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Abstract

A Fibonacci(-like) unimodal map is defined by special combinatorial prop-
erties which guarantee that the critical omega-limit set ω(c) is a minimal Can-
tor set. In this paper we give conditions to ensure that f |ω(c) is invertible,
except at a subset of the backward critical orbit. Furthermore, any finite sub-
tree of the binary tree can appear for some f as the tree connecting all points
at which f |ω(c) is noninvertible.

This technique gives a new way of finding strange adding machines, i.e.,
nonrenormalizable maps for which f : ω(c) → ω(c) is conjugate to a (triadic)
adding machine. This construction of strange adding machines is compatible
with ω(c) being a wild attractor.

1 Introduction

A minimal Cantor systems is continuous map of the Cantor set for which every orbit
is dense. Examples in a symbolic contexts (where the Cantor set is represented by a
closed shift-invariant subset of the full shift {0, 1}N equipped with product topology
and N = {0, 1, 2, 3, . . . }) are Toeplitz shifts and Sturmian shift spaces. In fact, there
are general methods to express a minimal Cantor system as a substitution shift, as
a Bratteli diagram [D], or as a shift emerging from an enumeration scale [GLT].

Minimal Cantor systems can be invertible or not, see e.g. [AG, AY] for examples
of both cases. Let X∗ := {x ∈ X : #f−1(x) > 1}. A dynamical system (X, f) is
called almost invertible if X \X∗ is a dense Gδ set. Kolyada et al. [KST] investigate
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almost invertible systems, showing among other things that if a Cantor system is
minimal, then it is almost one-to-one.

If X∗ belongs to a single grand orbit, then we can define the noninvertibility tree
as the smallest directed tree T ∗ whose vertices contain all points in X∗ and whose
edges x → y between vertices x and y are given by the relation y = f(x).

If (X, f) is invertible, then X∗ = T ∗ = ∅. In the Fibonacci substitution shift (Σ, σ)
generated by χ : 0 7→ 01, 1 7→ 1, which is also the Sturmian sequence associated
to the golden mean circle rotation, all points have one preimage except the fixed
point of χ which has two preimages. In this case Σ∗ = T ∗ is this fixed point. This
property is shared by all Sturmian shift spaces.

1.1 Tree structure of minimal omega-limit sets:

The question we want to address in this paper is what noninvertibility trees we
may encounter if X = ω(c) is the critical omega-limit set of a unimodal map. A
unimodal map f : I → I on the unit interval I = [0, 1] is a continuous map with
f(0) = f(1) = 0 and having a single critical point c such that f is increasing on
[0, c) and decreasing on (c, 1]. The critical order is ` if there is a diffeomorphism
ϕ : R→ R fixing 0 such that f(x) = f(c) + |ϕ(x− c)|`. The critical point is nonflat
if its critical order ` < ∞. An interval W is wandering if fn|W is monotone for
all n ≥ 0 and fn(W ) does not converge to a periodic orbit. Throughout, we will
assume that f has no wandering interval, which is true for all C2 maps with nonflat
critical points, see [MS, Theorem II.6.2.].

For some unimodal maps, ω(c) is a minimal Cantor set. The best known example is
the Feigenbaum map; we discuss this and other infinitely renormalizable maps later
on. Another well-known example is the Fibonacci unimodal map, first described in
[HK]. This is a unimodal map of a certain combinatorial type (the cutting times are
the Fibonacci numbers, see below). For this map, each x ∈ ω(c) has one preimage in
ω(c), except for x = c which has two preimages. The similarity with the structure
of the Fibonacci substitution shift is not coincidental; both approaches describe
isomorphic Cantor systems.

We will focus on maps that are Fibonacci-like in the sense that the cutting times
obey recursive rules similar to that the Fibonacci numbers. In such cases, ω(c) is a
minimal Cantor set, [Br1]. This is of more than combinatorial interest, because for
Fibonacci-like unimodal maps with sufficiently degenerate critical point, ω(c) can
actually be an attractor (see [Br2]). The noninvertibility tree may give information
on the complexity of the subshift produced by (ω(c), f), cf. [BV], as well as its
spectral properties. We will use enumeration scales (see [GLT] and introduced into
interval dynamics in [BKS]) to explore the noninvertibility tree of the backward orbit
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of the critical point orb−(c) := ∪i≥0f
−i(c) ∩ ω(c). There is a priori no reason why

X∗ should belong to orb−(c) but we will give sufficient conditions in Proposition 3.1
under which this is indeed the case. This leads to the main result:

Theorem 1.1. For every finite subtree T0 of the binary tree, there is a Fibonacci-like
map such that X∗ ⊂ orb−(c) and the tree structure of X∗ is isomorphic to T0.

Questions: In addition to the results in [BV], what are the word complexity
and rank of the subshift associated to any of these (stationary or nonstationary)
Fibonacci-like maps?

1.2 Adding machines and strange adding machines

We call the unimodal map f : I → I renormalizable if it has a periodic subinterval
interval I1 3 c of period p1 ≥ 2. The p1-th iterate fp1 : I1 → I1 is a new unimodal
map which could be renormalizable in its own right. By repeating this infinitely
often we arrive at infinite renormalizable maps which possess a nested sequence of
intervals I ⊃ I1 ⊃ I2 ⊃ I3 ⊃ · · · 3 c such that Ik has period

∏k
i=1 pi. Under

sufficient smoothness conditions, ∩korb(Ik) coincides with the omega-limit set ω(c)
of the critical point, and on this set is a minimal Cantor set of which f is conjugate
to a (pi)-adic adding machine.

