
COMBINATORICS OF (FIBONACCI-LIKE) UNIMODAL MAPS

HENK BRUIN

Abstract. These notes were used as part of the Spring School “Ecole Plurithématique
de Théorie Ergodique II “ Luminy, April 2006. They focus on the properties of uni-
modal maps, their description in terms of kneading maps, and the behavior of uni-
modal maps restricted to the critical omega-limit set ω(c) if these are Cantor sets.
Major references are [2, 7, 8, 21].

1. Combinatorics of Unimodal Maps

A unimodal map f : I → I on the interval is a continuous map having a unique point
c, the critical point, such that f is increasing to the left and decreasing to the right of
c. Let cn = fn(c) be the n-th image of the critical point. It is convenient to scale f
such that the interval coincides with the core: I = [c2, c1], and unless c2 < c < c1 and
c2 ≤ c3, the dynamics of f are not very interesting.

The results that we state here hold for the family of unimodal maps

fa(x) = 1 − a|x|`, a ∈ [0, 2].

Here c = 0 is the critical point and ` is the order of the critical point. If ` = 1, then
fa is the tent family; if ` = 2 then fa is the quadratic family. The core of fa is the
interval I = [c2, c1] = [1 − a, 1]. If a ∈ [1, 2], then fa is onto on this interval; if a < 1,
then every point in [−1, 1] is attracted to a fixed point.

1.1. Symbolic dynamics. The system (I, f) can be described symbolically by a sub-
shift of {0, ?, 1}N where each x ∈ I is assigned an itinerary i(x) = i0(x)i1(x)i2(x) . . .
where

ik(x) =







0 if f k(x) ∈ [c2, c),
? if f k(x) = c,
1 if f k(x) ∈ (c, c1].

If Σ is the collection of all itineraries, and σ is the left-shift, then the below diagram
commutes.
Take x /∈ orb−(c) := ∪j≥0f

−j(c), i(x) ∈ {0, 1}N. For each k, the set

Jk(x) := {y ∈ I : i0(y) . . . ik−1(y) = i0(x) . . . ik−1(x)}
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Σ - Σ
σ

? ?
i i

I - I
f

is an open interval; it is a maximal open neighborhood on which f k is monotone. It can
happen that there are several points with the same itinerary. In this case, H = ∩kJk(x)
is a non-degenerate interval; it is called a homterval, because f k : H → f k(H) is a
homeomorphism for every k. If f is a non-flat (i.e., the critical order is finite) C2-
map, then any homterval is attracted to a periodic orbit or interval, [21]. This has the
following convenient consequence:

Lemma 1. If f has no wandering intervals or periodic attractor, then for every ε > 0
there is a δ > 0 such that if J is an interval of length |J | > δ, then |f n(J)| > ε for all
n ≥ 0.

Proof. See [21, Chapter IV], where this property is called the Contraction Principle,
although Non-contraction Principle seems a better word. �

The kneading invariant is defined as the itinerary of the critical point, leaving out
the initial ?:

ν = νf = ν1ν2ν3 . . .

Two unimodal maps are combinatorially equivalent if they have the same kneading
invariant. If f and g are topologically conjugate, then they are combinatorially equiv-
alent, but the converse is not true. The kneading invariant fails to notice:

• Inessential periodic attractors, i.e., periodic attractors that don’t attract the
critical point. Recall that if f has negative Schwarzian derivative, or more

precisely Sf(x) := f ′′′(x)
f ′(x)

− 3
2

f ′′′(x)
f ′(x)

≤ 0 for every non-critical point x, then every

periodic attractor attracts a critical point or boundary point, see [22]. In our
case, we restricted the map to the core, so the boundary points belong to the
critical orbit. Hence in this setting, every periodic attractor is essential.

• Wandering intervals, which however don’t exist if f is non-flat and C2, see [21,
Chapter IV].

• The precise period of a periodic attractor generated in a period doubling bifur-
cation. For example, if a1 < a2 are parameters just before and after the first
period doubling bifurcation creating a periodic attractor of period 2. Then in
both cases νf = 1111 . . . , regardless whether ω(c) consist of a single or two
points in (c, c1]. The kneading invariant indicates this difference in period only
when one of these period 2 points passes through c, as parameter a increases.
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Two itineraries i and i[ can be compared in parity lexicographical order ≺p. First set
0 < ? < 1. If k = min{j ≥ 0 : ij 6= i[j} then

i ≺p i[ if

{
ik < i[k and #{j < k : ij = 1} is even,
ik > i[k and #{j < k : ij = 1} is odd.

Lemma 2 (See [8]). The map i : I → Σ, x 7→ i(x) is order preserving.

Corollary 1. Given a unimodal map f with kneading invariant ν,

(1) σ(ν) �p i(x) �p ν for all x ∈ I.

and

(2) σ(ν) �p σn(ν) �p ν for all n ≥ 0.

Conversely, we have:

Lemma 3. • Fix f : I → I with kneading invariant ν. If e ∈ {0, 1}N is a
sequence such that (1) holds, then there is x ∈ I such that i(x) = e.

• If ν ∈ {0, 1}N is a sequence such that (2) holds, then there is a unimodal map
f such that ν = νf .

For this reason, equation (2) is called the admissibility condition for kneading in-
variants. A map f is renormalizable if there is an interval J 3 c and period p such
that f p(J) ⊂ J and f i(J) and f j(J) have disjoint interiors for 0 ≤ i < j < p. In
this case, the map f p : J → J is a new unimodal map, which can be renormalizable
itself. Continuing inductively, we can arrive at infinitely renormalizable maps which
have an infinite sequence of nested periodic interval Jn 3 c of periods pn → ∞. The
best known example is the Feigenbaum-Coullet-Tresser map (usually called Feigenbaum
map) which has a periodic interval Jn of period 2n for each n ∈ N.

