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ABSTRACT. We present a class of S-unimodal maps having an invariant measure
which is absolutely continuous with respect to Lebesgue measure. This measure can
often be proved to be finite. We give an example of a map which has such a finite
measure and for which the liminf of the derivatives of the iterates of the map in
the critical value is finite. It will be shown that all topologically conjugate non-flat
S-unimodal maps have these same properties.

1. Introduction.

In some dynamical systems the topological behaviour appears to control metrical
behaviour as well. A well-known example of this is Herman’s work [He] on circle
diffeomorphisms, where a topological condition, namely a certain value of the ro-
tation number, guarantees the existence of an invariant probability measure which
is absolutely continuous with respect to Lebesgue measure. In a unimodal setting
such a measure (which we shall call acip) is known to exists for Misiurewicz maps,
i.e. maps with a non-recurrent critical point and no periodic attractor. Another
example is the Fibonacci map [LM]. Here a special combinatorial form of the crit-
ical orbit yields an acip if the critical point is of quadratic type. In this paper we
present a new class of unimodal maps which have acips on topological grounds. We
extend the Misiurewicz condition to certain recurrent maps.

The results nevertheless require a metrical set-up concerning smoothness of the
map and negative Schwarzian derivative. Some (sufficient) conditions in purely
metrical terms for the existence of an acip are known. Keller [K] proved that the
existence of an acip is equivalent to positive Lyapunov exponent for almost all
points. In fact for almost all points z, limsup,,_,, L log|Df"(z)| exists and has
the same value. This value is positive if and only if an acip exists. A similar result
was obtained by Ledrappier [Le]. The critical orbit is not mentioned here, but as
Collet and Eckmann [CE] showed, exponential growth of | D f™(c;)| guarantees the
existence of an acip. Here ¢; denotes the critical value. Nowicki and Van Strien
[NS] showed that one can do with much less. Namely if
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where £ is the order of the critical point, then f has an acip. The proof that the
Fibonacci map has an acip is based on this fact.

The class of functions we present in this paper is quite large: in general maps from
this class don’t satisfy the above summability condition. In fact, the derivatives of
the critical value don’t necessarily tend to infinity. So we can state

Theorem 1. There exists a unimodal map with an absolutely continuous invariant
probability measure for which liminf, |Df"(c1)| < co. Every non-flat S-unimodal
map which is topologically conjugate to our example has these same properties.

The class of maps we restrict ourselves to is the set G of S-unimodal functions
with a non-flat critical point and long branches. By this we mean that the length
of branches are uniformly bounded from below: If T is a maximal interval of mono-
tonicity of f™, the graph of f":‘r is called a branch. A branch is long if |f™(T)| > Z
for some fixed positive constant Z. G includes the Misiurewicz maps. It is well
known that the Misiurewicz maps have an acip; in fact they satisfy the Collet-
Eckmann condition. In our case ¢ can be recurrent in a special way which we call
saddle node type return. This means that f™(c) can only be close to cif f*(U) # ¢,
where U is a neighbourhood of ¢ that is folded only once by f™. These saddle node
type returns are the main tool to keep the derivatives Df™(c;) bounded, at least
for certain iterates.

In order to establish the existence of the acip, we use an induced Markov map.
A Markov map has an acip; this is the so-called Folklore Theorem. We need the
long-branchedness to prove that our induced map satisfies the Markov properties.
The definition will be given later. The technique of inducing has been used by
many authors, e.g. [GJ,JS,MS1,V]. For example one can prove that Misiurewicz
maps have an acip by using the first return map to a certain interval as induced
map. The main difference with our approach is that we don’t induce to a fixed
interval, but rather to a finite set of intervals. It depends on the branch of the
induced map which of these intervals is the image. Also the boundary points of
each branch of the induced map are preimages of ¢. The advantage of this approach
is that we know exactly how many iterates of f are needed to obtain the induced
map and that it is easy to define the domain of each branch of the induced map.
During the research for this paper, we heard that Keller and Nowicki [KN] use a
similar kind of induced map in their extension of Lyubich’s and Milnor’s results on
Fibonacci maps.

From the acip of the induced map one can derive an absolutely continuous in-
variant measure for the unimodal map itself. However, for the finiteness of this
measure one has to check a summability condition on domains of branches and
corresponding iterates. Checking this is the hardest part of the proof. In general
this summability condition doesn’t hold. In Theorem 2 we show that in this case
f has an absolutely continuous invariant measure which is only o-finite, and we
give an example of such a map. This example has the same flavour as Johnson’s
example [J]. It is not unlikely that one has to follow either Johnson’s or our scenario
to obtain an S-unimodal map without acip. Both cases involve that for every m, ¢
returns at least m times in a row to the central branch domain of f™ under iteration
of f, for some n = n(m). We think that this is essential.
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Conjecture. Let f is be an S-unimodal map with critical order 2. Let U, 3 ¢
be the maximal interval such that f"}a}) is diffeomorphic. If there exists M € N

such that for all n € N, f™"(c) ¢ U, for some m < M, then f has an absolutely
continuous invariant probability measure.