Definition 1.1. Given a sequence (pi)i≥1 of integers pi ≥ 2, the (pi)-adic adding
machine is the dynamical system Ω = {(ωj)j≥1 : 0 ≤ ωj < pj} equipped with product
topology and the map g of “adding 1 and carry:

g(ω1, ω2, . . . ) =

{
0, . . . , 0, ωk + 1, ωk+1, ωk+2, . . . if k = min{i : ωi < pi − 1};
0, 0, 0, 0, . . . if ωi = pi − 1 for all i ≥ 1.

The Feigenbaum map is the simplest example: pi = 2 for all i, and f : ω(c) →
ω(c) is conjugate to the dyadic adding machine. The combinatorial structure of
renormalization has been understood for a long time. More surprising was the
recent discovery by Block et al. [BKM] that there are nonrenormalizable maps (e.g.
within the tent-family) for which ω(c) is a minimal Cantor set and f : ω(c) → ω(c)
are also conjugate to a (pi)-adic adding machine. These maps are called strange
adding machines. Their topological structure is fairly well understood as well. A
point x is called approximately periodic if it is not asymptotically periodic but for
every ε > 0, there is a periodic point q and k0 ≥ 0 such that |fk0+j(x)− f j(q)| < ε
for all j ≥ 0. The following classification is due to [BJ, Proposition 5.1].

Proposition 1.1. If (ω(x), f) is conjugate to some (pi)-adic adding machine if and
only if x is approximately periodic.
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Note that adding machines are not subshifts (cf. [BK, Proposition 3.1]), and if we
want to encode (ω(c), f) using the standard “kneading” symbolic dynamics, we
run into problems in coding c. The intervals [0, c) and (c, 1] get symbols 0 and
1 respectively, but there is no unambiguous assignment of a symbol 0 or 1 to c
that makes the shift continuous and/or compact. In [Br3] this problem is avoided
by the construction of unimodal map for which the orbit of c approaches c only
from one side, and ω(c) is a minimal Cantor set. This paper gives several examples
where (ω(c), f) is an invertible minimal Cantor system, and more examples and
background information are given in [BB, Br3, BOT].

The technique of enumeration scales leads to new examples of strange adding ma-
chines, which can be realized as attractors without the need of renormalization. The
set ω(c) is called a wild attractor if f is not infinitely renormalizable but ω(x) = ω(c)
for Lebesgue a.e. x. In Section 5, we present a combinatorial type, realized by a
map f with the following properties:

1. f is nonrenormalizable and has minimal Cantor omega-limit set ω(c) which is
realized as a wild attractor, provided the critical order is sufficiently large.

2. The system (X, f) is conjugate to a triadic adding machine. (This produces a
strange adding machines in a different way from the construction in [BKM].)

Acknowledgement: This research was supported by EPSRC grant EP/F037112/1.
I want to thank Leslie Jones, Brian Raines and Vı́ctor Jiménez López for their
remarks on this and previous versions. Also the hospitality of the University of
Murcia is gratefully acknowledged.

2 Preliminaries

Let f : I → I, I = [0, 1] be a unimodal map such that f(0) = f(1) = 0 and c is the
unique critical point; hence f is increasing on [0, c] and decreasing on [c, 1]. Write
cn = fn(c). We assume that c2 < c < c1 and c3 ≥ c2. The omega limit set of the
critical point is defined as ω(c) = ∩i{cj : j > i}; if c is recurrent, this set coincides

with the closure orb(c). The omega limit set is closed and invariant, so (ω(c), f) is
a surjective dynamical system in its own right.

The system (I, f) can be described symbolically by a subshift of {0, 1}N where each
x ∈ I is assigned an itinerary i(x) = i0(x)i1(x)i2(x) . . . where

ik(x) =





0 if fk(x) ∈ [0, c),
∗ if fk(x) = c,
1 if fk(x) ∈ (c, 1].
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Write κ = i(c1) for the kneading invariant of f . Two itineraries i and ĩ can be
compared in parity lexicographical order ≺p: If k = min{j ≥ 0 : ij 6= ĩj} then

i ≺p ĩ if

{
ik < ĩk and #{j < k : ej = 1} is even,

ik > ĩk and #{j < k : ej = 1} is odd.

Here 0 < ∗ < 1. Let σ be the left-shift. The map x 7→ i(x) is order preserving,
whence σ(κ) ¹p i(x) ¹p κ for every x ∈ [c2, c1]. Applied to the kneading invariant
itself, we obtain an admissibility condition for kneading invariants:

σ(κ) ¹p σn(κ) ¹p κ for all n ≥ 0. (1)

The kneading invariant of any unimodal map satisfies (1) and conversely, for any κ
satisfying (1), there is a unimodal map having kneading invariant κ.

For our purposes, the kneading invariant is the only information that we require from
the unimodal map. However, we will use an equivalent combinatorial description
given by cutting times and the kneading map. These ideas were introduced by
Hofbauer, see e.g. [H]. A survey can be found in [Br1].

