# RENORMALISATION IN A CLASS OF INTERVAL TRANSLATION MAPS OF $d$ BRANCHES 

## H. BRUIN


#### Abstract

We generalise results by Bruin \& Troubetzkoy [BT] to a class of interval translation maps with arbitrarily many pieces. We show that there is a uncountable set of parameters leading to type $\infty$ ITMs, but that the Lebesgue measure of these parameters is 0 . Furthermore, conditions are given that imply the ITM to have multiple ergodic invariant measures.


## 1. Introduction

Interval translation maps (ITMs) were introduced by Boshernitzan \& Kornfeld [BK] as a generalisation of interval exchange transformations (IETs). Let the intervals $B_{i}=$ $\left[\beta_{i}, \beta_{i+1}\right)$ for $0=\beta_{0}<\beta_{1}<\cdots<\beta_{r}=1$ constitute a partition of the unit interval $I$. An interval translation map $T: I \rightarrow I$ is given by

$$
T(x) \stackrel{\text { def }}{=} x+\gamma_{i} \text { if } x \in B_{i},
$$

where $\gamma_{i} \in \mathbb{R}$ are fixed numbers such that $T$ maps $I$ into itself. We also define the image of 1 by $T(1) \stackrel{\text { def }}{=} \lim _{x \rightarrow 1^{-}} T(x)$. Since the images $T\left(B_{i}\right)$ can overlap, it is possible that $\Omega \stackrel{\text { def }}{=} \overline{\cap_{n} T^{n}(I)}$ is a Cantor set; in this case $T$ is said to be of type $\infty$. Boshernitzan \& Kornfeld showed, using a renormalisation operator, that a specific ITM has an attracting Cantor set. Bruin \& Troubetzkoy [BT] extended this result to a 2-parameter family of ITMs with 3 pieces (or 2 pieces when considered on the circle), and showed that type $\infty$ map occur for an uncountable set of Lebesgue measure 0 in parameter space. In [SIA], it is shown that type $\infty$ occurs with Lebesgue measure 0 in the full 3 -parameter family of 2-piece ITMs on the circle. In addition, $[\mathrm{BT}]$ gives estimates on the Hausdorff dimension of $\Omega$, and it gives conditions under which $\left.T\right|_{\Omega}$ is uniquely ergodic, or is not uniquely ergodic.

In this paper, we extend the class of ITMs to a $d$-parameter family $T_{\alpha}$ (for a $\alpha$ in a $d$ dimensional parameter space $\mathcal{U}$ ), with $d+1$ branches, on which a renormalisation operator $G$ is defined. Similar to $[\mathrm{BT}]$, we prove the following theorem:

Theorem 1. Let $\mathcal{A}_{d}$ be the set of parameters such that $T_{\alpha}$ is of type $\infty$. Then

1. $\mathcal{A}_{d}$ is uncountable, but has d-dimensional Lebesgue measure 0.
2. The renormalisation operator $G: \mathcal{A}_{d} \rightarrow \mathcal{A}_{d}$ acts as a one-sided shift with countably many symbols; the coding map $\alpha \mapsto\left(k_{0}, k_{1}, k_{2}, \ldots\right)$ is injective, and maps onto $\mathbb{N}^{\mathbb{N} \cup\{0\}} \backslash \mathcal{F} \mathcal{T}$ where the exceptional set $\mathcal{F} \mathcal{T}$ is given by formula (2) in Section 2.
3. The map $G$ eventually maps every $\alpha \in \mathcal{U}$ either into $\mathcal{A}_{d^{\prime}}$ for some $2 \leq d^{\prime} \leq d$ (infinite type) or into a 1-parameter space of circle rotations (finite type).

Date: Version of October 22, 2006.
The research was supported by EPSRC grant GR/S91147/01.

If $\alpha \in \mathcal{A}_{d}$, i.e., $T_{\alpha}$ is of infinite type, then the attractor is a minimal Cantor set $\Omega$, and symbolically, $T_{\alpha}$ acts on it as a substitution shift based on a sequence of substitutions $\chi_{k}$. The proof of this result is basically unchanged since [BK], see Section 3. Whereas we expect the word complexity of this shift to be sublinear, we have no precise estimates.
It is interesting to know that $\left.T\right|_{\Omega}$ need not be uniquely ergodic. The ideas of the proof of this go back to Keane's example [K] of a interval exchange transformation on four pieces that is not uniquely ergodic.

Theorem 2. If the code of $\alpha \in \mathcal{A}_{d}$ (for $d \geq 2$ ) tends to $\infty$ sufficiently fast, then $T_{\alpha}$ admits $d$ distinct ergodic probability measures on $\Omega$.

This fits in nicely with the result of $[\mathrm{BH}]$ that an orientation preserving ITM with $N$ branches can preserve at most $2 N$ ergodic probability measures, whose total rank is $\leq N$. In our case, we are dealing with $d+1$ branches, but on the circle there are only $d$ branches. So Theorem 2 shows that the bound of Buzzi \& Hubert is sharp for every $N$.

Especially in the non-uniquely ergodic case, it would be interesting to find he ergodic invariant measures. Hausdorff measure of the appropriate dimension is always invariant (see [BT]), but it is not always clear that this measure can be normalised to a probability measure, see below. Neither is it clear that Hausdorff measure is unique.

Theorem 3. If $T_{\alpha}$ is of infinite type, then the Hausdorff dimension $\operatorname{dim}_{H}(\Omega)<1$.

In [BT], it was shown that the Hausdorff dimension of $\Omega$ need not be equal to the upper box dimension. In fact $0=\operatorname{dim}_{H}(\Omega)=\underline{\operatorname{dim}}_{B}(\Omega)<\overline{\operatorname{dim}}_{B}(\Omega)$ is possible. In this case, Hausdorff measure of dimension 0 becomes counting measure which is obviously infinite, and not even $\sigma$-finite.

However, if $\alpha \in \mathcal{A}_{d}$ is periodic under $G$, then $\Omega$ is self-similar, it has Hausdorff dimension strictly between 0 and 1 , and Hausdorff measure can be normalised to be the unique ergodic probability measure on $\Omega$.

Let us finish this introduction with some open questions.