The main combinatorial tool is the kneading map. This map was developed by
Hofbauer [H] and gives a characterization of the kneading invariant of a unimodal
map. We will use it to define our induced map and to characterize combinatorially
our notion of long branches and saddle node type returns. In particular we will show
that long-branchedness is equivalent to a bounded kneading map. Furthermore it
is a guide for the construction of the kneading invariant of our examples. We will
devote a section to these ideas.

We want to thank Sebastian van Strien for his advices and the many fruitful
discussions. Also we are grateful to the referee for carefully reading the manuscript
and the many useful suggestions.

2. Outline of the proof.

We consider the class G of non-flat S-unimodal maps with long branches. That
is
- f:]0,1] — [0,1] is an interval map such that f(0) = f(1) = 0 and 0 is hyperbolic

repelling. f is at least C* and has negative Schwarzian derivative: 1:;)3 ff((;)) —

%(D;f((;))y < 0 wherever it is defined.
- There exists a unique critical point c¢. f is increasing on [0, ¢] and decreasing on

[e, 1].

- There exist a C®-coordinate transformation ¢ such that f(¢(z)) = f(c) —|z —c|*
in a neighbourhood of ¢. We assume that the order of the critical point 1 <

f < oo. It follows that constants 0 < O; < Oy < oo can be found such that

L01|z — |t~ < |Df(z)| < LOs|z — |t L.

- There exists a uniform constant Z > 0 such that if 7" is a maximal interval of

monotonicity of f*, |f*(T)| > Z.

In general we assume that f has no periodic attractor. As a model we think of
a full family f, of unimodal maps. This means that f, displays any possible
combinatorial type for some value of @. The quadratic family f,(z) = az(l —z) is
such a family.

A probability measure p is said to be invariant and absolutely continuous with
respect to Lebesgue measure if u(A) = pu(f~1(A)) and if |A| = 0 implies u(A4) = 0.
It has been shown that every S-unimodal map without periodic attractor is ergodic
with respect to Lebesgue measure (or p) [BL2]. Other proofs can be found in
[Mal,MS1]. Moreover, p is a Bowen-Ruelle-Sinai measure, which means that for
all continuous functions ¢,

n—1
.1 i
Jim zZ;cp(f’(ﬂf)) = /sodu
for Lebesgue almost all z. A consequence of this is that for any open set A,

u(A) = lim l#{z |0<i<nand fi(z) € A}

n—oo N



4 H. BRUIN

for Lebesgue almost all x.
Additionally to Theorem 1, we show that long-branchedness is not a sufficient
condition for an acip to exist.

Theorem 2. There exists a unimodal map f such that no map in G which is topo-
logically conjugate to f has an absolutely continuous invariant probability measure.
However, every map in G has a o-finite absolutely continuous invariant measure.

We explicitly use the fact that w(c), the set of accumulation points of the forward
orbit of ¢, is a nowhere dense for f € G.

In the sequel (z,y) is an interval irrespective the ordering of the boundary points.
If 2 # ¢, & denotes the involution of z. So Z # z and f(Z) = f(x). Furthermore ¢,
denotes f™(¢) and if n < 0 it should be clear from the context which preimage of ¢
is meant. Also let " = [f?(c), f(c)] and L = max,ecn |Df(z)|.

The proof of the theorems relies on two major ideas. First we have the notion
of saddle node cascades. At a saddle node bifurcation of period n the graph of f™
is tangent to the diagonal. So we have a one-sided n-periodic attractor which, due
to negative Schwarzian derivative, attracts the critical point. It is obvious from the
graph that f"(c) is close to ¢, but that for the neighbourhood U of ¢ which is folded
only once by f™, f*(U) # c¢. This is why we call this kind of return a saddle node
type return. It is also obvious that |Df"(c1)| < 1.

Under an appropriate, but arbitrarily small perturbation the periodic point van-
ishes, and we are left with an almost periodic behaviour. So ¢, f*(c), f*"(c),...
will still be close together. Also derivatives hardly change, so Df"(c;) remains
bounded. This will be made precise in Lemma 5.