If J is a maximal (closed) interval on which fn is monotone, then fn : J → fn(J)
is called a branch. If c ∈ ∂J , fn : J → fn(J) is a central branch. Obviously fn has
two central branches, and they have the same image. Denote this image by Dn.

If Dn 3 c, then n is called a cutting time. Denote the cutting times by {Si}i≥0,
S0 < S1 < S2 < . . . For interesting unimodal maps (such as tent maps with slope
> 1) S0 = 1 and S1 = 2. The sequence of cutting times completely determines the
tent map and vice versa. It can be shown that Sk ≤ 2Sk−1 for all k. Furthermore, the
difference between two consecutive cutting times is again a cutting time. Therefore
we can write

Sk = Sk−1 + SQ(k), (2)

for some integer function Q, called the kneading map. Each unimodal map therefore
is characterized by its kneading map. Conversely, each map Q : N \ {0} → N
satisfying Q(k) < k and the admissibility condition (equivalent to (1))

{Q(k + j)}j≥1 º {Q(Q2(k) + j)}j≥1 (3)

(where º denotes the lexicographical ordering) is the kneading map of some uni-
modal map. Well-known examples are the Feigenbaum map, where Q(k) = k − 1
and the Fibonacci map, where Q(k) = max{k − 2, 0}. We call f Fibonacci-like if
there is N such that k −Q(k) ≤ N for all k ∈ N.

Using cutting times and kneading map, the following properties of the intervals Dn

are easy to derive:

Dn+1 =

{
f(Dn) if c /∈ Dn,
[cn+1, c1] if c ∈ Dn.
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Equivalently:

Dn = [cn, cβ(n)], where β(n) = n−max{Sk; Sk < n}, (4)

and in particular DSk
= [cSk

, cSQ(k)
].

Let zk < c < ẑk be the boundary points of the domains the two central branches of
fSk+1 . Then zk and ẑk lie in the interiors of the domains of the central branches of
fSk and fSk(zk) = fSk(ẑk) = c. Furthermore, f j is monotone on (zk, c) and (c, ẑk)
for all 0 ≤ j ≤ Sk. These points are called closest precritical points, and the relation
(2) implies

fSk−1(c) ∈ (zQ(k)−1, zQ(k)] ∪ [ẑQ(k), ẑQ(k)−1). (5)

We will use these relations repeatedly without specific reference.

Lemma 2.1. The domains of the central branches of fSk are JSk
= [zk−1, 0] and

ĴSk
= [0, ẑk−1]. If Q(k) →∞, then

• |Dn| → 0 as n →∞;

• ω(c) is a minimal Cantor set.

Proof. These statements appear somewhat implicitly in e.g. [Br1], so let us give a
full proof. Since zk−1 and zk are consecutive closest precritical points, there is no
point z ∈ (zk, 0) such that fn(z) = 0 for n < Sk. Therefore [zk−1, 0] is a maximal
interval of monotonicity and fSk([zk−1, 0]) 3 0.

First we claim that c1+Sk
→ c1. Indeed, if this were not the case, then (recalling

from (4) that D1+Sk
= [c1+Sk

, c1]) there would be a subsequence (ki)i such that B :=
∩iD1+Ski

is a nondegenerate interval. But fm(D1+Sk
) 63 c for m = 1, . . . , Sk+1−Sk−1

and because Sk+1−Sk−1 = SQ(k+1)−1 →∞, we find that B is actually a wandering
interval. Thus nonexistence of wandering intervals proves the claim. Consequently,
|DSk

| = |cSk
− cSQ(k)

| → 0 as k →∞.

Since f has no wandering intervals, the following “noncontraction principle” holds,
see [MS, Chapter IV]:

For every ε > 0 there is a δ > 0 such that if J is an interval of length
|J | > ε, then |fn(J)| > ε for all n ≥ 0.

Now let ε > 0 be arbitrary and choose δ accordingly. Take K such that |DSk
| < δ

for all k > K. If n > SK , then there is j such that f j(Dn) ⊂ DSk
for some k ≥ K,

so |Dn| < ε.
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By definition, orb(c) is dense in ω(c), and since |c− cSk
| < |DSk

| → 0, c is recurrent
as well. If x is such that orb(x) accumulates on c, then ω(c) ⊂ ω(x). Therefore
(ω(c), f) is minimal if and only if c ∈ ω(x) for every x ∈ ω(c).

Suppose by contradiction that (ω(c), f) is not minimal, and that x ∈ ω(c) and ε > 0
are such that orb(x) ∩ B(c; ε) = ∅. We know that |Dn| → 0 as n → ∞, so there is
K such that DSk

⊂ B(c; ε) for all k ≥ K.

For each m < SK , let γ(m) ≥ SK be such that β(γ(m)) = m and Dγ(m) is the
largest interval among all Dn with n ≥ SK and β(n) = m. We claim that ω(c) ⊂
∪m<SK

Dγ(m). Indeed, if n ≥ SK , then there is a nested sequence of intervals Dn ⊂
Dβ(n) ⊂ · · · ⊂ Dβr(n), where r ≥ 1 is minimal such that m := βr(n) < SK . But then
Dn ⊂ Dβr−1(n) ⊂ Dγ(m). Therefore

ω(c) ⊂ ∪n≥SK
Dn ⊂ ∪m<SK

Dγ(m) = ∪m<SK
Dγ(m),

where the last equality follows because ∪m<SK
Dγ(m) is the finite union of closed

sets. It follows that x ∈ Dγ(m) for some m < SK , and because γ(m) ≥ SK , there
is j ≥ 0 such that f j(x) ∈ f j(Dγ(m)) ⊂ B(c; ε). This contradiction proves the final
statement.