## Questions:

- What is the Hausdorff dimension of the set $\mathcal{A}_{d}$ of type $\infty$ parameters? Since $G$ is $\infty$-to-1 and not conformal, standard techniques for estimating the Hausdorff dimension repeller are not likely to work.
- Given the fact that exotic behaviour is possible (in the sense of non-unique ergodicity of $T_{\Omega}$, or Hausdorff dimension different from upper box dimension of $\Omega$ ), it would be interesting to put a $G$-invariant measure on $\mathcal{A}_{d}$ to express how typical, or atypical, this exotic behaviour is. What would be a natural measure on $\mathcal{A}_{d}$ ? Is the equilibrium measure for potential $-t \log |\operatorname{det}(D G)|$ for $t=\operatorname{dim}_{H}\left(\mathcal{A}_{d}\right)$ a reasonable candidate?
- What is the physical measure for non-uniquely ergodic maps, i.e., what is the fate of Lebesgue typical points?


Figure 1. Two maps $T_{\alpha} \in \mathcal{I} \mathcal{T M}_{4}$ and the boxes on which the induced map is defined. In the left picture, the first return reduces the number of branches; rescaled to the smallest box, only two branches remain. In the right picture, the number of branches stays the same.

## 2. The class of ITMs and its basic properties

Let $T_{\alpha}$ in the set $\mathcal{I} \mathcal{\mathcal { T }} \mathcal{M}_{d}$ of interval translation maps defined by

$$
T_{\alpha}(x)= \begin{cases}x+\alpha_{1} & \text { for } x \in\left[0,1-\alpha_{1}\right) \\ x+\alpha_{i} & \text { for } x \in\left[1-\alpha_{i-1}, 1-\alpha_{i}\right), 1<i<d \\ x+\alpha_{i}-1 & \text { for } x \in\left[1-\alpha_{d}, 1\right]\end{cases}
$$

where the parameter space is

$$
\mathcal{U} \stackrel{\text { def }}{=}\left\{\alpha=\left(\alpha_{1}, \ldots, \alpha_{d}\right): 1 \geq \alpha_{1} \geq \cdots \geq \alpha_{d} \geq 0\right\} .
$$

We study the map $T=T_{\alpha}$ using the induced transformation to the interval $\left[1-\alpha_{1}, 1\right]$. One can readily check that this induced transformation, $\tilde{T}$, has a similar shape as $T$; more precisely, the $i+1$ st branch of $T$ becomes the $i$ th branch of $\tilde{T}$ for $i \leq d-2$. The $d$ th branch of $T$

- either produces a single branch of $\tilde{T}$. In this case, $\tilde{T}$ can be rescaled to a map in $\mathcal{I} \mathcal{T} \mathcal{M}_{d^{\prime}}$ for some $d^{\prime}<d$, see Figure 1 , left.
- or splits into two new branches of $\tilde{T}$. In this case, we apply the first (= left-most) branch of $T$ respectively $k-1$ and $k$ times, where $k \stackrel{\text { def }}{=}\left\lfloor\frac{1}{\alpha_{1}}\right\rfloor \in\{1,2,3 \ldots\}$, see Figure 1, right.

In the latter case, rescaling the domain of $\tilde{T}$ to unit size gives a new map in $\mathcal{I} \mathcal{T} \mathcal{M}_{d}$. The corresponding parameter transformation $G$ generalises the Gauss map of circle rotations. It is defined as

$$
\begin{equation*}
G\left(\alpha_{1}, \ldots, \alpha_{d}\right) \stackrel{\text { def }}{=}\left(\frac{\alpha_{2}}{\alpha_{1}}, \frac{\alpha_{3}}{\alpha_{1}}, \ldots, \frac{\alpha_{d}}{\alpha_{1}}, k+\frac{\alpha_{d}-1}{\alpha_{1}}\right), \text { where } k=\left\lfloor\frac{1}{\alpha_{1}}\right\rfloor . \tag{1}
\end{equation*}
$$

Let

$$
\mathcal{A}=\mathcal{A}_{d} \stackrel{\text { def }}{=} \cap_{n \geq 0} G^{-n}(\operatorname{int} \mathcal{U})
$$

be the set of parameters on which $G$ is defined for all iterates. This is the set of parameters corresponding to maps of type $\infty$ whose induced maps all have $d$ branches.

Let

$$
\mathcal{L} \stackrel{\text { def }}{=}\left\{\left(\alpha_{1}, \ldots, \alpha_{d}\right): 1 \geq \alpha_{1} \geq \ldots \geq \alpha_{d-1} \geq 0 \geq \alpha_{d} \geq \alpha_{d-1}-1\right\} .
$$



Figure 2. The parameter space $\mathcal{U}$ for $d=3$ and its image $\mathcal{U} \cup \mathcal{L}$. The triangles $\mathcal{V}_{r}$ are drawn in for $r=2,3,4,5$. The map $G: \mathcal{U}_{1} \rightarrow \mathcal{U} \cup \mathcal{L}$ fixes $\mathbb{I}$, maps $(1,1,0)$ onto $(1,0,0),(1,0,0)$ onto the origin and the triangle $\mathcal{V}_{1}$ onto the triangle spanned by $(1,1,0),(1,0,-1)$ and $(0,0,-1)$.

Then $G$ maps $\mathcal{U}$ in a convex $\infty$-to- 1 fashion into $\mathcal{U} \cup \mathcal{L}$. Write

$$
\mathcal{U}_{r} \stackrel{\text { def }}{=}\left\{\alpha \in \mathcal{U}: \frac{1}{r+1}<\alpha_{1}<\frac{1}{r}\right\} \text { for } r=1,2,3, \ldots
$$

and $\mathcal{V}_{r}:=\left\{\alpha \in \mathcal{U}: \frac{1}{r}=\alpha_{1}\right\}$. Obviously, $G$ has discontinuities at the $d$-1-dimensional "pyramids" $\mathcal{V}_{r}$ for $r=2,3, \ldots$. The transformation acts on the 1-dimensional edges of $\mathcal{U}$ as follows:

$$
\begin{aligned}
& (t, t, \ldots, t) \xrightarrow{\stackrel{\mathrm{t} \in[0,1]}{\longmapsto}}\left(1,1, \ldots, 1,\left\lfloor\frac{1}{t}\right\rfloor+1-\frac{1}{t}\right) \quad \infty \text {-to-1. } \\
& (t, t, \ldots, t, 0) \xrightarrow{\stackrel{\mathrm{t} \in[0,1]}{ }}\left(1,1, \ldots, 1,0,\left\lfloor\frac{1}{t}\right\rfloor-\frac{1}{t}\right) \quad \infty \text {-to-1. } \\
& (t, t, \ldots, t, 0,0) \stackrel{\mathrm{t} \in[0,1]}{\longmapsto}\left(1,1, \ldots, 1,0,0,\left\lfloor\frac{1}{t}\right\rfloor-\frac{1}{t}\right) \quad \infty \text {-to-1. } \\
& \vdots \quad \vdots \quad \vdots \quad \vdots \\
& (t, 0, \ldots, 0) \xrightarrow{\stackrel{t}{\rightleftarrows}[0,1]}\left(0, \ldots, 0,\left\lfloor\frac{1}{t}\right\rfloor-\frac{1}{t}\right) \quad \quad \infty \text {-to-1. }
\end{aligned}
$$