A perturbation of a saddle node map can still be a saddle node map of a higher
period. In the proof we shall define a saddle node cascade as a converging sequence
of maps at saddle node bifurcations of increasing period. The limit map inher-
its behaviour of each of the approximating saddle node maps. In particular, the
derivatives |D f"(c1)| of the limit map will be bounded whenever n is the period of
an approximating saddle node map. This will cause liminf,, |D f"(c1)| to be finite.

Using techniques from Lemmas 1 and 2 of the next section, we will construct the
kneading invariants of a saddle node cascade. Because we present our examples in
this form, the result holds for topologically conjugate maps, provided they are in
g.

In Theorem 2 this technique is used to construct a map which doesn’t satisfy the
summability condition (2) below. In Lemma 3 we prove that w(c) is nowhere dense
for long-branched maps, which, according to [Ma2,HK2], leads to the existence of
a o-finite measure. Using a general argument from ergodic theory, and ergodicity
of f, we show that u is unique up to a multiplicative constant. In order to prove
Theorem 1, we need to be more careful in constructing our saddle node cascade.

The other idea is the induced Markov map. We will define the inducing using
the tools of the next section. In short, we show that c_gs; are the closest preimages
of ¢ for a certain sequence {S;};>0. These preimages come in pairs; if c_g; is a
closest preimage, so is ¢_g;. Let I'; = (c_s,_,,¢_s,_,) and A; = int([; \ ['j11).
A; which consists of two intervals, which are the involutions of each other. U;A;
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is a partition of the interval A/ into pairwise disjoint sets. The map F defined by
Fla, = f‘i{j‘l is an induced Markov map.

By the Folklore Theorem F' has an acip. The question whether f € G itself has
an acip reduces, and is equivalent, to the following summability condition

@ > ilyl < oe.

It would be sufficient to prove that |A;| decreases exponentially, and it is not hard
to show that this is the case if f is a Misiurewicz map. However the exponential
decrease of |A;| persists in the sense that we can indicate regions in N where |A4;|
decreases exponentially, provided the critical orbit stays long enough outside a
neighbourhood of ¢. This will be made precise in Lemma 6.

In general |A;| doesn’t decrease exponentially for saddle node cascades. Theorem
2 clearly gives a counter-example. The idea is to alternate the Misiurewicz and the
saddle node behaviour in such a way that due to the Misiurewicz behaviour (2)
holds, and due to the saddle node behaviour (1) is not fulfilled. As the saddle node
behaviour tends to disturb (2), we need to find a good balance between the two
kinds of behaviour. The crucial estimation for this is contained in the last section.

We assume negative Schwarzian derivative because we want to apply the Koebe
Principle. Let T D I be two intervals. Then T is said to contain a d-scaled
neighbourhood of I if both components of T \ I are longer than §|I|. Let the
distortion on I of a function g be defined as sup, ,¢;log B‘Z Ezg‘l . With these notions
one can formulate the

Koebe Principle. For all § > 0 there exists K > 0 such that if T D I, g| is
monotone and g(T) contains a §-scaled neighbourhood of g(I), then the distortion
of g1 is bounded by K. Moreover, K — 0 as § — oo.

This result holds if g has negative Schwarzian derivative. For the proof we refer
to [MS1]. We will use this principle in Section 4 and in the proof of Lemma 6.

3. The kneading map.

In this section we give a combinatorial characterization of long branches (Lemma
1) and saddle node type returns (Lemma 2). They enable us to describe a saddle
node cascade with long branches in terms of kneading invariants. Also we introduce
a notation for preimages of the critical point, which we will use for the definition of
the induced map of the next section. Along our proof we have a rather combinatorial
approach to these objects: we will often compare pieces of itineraries. The reader
should keep in mind that if itineraries coincide for a long piece, the corresponding
iterates of the critical point must be close together.

Notice f admits no wandering intervals, as was proved by Guckenheimer [G]
in a S-unimodal setting and by others [BL1,Ly1l,MMS,MS2] under more general
hypotheses. A wandering interval is an interval I such that fl’} is monotone for
every I and w(I) is not an attracting periodic orbit. A corollary of this is the
following: For all € > 0 there exists § > 0 such that

3) |fM(I)| > 6
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whenever |I| > ¢ and fﬁ is monotone. The proof can be found in for example
[MS1].