Renormalizability can be seen from the structure of the kneading invariant by the
fact the ν has the structure of a star-product.

Proposition 1. Let f have a p-periodic interval J such that the itinerary of c starts
with ?i1 . . . ip−1. Let f p : J → J be a unimodal map with kneading invariant ν̃. Then
the kneading invariant of f itself is

(3) ν =

{
i1 . . . ip−1ν̃1i1 . . . ip−1ν̃2i1 . . . ip−1ν̃3 . . . if #{j < k : ij = 1} is even,
i1 . . . ip−1ν̃

′
1i1 . . . ip−1ν̃

′
2i1 . . . ip−1ν̃

′
3 . . . if #{j < k : ij = 1} is odd.

Here ν̃ ′
k = 1, ?, 0 if ν̃k = 0, ?, 1 respectively.

The sequence ν defined by (3) is known as the star-product of ?i1 . . . ip−1 and ν̃, and
written as ν = (?i1 . . . ip−1) ∗ ν̃, see [8].
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1.2. Cutting times. If J is a maximal (closed) interval on which f n is monotone,
then fn : J → fn(J) is called a branch. If c ∈ ∂J , fn : J → fn(J) is a central branch.
Obviously fn has two central branches, and they have the same image if n is sufficiently
large. Denote this image (or the largest of the two) by Dn.

If Dn 3 c, then n is called a cutting time. Denote the cutting times by {Si}i≥0,
S0 < S1 < S2 < . . . For interesting unimodal maps (such as tent maps with slope > 1
or fa with a ∈ (1, 2]) S0 = 1 and S1 = 2.

Lemma 4. Let β(n) = n − max{Sk : Sk < n}. Then

(4) Dn = [cn, cβ(n)] or [cβ(n), cn] for all n ≥ 2,

and Dn ⊂ Dβ(n).

Proof. For simplicity write [x, y] for the interval with endpoints x and y, even if y < x.
We prove (4) by induction. Since D2 = [c2, c1], it holds for n = 2. Next assume that (4)
holds for n. If Dn 63 c (so n is not a cutting time), then Dn+1 = f(Dn) = [cn+1, c1+β(n)].
But β(n+1) = n+1−max{Sk : Sk < n+1} = n+1−max{Sk : Sk < n} = 1+β(n). So
the above interval is [cn+1, cβ(n+1)]. If on the other hand Dn 3 c, then Dn+1 = [cn+1, c1],
but β(n + 1) = 1, so (4) holds for n + 1. This proves the first statement.

The second statement holds for n = 2 because D2 = [c2, c1] = D1 = Dβ(2). Proceed-
ing by induction, i.e., assuming that Dn ⊂ Dβ(n), we have three cases:

• Neither n nor β(n) is a cutting time. Then Dn+1 = f(Dn) ⊂ f(Dβ(n)) =
Dβ(n)+1 = Dβ(n+1).

• β(n) is a cutting time, but n is not. Then Dn+1 = f(Dn) = [cn+1, c1+β(n)] ⊂
[c1, c1+β(n)] = Dβ(n+1).

• n and hence β(n) is a cutting time. Then Dn+1 = [cn+1, c1+β(n)] ⊂ [c2, c1] =
Dβ(n+1).

This completes the proof. �

Lemma 5. The sequence of cutting times completely determines the kneading invari-
ant, and vice versa, using the rule:

Sk = min{n > Sk−1 | νn 6= νn−Sk−1
}.

Proof. Left to the reader. �

Corollary 2. If cutting times Sk are defined for all k, then the difference between two
consecutive cutting time is again a cutting time. In other words, there is a function:
Q : N → N0 := N ∪ {0} such that

(5) Sk − Sk−1 = SQ(k).

Proof. If n = Sk is a cutting time, then β(n) = Sk − Sk−1 by definition of β(n). But
also Dβ(n) ⊃ Dn 3 c, so β(n) is a cutting time. �

The map Q is called the kneading map of f . Obviously, Q determines the sequence
of cutting times, which in turn determine the kneading invariant, and vice versa.
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The following admissibility condition (equivalent to (2)) characterizes the possible
kneading maps:

Proposition 2 ([13, 3]). A map Q : N → N0 is the kneading map of some unimodal
map if and only if

(6) {Q(k + j)}j≥1 � {Q(Q2(k) + j)}j≥1,

where � denotes the lexicographical ordering. The only exception is when the critical
point is attracted to an orientation reversing periodic attractor, and Q(k) is only defined
for finitely many k.

One can see from this admissibility condition that every non-decreasing kneading
map is admissible. Two famous unimodal maps can be easily described by kneading
map and/or cutting times1:

Q(k) = k − 1 Sk = 2k Feigenbaum map

Q(k) = max{0, k − 2} Sk = k-th Fibonacci number Fibonacci map

Let us call f Fibonacci-like if there is N such that k − Q(k) ≤ N for all k ∈ N.

Proposition 3 ([3]). Assume a unimodal map f has no (essential) periodic attractor.
Then f is renormalizable with period n if and only if n = Sk for some k and Q(k+j) ≥ k

for all j ≥ 1. In this case, the kneading map Q̃ of the renormalization fn : J → J
satisfies Q̃(j) = Q(k + j) − k for all j ≥ 1.

Proof. Let J 3 c be a periodic interval with period n. Then cn ∈ J and unless f has
a periodic attractor of period n, fn(J) 3 c. Therefore n is a cutting time, say n = Sk.
Because fm(J) and J have disjoint interiors unless m is a multiple of n, Dm 63 c for if
m is not a multiple of n. Hence all cutting times Sk+j, j ≥ 1, are multiples of n. It
follows from (5) that Q(k + j) ≥ k for all j ≥ 1.