For $\alpha \in \mathcal{V}_{r}$, we obtain (writing $\frac{1}{r^{-}}$for $\lim _{x / r} \frac{1}{x}, r=1,2,3, \ldots$ ),

$$
\begin{aligned}
& \left(\frac{1}{r^{-}}, \frac{t}{r^{-}}, 0, \ldots, 0,0\right) \stackrel{\mathrm{t} \in[0,1]}{\longmapsto}(t, 0, \ldots, 0) . \\
& \left(\frac{1}{r^{-}}, \frac{t}{r^{-}}, \ldots, \frac{t}{r^{-}}\right) \xrightarrow{\mathrm{t} \in[0,1]}(t, t, \ldots, t) \text {. } \\
& \left(\frac{1}{r^{-}}, \frac{1}{r^{-}}, \frac{t}{r^{-}}, \ldots, \frac{t}{r^{-}}\right) \stackrel{\mathrm{t} \in[0,1]}{\longmapsto}(1, t, \ldots, t) \text {. } \\
& \left(\frac{1}{r^{-}}, \frac{1}{r^{-}}, \ldots, \frac{1}{r^{-}}, \frac{t}{r^{-}}\right) \stackrel{\mathrm{t} \in[0,1]}{\longmapsto}(1,1, \ldots, 1, t, t) .
\end{aligned}
$$

and (writing $\frac{1}{r^{+}}=\lim _{x \backslash r} \frac{1}{x}, r=2,3, \ldots$ ),

$$
\left.\begin{array}{c}
\left(\frac{1}{r^{+}}, \frac{t}{r^{+}}, 0, \ldots,-1\right) \\
\left(\frac{1}{r^{+}}, \frac{t}{r^{+}}, \ldots, \frac{t}{r^{+}}\right) \\
\left(\frac{1}{r^{+}}, \frac{1}{r^{+}}, \frac{t}{r^{+}}, \ldots, \frac{t}{r^{+}}\right) \\
\vdots \\
\vdots \\
\stackrel{t \in[0[0,1]}{\rightleftarrows}(t, 0,1] \\
\left(\frac{1}{r^{+}}, \frac{1}{r^{+}}, \ldots, \frac{1}{r^{+}}, \frac{t}{r^{+}}\right)
\end{array}\right) \stackrel{t, t, \ldots, t, t-1) .}{\stackrel{t \in[0,1]}{\rightleftarrows}}(1, t, \ldots, t, t-1) .
$$

Lemma 4. The map $G: \mathcal{A}_{d} \rightarrow \mathcal{A}_{d}$ acts as an almost full one-sided shift (over the alphabet $\mathbb{N}$ ), where $\left(k_{i}\right)_{i=0}^{\infty}$ with

$$
k_{i}=r \quad \text { if } \quad G^{i}(\alpha) \in \mathcal{U}_{r} .
$$

is the coding map. With the exception of the following forbidden tails

$$
\begin{equation*}
\mathcal{F} \mathcal{T} \stackrel{\text { def }}{=}\{(k_{0}, k_{1}, k_{2}, \ldots \ldots, \underbrace{1,1, \ldots, 1}_{d-1 \text { ones }} k_{t}, \underbrace{1,1, \ldots, 1}_{d-1 \text { ones }}, k_{t+d}, \underbrace{1,1, \ldots, 1}_{d-1 \text { ones }}, k_{t+2 d}, \ldots)\} \tag{2}
\end{equation*}
$$

every $\left(k_{i}\right)_{i=0}^{\infty} \in \mathbb{N}^{\mathbb{N} \cup\{0\}}$ corresponds to a unique parameter in $\mathcal{A}_{d}$.
Proof. The codes of $\mathcal{F} \mathcal{T}$ correspond to finite type parameters. The reason for this exclusion is that the edges of $\mathcal{U}$ get permuted in a cyclic way:

$$
\begin{aligned}
(1,1, \ldots, 1, t) & \stackrel{\mathrm{G}}{\longleftrightarrow} \\
& (1,1,1, \ldots, 1, t, t) \\
& \stackrel{\mathrm{G}}{\longmapsto} \\
& \vdots \\
& (1,1, \ldots, 1, t, t, t) \\
& \vdots \\
& \stackrel{\mathrm{G}}{\longmapsto} \\
\stackrel{\mathrm{G}}{\longmapsto} & (t, t, t, \ldots, t) \\
& \left(1,1, \ldots, 1,1+\left\lfloor\frac{1}{t}\right\rfloor-\frac{1}{t}\right),
\end{aligned}
$$

where the first $d-1$ steps are injective and last step is $\infty$-to- 1 . Since $G$ is a proper $\infty$-to- 1 surjection otherwise, any other code $\left(k_{i}\right)_{i=0}^{\infty}$ is attained by all parameters in the the non-empty set set $\cap_{i}\left(G^{-i}(\mathcal{U}) \cap \mathcal{U}_{k_{i}}\right)$. Let us show that this set consists of a single point, by showing that at every $\alpha \neq \mathbb{I}$ some iterate of $G$ is expanding.
Let $G_{j}^{-1}: \mathcal{U} \cup \mathcal{L} \rightarrow \mathcal{U}_{j}$ be the $j$ th inverse branch of $G$. We can compute

$$
G_{j}^{-1}(\alpha)=\frac{1}{j+\alpha_{d-1}-\alpha_{5}}\left(1, \alpha_{1}, \alpha_{2}, \ldots, \alpha_{d-1}\right)
$$

