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ABSTRACT. We consider the restriction of unimodal maps f to the
omega-limit set w(c) of the critical point for certain cases where w(c)
is a minimal Cantor set. We investigate the relation of these minimal
systems to enumeration scales (generalized adding machines), to Vershik
adic transformations on ordered Bratteli diagrams and to substitution
shifts. Sufficient conditions are given for (w(c), f) to be uniquely ergodic.

1. INTRODUCTION

Let f :[0,1] — [0, 1] be a unimodal map with critical point ¢. Crucial data
in the description of f, as well as of several other objects in this paper, are
the cutting times. This is an increasing sequence (S) of integers, which we
define in the next section. But for the occasion, there is an equivalent way
of defining them in terms of periods of periodic points: each S is the period
of a periodic point p with the property that no periodic point in (p, f(c)]
has lower period.

If Sy — Sk_1 — o0, the critical omega-limit set w(c) is a minimal Cantor set.
Except for their intrinsic combinatorial and ergodic properties, the system
(w(c), f) is studied because under certain conditions it can be the attractor
of the whole system ([0, 1], f), see [10, 6].

In this note, we want to explore the relation between the minimal system
(w(e), f), the enumeration scale (A,T) based on (Si), Vershik adic trans-
formations (X, 7) and substitution shifts (2,0). The latter two can serve
as models for general minimal Cantor systems, but we will only describe
them as far as our interests in unimodal maps go. This is the contents of
Sections 2-5

One of the questions we would like to answer is when (w(c), f) is uniquely
ergodic; whereas a complete answer is not known to us, in Section 6 we give
sufficient conditions for (w(c), f) to be uniquely ergodic, as well as examples
where (w(c), f) is not uniquely ergodic.
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The system (w(c), f) generates a subshift of the kneading theory: to each
T € w(c) attach the itinerary (y;)i>0, where y; = 0 if fi(z) € [0,c] and
y; = 1 if fi(z) € [c,1]. (The ambiguity in itinerary for z € U,>of "(c) is
conventional.) Let us call the resulting subshift (Y, ). It is not hard to show
that for any minimal subshift Yy of {0,1}", there is a sequence of cutting
times (not necessarily satisfying Sy — Sx—1 — 00), such that Y = Y. The
complezity of (Y, o), i.e. the number p(n) of different n-words, as function
of the combinatorics of f, remains a poorly understood area. Except that
in our setting p(n) grows subexponentially (see Proposition 1, part 4.) and
the proven linear growth of some particular cases, little is known.

2. UNIMODAL MAPS

Let f : [0,1] — [0,1] be a unimodal map, i.e., f is a continuous map with
a single critical point ¢ € (0,1) such that f|[0, c] is increasing and f|[c, 1] is
decreasing. We write ¢, := f"(c), the n-th image of the critical point. The
omega-limit set of c is given by:

w(c) ={z €[0,1] | In; = oo, f"i(c) — z}.

It is well-known that w(c) is compact and strongly invariant: f(w(c)) = w(c).
In general, w(c) can be a cycle of intervals, a Cantor set, a countable (or
finite) set, or the union of a Cantor set and a countable set, see [5]. We
are interested in the case that w(c) is a minimal Cantor set, i.e., w(c) is a
Cantor set and orb(z) is dense in w(c) for every = € w(c).

There are various constructions leading to minimal Cantor sets, e.g. in-
finitely renormalizable maps (for example the Feigenbaum-Tresser-Coullet
map), maps connected to circle rotations (see [16] and [9, Section 3.6]).
Here we use a class of unimodal maps, advocated in e.g. [8] (see also [11]),
namely maps with kneading map tending to infinity. This class includes the
so-called Fibonacci unimodal map, which has been very well studied for its
extreme metric and measure theoretical properties, [19, 22, 10].

To describe this class of maps, let us recall a construction due to Hofbauer,
[18] and [8]. For each n and each maximal closed interval J C [0, 1] on which
f™J is monotone, ™ :J — f™(J) is called a branch of f™. Obviously, there
are two branches f™ : J — f™(J) such that ¢ € 0J; these are the central
branches of f™. The integer n is called a cutting times if ¢ € f™(J) for (one
of) the central branches. (Since the central branches have the same image
for n > 2, we need not specify which central branch is used for those n.)
The cutting times will be denoted as (.S;)i>0, where

1=5<85 <8<...

Assuming that f has no periodic attractor, f has infinitely many cutting
times. It can be shown ([18, 8]) that Sy — Sk_; is again a cutting time. We
denote it by Sg(x). This gives rise to the so-called kneading map @ : N — N.
(We take N = {0,1,2,...}; by convention, put @Q(0) = 0.) Obviously,
the sequence of cutting times determines the kneading map and vice versa.
Moreover, we have the following admissibility result:
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Lemma 1. There exists a unimodal map with kneading map Q if and only
if
{Qk +)}j>1 = {Q(Q*(K) + 5)}j>1, (1)

where > indicates lezicographical order and Q% = Q o Q.

Proof. See [18, 8]. O

It follows immediately that every non-decreasing kneading map is admissible
i.e., corresponds to an actual unimodal map. Some well-known examples of
admissible kneading maps are

e Q(k) = k — 1, which yields the Feigenbaum map, and Sj, = 2.
¢ (k) = max{0, k — 2}, yields the so-called Fibonacci unimodal map.
The cutting times are the Fibonacci numbers: 1,2,3,5,8,13, ...