Conversely, if Q(k + j) ≥ k for all j ≥ 1, then all cutting times Sk+j are multiples
of n := Sk. Therefore Dm 63 c for m > n unless m = rn. Take J = ∪rDrn. Then
fn(J) ⊂ J as required.

Finally, if f has indeed an n-periodic interval J 3 c, then r is a cutting time of
fn only if rn is a cutting time of f . It follows that nS̃j = Sk+j for all j ≥ 0 and

Q̃(j) = Q(k + j) − k follows immediately from this. �

1.3. The canonical Markov extension (Hofbauer tower). Canonical Markov ex-
tensions were first described for intervals maps by Hofbauer and Keller (e.g. [13, 14,
15, 16, 17]), as a way to build the “most economical” extension satisfying the Markov
property, i.e., there exists a partition of the space that is preserved by the dynamics.
This means that the dynamics can be expressed symbolically as (the infinite alphabet
equivalent of) a subshift of finite type.

1The Feigenbaum map might as well be called Coullet-Tresser map, see [9].
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In this section we only look at the unimodal setting. Then the canonical Markov
extension of (I, f) is the disjoint union Î = tn≥2Dn equipped with a map f̂ : Î → Î
defined below2.

Remark: It would be natural (also in view of Lemma 4) to take the disjoint union
starting with D1, but since D1 and D2 are the same interval, it is convenient to identify
D1 and D2 in the disjoint union and start at n = 2.

Let π : Î → I be the projection (or inclusion map); points x̂ ∈ Î can be written as

x̂ = (x, Dn) where x ∈ Dn and π(x̂) = x. Then the map f̂ : Î → Î is defined as

f̂(x̂) = f̂(x, Dn) := (f(x), Dn′)

where

n′ =

{
n + 1 if Dn 63 c or Dn 3 c and x ∈ [c, cn];
β(n) + 1 if Dn 3 c and x ∈ [cβ(n), c].

If n is not a cutting time, then c /∈ Dn and n′ = n + 1. If n is a cutting time, say
n = Sk, then β(n) = Sk − Sk−1 = SQ(k), and n′ = n + 1 or n′ = β(n) + 1, depending

on which side of c the point π(x̂) lies. If π(x̂) = c, then f̂ is two-valued, but obviously
this applies to a countable set only, so it is negligible for many purposes.

The projection π satisfies π ◦ f̂ = f ◦ π, so the below diagram commutes:

I - I
f

? ?
π π

Î - Î
f̂

Figure 1 shows the Markov extensions (Hofbauer towers) for the Feigenbaum and Fi-

bonacci map. Arrows indicate the way f̂ connects the levels Dn; as you can see, for
the Feigenbaum map, there are no arrows leading from any domain Dn, n ≥ 2k + 1 to
a level Dm, m < 2k + 1. Hence tn≥2k+1Dn is an absorbing subgraph of the tower for
each k; this is a consequence of the fact that the Feigenbaum map is renormalizable.

We have seen before that the Feigenbaum is infinitely renormalizable, and that there-
fore ω(c) is a (solenoidal) attractor3. For the Fibonacci map ω(c) can also be an
attractor, namely if the critical order is sufficiently large, see [6]. It should be noted,
however, that ω(c) is only an attractor in the sense of Lebesgue measure: for Lebesgue-
a.e. x ∈ I, ω(x) = ω(c). In contrast, there are points x ∈ I which have a dense orbit in
I. These orbits come arbitrarily close to ω(c), but are not attracted to it. An attractor
of this type is called a wild attractor: it attracts a set of positive (and in our setting

2Some authors take the components of Dn \ {c} as partition of Î , which differs from ours only at

cutting times. This is not the coarsest Markov partition, but has the advantage that f̂ is continuous
on every partition element.

3The suspension over ω(c), i.e., the topological space ω(c) × [0, 1]/ ∼, where (x, 1) ∼ (f(x), 0) is a
solenoid, hence the name.
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Figure 1. Levels D2 to D9 of the Hofbauer tower of
the Feigenbaum map (left) and Fibonacci map
(right).

full) Lebesgue measure, but a set of second Baire category has a dense orbit4. The full
result in this direction is:

Theorem 1. • If f is a quadratic unimodal map (of Fibonacci combinatorics or
not), then f has no wild attractor, [19, 12];

• If f is a Fibonacci map with sufficiently large critical order `, then ω(c) is a
wild attractor [6].

• If f is Fibonacci-like5 with sufficiently large critical order, then f has a wild
attractor, [5].

We will not comment on the proofs of these results, except that the existence of points
with dense orbits is not hard to see from the fact that the Hofbauer tower of the
Fibonacci map is a primitive Markov graph, i.e., you can go from any level in the tower
to any (other) level in a finite number of steps. Therefore it is possible to find orbits,
represented by infinite paths in the tower, that contain any possible finite path. Such
paths correspond to points x with a dense orbit.

Recall that a dynamical system (X, T ) is minimal if every orbit is dense in X. The
condition Q(k) → ∞ has many implications.

4Or more precise: for a second Baire category set of points, ω(x) is a finite union of intervals,
cyclically permuted by f .

5and satisfies some additional technical, and probably superfluous, conditions,
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Theorem 2. If Q(k) → ∞, then

(1) |Dn| → 0 as n → ∞;
(2) c is recurrent and ω(c) is a minimal Cantor set;
(3) The topological entropy htop(f |ω(c)) = 0;
(4) c is persistently recurrent, i.e., for every neighborhood U 3 c there are only

finitely many n such that fn−1 : V → U is diffeomorphic for a neighborhood
V 3 c1;

(5) rn(x) → 0 uniformly over all x ∈ ω(c), where rn(x) indicates the length |fn(J)|
of the branch of fn containing x.

(6) lim supn→∞
1
n

log |Df(x)| ≤ 0 for every x ∈ ω(c), so in particular (take x =
c1), f is not a Collet-Eckmann map. (A map is called Collet-Eckmann if
|Dfn(f(c))| grows exponentially for every critical point.)