Therefore

$$
H_{j}(\alpha) \stackrel{\text { def }}{=} G_{j}^{-1} \circ G(\alpha)=\frac{1}{1+(j-k) \alpha_{1}}\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{d}\right)
$$

for $k=\left\lfloor\frac{1}{\alpha_{1}}\right\rfloor$. Write $\alpha_{1}=\frac{1}{k+\varepsilon}$ for $\varepsilon \in[0,1)$. Then if $j<k$,

$$
\frac{1}{1+(j-k) \alpha_{1}}=\frac{k+\varepsilon}{j+\varepsilon}>\frac{k+1}{j+1}
$$

so $H_{j}$ expands all distances with a factor at least $\frac{k+1}{j+1}>1$. Furthermore,

$$
G_{1}^{-1} \circ G_{j}^{-1}(\alpha)=\frac{1}{j+\alpha_{d-2}-\alpha_{d-1}}\left(1,1, \alpha_{1}, \ldots, \alpha_{d-2}\right)
$$

which is more contracting as $j$ increases. This means that if the code of $\alpha$ starts with $\left(k_{0}, k_{1}, \ldots, k_{d-1}\right)$, then we claim that there is an $\tilde{\alpha}$ with code starting $(1,1, \ldots 1)$ such that $G^{d}(\alpha)=G^{d}(\tilde{\alpha})$, and the derivative $D G^{d}(\alpha)$ is more expanding than $D G^{d}(\tilde{\alpha})$. To see this, consider the following diagram:


The path taking arrows $1,1, \ldots, 1$ is at least as expanding as the path $2,1, \ldots, 1$, because of the expansion of $H_{k_{0}}$. Next the path $2,1,1, \ldots, 1$ is as least as expanding as the path $3,2,1, \ldots, 1$, because of the contraction of $G_{1}^{-1} \circ G_{k_{1}}^{-1}$, which is the inverse of $G^{2}$ along the path 2,1 in the diagram. Continuing by induction, we see that the path taking arrows $1,1, \ldots, 1$ is as least as expanding as the path $3,3, \ldots, 3,2$. This proves the claim. So let us now estimate compute the derivative $D G^{d}(\alpha)$. Assuming again that $\alpha$ has code $\left(k_{i}\right)_{i=0}^{\infty}$, a straightforward computation shows that

$$
\begin{aligned}
& G^{d}(\alpha)=\left(\frac{k_{0} \alpha_{1}+\alpha_{d}-1}{\alpha_{d}}, \frac{k_{1} \alpha_{2}+\left(k_{0}-1\right) \alpha_{1}+\alpha_{d}-1}{\alpha_{d}},\right. \\
& \frac{k_{2} \alpha_{3}+\left(k_{1}-1\right) \alpha_{2}+\left(k_{0}-1\right) \alpha_{1}+\alpha_{d}-1}{\alpha_{d}}, \ldots \ldots \\
& \ldots, \frac{k_{d-2} \alpha_{d-1}+\left(k_{d-3}-1\right) \alpha_{d-2}+\cdots+\left(k_{0}-1\right) \alpha_{1}+\alpha_{d}-1}{\alpha_{d}}, \\
&\left.\frac{\left(k_{d-1}+1\right) \alpha_{d}+\left(k_{d-2}-1\right) \alpha_{d-1}+\cdots+\left(k_{0}-1\right) \alpha_{1}-1}{\alpha_{d}}\right) .
\end{aligned}
$$

The derivative $D G^{d}(\alpha)$ is

$$
\frac{1}{\alpha_{d}}\left(\begin{array}{cccccc}
k_{0} & 0 & 0 & \ldots & & \frac{1-k_{0} \alpha_{1}}{\alpha_{d}} \\
k_{0}-1 & k_{1} & 0 & & & \frac{\left.1-k_{1} \alpha_{2}-1 k_{0}-1\right) \alpha_{1}}{\alpha_{d}} \\
k_{0}-1 & k_{1}-1 & k_{2} & & & \vdots \\
\vdots & & & \ddots & & \\
\vdots & & & & k_{d-2} & \frac{1-k_{d-2} \alpha_{d-1}-\left(k_{d-3}-1\right) \alpha_{d-2}-\cdots-\left(k_{0}-1\right) \alpha_{1}}{\alpha_{d}} \\
k_{0}-1 & k_{1}-1 & k_{2}-1 & \ldots & k_{d-2}-1 & \frac{1-\left(k_{d-2}-1\right) \alpha_{d-1}-\cdots-\left(k_{0}-1\right) \alpha_{1}}{\alpha_{d}}
\end{array}\right) .
$$

By the previous claim, the least expansion is achieved if $k_{0}=\cdots=k_{d-2}=1$, but then this matrix is upper triangular, and all eigenvalues are $\geq 1$ with equality if and only if $\alpha=\mathbb{I}$. Hence on this subset of $\mathcal{U}_{1}, G^{d}$ is uniformly expanding outside every neighbourhood of $\mathbb{I}$.

This renders the coding map $\mathcal{A} \mapsto \mathbb{N}^{\mathbb{N} \cup\{0\}} \backslash \mathcal{F} \mathcal{T}$ injective.

Proof of Theorem 1. By Lemma 4, $G$ acts on $\mathcal{A}_{d}$ as a one-sided shift, proving part 2. In particular, $\mathcal{A}_{d}$ is uncountable. Let us show that $\mathcal{A}_{d}$ has zero Lebesgue measure.

The derivative of $G$ is

$$
D G=\frac{1}{\alpha_{1}}\left(\begin{array}{ccccc}
-\frac{\alpha_{2}}{\alpha_{1}} & 1 & & & \\
-\frac{\alpha_{3}}{\alpha_{1}} & 0 & 1 & & \\
\vdots & & \ddots & & \\
-\frac{\alpha_{d}}{\alpha_{1}} & & & 0 & 1 \\
\frac{1-\alpha_{d}}{\alpha_{1}} & & & 0 & 1
\end{array}\right)
$$

and the characteristic polynomial is

$$
\begin{aligned}
p_{d}(\lambda) & \stackrel{\text { def }}{=} \operatorname{det}(\lambda I-D G) \\
& =\lambda^{d}-\frac{\alpha_{1}-\alpha_{2}}{\alpha_{1}^{2}} \lambda^{d-1}-\frac{\alpha_{2}-\alpha_{3}}{\alpha_{1}^{2}} \lambda^{d-2}-\cdots-\frac{\alpha_{d-1}-\alpha_{d}}{\alpha_{1}^{d}} \lambda-\frac{1}{\alpha_{1}^{d+1}} .
\end{aligned}
$$

It follows that $\operatorname{det}(D G)=\left(-\alpha_{1}\right)^{-(d+1)}$, so $|\operatorname{det} D G(\alpha)| \geq 1$, with equality attained only in the top-most corner $\mathbb{I}=(1,1, \ldots 1)$ of the parameter space. We will study the distortion properties of $\operatorname{det} D G^{n}(\alpha)$ to estimate the Lebesgue measure of $\mathcal{A}_{d}$. Let

$$
J(\alpha):=\operatorname{det}\left|D G \circ G_{k}^{-1}(\alpha)\right|=\left(\frac{1}{k+\alpha_{d-1}-\alpha_{d}}\right)^{d+1}
$$

so if $\beta, \beta^{\prime} \in \mathcal{U}_{k}$, then

$$
\frac{J(\beta)}{J\left(\beta^{\prime}\right)}=\left(\frac{k+\beta_{d-1}^{\prime}-\beta_{d}^{\prime}}{k+\beta_{d-1}-\beta_{d}}\right)^{d+1}=\left(1+\frac{\left(\beta_{d-1}^{\prime}-\beta_{d-1}\right)-\left(\beta_{d}^{\prime}-\beta_{d}\right)}{k+\beta_{d-1}-\beta_{d}}\right)^{d+1}
$$