Take D; := [cg,c1]. For n > 2, let D, = f™(J) be the image of the central
branch(es) of f™. It is a closed interval with endpoints c, and cg(,), where
B(n) =n —max{Sy | Sy < n}, see [8]. The following proposition focuses on
the class of maps we want to consider in this paper.

Proposition 1. Let f be a unimodal map having no homtervals (i.e., for
each non-degenerate interval J there exists m such that f™(J) 3 c). Assume
that the kneading map Q of f satisfies limy_, oo Q(k) = co. Then

(1) |Dp| — 0 as n — oo;

(2) w(c) is a minimal Cantor set;

(3) c is recurrent and persistently recurrent, i.e., for every neighborhood
U 3 c, there are only finitely many integers i such that f*1:V; = U
is monotone onto for some neighborhood V; of c1;

(4) (w(c), f) has zero topological entropy.

Proof. The first three items are demonstrated in [8]. The last item is due
to Blokh & Lyubich [4]. In a nutshell, Blokh & Lyubich defined r,(z) =
|f™(z) — 0f™(J)|, where J is the branch domain of f" containing z. If
rn(z) — 0 for all z € w(c), they show, using a result of Ledrappier [20], that
the topological entropy of (w(c), f) is 0. If w(c) is a Cantor attractor (see
[4]), then indeed 7y, (z) — 0 for z € w(c). In [6], it is shown that Q(k) — oo
implies 7, (z) — 0 uniformly on w(c). O

A subclass of the maps with kneading map Q(k) — oo are the infinitely
renormalizable maps, for which we have the following characterization in
terms of kneading maps:

Lemma 2. A unimodal map f with kneading map Q is renormalizable of
period n if and only if n = Sy is a cutting time, and Q(l) > k for all | > k.
As a consequence, f is infinitely renormalizable if there exists a sequence
(ki) such that for all i, Q(l) > k; for all l > k;.
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Proof. See [8]. O

Remark: The sequence (Si)x is also extremely useful to describe the com-
binatorial structure of quadratic polynomials p(z) = 2% + ¢; in the complex
plane. In this case (Sk)i is called the internal address [23]; it is a strictly
increasing sequence of integers, which coincides with the cutting times if
c1 € R, but for the general case the map ) cannot be defined, and also
admissibility observes different rules. There is a complex analog of renor-
malization: if for some k, Sgy; is a multiple of Sy for all ¢ > 1, then p
is complex renormalizable of period Si. On the other hand, the condition
Sk — Sg—1 — oo by itself does not imply minimality of w(0) in the complex
case. We do not know of general conditions on the internal address that do
imply minimality.

To give an idea how fast S, grows as function of (), we give some examples
in the next lemma.

Lemma 3. Let Sp =1 and Si = Sk_1 + Sq(k)-

(1) If k — Q(k) is bounded, then Sy grows exponentially.

(2) IfQ(k) = |k—ak?| for some B € (0,1), then Sy, grows in a stretched
ezponential way, and log(Sy) has leading term %kl_ﬂ log k.

(3) If Q(k) = |ak], then Sk grows superpolynomially but slower than
stretched exponentially: forr > 1 and € (0,1) we have limy Si/k" =
oo and limy, Sk/ekﬂ =0.

(4) If Q(k) = |akP]| for some a > 0 and B € (0,1), then Sy grows

__loga

polynomially, with leading term kY/(=P) log® k for a = g8

Proof. 1. For the first statement, assume (k) = max{k — B,0}. Then
S; ~ A¥ where A > 1 is the leading root of the characteristic equation
2B = 2B~ 4 1 of the recurrence relation. For any kneading map Q such

that £ — Q(k) < B, the growth is at least as fast.

2. The growth-rate of a smooth function g(k) is best comparable to S
if g satisfies ¢'(t) = g(t — t%). Assume that logg(t) = rt?log®t + lo.t.,
where the lower order terms [.o0.t. tends to 0 as ¢ — oo when divided by
t7log®t. Then
gt —t%) = exp[r(log®t +log®(1 — 1)) (t — t°)7 + l.o.t]
= exp[r(t"log®t — vt P Llog® ¢ — gra(6-1)) 4 lotl],
while
g (t) = exp[rt”log®t + (y — 1) log t + l.0.t.]
Therefore, neglecting the l.o.t., weget y=1—f, a=1landr = (1—-7)/y =
B/(1 - B).

3. The growth-rate of S; is comparable to the growth-rate of f(t), where f :
R>o — R is the solution of the differential equation f'(t) = f(at) with ini-
tial condition f(0) = 1. Writing f as formal power series f(t) =, <, ant”,
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we find ag = 1 and the recurrence relation a, = %a"ilan,l. This gives

1 n(n—1)
anp = mO[ 2.

Clearly « et > 0, and for each v > 0, ot < ~™ for n sufficiently large.
Therefore, the formal power series converges for all ¢ > 0, and f(t) grows
faster than any polynomial, but slower than any exponential function. For
the comparison to g(t) = P’ for fixed p>0and 0 < g €N, let us write
the Taylor series

o) = 3 .p"t“/q Zt"z G

n>0 v n>0 =0
R I
n>0 (q ) n>0
Using Stirling’s formula, we compute
n(n—1) n(n—1)
an, (gn)la 2 (qn)™tla 2 e
log— = log——— <log
b, nlpan nnednpin

_]_)

= (1-|—qn)logqn+n(n loga+ n(1 —logn — g — logp)

—  —o0,

as n — oo. Hence a, /b, — 0 as n — oc.