The relation between cutting times and kneading invariant is easy to make if we
define

τ : N→ N, τ(n) = min{m > 0 ; κm 6= κm+n}. (6)

We retrieve the cutting times as follows:

S0 = 1 and Sk+1 = Sk + τ(Sk) = Sk + SQ(k+1) for k ≥ 0.

In other words, κ1 . . . κSk
= κ1 . . . κSk−1

κ1 . . . κ′SQ(k)
, writing κ′i = 0 if κi = 1 and vice

versa. For the proofs of these statements, we refer to [Br1].

An enumeration scale is an adding machine-like number system based on a strictly
increasing sequence of nonnegative integers {Sk}k≥0. Any nonnegative integer n can
be written in a canonical way as a sum of cutting times: n =

∑
j ejSj, where

ej =

{
1 if j = max{k; Sk ≤ n−∑

k>j ekSk},
0 otherwise.

In particular ej = 0 if Sj > n. In this way we can code the nonnegative integers N as
zero-one sequences with a finite number of ones: n 7→ 〈n〉 ∈ {0, 1}N. Let E0 = 〈N〉
be the set of such sequences, and let E be the closure of E0 in the product topology.

In our case, we let {Sk}k be the cutting time of a unimodal map, and assume that
Q(k) →∞. This results in

E = {e ∈ {0, 1}N ; ei = 1 ⇒ ej = 0 for Q(i + 1) ≤ j < i}.
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The condition in this set follows because if ei = eQ(i+1) = 1, then this should be
rewritten to ei = eQ(i+1) = 0 and ei+1 = 1. It follows immediately that for each
e ∈ E and j ≥ 0,

e0S0 + e1S1 + · · ·+ ejSj < Sj+1. (7)

There exists the standard addition of 1 by means of ‘add and carry’. Denote this
action by g. Obviously g(〈n〉) = 〈n + 1〉. It is known (see e.g. [BKS, GLT]) that
g : E → E is continuous if and only if Q(k) → ∞, and that g is invertible on
E \ {〈0〉}. The next lemma describes the inverses of 〈0〉 precisely.

Lemma 2.2. For a sequence e ∈ E, let {qj}j≥0 be the index set (in increasing order)
such that eqj

= 1. We have g(e) = 〈0〉 if and only if e /∈ E0, Q(q0 + 1) = 0 and
Q(qj + 1) = qj−1 + 1 for j ≥ 1.

Proof. This follows immediately from the add and carry construction, because the
condition on {qj} is the only way the addition of 1 carries ‘to infinity’.

Corollary 2.1. The cardinality #g−1(〈0〉) is equal to the number of distinct infinite
Q−1-orbits {kj}j≥0 with Q(kj) = kj−1 and k0 > Q(k0) = 0.

Proof. Given a sequence {kj}j≥0 satisfying the properties of this corollary, take
qi = ki − 1. Then Q(q0 + 1) = 0 and Q(qj + 1) = qj−1 + 1 for j ≥ 1. Lemma 2.2
implies that if ei = 1 if and only if i = qj for some j, then g(e) = 〈0〉.
Conversely, any e with g(e) = 〈0〉 has this form, and hence corresponds to a backward
orbit {kj}j≥0 of Q.

Example: If Q(k) = max{0, k − d} for some fixed d ≥ 1, then the number system
(E, g) where 〈0〉 has exactly d preimages; namely the sequences where all 1s are
exactly d entries apart map to 〈0〉.

Lemma 2.3. If Q(k) → ∞, then (E, g) factorizes over (ω(c), f), i.e., there is a
continuous map π : E → ω(c) such that π ◦ g = f ◦ π.

Proof. Recall that for n ∈ (Sk−1, Sk], we defined β(n) = n−Sk−1. It is easy to check
that 〈β(n)〉 is 〈n〉 with the last nonzero entry changed to 0. The map β also has a
geometric interpretation in the Hofbauer tower: It was shown in [BKS, Lemma 5]
that for all n ≥ 2,

Dn ⊂ Dβ(n). (8)

In fact, Dn and Dβ(n) have the boundary point cβ(n) in common. Recall that for
e ∈ E, {qj}j is the index sequence of the nonzero entries of e. Define

b(i) :=
∑
j≤qi

ejSj.
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We have b(i) ≥ Sqi
by definition of qi and b(i) < Sqi+1 by (7). It follows that

β(b(i)) = b(i − 1). By a nest of levels will be meant a sequence of levels Db(i). By
(8) and the fact that β(b(i)) = b(i − 1), these levels lie indeed nested, and because
Q(k) → ∞ implies that |Dn| → 0 (see [Br1]), each nest defines a unique point
x = ∩iDb(i) ∈ ω(c). Therefore the following projection (see [BKS]) makes sense:

π(〈n〉) = cn

and
π(e /∈ E0) = ∩iDb(i). (9)

Obviously f ◦π = π ◦g and it can be shown (see [BKS, Theorem 1]) that π : E → E
is continuous and onto.