Claim: There is a constant $K$ such that $K \geq \sum_{j=1}^{n}\left|G^{j}(\beta)-G^{j}\left(\beta^{\prime}\right)\right|$ for every $n$, whenever $\beta$ and $\beta^{\prime}$ have the same code up to $n-1$.
Since $G^{d}$ is expanding away from a neighbourhood of $\mathbb{I}, \beta$ and $\beta^{\prime}$ must be exponentially (in $n$ ) close to each other when these codes do not contain long strings of 1 s . In this case, $\sum_{j=1}^{n}\left|G^{j}(\beta)-G^{j}\left(\beta^{\prime}\right)\right|$ can be majorised by a geometric series which is bounded independently of $n$. If there are long strings of ones, that is, there are iterates $i$ and large $r$ such that $G^{i}(\beta), G^{i+1}(\beta), \ldots, G^{i+r}(\beta) \in \mathcal{U}_{1}$ and $G^{i}\left(\beta^{\prime}\right), G^{i+1}\left(\beta^{\prime}\right), \ldots, G^{i+r}\left(\beta^{\prime}\right) \in \mathcal{U}_{1}$, then $\sum_{j=i}^{i+r}\left|G^{j}(\beta)-G^{j}\left(\beta^{\prime}\right)\right| \leq|C \cdot| G^{i+r}(\beta)-G^{i+r}\left(\beta^{\prime}\right) \mid$. After iterate $i+r$, there will be a period of uniform expansion before a new close visit to $\mathbb{I}$ can occur. So summing $\left|G^{i+r}(\beta)-G^{i+r}\left(\beta^{\prime}\right)\right|$ over all close visit times $i$ still gives a uniformly bound. This proves the claim.

Let $\alpha \in \mathcal{A}_{d}$ be arbitrary, and let $C_{n}(\alpha):=\left\{\beta \in \mathcal{U}: k_{0}(\beta) \ldots k_{n-1}(\beta)=k_{0}(\alpha) \ldots k_{n-1}(\alpha)\right\}$ be the $n$-cylinder set at $\alpha$. Since $G$ acts as an almost full one-sided shift, $G^{n}\left(C_{n}(\alpha)\right)$
contains the interior of $\mathcal{U} \cup \mathcal{L}$. For $\beta, \beta^{\prime} \in C_{n}(\alpha)$ we have

$$
\begin{aligned}
\frac{\left|\operatorname{det}\left(D G^{n}(\beta)\right)\right|}{\left|\operatorname{det}\left(D G^{n}\left(\beta^{\prime}\right)\right)\right|} & =\prod_{j=1}^{n} \frac{J\left(G^{j}(\beta)\right.}{J\left(G^{j}\left(\beta^{\prime}\right)\right.} \\
& =\prod_{j=1}^{n}\left(1+\frac{\left(G^{j}\left(\beta^{\prime}\right)_{d-1}-G^{j}(\beta)_{d-1}\right)-\left(G^{j}\left(\beta^{\prime}\right)_{d}-G^{j}(\beta)_{d}\right)}{k_{j}+G^{j}(\beta)_{d-1}-G^{j}(\beta)_{d}}\right)^{d+1} \\
& \leq\left(\exp \sum_{j=1}^{n}\left|G^{j}\left(\beta^{\prime}\right)_{d-1}-G^{j}(\beta)_{d-1}\right|+\left|G^{j}\left(\beta^{\prime}\right)_{d}-G^{j}(\beta)_{d}\right|\right)^{d+1} \\
& \leq \exp (2 K(d+1)) .
\end{aligned}
$$

Therefore

$$
\operatorname{Leb}\left(G^{-n}(\mathcal{L}) \cap C_{n}(\alpha)\right) \geq e^{-2 K(d+1)} \frac{\operatorname{Leb}(\mathcal{U})}{\operatorname{Leb}(\mathcal{U} \cup \mathcal{L})}>0
$$

This shows that $\alpha$ has arbitrarily small neighbourhoods, a definite proportion of which is eventually mapped outside $\mathcal{U}$. Thus $\alpha$ cannot be a Lebesgue density point of $\mathcal{A}_{d}$, and since $\alpha \in \mathcal{A}_{d}$ was arbitrary, $\operatorname{Leb}\left(\mathcal{A}_{d}\right)=0$. This proves part 1 .

Finally, to prove part 3 , if $G^{n}(\alpha) \in \mathcal{L}$ for some minimal $n$, then the $n$-th induced map has only $d^{\prime}<d$ branches (any $1 \leq d^{\prime}<d$ is possible), and can be rescaled to a map in $\mathcal{I} \mathcal{T} \mathcal{M}_{d^{\prime}}$. A similar analysis of $\mathcal{I} \mathcal{T} \mathcal{M}_{d^{\prime}}$ shows that there is a countable alphabet one-sided shift of type $\infty$ maps with $d^{\prime}$ branches, whereas Lebesgue-a.e. $T \in \mathcal{I T} \mathcal{M}_{d^{\prime}}$ is eventually maps into $\mathcal{I} \mathcal{T} \mathcal{M}_{d^{\prime \prime}}$ for $d^{\prime \prime}<d^{\prime}$ under renormalisation, etc.