4. Assume that the function g(¢) interpolates (Si) and that g(¢) has leading
term t71og®t, i.e., limy(g(t) — t7log®t)/(t"log*t) = 0. Then we get, for
some ¢ € [k — 1, k],

9(lak?]) = Souy = Sk — Sk-1=4'(£)
e og®(€) + & Lalog® L € + Lo,

where [.0.t. indicate the lower order terms. Neglecting the difference between
k and ¢ (it falls under the .0.t.) we need to solve ak??3%log® k = (log® k +
alog® ' k)k7! 4 Lo.t. Therefore v = 1/(1 — B) and a = —loga/log 3 as
claimed. O

3. ENUMERATION SCALES

Let us start explaining what enumeration scales are. We follow the termi-
nology from [1]; other terms used are (generalized) adding machine or adic
transformation, e.g. [11].

Given an increasing sequence of integers (Sk)x>0, we can construct a greedy
representation a = agajas ... of any integer ng > 0 as follows. Start with
the sequence a of all zeroes. Take the maximal S < ng, replace a; with
ay = |no/Sk| and continue with the remainder nq := ny — axSk. That is,
find ¥’ maximal such that Sy < n; and let ap = |n1/Sk], etc. After a finite
number of steps, n; = 0 and ng = ) axSy. We write (n) = a.
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Let A* = {(n) | n > 0} be the set of greedy representations of nonnegative
integers. Obviously, each a € A* is an infinite string of integers, with only
finitely many nonzero entries. Let A be the closure of A* in the product
topology on NV,

We think of the case where the Sy are the cutting times of a unimodal map.
This implies that S, < 2S;_; for each k, so for each a € A and i > 0,
a; € {0,1}. In the language of [1], this gives rise to a low enumeration scale
(échelle basse). As was shown in [11],

A={ac{0,1N |az=1=a; =0for Q(k+1) <j <k} (2)

General number systems of this construction are of course possible, see [17,
1, 2] for more information. From now on, let (S;) be a sequence of cutting
times.

Lemma 4. The map T : A* — A* defined by T({n)) = (n+ 1) is uniformly
continuous if and only if Q(k) — oo.

Proof. See [11] or [17]. O

This allows us to extend T' to A by continuity. It acts by “add and carry” on
the sequences a € A. One can show that 7' is invertible, except (possibly) at
(0) =0,0,0,... For example, if (Si) is the sequence of Fibonacci numbers,
then A = {alay = 1 = ay41 = 0}, and there are two maximal sequences
a =1,0,1,0,1,0,1,... and o’ = 0,1,0,1,0,1,0,1,... such that T'(a) =
T(a') = 0,0,0,... In general, #71({0)) equals the number of infinite paths
in the arbre de retenues of [1]. In [7, Lemma 3] a condition is given on (Sk)
that renders the map 7" invertible, and in [5] it is shown that this condition
is necessary and sufficient.

If (A,T) is a number system based on the sequence of cutting times (Sy)
and the corresponding kneading map Q(k) — oo, then (A4, T') factorizes over
(w(e), f) as follows:

Lemma 5. Let h : A* — orb(c) be defined as h({n)) = ¢,. Then h is
uniformly continuous. The extension h : A — w(c) is continuous onto and
satisfies hoT = f o h.

Proof. See [11, Theorem 1]. There it is also shown that if a € A\ A*, then

h(a) = NiDy), for g(i) = ) a;S;. (3)
§=0

It should be remarked that the intervals D,, have a nested structure in the
sense that D, C Dg,) for each 3 < n ¢ (Si)k, see [11, Lemma 5]. Therefore
the intersection in (3) is an intersection of nested intervals. In fact, a stronger
property holds is easy to prove: If Q(k) is non-decreasing and k < [, then
D14, C Diys,. For later use, we state the corollary:

If n > m ¢ (Sk) are such that g(m) = 8(n), then D, C D, (4)
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To see this, let K = 8(m) = 5(n) and observe that D, i and D,,_ g are the
last levels before D,, resp. D, containing the critical point. By the above
statement, D, _g 41 C Dpm_g11, and since fX~1|D,,_ g1 is monotone, (4)
follows. O

In general the map h : A — w(c) is not one-to-one. As an example, if
Q(k) = max{0,k — 3}, then 0 has two preimages under f in w(c), but (0)
has three preimages under T'. Hence, at least two preimages of (0) must be
mapped to the same preimage of 0 in w(c). In [7, Theorem 2] conditions are
given for h to be one-to-one, provided 7' is one-to-one. The techniques of [7]
however extend to show when & is injective on A \ Up>07T~"((0)). This can
be used to construct examples of kneading maps such that h and f|w(c) are
one-to-one except for a finite or countable set.

In [11] this is a key construction to find topological groups as factor of
(w(c), f). Among other things, it is shown that for the kneading maps
Q(k) = max{0,k — d} for d € {2,3,4}, (w(c),f) is semiconjugate to a
rotation on a d — 1-dimensional torus, while if d > 5, (w(c), f) is weakly
mixing.