3 Sufficient Conditions for X∗ ⊂ orb−(c)

Note that a nest contains exactly one cutting level Db(0). If {Db(i)}i is some nest
converging to x, then {f(Db(i))}i is a nested sequence of levels converging to f(x).
To obtain a nest of f(x), we may have to add or delete some levels, but {f(Db(i))}
asymptotically coincides with a nest converging to f(x).

Proposition 3.1. If Q is a kneading map and there is K such that

Q(k + 1) > Q(Q2(k) + 1) + 1 (10)

and
#Q−1(k) = 1 (11)

for all k ≥ K, then every point in ω(c) \ orb−(c) has only one preimage in ω(c).

Proof. Since g : E → E is invertible, except (possibly) at 〈0〉, if suffices to show that
π : E → ω(c) is one-to-one. First note (see also [BKS, Theorem 1]) that π−1(c) =
〈0〉. Indeed, if e 6= 〈0〉 and π(e) = c, then, taking k < l the first nonzero entries of e,
c ∈ DSk+Sl

. Then Sk+Sl is a cutting time Sm and we have m = l+1 and k = Q(l+1).
This would trigger a carry to ek = el = 0 and em = 1, contradicting that ek and el

are the first nonzero entries of e. Because g is invertible, also #π−1(x) = 1 for each
x ∈ f−n(c) and n ≥ 0. Assume from now on that x ∈ ω(c) \ ∪n≥0f

−n(c). We need
one more lemma:

Lemma 3.1. Let f be a unimodal map whose kneading map Q satisfies (10) and
Q(k) → ∞. Then there exists K ′ such that for any n /∈ {Si}i such that β(n) is a
cutting time (i.e., n = Sr + St for some r < t with r < Q(t + 1)), and every k ≥ K ′,
Dn does not contain both cSk

and a point from {zQ(k+1)−1, ẑQ(k+1)−1}.
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x

Db0

Db1

Db2

Db3

D
b̃0

D
b̃1

D
b̃2

If X∗ 6⊂ orb−(c), then there are
two points e, ẽ ∈ E such that

π(e) = π(ẽ) = x

and

gn(e), gn(ẽ) 6= 〈0〉 ∀n ≥ 0.

Geometrically, this shows as two
nests of intervals

Db0 ⊃ Db1 ⊃ Db2 ⊃ · · · (bold)

and

Db̃0
⊃ Db̃1

⊃ Db̃2
⊃ · · ·

such that x =
⋂

i Dbi
=

⋂
i Db̃i

Figure 1: Interconnected nests to be prevented in Proposition 3.1

Proof of Lemma 3.1. Assume the contrary. Write n = Sr + St with r < Q(t + 1)
and let k but such that zQ(k+1)−1 or ẑQ(k+1)−1 ∈ Dn ⊂ DSr . Formula (5) implies
that Q(r + 1) < Q(k + 1), see Figure 2.

c ẑQ(k+1)−1

- cSr

DSr

- cSk

DSk

¾cSr+St

DSn

Figure 2: The levels DSk
and DSr+St

It follows that also zQ(r+1) or ẑQ(r+1) ∈ DSr+St and therefore Sr +St+SQ(r+1) = St+1.
This gives

r + 1 = Q(t + 1), (12)

and Sr + St = St+1 − SQ2(t+1). If also zQ(r+1)+1 or ẑQ(r+1)+1 ∈ DSr+St , then

St+2 = St+1 + (SQ(r+1)+1 − SQ(r+1) = St+1 + SQ(Q2(t+1)+1),

which yields Q(Q(r+1)+1) = Q(t+2). Using (12) for t+1, this gives Q(t+1+1) =
Q(Q2(t+1)+1). This contradicts (10), if t ≥ K−1 is sufficiently large. For t < K−1,
because there are only finitely many pairs r, t with r < Q(t + 1) and Q(k + 1) →∞
(so cSk

→ c), there is K ′ such that DSr+St 63 cSk
for k ≥ K ′. Hence

DSr+St contains at most one closest precritical point. (13)
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Therefore, as cSk
∈ DSr+St , Q(r + 1) = Q(k + 1)− 1. Take the SQ(r+1)-th iterate of

DSr+St and [c, cSk
] to obtain DSk+SQ(r+1)

∩DSt+1 6= ∅, see Figure 3.

czQ(Q(r+1)+1) zQ(t+2)−1

-cSQ(r+1)
cSk+SQ(r+1)

DSk+SQ(r+1)

¾cSt+1

DSt+1

Figure 3: The levels DSQ(r+1)+Sk
and DSt+1

By (12) we have Q(Q(r + 1) + 1) = Q(Q2(t + 1) + 1), and using (10) on t + 1, we
obtain

Q(Q2(t + 1) + 1) < Q(t + 1 + 1)− 1 = Q(t + 2)− 1.

Hence there are at least two closest precritical points contained in DSk+SQ(r+1)
. This

contradicts the arguments leading to (13).

We continue the proof of Proposition 3.1. Observe that if π(e) = π(ẽ) = x for some
e 6= ẽ, then the corresponding nests {Db(i)} and {Db̃(i)} are different, but both nests

converge to x, see Figure 1. Because x /∈ ∪n≥0f
−n(c), #π−1(fn(x)) > 1 for all

n ≥ 0. We will derive a contradiction.

Claim 1: By taking an iterate, we can assume that q0 6= q̃0, where as
before q0 and q̃0 are the indices of the first nonzero entries of e and ẽ.