## 3. The Hausdorff dimension of $\Omega$

In this section we prove our results on the Hausdorff dimension.
Proof of Theorem 3. We have studied $\left(\Omega, T_{\alpha}\right)$ using first return maps to a nested sequence of intervals; let $\Delta_{k}$ be the $k$-th interval of this nest, so $\Delta_{0}=[0,1], \Delta_{1}=\left[1-\alpha_{1}, 1\right]$ and $\Delta_{2}=\left[1-\alpha_{1} \alpha_{2}, 1\right]$, etc. In general, the length of $\Delta_{n}$ is $\pi_{n}:=\left|\Delta_{n}\right|=\prod_{j=0}^{n-1} G^{j}(\alpha)_{1}$. In order to compute the upper box dimension, we will construct a cover $\Omega_{n}$ with intervals of length $\pi_{k, j} \leq \pi_{n}$ and count the number we need. Let $\pi_{k, j}, j=0, \ldots d$, be the length of the domain $B_{i}$ of the $j+1$-st branch of the first return map to $\Delta_{n}$. Hence $\sum_{j=0}^{n-1} G^{j}(\alpha)_{1}=\pi_{n}$ and more precisely:

$$
\pi_{n, j}=\pi_{n} \cdot \begin{cases}\left(1-G^{n}(\alpha)_{1}\right) & \text { for } j=0 \\ \left(G^{n}(\alpha)_{j}-G^{k}(\alpha)_{j+1}\right) & \text { for } 1 \leq j<d \\ G^{n}(\alpha)_{d} & \text { for } j=d\end{cases}
$$

Let $l_{n, j}$ be the number of intervals of length $\pi_{n, j}$ used in the cover. Then $l_{0, j}=1$ for $j=0, \ldots, d$ and each interval of length

$$
\pi_{n, j} \text { is covered by }\left\{\begin{array}{cl}
k_{n} \text { intervals of length } \pi_{n+1, d-1} & \text { and } k_{n}-1 \text { of length } \pi_{n+1, d} \\
\begin{array}{c}
\text { if } j=0 \\
\text { one interval of length } \pi_{n+1, j-1} \\
\text { one interval of length } \pi_{n+1, d-1} \\
\text { and one of length } \pi_{n+1, d}
\end{array} & \text { if } j \leq j<d
\end{array}\right.
$$

the numbers $l_{n, j}$ satisfy the recursive linear relation:

$$
\left(\begin{array}{c}
l_{n+1,0}  \tag{3}\\
l_{n+1,1} \\
\vdots \\
\vdots \\
\vdots \\
l_{n+1, d}
\end{array}\right)=\left(\begin{array}{cccccc}
0 & 1 & 0 & \ldots & & \\
0 & 0 & 1 & \ldots & & \\
\vdots & & & \ddots & & \\
0 & & & & 1 & 0 \\
k_{n} & 0 & \ldots & & 0 & 1 \\
k_{n}-1 & 0 & \ldots & & 0 & 1
\end{array}\right)\left(\begin{array}{c}
l_{n, 0} \\
l_{n, 1} \\
\vdots \\
\vdots \\
\vdots \\
l_{n, d}
\end{array}\right)
$$

Let $M_{k}$ be the above $d+1 \times d+1$ matrix for $k=k_{n}$. Its characteristic polynomial is

$$
m_{k}(\lambda) \stackrel{\text { def }}{=} \operatorname{det}\left(\lambda I-M_{k}\right)=\lambda^{d+1}-\lambda^{d}-k \lambda+1 .
$$

Let $\bar{r}_{k} \geq 1$ be the leading eigenvalue; $\bar{r}_{1}=1$ and $\bar{r}_{k}>1$ if $k>1$. Write $\rho_{d}=\log \bar{r}_{2} / \log 2$. Then $\rho=\rho_{2} \approx 0.84955 \ldots$, and $\rho_{d}$ is decreasing in $d$, so $\rho_{d} \leq 0.84955 \cdots<1$ for all $d$. It can be shown that $\bar{r}_{k} \leq k^{\rho}$ for all $k \in \mathbb{N}$ and $d \geq 2$. If $\alpha_{1} \in \mathcal{U}_{k}$, we have $\frac{1}{\alpha_{1}} \geq k$, and hence $\frac{1}{\pi_{n}}=\prod_{j=0}^{n-1} 1 / G^{j}(\alpha)_{1} \leq \prod_{j=0}^{n-1} k_{j}$. Therefore we can estimate the upper box dimension of $\Omega$ as

$$
\begin{aligned}
\overline{\operatorname{dim}}_{B}(\Omega) & \leq \limsup _{n} \frac{\log \sum_{j=0}^{d} l_{n, j}}{-\log \pi_{n}} \\
& \leq \limsup _{n} \frac{\log (d+1) \sum_{j=0}^{n-1} \bar{r}_{k_{j}}}{\sum_{j=0}^{n-1} \log k_{j}} \\
& \leq \limsup _{n} \frac{\rho \sum_{j=0}^{n-1} \log k_{j}}{\sum_{j=0}^{n-1} \log k_{j}}=\rho<1 .
\end{aligned}
$$

This proves the theorem.

Remark: Note that for each $k \in \mathbb{N}, G$ has a unique fixed point in $\mathcal{U}_{k}$. The coordinates of this fixed point $\alpha:=\alpha(k)$ satisfy

$$
\begin{equation*}
\alpha_{1}^{d+1}=\alpha_{1}^{d}+k \alpha_{1}-1 \quad \text { and } \quad \alpha_{i}=\alpha_{1}^{i} . \tag{4}
\end{equation*}
$$

For these parameters, we have complete self-similarity of the attractor $\Omega$, and the Hausdorff dimension of $\Omega$ is $-\frac{\log \bar{r}_{k}}{\log \alpha_{1}}$.
Let $r_{k}$ be the root of (4) between $\frac{1}{k}$ and $\frac{1}{k+1}$. If the code $\left(k_{j}\right)_{j \geq 0}$ consists of blocks of sufficiently fast increasing length of, say, $k_{j}=2$ and $k_{j}=3$ alternately, then the upper box dimension will be $\log \bar{r}_{2} / \log r_{2}$ and the lower box dimension is at most $\log \bar{r}_{3} / \log r_{3}$. This shows that $\overline{\operatorname{dim}}_{B}(\Omega)>\underline{\operatorname{dim}}_{B}(\Omega)$ is possible.

## 4. Symbolic dynamics and non-unique ergodicity of $\left.T\right|_{\Omega}$.

The use of 'old' branches to produce the 'new' branches can be expressed symbolically by the substitution

$$
\chi_{k}:\left\{\begin{array}{rll}
0 & \rightarrow & 1  \tag{5}\\
1 & \rightarrow & 2 \\
& \vdots & \\
d-2 & \rightarrow d \\
d-1 & \rightarrow d 1^{k} \\
d & \rightarrow d 1^{k-1} \\
9 & &
\end{array}\right.
$$

This substitution has associated $d+1 \times d+1$-matrix $M_{k}$, i.e., the same matrix as used in (3).