Remark: It can be proved that c is persistently recurrent if rn(c1) → 0, so State-
ment 5 implies Statement 4. Statement 4 in turn implies minimality of ω(c), see
e.g. [1]. Statement 4 is also instrumental in proving Statement 6. Indeed, by an idea of
Ledrappier [18], for any invariant measure µ with positive Lyapunov exponent, typical
points should have nontrivial unstable backward manifolds. Therefore, for any n ≥ 0
and almost every preimage y ∈ f−n(x) ∩ ω(c) of a typical point x, there should be
a neighborhood U 3 x such that fn : U → fn(U) contains a fixed non-degenerate
interval. However, this contradicts the fact that rn(x) → 0 for all x ∈ ω(c), see [4].

Proof. We only prove the first two statements, as they are used later on in these notes.
1. First we claim that c1+Sk

→ c1. Indeed, if this were not the case, then (recalling
from Lemma 4 that D1+Sk

= [c1+Sk
, c1]) there would be a subsequence (ki)i such that

B := ∩iD1+Ski
is a nondegenerate interval. But fm(D1+Sk

) 63 c for m = 1, . . . , Sk+1 −
Sk − 1 and because Sk+1 − Sk − 1 = SQ(k+1) − 1 → ∞, we find that B is actually a
wandering interval. Thus non-existence of wandering intervals proves the claim.

Consequently, |DSk
| = |cSk

− cSQ(k)
| → 0 as k → ∞.

Now let ε > 0 be arbitrary and let δ be as in Lemma 1. Take K such that |DSk
| < δ

for all k > K. If n > SK , then there is j such that f j(Dn) ⊂ DSk
for some k ≥ K, so

|Dn| < ε. This proves statement 1.
2. By definition, orb(c) is dense in ω(c), and since |c−cSk

| < |DSk
| → 0, c is recurrent

as well. If x is such that orb(x) accumulates on c, then ω(c) ⊂ ω(x). Therefore (ω(c), f)
is minimal if and only if c ∈ ω(x) for every x ∈ ω(c).

Suppose by contradiction that (ω(c), f) is not minimal, and that x ∈ ω(c) and ε > 0
are such that orb(x) ∩ B(c; ε) = ∅. We know that |Dn| → 0 as n → ∞, so there is K
such that DSk

⊂ B(c; ε) for all k ≥ K.
For each m < SK, let γ(m) ≥ SK be such that β(γ(m)) = m and Dγ(m) is the largest

interval among all Dn with n ≥ SK and β(n) = m. We claim that ω(c) ⊂ ∪m<SK
Dγ(m).

Indeed, if n ≥ SK, then there is a nested sequence of intervals Dn ⊂ Dβ(n) ⊂ · · · ⊂
Dβr(n), where r ≥ 1 is minimal such that m := βr(n) < SK . But then Dn ⊂ Dβr−1(n) ⊂
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Dγ(m). Therefore

ω(c) ⊂ ∪n≥SK
Dn ⊂ ∪m<SK

Dγ(m) = ∪m<SK
Dγ(m),

where the last equality follows because ∪m<SK
Dγ(m) is the finite union of closed sets.

It follows that x ∈ Dγ(m) for some m < SK, and because γ(m) ≥ SK , there is j ≥ 0
such that f j(x) ∈ f j(Dγ(m)) ⊂ B(c; ε). This contradiction proves statement 2. �

2. Unimodal Maps and Enumeration Scales

We have seen that maps with Q(k) → ∞ have minimal Cantors sets ω(c), the
Lyapunov exponent of x ∈ ω(c) is nonpositive (in fact, it is 0), and ω(c) can even be
an attractor. Hence maps with Q(k) → ∞ are exceptional from the point of view of
the customary classification of unimodal maps in Collet-Eckmann maps and maps with
periodic attractor, which applies to Lebesgue-a.e. parameter for the quadratic family.
However, maps such as the Fibonacci map are interesting from a different (number-
theoretic) viewpoint too. Lyubich & Milnor showed that if f is a Fibonacci map, then

(ω(c), f) is semi-conjugate to the golden ratio circle rotation (S1, Rγ), where γ = 1+
√

5
2

.
In this section, we present a unified way, developed in [7], for proving this, which also
deals with many other cases. Using so-called enumeration scales cf. [11], we can make
the connection between (ω(c), f) and several other ways of describing minimal Cantor
sets such as substitution shifts and adic transformations on Bratteli diagrams.

2.1. Enumeration scales. An enumeration scale (from the French: échelle de numération)
is an adding machine-like number system based on a strictly increasing sequence of non-
negative integers {Sk}k≥0 with S0 = 1. Any non-negative integer n can be written by
a greedy algorithm a sum of Sk’s.

(1) First set all ej equal to 0.
(2) Take the largest number Sj ≤ n and add 1 to ej.
(3) Replace n by n − Sj. If this number > 0, go back to step 2.
(4) Otherwise, the procedure stops, and we have n =

∑

j ejSj.

Assuming that Sk ≤ 2Sk−1 for all k ≥ 1, one can check that

ej =

{
1 if j = max{k; Sk ≤ n −

∑

k>j ekSk},
0 otherwise.

In particular ej = 0 if Sj > n. In this way we can code the non-negative integers N0 as
zero-one sequences with a finite number of ones: n 7→ 〈n〉 ∈ {0, 1}N0. Let E0 = 〈N0〉
be the set of such sequences, and let E be the closure of E0 in the product topology.

In our case, we let {Sk}k be the cutting time of a unimodal map, and assume that
Q(k) → ∞. This results in

E = {e ∈ {0, 1}N0; ei = 1 ⇒ ej = 0 for Q(i + 1) ≤ j < i},
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because if ei = eQ(i+1) = 1, then this should be rewritten to ei = eQ(i+1) = 0 and
ei+1 = 1. It follows immediately that for each e ∈ E and j ≥ 0,

(7) e0S0 + e1S1 + · · ·+ ejSj < Sj+1.