4. BRATTELI DIAGRAMS AND VERSHIK ADIC TRANSFORMATIONS

An ordered Bratteli diagram is an infinite graph consisting of

e a sequence of nonempty collections of vertices V;, ¢ > 1, such that
V1 consists of a single vertex vy;

e a sequence of collections of edges F;, ¢ > 1, such that each edge
e € E; connects a vertex s(e) € V; to a vertex t(e) € V1. For every
v € V;, there exists at least one outcoming edge e € E; with v = s(e),
and for every v € V1 there exists at least one incoming edge e € E;

with v = t(e);
e for each v € U;»2V;, a total order < between the incoming edges to
.

To each E; we associate an incidence matrix M¢ of size #Vi x #Vi11, where
M,f:.,l the number of edges from the k-th vertex in V; to the [-th vertex in V.
Instead of taking the collections of edges F; separately, we can also consider
all the paths from V; to Vj;1 for some j > i. We denote this collection of
paths by E; ;. The incidence matrix associated to F;; can be shown to be
the matrix product M/ = M*-.. MJ. This process is called telescoping. It
will turn out useful to telescope Bratteli diagrams in such a way that all
incidence matrices become strictly positive. This is possible if and only if,
for every 4, there exists j > 4 such that for every v € V; and w € Vj1, there
is a path from v to w. In the Bratteli diagrams that we will study, this is
always satisfied.

Let X be the collection of all infinite paths starting from vy, endowed with
product topology. If = z1...2ny and y = y1...yn, With z;,y; € E; are
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finite paths, then we can compare z and y if they have the same endpoint
in Vyy41. Let m < N be the largest index such that z,, # ¥,,. This means
that t(z,,) = t(y;,). In this case we say that z < y if z,,, < y,,. This gives
a partial order on the set of N-paths.

For every v € V;y; there is a unique minimal path from v up to vy, and
at least one e € F;y; with s(e) = v. From this it follows that there are
infinite paths £ € X such that the initial N-path xﬁljjnv] is minimal among
all N-paths with the same terminal vertex. Let us assume, and this is true
in all the examples we encounter in this paper, that this minimal infinite

path is unique, and denote it by ™.

The Vershik adic transformation 7 : X — X is defined as follows [24, 25]:
For z € X, let ¢« be minimal such that z; € E; is not the maximal incoming
edge. Then put 7(z); = z; for j > i, let 7(z); be the successor of z; among
the incoming edges of this level, and let 7(z);...7(z);—1 be the minimal
path connecting vy with s(7(z);). If no such i exists, then z is a maximal
path in X, and we set 7(z) = z™". Assuming that #V; < oo for all i, it can
be shown that 7 : X — X is continuous onto, and invertible, except that
™1 can have several preimages, [14].

Proposition 2. The enumeration scale (A,T) based on the sequence of
cutting times (Sk)r>0, with kneading map Q, is isomorphic to the following
ordered Bratteli diagram:

e Vi={v}={1}, and V; ={k>i | Q(k —1)+ 1< i} fori>2;

e Ei={i—i+1}U{k—ok|i<keViiU{i—=k|keVi1,Qk—
1)+ 1=1d} fori>1;

e (i—>i+1)<(i+1—i+1). (Note that i+ 1 € Vi1 is the only
vertex with more than one incoming edge.)

In addition, give the edge (i + 1 — i + 1) € E; the label 1. If the edge
(141 — i+ 1) does not exist in E;, then E; contains two edges i — i + 1;
one gets the label O the other one 1. All other edges in E; get the label
0. Write I(z) = agajay--- € {0,1}N with a; the label of x;y1, then every
path x € X has a unique infinite label. There is a unique minimal path
g™ =1 — 2 = 3 — ... with label 0000..., and lo7(z) = T ol(x), see
Figure 1.

Let us call the minimal path 2™ = 1 — 2 — 3 — ... the spine of the
Bratteli diagram. It passes through 7 € V; for each i. The vertex ¢ is called
the first vertex of V;. The Bratteli diagram thus consists of a spine and, for
each k, paths from first vertex Q(k — 1) + 1 to first vertex k. The last edge
of these paths is labeled 1, all other edges have label 0.

Proof. Each vertex k € V;;; has one incoming edge ¥k — k or ¢« — k if
Qk—-1)+1 =14 Onlyi+1 € Vjiq has two incoming edges i — i + 1
and 7 4+ 1 — i + 1, the latter with label 1. (If Q(7 + 1) = i, then instead of
1+ 1 — ¢+ 1, the second incoming edge is ¢ — ¢ + 1, so there are two edges
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FIGURE 1. The Fibonacci Bratteli diagram (left) and a
renormalizable diagram (right)

i — 7+ 1 one with label 1 and one with label 0, see Figure 1.) All other
edges have label 0.

Every vertex k € V;;1 has at least one outgoing edge, either £ — k£ if
k>i+1,ork —> k+1if k =1+ 1. In the latter case, additional edges
k — [ are possible if Q(I — 1) + 1 = k = i + 1. Therefore each enumeration
scale yields a bona fide Bratteli diagram. (Note also that Q(k) — oo implies
#Vit1 < oo for all 4.)

Clearly every path has a unique label. On the other hand, each infinite path
passes through the first vertex k € Vj, for infinitely many k. If z and y are
different path, there must be at least one index 7 such that z; has label 1
(and t(z;) =i+1 € Viy1) while y; is labeled 0, or vice versa. Hence different
paths have different labels.