The kneading map is a tool developed by Hofbauer [H] by which the kneading
invariant of a unimodal map can be described. Let the itinerary of  be the infinite
sequence

v(z) = er1(x)ea(x)es(x)...

of zeroes and ones such that e; = 1 if fi(z) > c and e¢; = 0 if fi(z) < c. We are
not interested in eg(x), the position of z itself. This means that z and % have the
same itinerary. Also we neglect precritical points. The word kneading invariant
is reserved for the itinerary v = v(c) of the critical point. We disregard the case
that ¢ is periodic. There is a unique way to split this kneading invariant into basic
blocks:

Vv = 1A1A2A3...,

where each block Aj = e;11€;42...€i1 1 coincides with ejes...ep_1€),. Here ef =1 if
e; = 0 and vice versa. So each block A; repeats the head of the kneading invariant
except for the last entry. Let |A;| denote the length of the block A;, then we can
define

k
Se=1+Y_]4l.
j=1
This is well defined if each block A; has finite length. If however Ay is infinitely
long, it means that o%%-1(v) = v. Both ¢ and f5*(c) have the same itinerary, but
that means that f has a periodic attractor or a wandering interval. We will see in
Lemma 2 that the first is related to period doubling bifurcations.

Suppose that ¢ is the first entry for which v(z) and v differ, then Hofbauer
showed that ¢ € {Si}. And conversely, if i € {Si}, there exist points whose
itinerary coincide with v exactly up to the ¢ — 1th entry. In particular, this means
that |Agx| = S, for some r < k, because the itinerary of f5*-1(c) coincides with v
up to |Ag| — 1. Therefore it is possible to define a map @ : N — NU {oo} by

SQ(k) = |Ak| = Sk - Skfl.
() satisfies
Q(k) < k or Q(k) = oo,

and Hofbauer established the following admissibility condition:

{Qk+5)}iz1 = {QQ*(k) + 1)}z

Here > denotes lexicographical ordering. As we mentioned Q(k) = oo leads to a
periodic attractor of period doubling type. Admissibility means that there exists a
unimodal map with this particular kneading invariant. We will not use this, but a
more standard admissibility condition, mentioned at Lemma 4.

We introduce some more notation. c_,, is called a closest preimage of c, if there
exists no point x € (¢_y,¢é_y,) such that f™(x) = ¢ for some m < n. Let

Ty, ={z | v(z) = v up to at least Sy — 1 entries.}.
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Clearly {T'}}« is a nested sequence of open symmetric neighbourhoods of ¢. Also
Sy, is the smallest positive iterate such that f¢(I'x) > c. Since this holds for all
k, f5(Tj41) is an interval adjacent to c. Hence the boundary points of Ty, are
the closest preimages cg,_, and €s,_,. This implies that ¢, can only be a closest
preimage if n € {Si}. Let Ay, = int(T'y \Tk+1). Due to Hofbauer’s observation, the
itinerary of each point in Ay coincides with v up to exactly the Sy — 1th position.
Moreover Ay # (), so there always exist points whose itineraries coincide with v up
to exactly Sk — 1. With this information it is not hard to prove the following useful
formulas:

fS’c (Fk) = [CSk ) CSQ(k))'
fS’c (4r) = (o cSQ(k))'

4
( ) fSk_l(Fk) = (c’csk—l]'
fSk_l (Ak) = (Ca C—SQ(k))'

With respect to the fourth, we mention that f*-1(A;) is a largest interval on
which fSe®+1 is monotone. Indeed, f5+-1(Ay) is a largest interval on which fSe®
is monotone and fSe® (f-1(A4;)) F c. So f*-1(A) is equal to a component of
Towy+1 \ {c}- In the sequel com(T';) and com(A4;) will be components of T'; \ {c}
and A;. It should be clear from the context which component is meant.

Before giving a combinatorial characterization of long branches, let us first study
this notion more precisely. It is sufficient for long-branchedness that branches f"}
such that f™(T") 5 ¢, which are called the branches at c-level, are uniformly long.
Indeed, let T be a maximal interval of monotonicity of f™. There exist iterates
r < s < n such that ¢ € f7(9T), f*(0T). Because of long branches at c-level,
|f5(T)| > Z1 for some uniform constant Z; > 0. It easily follows from (3) that we
can find Z > 0 such that |f*(T)| > Z > 0.

Lemma 1. f has long branches if and only if () is bounded.

Proof. First observe that the smaller the distance from a point z to ¢, the longer
its itinerary will coincide with v. As we have long branches, f*(c) cannot be close
to c. Assume it lies outside I'g41 for some fixed number B. Then the itinerary of
f5*(c) coincides with v up to at most Sp —1, and [Ag41| = Sg(rt1) < Sp implying
Q(k+1)<B.