There exists the standard addition of 1 by means of ‘add and carry’. Given an e ∈ E
proceed as follows:

add 1 : Only one of the first two digits of e can be one. If the first digit is 0, replace it
by 1. If it is 1, shift it to the right (i.e., replace 10 by 01). In general the result
will be no element of E anymore.

carry : Beginning with the smallest l such that el = 1 take the following steps: There
is at most one k ∈ N with Q(k + 1) = l and ek = 1. If such a k exists replace
ek and el by 0 and ek+1 by 1. (In this case k equals min{i > l : ei = 1})
Then restart the carry operation with l = k + 1. If there is no such k, then the
procedure stops.

Denote this action by g. As intended, g(〈n〉) = 〈n + 1〉.

Example: Adding 1 to 33 when the Sk are the Fibonacci numbers looks like this:

Sk : 1 2 3 5 8 13 21 34 55 89 · · · · · ·

〈33〉 = 1 0 1 0 1 0 1 0 0 0 · · · · · ·

+ 〈1〉 = 1 0 0 0 0 0 0 0 0 0 · · · · · ·

= 0 1 1 0 1 0 1 0 0 0 · · · · · ·

= 0 0 0 1 1 0 1 0 0 0 · · · · · ·

= 0 0 0 0 0 1 1 0 0 0 · · · · · ·

〈34〉 = 0 0 0 0 0 0 0 1 0 0 · · · · · ·

Lemma 6. For a sequence e ∈ E, let {qj}j≥0 be the sequence of indices (in increasing
order) such that eqj

= 1. We have g(e) = 〈0〉 if and only if e /∈ E0, Q(q0 + 1) = 0 and
Q(qj + 1) = qj−1 + 1 for j ≥ 1. Moreover, g−1(〈0〉) 6= ∅.

Proof. This follows immediately from the add and carry construction, because the
condition on {qj} is the only way the addition of 1 carries ‘to infinity’. By applying
the pigeon hole principle, one can find an infinite sequence (qj)j≥0 such that indeed
Q(qj + 1) = qj−1 + 1 for all j. �

Example: If Q(k) = max{0, k − d} for some fixed d ≥ 1, then we obtain a number
system (E, g) where 〈0〉 has exactly d preimages; namely the sequences where all 1s
are exactly d entries apart map to 〈0〉.

Lemma 7. If Q(k) → ∞, then g extends uniquely to a continuous map g : E → E.
Moreover g−1 is well defined on E \ 〈0〉, g is surjective, and (E, g) is minimal.
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Proof. First we claim that g : E0 → ω(c) is uniformly continuous. Take M arbitrary
and N so large that Q(n) ≥ M for all n ≥ N . If e, ẽ ∈ N0 are such that ei = ẽi for all
i ≤ N . Then

∑

i≤M eiSi =
∑

i≤M ẽiSi < SM+1. Apply g to e and ẽ. There are three
possibilities:

• There is a carry beyond entry M for both e and ẽ. That means that
∑

i≤M eiSi =
∑

i≤M ẽiSi = SQ(n+1) − 1 for some n ≥ M and g(e)i = g(ẽ)i = 0 for i ≤ n.
• There is no carry beyond entry M for neither e nor ẽ. Then

∑

i≤M eiSi =
∑

i≤M ẽiSi < SQ(n+1) − 1 for all n ≥ M and g(e)i = g(ẽ)i for all i ≤ M .
• There is a carry beyond entry M for e but not for ẽ. That means that

∑

i≤M eiSi =
∑

i≤M ẽiSi = SQ(n+1) − 1 for some n ≥ M and en = 1 but
ẽn = 0. By assumption on e and ẽ, n > N , but then Q(n + 1) ≤ M contradicts
the choice of N . Hence this case is impossible.

This proves the claim, so g can be extended uniquely to a continuous map g : E → E.
If ẽ ∈ E, then there is a sequence (en)n∈N ⊂ E0 such that en → e and g(en) → ẽ. If

there is another sequence (d̃n)n∈N ⊂ E0 such that d̃n → d̃ 6= ẽ and g(d̃) = e. Now
unless e = 〈0〉 there is j such that

∑

i≤j

g(ẽ)iSi,
∑

i≤j

g(d̃)iSi < Sj+1.

Taking j sufficiently large, we can assume that
∑

i≤j ẽiSi 6=
∑

i≤j d̃iSi, and therefore
∑

i≤j ẽn
i Si 6=

∑

i≤j d̃n
i Si for n sufficiently large. But that means that

∑

i≤j g(ẽn)iSi 6=
∑

i≤j g(d̃n)iSi But then
∑

i≤j g(ẽn)iSi 6=
∑

i≤j g(d̃n)iSi and taking the limit n → ∞ we

get g(ẽ) 6= g(d̃), a contradiction. This shows that g−1 : E \ 〈0〉 → E is well defined.
By Lemma 6, there is a sequence e ∈ E such that g(e) = 〈0〉.

Finally, orb(〈0〉) = E0 is dense in E and for each e ∈ E, and j ≥ 1, we have gk(e)i = 0
for all i ≤ j when k = Sj+1 −

∑

i≤j eiSi. This proves that (E, g) is minimal. �

Lemma 8. If Q(k) → ∞, then (E, g) factorizes over (ω(c), f), i.e., there is a contin-
uous map π : E → ω(c) such that π ◦ g = f ◦ π.