Now if z; is labeled 1, then for Q(i) + 1 < j < i we have t(z;) =4+ 1 and
hence z; is labeled 0 for Q(i) +1 < j < i. Now let a, = l(zp41) and rewrite
i=p+1, j=q+1, then we get a, = 1 implies a; = 0 for Q(p+1) < ¢ < p.
This is precisely condition (2) in the characterization of A. Hencel: X — A
is one-to-one onto.
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Finally, we need to show that lo7(z) = T ol(z). We use the following claim:
Given 7 > 1, let £ € X be the path such that z; ...z; is the maximal path
connecting vy and first vertex 1 +1 € V;;1. Let a = agajas...a; 1 be its
label. Then

i—1
S; = 1—|—Za]‘5j. (5)
=0

We show this by induction. Indeed, for i = 1, we have £ = 1 — 2 with label
Land 1 =2 =1+ ;a;S; =1+ So.

Suppose now that (5) is true for all j < i, and let z; ... z; be the maximal
path connecting vg and 7+ 1 € V;41. Then z; has label 1, and following the
path upwards, it passes a vertex j € V; for the first time for j = Q(i) + 1.
The path z1...z; 1 is maximal connecting vy to 7 € Vj, so by induction

i—1 Qi)—1
1+ Z apSy = Si-1+1+ Z arSk
k=0 k=0

= S; 1+ SQ(i) =5;.

This proves the induction step.

To finish the proof, let x be any path, and let 7 > 1 be the minimal index
such that z; is not the maximal incoming edge. Then z{...z;_; is the
maximal path connecting vy to s(z;). Let a = [(z) and b = [ o 7(z). By
(5), ch;}) ag S = ch;% apSk = Sj—1 — 1. The edge 7(z); is the second (is
maximal) incoming edge to t(z;), whereas 7(x);...7(x); 1 is the minimal
path connecting vy to s(7(z);). Therefore Zi;é bp Sk = bj—1Sj—1 = Sj-1.
Thus T'(a) = b.

Finally, if no minimal index j exists, = is a maximal sequence in X. Thus
7(z) = x™". At the same time, ch;é ap Sy = Sj—1 — 1 for every j such that
[(z;) = 1. It follows that T'(a) = (0) which is indeed equal to lo7(z). O

Remarks: 1. Condition (5) implies that the number of paths connecting vy
with the first index i + 1 € V41 is S;.

2. If f is renormalizable, say with period n = S, then Vi consists of a
single vertex, see Figure 1. The Bratteli diagram of the renormalization can
be found by cutting off the upper part (V;, E;);<x from the original Bratteli
diagram. If f is infinitely renormalizable, there will be an infinite sequence
of levels V; consisting of single vertices. Telescoping between these vertices
gives rise to a Bratteli diagram for which #V; = 1 and #F; > 2 for each
¢ > 1. This is the standard form of a Bratteli diagram of an odometer, and
indeed (w(c), f) is isomorphic to an odometer in this case. These systems
are well-known to be uniquely ergodic.

3. Any enumeration scale can be translated into a Bratteli diagram, see
e.g. [1, 17]. The interest of this theorem is rather the precise description of
the Bratteli diagram, which in fact can easily be generalized.
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5. SUBSTITUTION SHIFTS

Substitutions are a common way to build minimal subshift; in fact, if we
are allowed to build the substitution shift on a countable collection of sub-
stitutions, then every minimal Cantor system can be expressed in this way.
For each ¢ > 2, let V; be a finite alphabet, and let V;* denote the collection
of finite words in this alphabet. For i > 1, let x; : Viy1 — V;* be a substi-
tution; hence, to each v € V11, x; assigns a string of letters from V;. The
substitution acts on strings by concatenation:

Xi('Ul'UQ “. UN) = XZ'('Ul)XZ'('UQ) P Xi('UN)-
To each substitution x; we associate the incidence matrix M ¢ of size #Vj x
#Vit1, where the entry My ; denotes the number of appearances of the k-th
letter from V; in the y;-image of the [-th letter of V; ;. By iterating the
substitutions, we can construct an infinite string
s = lim x3 0 x30...x;(v),
71— 00
where v is taken from V. Using the irreducibility conditions:
ViVw € V; 35 >4 Yo € Vi1 x;0--- 0 x;(I) starts with w,

which holds for all our results, the limit can be shown to exist, independently
of the choice of v € V;. Moreover, s is a uniformly recurrent string in V3. It

generates a minimal subshift (X, o), where o is the left-shift and ¥ = o"(s),
the closure taken with respect to product topology.

The best-known examples are of course the stationary substitutions, i.e.,
Vi = V and x; = x. For example, the Fibonacci substitution acts on the
alphabet {0,1} by

1 1—-0
and s = 0100101001001 ... . This string is equal to the string of first labels
of {r™(2™")},>¢ from the Fibonacci Bratteli diagram from Figure 1. As
a result, the Fibonacci substitution is isomorphic to the Fibonacci Bratteli
diagram, which in its turn is isomorphic to the Fibonacci enumeration scale.

{ 0 — 01

The following result is well-known, see e.g. [14].

Lemma 6. Every substitution shift such that each letter v € V;, i > 1
appears in some word x;(w), w € Vi1, is isomorphic to a Vershik transfor-
mation on an ordered Bratteli diagram and vice versa.

If the substitutions (x;) are such that for every i > 2, there is jo > 1 such
that

Xi© -0 x;(v) starts with the same symbol for all j > jo,v € Vj11, (6)

then the corresponding Bratteli diagram has a unigue minimal element.

