restricted
intervals (cf. [J]). In [GS] they are called rotation-like mappings. During our research
we learned that Paul Glendinning was working on these examples, too. The Fibonacci
map is delayed, at every closest return, by a,41 loops in an almost restrictive interval
of period g,.
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Remark 4 If p is of bounded type, i.e. (a;) is bounded, then the kneading map @
constructed in the proof satisfies n — Q(n) < 2- maxy ag. So it follows from [Bru] that
this combinatorial type can coexist with a wild attractor. For rotation numbers of
unbounded type we think that the same is true.

Proof: Let again (qi)r>0 be the denominators of the convergents of p. We will con-
struct a sequence of cutting times, and a sequence (ng)r>o with the property that
Sn, = qi. Let the kneading map () be as follows:

Qn)=0 for n<q.

Then Sp =1 and S,,_1 = ¢1,s0 ng = 0 and n; = ¢; —1. Inductively, set nyy1 = np+ags
and
] g if np<n<ng,
Qn) = { Nk_1 if n=mngy .
Then indeed S, = gr and Sy, +; = (7 4+ 1)gx for 1 < j < agyr. @ is admissible, see (1),
because for ny, < n < ngyq,

QIR n) +1) < npoy <npor S Q4 1) .

It follows from (10) that f is not renormalizable.

Let w =wowy ... € Q. As Q(n + 1) < ny, for every ny < n < ngy1, there can be only

one ng < n < npyq such that w, = 1. As ||pjgel| < jlpge —pr| < Jaulp — 22| < ==

k41
Snpti = (7 +1)S,, for 0 < j < agqq, it follows that

and

. _ 1
Y willpSell < Y- max{llpggell : 0 < j < app} <Y o < 00 .
k k .

Let us now prove the last statement of the theorem. The choice of kneading map
shows that for each w € ), there is at most one n, ny < n < ngyq such that w, =1,
and if w, =1 for some n; < n < ngyq, then wy ya,,,-1 = Wny -1 = 0. Therefore
there is a one-to-one correspondence between € and ¥, where

Y = {(bz)zzo -0 S bZ S A5y, bZ 7£ 0= bi_|_1 < CLH_Q}.

Indeed, one assigns b € ¥ to w € ), where b; = 0 if w, = 0 for n; < n < n;yq, else
b; > 0 is chosen such that w,,45,-1 = 1. A sequence w is eventually mazimal if there
exists A such that either w,,,_y =1 forall k > K, or wy,,, .,y =1forall k > K. It
follows that 7™ (w) = (0) for some m > 1 if and only if w is eventually maximal. The
eventually maximal sequences correspond to the following sequences in ¥: There exists
K such that either byy = agzy1 (and therefore by = 0) for all & > K, or bapy1 = a2s42
(and by, = 0) for all & > K. It is known that the number system ¥ is isomorphic to
the circle rotation over p [VS, Theorem 2.1]. The isomorphism is given by

I : ¥ — St I (b) = Z |bipg:||  (mod1).
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In fact, I’ is one—to-one, except in the eventually maximal sequences (which correspond
to the preimages of the critical point), where it is two—to—one. a

Let A be the dyadic adding machine, i.e. A = {0,1}" endowed with the metric
da(z,y) =% M'Q;f”' The natural numbers are represented by their dyadic expansion.
Let B be the dyadic solenoid, i.e. B = S' x A/ ~, where (z,y) ~ (2',y') if (z,y) =
(z',y")or x =2’ =0 and y' = y + 1 or vice versa. We only need the local topology
of B, which has the structure of a Cantor set cross an arc. Therefore assume that
arc(z,a'), the shorter arc between z and 2’ € S', has length < 1. Then

z;i — 2,
do((a,0),,1/) = o =) + 32 =

where
2=y, 2=y if 0¢arce(z,2’) or z=2"=0,

z=y+1,2 =y if 0€arc(z,2’) and 2’ €[0,5],
z=y,2 =y +1 if 0€arc(z,2’) and z€][0,5].

Theorem 7 There exists a unimodal map f such that B x A is a continuous factor
of (X, f). Moreover, f is not renormalizable, and the kneading map @ satisfies the
conditions of Theorem (.

Proof: Let (F,)n>0 = {1,2,3,5,...} be the Fibonacci numbers. We will construct
the cutting times of f in such a way that

S, = Qk(n)Fr(n) ,

where r(n) > k(n) for n large, and k(n) — oc as n — oo. Hence, for every k € N, 2*
is an eventual divisor of (5,), We start taking S, = F,, so Q(n) = n —2 for n > 1.
Then we modify ) and (5,,) recursively according to the following algorithm, starting
with ¢ = 1:

(i) Choose n; > 5' such that 2° divides S,,.

(ii) Put Q(n;+1)=n;—3,Q(n; +2)=n; —2, Q(n; +3) =n; —2, Q(n;+4) = n; + 1,
and for n > n; + 4, we again take Q(n) =n — 2.

(iii) Increase 7 by 1 and continue with step (i).

For example, the sequence (5,,) with ny = 7 starts with

1,2,3,5,8,13,21,34,42,55,68 = 2 x 34,110 = 2 x 55,178 = 2 x 89, ...
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It is easy to show that () defined this way satisfies the admissibility condition. Moreover
n—5<Q(n) <n—2forall n > 2. Hence by (10), f is not renormalizable.

It is a straightforward computation that S, 11 = 25,,-1, Sn,42 = Sn, + Sn,—1, and
forn; +3 <n < njpq, S, = ZiFT_g_,_(n_ni), where r is such that 2°-'F, = S,.. Hence
S, = 2!F, for some r >> i, whenever n € {n; +1,n; +3,n; +4,n; +5, ..., nip1, nip1 + 2}

Next take v = @ and define the factor map 7 : (N) — B x A as n((n)) =
(nv,[nv],n). Here the first component is taken in S', the second is the integer part of
ny, taken in A, and the third component is again taken in A. It is clear that on (N),
moT =T on, where T” denotes the addition of (v,0,1) in B x A. We claim that = is
uniformly continuous, so that it extends continuously to the whole of €.

Take ¢ > 0 arbitrarily small and find n such that C' Y5, 2F)47() < 5 and 4.2~k <
¢/3. Here C is such that v|F, — F,_;| < C~" for all n. Take any (a) € (N). We will
show that #(Z,({a)) N (N)) is contained in an eneighbourhood of n({a)). Indeed,
take (b) € Z,((a)). All cutting times S; with ¢ > n are multiples of 2k(n)=1 Qo
da(b) < 2210 < £ Also b — almod1 < Tis, 15 = Yo (120 B <
C Yy 260470 < 5. So arc(ya,vb) is indeed short. Note that

7Ss = 2" By ] = 25Oy By = Frya| < 280070

So if arc(ya,vb) # 0, then [ya] — [yb] = Yy, 0:28 F(;_1, for some sequence (o;); €
{—1,0,1}". This is a multiple of 25(")=1 hence

2 2

dp((va,[yal), (70, [70])) < llya — bl + 55 < 3

I arc(va,vb) 3 0 and [8] € [0, 1], then [ya] + 1 = [8] = $is., 0,250 F (1. 50 again

2 2

dp((va; [ya]), (46, [Y0]) < llva =20 + g < 3

The third possibility goes likewise. Hence m((a)) and «((b)) are at most ¢ apart. O
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