Proposition 5. If $\alpha \in \mathcal{A}$ has code $\left(k_{0}, k_{1}, k_{2}, \ldots\right)$, where $k_{i}=r$ if $G^{i}(\alpha) \in \mathcal{U}_{r}$, then $T_{\alpha}$ has an attracting Cantor set $\Omega$ and $\left.T_{\alpha}\right|_{\Omega}$ is isomorphic to the substitution shift space $(\Sigma, \sigma)$ generated by

$$
s \stackrel{\text { def }}{=} \lim _{i \rightarrow \infty} \chi_{k_{0}} \circ \chi_{k_{1}} \circ \cdots \circ \chi_{k_{i}}(d) .
$$

Proof. The argument is the same as in $[\mathrm{BK}]$ and $[\mathrm{BT}]$.

Let $C=\left\{x=\left(x_{0}, \ldots, x_{d}\right): x_{i} \geq 0\right\}$ be the nonnegative cone in $\mathbb{R}^{d+1}$ and $S=\{x \in C$ : $\left.\sum_{i=0}^{d} x_{i}=1\right\}$ the unit simplex.

$$
\begin{equation*}
C_{\infty} \stackrel{\text { def }}{=} \cap_{i} M_{k_{0}}^{t} \cdot M_{k_{1}}^{t} \cdots M_{k_{i}}^{t}(C), \tag{6}
\end{equation*}
$$

where $\left(k_{i}\right)_{i \geq 0}$ is the code of $\alpha \in \mathcal{A}$, the matrices $M_{k_{i}}$ are those of equation (3) and $M^{t}$ indicates the transpose of the matrix $M$.

Lemma 6. The system $(\Sigma, \sigma)$ is uniquely ergodic if and only if $C_{\infty}=\ell$ is a half-line. In this case, the point $v=\ell \cap S$ is the vector of frequencies of the symbols $0, \ldots, d$ appearing in $s$, or equivalently, $v_{i}$ is the invariant mass of the domain of the $i+1$ st branch of $T$.

Regardless of whether $C_{\infty}=\ell$ or not, the intersection of $C_{\infty}$ and the unit simplex $S$ is a convex polytope, and its corners correspond to the ergodic measures of $(\Sigma, \sigma)$ and hence of $(\Omega, T)$.

Proof. Let $B_{n, j}, n \geq 0, j \in\{0, \ldots, d\}$, be the domain of the $j+1$-st branch of the $n$-th renormalisation of $T$. If $\mu$ is a $T$-invariant measure, then

$$
\mu\left(B_{n, j}\right)= \begin{cases}k_{n} \mu\left(B_{n+1, d-1}\right)+k_{n-1} \mu\left(B_{n+1, d}\right) & \text { if } j=0 \\ \mu\left(B_{n+1, j-1}\right) & \text { if } 1 \leq j<d \\ \mu\left(B_{n+1, d-1}\right)+\mu\left(B_{n+1, d}\right) & \text { if } j=d\end{cases}
$$

so

$$
\left(\mu\left(B_{n, j}\right)\right)_{j=0}^{d}=\frac{1}{N_{n}} M_{k_{n}}^{t}\left(\mu\left(B_{n+1, j}\right)\right)_{j=0}^{d},
$$

for a normalising constant $N_{n}$. Since $M_{k_{n}}^{t}: C \rightarrow C$ is linear for each $n, C_{\infty}$ is a convex set and $C_{\infty} \cap S$ is the intersection of convex polytopes and hence a convex polytope itself, with at most $d+1$ extrema. (In fact, there will be at most $d$ extrema, as the proof of Theorem 2 suggests.) If $v$ and $v^{\prime}$ are distinct extremal points in $C_{\infty} \cap S$, then there are symbols $a, a^{\prime} \in\{0, \ldots, d\}$ and arbitrarily large $n$ such that the appearance frequencies of the symbols in $\chi_{k_{1}} \circ \cdots \circ \chi_{k_{n}}(a)$ and $\chi_{k_{1}} \circ \cdots \circ \chi_{k_{n}}\left(a^{\prime}\right)$ are arbitrarily close to $v$ and $v^{\prime}$, and hence uniformly bounded away from each other. This implies that the itinerary of $1 \in[0,1]$ (or any other $x \in \Omega$ ) has arbitrarily long subwords of which the appearance frequencies of the symbols is arbitrarily close to $v$ and similarly for $v^{\prime}$. This contradict unique ergodicity, cf. Proposition 4.2 .8 of $[\mathrm{P}]$.

Conversely, if $C_{\infty}$ is a single line, then also $C_{n, \infty} \stackrel{\text { def }}{=} \cap_{i} M_{k_{n}}^{t} \cdot M_{k_{n+1}}^{t} \cdots M_{k_{n+i}}^{t}(C)$ is a single line. If $\mu$ and $\mu^{\prime}$ are different $T$-invariant measures, then there is $n \geq 0$ and $j$ such that $\mu\left(B_{n, j}\right) \neq \mu^{\prime}\left(B_{n, j}\right)$. But $\left(\mu\left(B_{n, j}\right)\right)_{j},\left(\mu^{\prime}\left(B_{n, j}\right)\right)_{j} \in C_{n, \infty} \cap S$, contradicting that $C_{n, \infty} \cap S$ is a single point.

Finally, the ergodic measures must clearly correspond to the extremal points of $C_{\infty} \cap S$.

Define $F_{k}: S \rightarrow S$ by

$$
F_{k}(x) \stackrel{\text { def }}{=} \frac{\left(k x_{d-1}+(k-1) x_{d}, x_{0}, x_{1}, \ldots, x_{d-2}, x_{d-1}+x_{d}\right)}{k\left(x_{d-1}+x_{d}\right)+x_{0}+\cdots+x_{d-1}},
$$

that is the intersection of the simplex $S$ and the line connecting 0 to $M_{k}^{t} x$. Introduce new coordinates:

$$
\left\{\begin{array} { c l } 
{ \zeta _ { 1 } = } & { x _ { 0 } + \cdots + x _ { d - 1 } , } \\
{ \zeta _ { 2 } } & { = x _ { d - 1 } + x _ { d } , } \\
{ \zeta _ { 3 } } & { = } \\
{ x _ { d - 2 } + x _ { d - 1 } + x _ { d } , } \\
{ \vdots } & { \vdots } \\
{ \zeta _ { d } } & { = x _ { 1 } + \cdots + x _ { d } . }
\end{array} \quad \text { whence } \quad \left\{\begin{array}{rl}
x_{0} & =1-\zeta_{d} \\
x_{1} & =\zeta_{d}-\zeta_{d-1} \\
x_{2} & =\zeta_{d-1}-\zeta_{d-2} \\
\vdots & \\
x_{d-2} & =\zeta_{3}-\zeta_{2} \\
x_{d-1} & =\zeta_{1}+\zeta_{2}-1 \\
x_{d} & =1-\zeta_{1} .
\end{array}\right.\right.
$$