Let i be the smallest integer such that b(i) 6= b̃(i), say b(i) < b̃(i). Then also qi < q̃i.
Let l = Sq̃i+1 − b̃(i). By (7), l is nonnegative. By the choice of l, (gl(ẽ))j = 0 for all
j ≤ q̃i, but because b(i) < b̃(i) and l + b(i) < Sq̃i+1, there is some j ≤ q̃i such that
(gl(e))j = 1.

Replace x by f l(x), and the corresponding sequences e and ẽ by gl(e) and gl(ẽ).
Then for this new point, q0 < q̃0 and b(0) < b̃(0). This proves Claim 1. Note that
by the same argument we can take q0 6= q̃0 arbitrarily large.

Claim 2: By taking an iterate, we can assume that Q(q0+1) 6= Q(q̃0+1)

This follows from assumption (11), i.e., Q is eventually injective, plus the fact that
q0 can be taken arbitrarily large.

Then we are in the situation of Lemma 3.1, which tells us that Db(1) ∩ Db̃(0) = ∅.
Therefore the two nests cannot converge to the same point. This contradiction
concludes the proof.
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Condition (11) is true for the maps in Section 4, but is too strong for many other
examples. The following lemma gives a weaker condition, which is sufficient for the
examples in Section 5.

Lemma 3.2. If the kneading map Q satisfies (10) and (instead of (11)) satisfies
Q(n) → ∞ and for all n, ñ sufficiently large Q(n + 1) = Q(ñ + 1) implies the
following conditions:

(a) Q3(n) 6= Q(ñ),

(b) if Q(n) 6= Q(ñ), then Q2(n) 6= Q2(ñ).

Then every point in ω(c) \ orb−(c) has only one preimage in ω(c).

Proof. By Lemma 3.1, there is no interval DSk+Sl
for k < Q(l + 1) containing both

a closest precritical point zQ(k+1) and a point cSk̃
with Q(k̃ + 1) = Q(k + 1) + 1. In

view of Figure 1 we need to prevent three cases from occurring:

Case A: zQ(k+1) or ẑQ(k+1) ∈ DSk
, DSk+Sl

, DSk+Sl+Sm and DSk̃
, but zQ(k+1) /∈ DSk̃+Sl̃

and DSk+Sl+Sm ∩DSk̃+Sl̃
6= ∅.

ẑQ(k+1) = ẑ
Q(k̃+1c

DSk

DSk+Sl

DSk+Sl+Sm

DS
k̃

DS
k̃
+S

l̃

-
f

SQ(k+1)

c

DSk

DSl+1

DSm+1

DS
k̃+1

DS
k̃+1+S

l̃

Figure 4: Case A

In this case Q(k+1) = Q(k′+1) and applying fSQ(k+1) to the left part of Figure 5 we
find Sl+1 = Sl+Sk +SQ(k+1), so Q(l+1) = k+1. Similarly, Sm+1 = Sk +Sl+SQ(k+1),
so Q(m + 1) = l + 1.

This shows that Q3(m + 1) = Q(k̃ + 1). At the same time Q(m + 2) = Q(k̃ + 2)
by Lemma 3.1. But these two condition together violate (a) for n = m + 1, so this
cannot happen.

Case B: zQ(k+1) or ẑQ(k+1) ∈ DSk
, DSk+Sl

, DSk̃
and DSk̃+Sl̃

.

In this case Q(k+1) = Q(k′+1) and applying fSQ(k+1) to the left part of Figure 5 we
find Sl+1 = Sl +Sk +SQ(k+1), so Q(l+1) = k+1. Similarly, Sl̃+1 = Sk̃ +Sl̃ +SQ(k̃+1),

so Q(l̃ + 1) = k̃ + 1. By Lemma 3.1, Q(l + 2) = Q(l̃ + 2). Also Q(l + 1) 6= Q(l̃ + 1),
but since Q2(l + 1) = Q2(l̃ + 1), condition (b) is violated with n = l + 1, ñ = l̃ + 1.
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ẑQ(k+1) = ẑ
Q(k̃+1c

DSk

DSk+Sl DS
k̃

DS
k̃
+S

l̃

-
f

SQ(k+1)

c

DSk

DSl+1 DS
k̃+1

DS
l̃+1

Figure 5: Case B

Case C: zQ(k+1) or ẑQ(k+1) ∈ DSk
, DSk̃

, but zQ(k+1), ẑQ(k+1) /∈ DSk+Sl
and DSk̃+Sl̃

.

ẑQ(k+1) = ẑ
Q(k̃+1c

DSk

DSk+Sl

DS
k̃

-
f

SQ(k+1)

c

DSk

DSk+1+Sl

DS
k̃+1

Figure 6: Case C

Applying fSQ(k+1) to the left part of Figure 6 cannot produce Cases A or B, because
they have been excluded already, so Case C reappears. But that means that Q(k +
2) = Q(k̃ + 2). Proceeding by induction, we find Q(k + j) = Q(k̃ + j) for all j ≥ 1,
so Q is periodic. But this contradicts that Q(k →∞. This completes the proof.