Proof. We only give a sketch of the construction. The vertices of Bratteli
diagram coincide with the alphabets V; (for this reason we chose the same
notation), except that the Bratteli diagram has a first level V; = {vg}. Let
Ei = {vo — v | v € Va}. (In fact, in the construction of Proposition 1, there
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is an extra edge (1 — 2) € E;. This gives rise to an isomorphic Bratteli
diagram.) For each v € Vi1, i > 2, there is an incoming edge w — v for
each appearance of w € V; in x;(v), and the ordering of the incoming edges
in v is the same as the order of the letters in x;(v). It follows that the
incidence matrices of the substitution y; coincide with incidence matrices
associated to the edges E;.

Clearly, the Bratteli diagrams and substitutions (x;);>2 are in one-to-one
correspondence, provided every w € V; appears in at least one x;(v), v €
Vit1.

Let ¢ € V; be the symbol indicated by (6), then it easily follows that v;_; is
the first symbol of x;(v;), and that ™" : =1 — 2 — 3 — ... is the unique
minimal element.

The sequence s = lim; 2 o --- o x;(v) can be read off as s; = t(7(z™)y).
In other words, s; records the vertex in V; that the i-th r-image of z™™
goes through. The way to see this is the following: Since the incoming edges
to w € V3 are ordered as in x2(w), a path starting with yo(w)1 — w is
followed by a path starting with xo(w)s — w, etc. Because this is true for
every vertex in every level V;, the required sequence s will emerge.

In general, if t € 3 corresponds to a path z € X, then ¢; is the vertex in V5
that the ¢-th 7-image of z goes through. O

6. UNIQUE ERGODICITY

The aim of this section is to give sufficient conditions for the critical omega
limit sets to be uniquely ergodic. In the previous sections we have seen
that the enumeration scale, the Bratteli diagram and the substitution shift
based on the same kneading map ) are all one-to-one equivalent to each
other, while (w(c), f) is a factor of each of these systems. Therefore, (A4,T)
is uniquely ergodic if and only (X, 7) is uniquely ergodic if and only if (3, o)
is uniquely ergodic, and each of these statements implies that (w(c), f) is
uniquely ergodic. In this section, we speak of the system based on () and
choose the one that serves our argument best. Only when we show that
the system is not uniquely ergodic, we need an additional argument that
(w(e), f) is not uniquely ergodic either. This happens in Theorem 4.

In [2, Theorem 7] the following result (tailored to cutting times) is proven:

Theorem 1. Write by, = Si ) ,,55 1/Sm- If Q(k) = oo and supy, by < oo,
then (A,T) is uniquely ergodic.

An immediate corollary is

Corollary 1. Let f be a unimodal map with kneading map @ satisfying
sup, k — Q(k) = B < 00. Then (w(c), f) is uniquely ergodic.

Proof. In this case it is easy to check that the Si’s grow exponentially fast,
so Theorem 1 applies. O



MINIMAL CANTOR SYSTEMS AND UNIMODAL MAPS 13

Remark: In the setting of Corollary 1, we can telescope the Bratteli diagram
in order to make the resulting incidence matrices strictly positive. Since
k—Q(k) < B, it follows that for every vertex [ € Vj there is a path to every
vertex I' € Vi_opy1. Thus by telescoping (V;, E;) between level 1 and 2B,
between level 2B and 4B — 1, between 4B — 1 and 6B — 2, etc., we find
a new Bratteli diagram (V], Ej), and the corresponding incidence matrices
M7 have entries 1 < Mib < 228 Hence the M7 (and substitutions ¥;), are
chosen from a finite collection of primitive matrices (and substitutions).

It follows that (x;) is S-adic in the sense of Ferenczi [15]. Durand [13] (in
a corrected version of the proof) gives additional conditions under which
substitutions of this class are linearly recurrent. This notion (coined in
[12]) is a stronger version of uniform recurrence; it states that there exists
K such that every finite words w € t € ¥ reappears in ¢ within K|w|
entries. Note that K is independent of w, ¢ and the position in which
w appears in t. A corollary of linear recurrence is that (3,0) has linear
complexity [13]. Furthermore, any factor of a linear recurrent subshift is
linearly recurrent. This applies in particular to the subshift Y c {0, 1}
that emerges from (w(c), f) using the partition Iy = [0,c] and I; = [c, 1].
The subshift (Y, o), therefore, has linear complexity as well. As a concrete
example, each kneading map Q(k) = max{k — B,0} gives rise to a subshift
(Y, 0) of linear complexity.

Theorem 1 does not apply if S grows polynomially: if S ~ k% for some
a > 1, then by =~ g — 00. Also stretched exponential growth, i.e., S = eok?

for some 8 € (0,1), is insufficient to apply Theorem 1. Indeed

o0

B —akB B —atB

by ~ e E e~k zeo‘k/ e dt
m>k k

o0
= e’ [—teatﬂ 12 —/ aﬂtﬁeatﬁdt]
k
g [ g [
= k—e / aut/Be=tdy > | — e / aue *“du
kB kB
> k—k — .

Let (X,0) be the substitution shift generated by the primitive sequence of
substitutions (x;), and let M; be the corresponding incidence matrices. Each
M?" represents a linear transformation from R#"»+1 to R#V» mapping the
cone Cpy1 := RY)™*! into the cone C, = R¥)".

Theorem 2. The substitution shift is uniquely ergodic if and only if, for
each k > 1, the composition M* ... M™ contracts the cone Cpy1 to a half-
line in Cy as n — oo.