In these coordinates, $F$ obtains the form:

$$
\tilde{F}_{k}(\zeta)=\frac{1}{k \zeta_{2}+\zeta_{1}}\left((k-1) \zeta_{2}+\zeta_{1}, \zeta_{3}, \zeta_{4}, \ldots, \zeta_{d}, 1\right)
$$

acting on

$$
Z \stackrel{\text { def }}{=}\left\{\zeta=\left(\zeta_{1}, \ldots, \zeta_{d}\right): 0 \leq \zeta_{2} \leq \zeta_{3} \leq \cdots \leq \zeta_{d} \leq 1,1-\zeta_{2} \leq \zeta_{1} \leq 1\right\}
$$

Let us now prove Theorem 2, i.e., that $T_{\alpha}$ with code ( $k_{0}, k_{1}, \ldots$ ) preserves $d$ distinct ergodic measures on its attractor provided $k_{i} \rightarrow \infty$ sufficiently fast.
Proof of Theorem 2. It suffices to examine the infinite intersection

$$
Z_{\infty} \stackrel{\text { def }}{=} \bigcap_{i} \tilde{F}_{k_{1}} \circ \tilde{F}_{k_{1}} \circ \cdots \circ \tilde{F}_{k_{i}}(Z)
$$

of closed $d$-dimensional polytopes. If this intersection has non-empty $d$-1-dimensional interior, then the $d$ extrema of the intersection represent the $d$ ergodic $T$-invariant measures on $\Omega$. Recall $\mathbb{I}=(1, \ldots, 1)$ is the top corner of the polytope $Z$, and let $Z_{+}$be the $d$-1-dimensional face of $Z$ opposite to (and hence not containing) $(0,1,1, \ldots, 1)$. Straightforward calculation reveals that

$$
\begin{aligned}
\tilde{F}_{k_{0}}(\mathbb{I}) & =\frac{1}{k_{0}+1}\left(k_{0}, 1, \ldots, 1\right), \\
\tilde{F}_{k_{0}} \circ \tilde{F}_{k_{1}}(\mathbb{I}) & =\frac{1}{k_{0}+k_{1}}\left(k_{0}+k_{1}-1,1, \ldots, 1, k_{1}+1\right), \\
\tilde{F}_{k_{0}} \circ \tilde{F}_{k_{1}} \circ \tilde{F}_{k_{2}}(\mathbb{I}) & =\frac{1}{k_{0}+k_{1}+k_{2}-1}\left(k_{0}+k_{1}+k_{2}-2,1, \ldots, 1, k_{1}+1, k_{1}+k_{2}\right),
\end{aligned}
$$

and for general $0 \leq r<d$,

$$
\begin{gathered}
\tilde{F}_{k_{0}} \circ \cdots \circ \tilde{F}_{k_{r}}(\mathbb{I})=\frac{1}{k_{0}+\cdots+k_{r}+1-r}\left(k_{0}+\cdots+k_{r}-r, 1, \ldots\right. \\
\left.\ldots, 1, k_{1}+1, k_{1}+k_{2}, \ldots, k_{1}+\cdots+k_{r}+2-r\right), \\
\uparrow \\
\uparrow \begin{array}{c}
\text { position } d-r+1 \\
11
\end{array} \\
\begin{array}{c}
\text { position } d
\end{array}
\end{gathered}
$$

Therefore, if $k_{d-1} \gg k_{d-2} \gg \cdots \gg k_{0}$, we find that $\mathbb{I}$ is almost periodic under consecutive applications of $\tilde{F}_{k_{i}}$, closely visiting the other vertices of $Z_{+}$along the way. A similar argument applies to the other vertices of $Z_{+}$. Since $\tilde{F}_{k}$ is continuous in $\zeta$, we can make

$$
\operatorname{dist}_{\mathrm{H}}\left(\tilde{F}_{k_{0}} \circ \tilde{F}_{k_{1}} \circ \cdots \circ \tilde{F}_{k_{d-1}}\left(Z_{+}\right), Z_{+}\right)
$$

arbitrarily close to 0 , where dist $_{\mathrm{H}}$ indicates Hausdorff distance, by choosing $k_{d-1} \gg$ $k_{d-2} \gg \cdots>k_{0}$. Choosing the next $d$ elements of the code so that $k_{2 d-1} \gg k_{2 d-2} \gg$ $\cdots \gg k_{d}$ and $k_{d} \gg k_{d-1}$ sufficiently large again, we can make

$$
\operatorname{dist}_{\mathrm{H}}\left(\tilde{F}_{k_{0}} \circ \tilde{F}_{k_{1}} \circ \cdots \circ \tilde{F}_{k_{d-1}}\left(Z_{+}\right), \tilde{F}_{k_{0}} \circ \tilde{F}_{k_{1}} \circ \cdots \circ \tilde{F}_{k_{2 d-1}}\left(Z_{+}\right)\right)
$$

arbitrarily small again. Repeating this way, we can assure that dist Hausd. $\left.^{( } Z_{\infty}, Z_{+}\right)$is small and hence $Z_{\infty}$ has nonempty $d$ - 1 -dimensional interior.

Remark: If $d=2$, then the condition $k_{i+1}>\lambda k_{i}$ for some fixed $\lambda>1$ and all $i$ sufficiently large suffices to conclude non-unique ergodicity for $\alpha \in \mathcal{A}_{2}$, see [BT].

## References

[BK] M. Boshernitzan, I. Kornfeld, Interval translation mappings, Ergod. Th. Dynam. Sys. 15 (1995) 821-831.
[BT] H. Bruin, S. Troubetzkoy, The Gauss map on a class of interval translation mappings, Isr. J. Math. 137 (2003) 125-148.
[BH] J. Buzzi, P. Hubert, Piecewise monotone maps without periodic points: Rigidity, measures and complexity, Ergod. Th. \& Dynam. Sys. 24 (2004) 383-405.
[K] M. Keane, Non-ergodic interval exchange transformations, Israel J. Math. 26 (1977) 188-196.
[P] K. Petersen, Ergodic theory, Cambridge Univ. Press, 1983.
[SIA] H. Suzuki, S. Ito, K. Aihara, Double rotations, Discrete Contin. Dyn. Sys. 13 (2005) 515-532.

Mathematics and Statistics, University of Surrey, Guildford, Surrey, GU2 7XH, UK
E-mail address: h.bruin@surrey.ac.uk
URL: http://www.maths.surrey.ac.uk/showstaff?H.Bruin