4 The preimage tree of the critical point

Consider the full binary tree rooted at v, where each edge is labeled by a symbol
0 or 1. Let B be any finite subtree also rooted at v. Each vertex b in the binary
tree can be coded by a finite string e(b) of zeroes and ones according to the labels
of the path connecting b to the root of the tree, see Figure 7. Let B∗ = {b ∈ B :
b has two outgoing edges in B}.
Theorem 4.1. Given B as above, there exists a unimodal map (with kneading in-
variant ν) such that

1. ω(c) is a minimal Cantor set.

2. f |ω(c) is one-to-one, except at points in the backward critical orbit of c.

3. The points that have two preimages in ω(c) are arranged precisely according
to B. That is, a vertex b ∈ B∗ if and only if there is a point x ∈ ω(c) with two
preimages in ω(c), and the itinerary of x is e(x) = e(b) ∗ ν.
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Figure 7: Left: A sample backward tree B (thick edges and vertices) with codes e(b).
The thin edges and vertices extend B to B] as explained in Step 1 of the construction
below.
Right: The preimage tree of the Fibonacci-like map with kneading map Q(k) =
{k − d, 0} for d = 5.

Remarks: 1) We will construct the kneading map Q of f and it will turn out that
Q(k) →∞ and k−Q(k) is bounded. Thus ω(c) is a minimal Cantor set. By taking
the critical order of f sufficiently large, we can assure that ω(c) is a metric attractor
of f , that is: ω(x) = ω(c) for Lebesgue almost every x, see [Br2].

2) A special case is the Feigenbaum map with Q(k) = k− 1; for this map, f |ω(c) is
one-to-one. Another special case is the Fibonacci map with Q(k) = max{k − 2, 0}.
In this case, c is the only point in ω(c) with two preimages. More generally, if
Q(k) = max{k− d, 0}, then the preimage tree has exactly d− 1 branch points, with
itineraries 0i ∗ ν for 0 ≤ i < d − 2, see Figure 7. This follows by inspection of the
kneading invariant ν, and the fact that #g−1(〈0〉) = d, so there can be at most d−1
branch points in the preimage tree.

Proof. Step 1: the construction of ν: Extend B to a finite tree B] with the same
set of vertices with two outgoing edges, but such that maximal path downwards
from the root v all have the same length, see Figure 7. Let B1, . . . , BN be the codes
corresponding to those vertices without outgoing edge, so |Bk| = L for all k. Start
ν as

ν = 10N+3B1e111B2e211 . . . BNeN11,

where ek ∈ {0, 1} is such that the position of ek (i.e., pk := N +4+k(L+3)) is a cut-
ting time. As the block 0N+3 does not reappear after position 2, there are admissible
kneading invariants starting as ν. Next let Ck = 10N+3B1e111B2e211 . . . Bkek be the
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pk-initial block of ν, and let C ′
k be the same block with the last symbol switched.

Continue ν as

ν = 10N+3B1e111B2e211 . . . BNeN11C ′
1C

′
2 . . . C ′

N .

In this way, the end-position of each block C ′
k in ν is a cutting time. Let K be such

that SK is the length of ν created so far; this determines the kneading map Q(k)
for all k ≤ K. Continue Q (and hence ν) by

Q(k) = k −N for k > K.

Remark: If B has no branch points, then N = 1, so the dynamics of f is comparable
to the Feigenbaum map. In this case, the fact that f : ω(c) → ω(c) is invertible is
not surprising.

Step 2: ν is admissible: By construction, 10N+3B1e111B2e211 . . . BNeN11 doesn’t
contain the block 0N+3 except the block starting at position 2. This means that

σν ≺ σk10N+3B1e111B2e211 . . . BNeN11 ≺ ν

for each k ≥ 2. By condition (1), this means that 10N+3B1e111B2e211 . . . BNeN11
is admissible, and hence the kneading map implied by this block must satisfy (3).
Since the length of the block |10N+3B1e111B2e211 . . . BNeN11| is a cutting time SK

by construction, and ν continues with C ′
1C

′
2 . . . so that Q(k) = k − N for k > K,

condition (3) also holds for the entire kneading sequence ν. So ν is admissible.

Step 3: #f−1(x) ∩ orb−(c) = 2 iff e(x) = e(b) ∗ ν for some b ∈ B∗: By
construction, Bie

′
i is a suffix of C ′

i for each i. Since Therefore Q(k) = k−N for k >
K, Biei is a suffix of ν1 . . . νSK+i

and either Biei or Bie
′
i is a suffix of ν1 . . . νSK+jN+i

for every j ∈ N. Therefore there exists a sequence of iterates nj = SK+jN −L such
that fnj(c) → x ∈ orb−(c) and e(x) = Bi ∗ ν. It follows that for each b ∈ B], there
is x ∈ ω(c) such that e(x) = e(b) ∗ ν, and this applies in particular to b ∈ B∗.
Now for the only if direction, recall that #B∗ = N , and Q(k) = k−N eventually. By
Lemma 2.2 this means that 〈0〉 has only N preimages, so #f−j(c) ≤ #g−1〈0〉 ≤ N
for all j ≥ 0, and hence there can be at most N points in orb−1 with two preimages
in ω(c).

Step 4: no point in ω(c)\orb−(c) has two preimages in ω(c): Since Q(k) =
k −N for k sufficiently large, this follows immediately from Proposition 3.1.