Proof. First assume that M* ... M™ contracts the cone C,; to a half-line,
say lg, as n — oo. Let (Xj,0) be the subshift generated by the sequence
Sk = lim;_yo0 X ©- - Xxi(v) for v € Vi41. (This subshift is independent of the
choices of v.) Let fx € Cy be the vector whose components add up to 1.
Then fj, indicates the frequency of the letters v € Vi, of sequences in Y.
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Let € > 0 be arbitrary and C be any finite word in ¥ = 3s. Eacht € X is a
concatenation of words of the form W (i) = xo 0--- 0 xn(w), for w € V41
and some fixed N. More precisely,

t= VW(wl)W(wz)W(wg) ey

where V is a suffix of some word W (wg). Let us say that an occurrence of
C int N-overlaps if tj pypp = C and k < |[VW (i1)... W(i,)| < k+ M for
some r. By taking N sufficiently large, we can assume that

lim sup%#{i | C = t};,4m) and N-overlaps} <,
n
uniformly over all ¢ € ¥. Therefore
lirILn %#{O <i<n|C =t m and does not N-overlap}
differs from v(C,t) = lim, 1#{0 <i<n | C = t{i,i+m]} by no more than

E.

Write the frequency vector fx = (f(v) | v € V). For each £, there exists
M > N such that for each word v € V41 and w € Va1 and the word

W' (w) = xny10--- 0 xar(w)

#{0 <j < [W'(w)]| | W(w); = v}

Wiw) - flv)| <€

For each v € V41, let C, be the number of occurrences of C in the word
W (v). Then

> vevyy, O (f(0) + O())
Y vevis (W O)I(f(0) + O())

Since € and &' are arbitrary, we see that v(C,t) is independent of the string
t. Thus unique ergodicity follows.

v(C,t) =

+ O(e).

Conversely, if M2 ... M™ does not contract the cone Cj, 41 to a half-line as
n — oo, then let G, be the intersection of M2 --- M™(C,41) with the unit
simplex in Cy. We have G, D Gp+1, but lim, diam(G,) =: § > 0.

The extremal points of G,, are the normalized images under M2 ... M™ of
the standard unit vectors e, := (0,...,0,1,0,...,0), with the 1 at entry
w € Vu41. These extremal points indicate the frequency of the symbols
v € V5 in the words x2 0--- 0 x,(w). In the above circumstances, there is at
least one symbol v € V5 whose frequency in words x2 o - -+ o xn(w), for any
n > 1, depends on the choice of w € V; ;1.

Thus, if s = sps1 -+ = lim;_,00 X2 © - - © X;(v), then the limit %#{k <i<
k+m | s; = v} does not exists uniformly in k. Hence the subshift (3, o) is
not uniquely ergodic. O
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For the incidence matrix M* define
max{MZ,l/M,i,l, | ke Vi}
; = 1Imax . -
Pi W€V \| min{ M /My, | k € A%

(7)

where p; = 0o is allowed when M ; or M ,, = 0.

Proposition 3. Let ‘(Xi)izg be a primitive sequence of substitutions with
incidence matrices M*, generating the substitution shift (X,0). If Y. 1/p; =
oo, then (X,0) is uniquely ergodic.

Proof. According to Theorem 2 we need to show that M* ... M"(Cy,1)
tends to a half-line as n — oo.

For the proof we will use the Hilbert metric on a cone C. Given v,w € C,

define ity | cc)
inf{u | pv —w
Ov,w) = log (sup{)\ | w— v e C}) )

To be precise, © is a metric on the projective space over C: O(v,w) =
O(Av, pw) for all A\,u > 0, and hence ©(v,w) = 0 if and only if v is a
multiple of w. Let T' : C — C be a linear map. It is shown in e.g. [3]
that ©(T'(v), T(w)) < tanh(D/4)O(v,w) for D = supy yyer(c) ©(v',w'). In
particular, T' is a contraction if 7' maps JC \ {0} into the interior of C.

To find the diameter of M™(C), 1) in the Hilbert metric on C),, we compute,
for unit vectors e; and ey, [,1' € V11, the distance ©(M"(e;), M™(er)) and
then maximize over alll,!’ € V,,1;. By (7), this gives D,, = diam(M™(C,+1)) =
2log p. By the previous remarks, M™ contracts the Hilbert metric by a fac-
tor

tanh(D, /4) < YPn — V1/en V1/pn

Th = <
VPn T+ 1/pn
-1 1+1
— M=1—2+—/pn%1—2/pn.
m+2+1/py pn+2+1/pp
Therefore, we need to verify that 0 = []>° , 7, = []>2 (1 — 2/pn), which is
equivalent to ), 1/p, = o0. O

If all the matrices M* have at least one zero entry, then the above propo-
sition gives no direct information. However, by telescoping the sequence of
substitutions (or the Bratteli diagram), we can make the incidence matrices
strictly positive. This is the strategy of the following result.

Theorem 3. Let Q(k) be a non-decreasing kneading map satisfying k —

Q(k) < CVk for some fized constant C. Then the corresponding systems
are uniquely ergodic.

As before, the unique ergodicity (non-unique ergodicity) for the Vershik
transformation, the enumeration scale and (w(f),c) follows immediately.
Since Q(k) = |k — vk leads to stretched exponential growth of the Sy, see
Lemma 3, Theorem 3 covers cases that were not covered by Theorem 1.
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The proof below shows that the fact that ) is non-decreasing can be relaxed.
For example, if sup, |Q(k) — Q(k)| < 0o and Q satisfies Theorem 3, then
the the substitutions based on Q and @ behave similarly as far as unique
ergodicity is concerned.