Proof. First define π(〈n〉) = cn. Obviously f ◦π = π◦g. Let us show that π : E0 → ω(c)
is uniformly continuous. Take ε > 0 arbitrary. Because |Dn| → 0, there exists R such
that |Dn| < ε/2 for all n ≥ SR. Let m be arbitrary, and let U be an ε-neighborhood of
cm = π(〈m〉). Take i ∈ N minimal such that βi(m) =: k < SR. So 〈k〉 coincides with
〈m〉 up to entry R − 1, and has only 0’s elsewhere. If m < SR (that is: i = 0), then
simply k = m, and cm ∈ Dk+SR

. If m ≥ SR, then βi−1(m) = k + Sr for some r ≥ R. It
follows by Lemma 4 that cm ∈ βi−1(Dm) = Dk+Sr

.
Let 〈n〉 be such that it coincides with 〈m〉 up to the (R− 1)–st position. Then there

exists i′ such that βi′(n) = βi(m) = k. This means that also βi′−1(n) = k + Sr′ for
some r′ ≥ R. By Lemma 4, βi′−1(Dn) = Dk+Sr′

and cn ∈ Dk+Sr′
. So cm ∈ Dk+Sr

and
cn ∈ Dk+Sr′

for r, r′ ≥ R. Since Dk+Sr
and Dk+Sr′

have ck as common boundary point,
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this yields cn ∈ U . Hence π is uniformly continuous. The existence and continuity of
the extension follows.

A geometric way of picturing π : E → ω(c) is as follows: Recall that for n ∈
(Sk−1, Sk], we defined β(n) = n − Sk−1. It is easy to check that 〈β(n)〉 is 〈n〉 with the
last non-zero entry changed to 0. Recall from Lemma 4 that Dn ⊂ Dβ(n) for all n ≥ 2,
and that Dn and Dβ(n) have the boundary point cβ(n) in common. Define (with {qj}j≥0

the sequence of indices from Lemma 6)

b(i) :=
∑

j≤qi

ejSj.

We have b(i) ≥ Sqi
by definition of qi and b(i) < Sqi+1 by (7). It follows that β(b(i)) =

b(i−1). By Lemma 4 and the fact that β(b(i)) = b(i−1), the domains Db(i) are nested,
and because Q(k) → ∞ implies that |Dn| → 0 (see Theorem 2) each nested sequence
defines a unique point x = ∩iDb(i) ∈ ω(c). Therefore the following projection (see [7])
makes sense:

(8) π(〈n〉) = cn and π(e) = ∩iDb(i) if e /∈ E0.

This is indeed the extension of π to E. �

2.2. Enumeration scales and circle rotations. Let ρ ∈ [0, 1] and Rρ : S1 → S1 be
the rotation by angle ρ. Define Πρ : Ω → S1 by

Πρ(e) =
∑

k≥0

ekSkρ (mod 1)

For x ∈ R, let ‖x‖ denote the distance of x to the closest point in Z.

Lemma 9. (1) If
∑

k ‖ρSk‖ < ∞, then Πρ is well defined, continuous and Πρ ◦g =
Rρ ◦ Πρ.

(2) If ϕ : (E, g) → (S1, Rρ) is a nonconstant continuous homomorphism and if
ϕ(〈0〉) = 0, then

∑

k ‖ρSk‖ < ∞ and ϕ = Πρ.

Proof. The first assertion is obvious. We prove the second one: Let {nj}j be any strictly
increasing sequence of integers such that 〈nj〉 → 〈0〉 as j → ∞. Then by continuity of
ϕ,

∑

k

〈nj〉kSkρ = njρ = Rnj
ρ (0) = Rnj

ρ (ϕ〈0〉) = ϕ(gnj〈0〉) = ϕ(〈nj〉) → ϕ(〈0〉) = 0

as j → ∞. As this is true for any such sequence {nj}j, it follows that
∑

k ‖ρSk‖ < ∞.
In particular, Πρ is well defined. Furthermore, as (ϕ−Πρ)◦g

n = ϕ−Πρ for all n, ϕ−Πρ is
constant by continuity and topological transitivity of (E, g), and as ϕ〈0〉 = 0 = Πρ〈0〉,
we conclude that ϕ = Πρ. �

Lemma 10. The map π : E → ω(c) is such that π−1(c) = 〈0〉.
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Proof. Suppose 〈0〉 6= e = e0e1 · · · ∈ E and π(e) = c. Let r, s be the first two integers
such that er, es = 1. Clearly s exists, otherwise π(e) = cr 6= c. It follows from (8),
that π(e) ∈ DSr+Ss

. So if π(e) = c, then c ∈ DSr+Ss
, and Sr + Ss is a cutting time, say

St. But then s = t − 1 and r = Q(t), which is forbidden by the construction of E. �

The final goal of this section is to define a factor map πρ : ω(c) → S1 which makes
the following diagram commute:

(E, g)

(ω(c), f) (S1, Rρ)

�
��	

π @
@@R

Πρ

-πρ

Theorem 3. Suppose that

(9)
∑

k

‖ρSk‖ < ∞

(whence Πρ is well defined and continuous by Lemma 9). Then #Πρ(π
−1{x}) = 1 for

all x ∈ ω(c), and if the unique element of this set is denoted by πρ(x) this defines a
continuous factor map πρ : (ω(c), f) → (S1, Rρ).

Proof. Let M := {x ∈ ω(c) : #Πρ(π
−1{x}) > 1}. We claim that if x ∈ M then the

closure of the orbit of x is contained in M . Since (ω(c), f) is minimal it follows that
M is either empty or equal to ω(c). Finally, since c 6∈ M by Lemma 10, this proves
that πρ is well defined.