5 Making f|ω(c) invertible.

If we apply the previous sections to construct an example for which f|ω(c) is one-to-
one, we arrive at the Feigenbaum-like map (i.e., Q(k) = k−1 for k sufficiently large).
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The point of the “strange adding machines” paper [BKM] is creating unimodal
maps for which f|ω(c) is conjugate to an adding machine, even though f is not
renormalizable. This shows that adding machines can be found in the standard tent
family, which does not contain infinitely renormalizable maps. In this section, we
show that how a minor adaptation of the cutting times can create maps for which
f|ω(c) is indeed one-to-one, without resorting to renormalizable maps. The method
allows k − Q(k) to be bounded, and is in fact compatible with ω(c) being a wild
attractor, see [Br2], which in turn produces highly nontrivial maps with nontrivial
Lebesgue maximal automorphic factors, cf. [BH].

Lemma 5.1. Let Q(k) →∞ be the kneading map of a unimodal map, and let (E, g)
be the corresponding enumeration scale. Suppose that there exists an increasing
sequence (ki)i∈N such that for every i the following holds:

Q(k) ≤ ki < k implies Q(Q(l)− 1)− 1 6= k for all l ∈ N. (14)

Then #g−1(〈0〉) = 1.

Example: Take

Q(k) =





0 if k ∈ {1, 2, 4};
1 if k = 3;
3l − 4 if k = 3l − 1 or 3l + 1 and l ≥ 2;
3l − 2 if k = 3l and l ≥ 2.

This results in the following table:

k 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 . . .
Q(k) 0 0 1 0 2 4 2 5 7 5 8 10 8 11 13 . . .

Sk 1 2 3 5 6 9 15 18 27 45 54 81 135 162 243 405 . . .

where we have underlined the powers of 3 to clarify the pattern. There is a factor
map πtri : E → {0, 1, 2}N onto the triadic adding machine defined by

πtri(e)k =

{
e0 + 2(e1 + e3) if k = 0;

e3k−1 + e3k + 2(e3k+1 + e3k+3) if k ≥ 1.

In the table below, we decompose the cutting times in sums of powers of 3, which
shows that πtri(e)k contains ej as many times as 3k appears in the triadic decompo-
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sition of Sj. Note also that the “add and carry” rule guarantees that πtri(e)k ≤ 2.

k Q(k)− k Sk 1 3 9 27 81 243 729
0 1 1 0 0 0 0 0 0
1 −1 2 2 0 0 0 0 0 0
2 −2 3 0 1 0 0 0 0 0
3 −2 5 2 1 0 0 0 0 0
4 −4 6 0 2 0 0 0 0 0
5 −3 9 0 0 1 0 0 0 0
6 −2 15 0 2 1 0 0 0 0
7 −5 18 0 0 2 0 0 0 0
8 −3 27 0 0 0 1 0 0 0
9 −2 45 0 0 2 1 0 0 0

10 −5 54 0 0 0 2 0 0 0
11 −3 81 0 0 0 0 1 0 0
12 −2 135 0 0 0 2 1 0 0
13 −5 162 0 0 0 0 2 0 0
14 −3 243 0 0 0 0 0 1 0
15 −2 405 0 0 0 0 2 1 0

The map πtri is clearly continuous and since it maps 〈N〉 onto the triadic represen-
tation of the integers, πtri extends to a surjective map. Let us show by contradiction
that πtri is injective. Suppose that πtri(e) = πtri(ẽ), and let j be minimal such that
ej 6= ẽj. Since the contributions of e and ẽ to each power of 3 is the same, we have
two cases (after changing the role of e and ẽ if necessary):

• The contribution of Sj to 3k is 1. Then j = 3k−1, ej = 1, ẽj = 0, but ẽj+1 = 1.
Then ẽ contributes 2 to 3k−1, and ej−1 = 1 to match that contribution. But
ej−1 = 1 and ej = 1 would give a carry.

• The contribution of Sj to 3k is 2. Then j = 3k+1, ej = 1, ẽj = 0, but ẽj+2 = 1.
Then ẽ contributes 1 to 3k+1, and ej+1 = 1 to match that contribution. But
ej = 1 and ej+1 = 1 would give a carry.

It follows that πtri is indeed a conjugacy between (E, g) and the triadic adding ma-
chine. One can check that both Lemma 5.1 (namely for ki = 3i+1) and Lemma 3.2
apply, so we can conclude that πtri ◦ π−1 conjugates f|ω(c) is to the triadic adding
machine, while at the same time f is nonrenormalizable, k − Q(k) is bounded and
Q(k+1) > Q2(k)+1 for k sufficiently large. It follows from [Br2, Theorem 6.1] that
if f is a unimodal map with this kneading map and sufficiently large critical order,
then ω(c) is a wild attractor.

Proof of Lemma 5.1. Any maximal sequence e satisfies

If ek = 1, then eQ(k)−1 = 1 and ej = 0 for Q(k + 1) ≤ j < k. (15)
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This is just a rephrasing of Lemma 2.2. Suppose that e is maximal with eki
= 0 for

some i. Let k = min{j > ki : ej = 1}. Then eQ(k+1)−1 = 1 by maximality of e. By
minimality of k, Q(k + 1)− 1 < ki, so Q(k + 1) ≤ ki. By (14) this means that there
is no l such that Q(Q(l) − 1) − 1 = k. Combine this with (15), this shows that e
cannot be maximal.

Hence for any maximal sequence e and any i, eki
= 1. Using (15) once more, this

determines e uniquely.
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