Proof. We start again by building the enumeration scale and Bratteli dia-
gram (V;, F;). By telescoping, we want to make all incidence matrices M*
primitive. To this end, define recursively:

k1 =2, and for n > 2

kp =max{k > kn_1 | Q(k —1)+1 < kp_1},

kn=14+max{k >k, | Qk —1) +1 < k,}.
In this way, we get that for every | € V)  there is at least one path to
each I' € Vi, _,. Note that by the assumption that Q(k) is non-decreasing,
Q?*(ky,) ~ ky 1 < Q(ky). Note also that the maximal number of paths from
some | € Vi, toanl' € Vi, _, is 14k, —kp < kn— Q(ky), and this maximum
is assumed when [ = k,, and ' = k,_; are first vertices.

Telescope the Bratteli diagram between levels k;,, and k,,—; for each n, to
arrive at a Bratteli diagram (V}, Ej), where 1 < M7, < M7y =: m, =
1+ ky —ky < ky, — Q(ky). It follows easily that m, > p, with p, as in (7).
Now if Q(n) > n— Cy/n, then Q?(n) > n—2C+/n, so that k,_1 ~ Q?(k,) >
kn — 2v/kn. From ky, — k-1 < 2v/ky, it follows that k, < C'n? for some
C' > 0. Hence my, = 1+ ky — ky, = ky — Q(ky) < CVk, < CVC'n, and
> 1/pp >3 1/my = oo, as required. O

The following theorem gives an example of a kneading map @ such that the

corresponding system (Bratteli diagram, etc.) is not uniquely ergodic.

Theorem 4. Let (a;) be a sequence of positive integers such that ), ’/a%-

is sufficiently small and a—;aﬂ < 1. Define recursively k1 = 3, ko = 4 and
i+1

ki = k;—1 4+ a;. Let the kneading map Q be defined by

0 if k€ {1,2};
)1 ifk=3;
Qk) = 2 if k=4

ki—o—1 ifki1 <k<k 1>3.

Then the corresponding systems are not uniquely ergodic.

Note that in this example Q(k) is non-decreasing. Moreover, if we have
a; = |Ci¥7] for some (any) v > 1 and C > 0 large, then k; ~ i27*! and
K1 ECN/Cr ) < k- Q(k) < Kok(/(7+1) for some constants 0 < K; < Ko.
According to Lemma 3, this corresponds to log Sy = 2vkY 7+ log k +1.0.t.

Proof. Build the Bratteli diagram to this kneading map, see Figure 2. Let
Sk(v) denote the number of paths from the first vertex of Vi1 to vy passing
through to vertex v € V5. For example, we have S3(2) = 2, S2(3) =1
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FIGURE 2. Bratteli diagram and Hofbauer tower for a non-
uniquely ergodic system.

and S3(2) = 4, S3(3) = 1. In general, Sy, = > .y, Sk(v) and we have the
recursion Sy (v) = Sk—1(v) + Sgk)(v). Applied to the subsequence (k;), we
find S, (v) = Sk,_, (v) + @;Sk;_,(v). Write p; = Sg,_1(2) and g; = Sk,—1(3).
Then we have

p1 =2, po =4, p; = a;p;i 2 +Dpi 1, (8)
g =1, 9 =1, ¢ =aq_2+q_1.

We will show that ¢;/p; does not converge as i — oo. First we claim that

Pi/Pi—1 ~ /a;. Indeed, pf_il =1+aq; ﬁ::f, so by introducing new coordinates

u; = \/%p?_il, we have to iterate
1 a; 1
u; = g(uj_1) = + .
’ ¢ Va; a; 1 Ui 1
Obviously we have u;11 = g(u;) > %u% and

1 ;4204 1
uipo = g(uiy1) < /i <u +
VQi+2 Qi+1Qi+1 RVALES)

Because )1/ /a; < oo, we get that the orbit (u;) is bounded, and conse-
quently also bounded away from 0. This proves the claim.
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Now by (8),
¢ _ gi—2| _ |9i-1pi-2 —pi-19i-2|
pi Q-2 PiPi—2
_ Pi—119i—1  gi—2 < Di—1
Pi |Pi-1  Pi—2| Pi
Therefore the sequences (%) and (ZZ:) are both Cauchy. Because z% =
1 g—z =1, and ) \/—1@ is small, the limits of these Cauchy sequences are
different.

It follows that the relative frequencies of symbols 2 and 3 in x2 o - - o x; (%)
do not converge as i — oo. Therefore the system (Vershik transformation,
etc.) cannot be uniquely ergodic. The system (w(c), f) is a factor of the
other systems. In the language of (A,T),

Di #{OS]SS@|<])ZO, ,...01‘<j>:1,0,...}

But from (3) we can derive that

1,0 if h(a) € Dy;
a € A starts with ¢ 0,1 if h(a) € Dy;
0,0 if h(a) € [c3,c5).

Indeed, if a starts with 1,0, then h(a) = ¢; or h(a) C D, for some r with
B(r) = 1. By (4), any such interval D, is contained in D4. For a starting
with 0,1 or 0,0, the argument is similar. One can check that these intervals
are disjoint, see the Hofbauer tower in Figure 2. It follows that the visit
frequencies of points z € w(c) to these disjoint intervals Ds U [c3, cg] and D7
do not converge, prohibiting unique ergodicity. O
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