Now let us prove the claim. Suppose x ∈ M . Then there exist e, e′ ∈ E such that:
π(e) = π(e′) = x and Πρ(e) 6= Πρ(e

′). Then

Πρ ◦ gn(e) = Rn
ρ ◦ Πρ(e) 6= Rn

ρ ◦ Πρ(e
′) = Πρ ◦ gn(e′)

π ◦ gn(e) = fn ◦ π(e) = fn ◦ π(e′) = π ◦ gn(e′) ,

whence orb(x) ⊂ M . Now let y be any limit point of orb(x) and a sequence (nk)k∈N

be given with fnk(x) → y. Since E is compact we can assume that gnk(e) and gnk(e′)
converge simultaneously to some e0 resp. e′0 in E. From continuity of π follows that
π(e0) = π(e′0) = y and from continuity of Πρ together with the fact that Rρ is an
isometry we get |Πρ(e0) − Πρ(e

′
0)| = |Πρ(e) − Πρ(e

′)| 6= 0. This shows that y ∈ M
proving the claim.

Since the map π : E → ω(c) is continuous, surjective and closed (E is compact),
ω(c) carries the final topology of E with respect to π. So continuity of πρ follows from
continuity of Πρ = π ◦ πρ. �

2.3. Unimodal maps for each rotation. Since the Fibonacci numbers can be writ-

ten as Sk = C1γ
k + C2γ̂

k for −1 < γ̂ := 1−
√

5
2

< 1 < γ := 1+
√

5
2

and some C1, C2 ∈ R,
we get

γSk = C1γ
k+1 + C2γγ̂k = Sk+1 + C2γ̂

k(γ − γ̂),
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and therefore ‖γSk‖ = |C2γ̂
k(γ − γ̂)| is exponentially small in k. Therefore Theorem 3

applies and (S1, Rγ) is a continuous factor of (i.e., semi-conjugate to) (ω(c), f).
Can you do this for other irrational rotations (S1, Rρ)? In other words, for some ρ ∈

(0, 1)\Q, can you find some sequence of cutting times (Sk)k, such that
∑

k ‖ρSk‖ < ∞?
The first idea is to use the convergents pn/qn of the continuous fraction of ρ. If

ρ = [a1, a2, a3, . . . ] :=
1

a1 + 1
a2+ 1

a3+ 1

...

,

then the truncated continued fraction [a1, a2, . . . , an] = pn

qn
, where

{
p0 = 0, p1 = 1, pn+1 = an+1pn + pn−1,

q0 = 1, q1 = a1, qn+1 = an+1qn + qn−1.

The numbers qn grow exponentially, and it is known that |ρ − pn

qn
| ≤ 1

qnqn+1
. So

‖ρqn‖ ≤ |ρqn − pn| = qn|ρ −
pn

qn

| ≤
1

qn+1

,

which is summable. The problem is that, unless an = 1 for all n ∈ N (and ρ = γ is the
golden ratio), qn+1 > 2qn for some n, and the numbers qn cannot be used as cutting
times.

The solution to this is to use the Farey convergents. These Farey convergents insert
numbers in between the usual convergents (underbraced) in the following way:

0

1
=

p0

q1
︸ ︷︷ ︸

,
1

2
,

1

3
, . . . ,

1

a1

=
p1

q1
︸ ︷︷ ︸

,

p1 + p0

q1 + q0

,
p1 + p0

q1 + q0

,
p1 + p0

q1 + q0

, . . . . . . ,
a2p1 + p0

a2q1 + q0

=
p2

q2
︸ ︷︷ ︸

,

p2 + p1

q2 + q1
,

2p2 + p1

2q2 + q1
,

3p2 + p1

3q2 + q1
, . . . . . . ,

a3p2 + p1

a3q2 + q1
=

p2

q2
︸ ︷︷ ︸

,

p3 + p2

q3 + q2
,

2p3 + p2

2q3 + q2
,

3p3 + p2

3q3 + q2
, . . . . . . ,

a4p3 + p2

a4q3 + q2
=

p4

q4
︸ ︷︷ ︸

,

p4 + p3

q4 + q3
, . . .

Then |ρ − ipn+pn−1

iqn+qn−1
| ≤ 2

iqnqn+1
, so

an+1∑

i=1

‖ρ(iqn + qn−1)‖ ≤

an+1∑

i=1

(iqn + qn−1)

∣
∣
∣
∣
ρ −

ipn + pn−1

iqn + qn−1

∣
∣
∣
∣
≤

an+1∑

i=1

2(iqn + qn−1)

iqnqn+1
≤

4

qn+1
.
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Therefore
∑

n

an+1∑

i=1

‖ρ(iqn + qn−1)‖ ≤
∑

n

4

qn+1
< ∞.

The denominators of the Farey convergents are suitable as cutting times. Indeed, if
qn−1 = Sk′ and qn = Sk, then

Sk+1 = qn + qn−1 = Sk + Sk′

Sk+2 = 2qn + qn−1 = Sk+1 + Sk

Sk+3 = 3qn + qn−1 = Sk+2 + Sk

... =
...

Sk+an+1 = an+1qn + qn−1 = Sk+an+1−1 + Sk.

So the difference between any pair of subsequent cutting times is again a cutting time
(whence the kneading map can be defined), and it is not hard to check the admissibility
condition (6). This proves the following proposition:

Proposition 4. For every ρ ∈ (0, 1)\Q, there exists a unimodal map f with Q(k) → ∞
such that (ω(c), f) factorizes continuously over (i.e., is semi-conjugate to) the circle
rotation (S1, Rρ).

Definition 1. The dynamical system (X, T ) is topologically weakly mixing if there is
no continuous function ϕ : X → C and λ 6= 1 such that ϕ ◦ T = λ · ϕ. 6

The examples in Proposition 4 are not topologically weakly mixing because if ϕ =
exp(2πi · πρ), then

ϕ ◦ πρ = exp(2πiπρ ◦ f) = exp(2πiRρ ◦ πρ) = exp(2πi(πρ + ρ)) = e2πiρ · ϕ

2.4. Maps onto higher dimensional tori TN . One question to ask regarding The-
orem 3 is whether one sequence of cutting times can satisfy (9) for more than one ρ.
If this were the case, say for ρ1, . . . ρN , then

π~ρ : ω(c) → TN

x 7→ (πρ1(x), . . . πρN
(x))

is a continuous map such that π~ρ ◦ f = R~ρ ◦ π~ρ for the rotation R~ρ : TN → TN over
vector ~ρ = (ρ1, . . . ρN). This is interesting if 1, ρ1, . . . , ρN are rationally independent;
otherwise TN decomposes into R~ρ –invariant subtori.

In the Fibonacci case, we had γSk = Sk+1 +O(γ̂k+1), so ‖ρSk‖ is exponentially small
in k. Similarly γ2Sk = Sk+2 + O(γ̂k+2). However, γ is a solution of γ2 = γ + 1, so
Rγ2 = Rγ , and no new phenomena are obtained.

6If no such measurable ϕ (w.r.t. the σ-algebra of measurable sets B on X) exists, then (X,B, T ) is
called weakly mixing.
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For different recursive relations we have more success. Take Qd(k) = max{0, k− d},
then the corresponding cutting times satisfy the recursive relation

(10) Sk = Sk−1 + Sk−d,

with characteristic equation

(11) xd = xd−1 + 1.

Let ρ1, . . . ρd be the roots of this equation, where ρ1 > 1 is the leading root. Then there
are Ci ∈ R, i = 1, . . . , d, such that Sk =

∑d
i=1 Ciρ

k
i . It follows that

ρm
1 Sk =

d∑

i=1

Ciρ
k+m
i +

d∑

i=2

Ciρ
k
i (ρ

m
1 − ρm

i ) = Sk+m +

d∑

i=2

Ciρ
k
i (ρ

m
1 − ρm

i ),

and hence

‖ρm
1 Sk‖ ≤

d∑

i=2

|Ciρ
k
i (ρ

m
1 − ρm

i )|.

Now if |ρi| < 1 for each i ≥ 2, then the right hand side of this inequality is exponentially
small in k, and hence ‖ρm

1 Sk‖ is summable over k.

Definition 2. A number ρ > 1 is a Pisot-Vijayaraghavan number if it is algebraic and
all its algebraic conjugates have absolute value < 1.

It is known that the leading root ρ1 of (11) is Pisot-Vijayaraghavan for d = 2, 3 and
4, but no longer for d ≥ 5. This gives an insight why the following theorem holds.

Theorem 4. Let fd be a unimodal map with kneading map Qd(k) = max{0, k − d}.

• For d = 2, 3 and 4, the factor map π~ρ : ω(c) → Td−1 is a metric isomorphism
onto the d − 1–dimensional torus.

• For d ≥ 5, (ω(c), fd) is weakly mixing.

Proof. For d = 2, this is just the result from Lyubich & Milnor [20]. The rest of this
theorem is discussed in [7], where the full argument for d = 3 and d = 4 rely on work
in [23, 11]. �

Example: If d = 3, then the characteristic equation x3 = x2 + 1 has leading root
ρ1 > 1 and two complex conjugate roots of modulus < 1. Let ρ2 = ρ2

1. Then π~ρ : E →
T2 is defined as π~ρ = (

∑

i ei‖ρ
i
1Si‖ (mod 1),

∑

i ei‖ρ
i
2Si‖ (mod 1)). Leaving out the

(mod 1), we obtain a map from π~ρ : E → R2, the image of which is shown in Figure 2
(left). Some features of this map:

� The different shades correspond to the images of different cylinder sets Ek :=
{e ∈ E : ek = 1} for k = 0, 1, 2. They are similar to each other, and to the
whole set π~ρ(E). In fact, π~ρ(E) is very much like the Rauzy fractal, which is
based on the characteristic equation x3 = x2 + x + 1.
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Figure 2. The image πρ1 × πρ2(ω) (left) resembles the Rauzy-fractal,
and tiles the plane (right).

� The sets π~ρ(E) are simply connected, i.e., have no holes. By estimating the

Lebesgue measure of π~ρ(E
k), we find that

∑2
k=0 Leb(π~ρ(E

k)) = 1 = Area(T2).
This implies that the images of the cylinder sets have overlap of Lebesgue
measure 0.

� A corollary of this is that you can tile the plane with copies of π~ρ(E), see
Figure 2 (right).

� Analogous properties hold for d = 4, but the proof that π~ρ(E) is doubly con-
nected and that copies of π~ρ(E) tile R3 is much more involved, see [7].

More results can be proved by these methods (cf. [7]):

• For each dimension N , there is a recursive relation (that can be mimicked by
cutting times) such that its characteristic equation has a Pisot-Vijayaraghavan
number ρ as leading root. Therefore, for each N ∈ N, there is a transitive ro-
tation R~ρ : TN → TN for ~ρ = (ρ, ρ2, . . . , ρN) that is semi-conjugate to (ω(c), f)
for some unimodal map with Q(k) → ∞.

• We don’t know if there is any example of a unimodal map with Q(k) → ∞ such
that (ω(c), f) factorizes over an infinite dimensional torus.

• If f is infinitely renormalizable, and (pi)i∈N is the sequence of periods of the
periodic intervals, then (9) holds for each 1/pi. Therefore Theorem 3 gives
another proof that the (pi)-adic adding machine is a factor of (ω(c), f) for this
infinitely renormalizable unimodal map.

• There is a unimodal map with cutting times (Sk)k∈N such that (9) holds for

2−i for each i ∈ N and also for γ = 1+
√

5
2

. In this case (ω(c), f) factorizes
over a rotation on a solenoid. (A solenoid can be obtained as quotient space
C × [0, 1]/ ∼ where C is a Cantor set and (x, 0) ∼ (h(x), 1) for some minimal
homeomorphism h : C → C.)
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