Conversely, if Q(k + 1) < B, it follows that f5%(c) ¢ T'pyy for all k. Let U
be an arbitrary neighbourhood of ¢, and i the smallest positive iterate such that
f{(U) > ¢. Since v(z) coincides with v up to S — 1 for some k, we get that
i € {Sk}x. It follows that all central branches covering ¢ are long, and therefore f
has long branches everywhere. [

In the sequel we will often talk about bounded kneading map instead of long
branches, and we assume that Q(k) < B for all k¥ € N. Recall that an interval
I is called restrictive if f™(I) C I for some n. A restrictive interval enables us to
rescale flT} (linearly), and restrict ourselves to this so-called renormalization instead
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of f. It is not hard to prove long branches are incompatible with arbitrarily small
restrictive intervals. So a long-branched map is only finitely renormalizable.

Close returns of the critical point lead to periodic behaviour in the kneading
invariant. Due to the next lemma we can indicate the saddle node type returns by
comparing the corresponding period and the sequence {S}.

Lemma 2. Suppose f undergoes a saddle node or a period doubling bifurcation
and n is the period of the corresponding one-sided attractor p. If n = Sy, for some
k, then p is of period doubling type and Q(k + 1) = co. If n ¢ {Si}, then p is of
saddle node type and Sy < oo for all k.

Proof. As ¢ is contained in the immediate basin of a periodic attractor, o™(v) = v.
Suppose Si_1 < n < Si. First we show that Sy —n € {S;};. Indeed, there exist
admissible itineraries starting with eleg...egk_le’sk. Therefore

€1€2...€5, —n—-1€8,—n = €n+1€n42---€5,,_, €5,

and
! !
6162---65k—n—165k_n = €n+1€n+2...65k_165k

are both the head of admissible itineraries. It follows that Sy —n = S; for some j.

Let 9(m) be the number of ones in ejes...e,,. There is a direct relation between
the orientation of f™ in a neighbourhood of ¢ and the parity of ¥(m). Let = €
Tr11 N(c,c1). By the chain rule,

sign(Df™(@)) = sign [| DI(F@) =~ [] —sign(F(z) = &) = ~(~1)?1),
=0 =1
Because sign(f™(xz) — ¢) = —(—1)°™ we obtain

(=1)°0™ = sign{Df™(z)(f™(z) - ¢)}.

As f9(T}) 3 ¢, f5(x) — ¢ and DfS%(x) have different sign. So ¥(Sk) is odd.
Consequently ¥(n) = ¥(Sk) — 9(S;) is even.

From the graph of f™ it is clear that D f"(x)) and f™(x) — ¢ have the same sign
at a saddle node bifurcation, while they have opposite sign at a period doubling
bifurcation. So a saddle node bifurcation corresponds to ¥(n) even and n ¢ {Si}. A
period doubling bifurcation corresponds to ¥(n) odd and n = Sy, for some k. In the
latter case it is also clear that T';;1 contains no preimage of c. Hence o°*(v) = v
and [Agti| =00. O

For the proof of Theorem 2 the following lemma is of interest.
Lemma 3. If Q is bounded, then w(c) is nowhere dense.

Proof. Assume that f is not renormalizable; otherwise we consider the first return
map on the smallest restrictive interval. If w(c) is finite, or ¢ is contained in a
wandering interval, then there is nothing to prove. Therefore we may assume
that @ is defined for all ¥ € N and Q(k) < B. Let » > B and consider A,.
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f5=1(A) = (¢,¢-54,,), so there exists V = (c_s,_,,¢ 25,_,) C A, such that
f5=1(V) = com(T,). We will show that orb(c) NV = §.

Indeed, Lemma 2 shows that ¢, € T, only if ¥(n) is even. Suppose ¢, € V C T',.,
and Sy 1 < n < Sg. Then f™(Ty) = [en,Cn-s,_,) and H(n — Sx_1) is odd, so
f™(Tx) 3 c_s,_,. Hence, f-1(cp,c_s,_,) = (¢,¢nys,_,) C T. Consequently
n+ S,_1 = Sp, is a cutting time and as ¢s,, € U, Q(m + 1) > r > B. Since w(c)
is not dense on [cg, ¢1], w(c) is nowhere dense. O

4. The induced Markov map.

A map F: W — W is said to satisfy the Markov properties if
a) F is defined on a countable union of open disjoint intervals I;. W\ U;I; has zero
Lebesgue measure.
b) F™ has uniformly bounded distortion for all n > 1 and all intervals on which F™
is monotone.
C) If F(Iz) n Ij ;é @, then F(IZ) D Ij.
d) For every i and j, there exists n such that F"(I;) D I;.
e) There exists € > 0 such that |F'(I;)| > € for each j.
It is a well known result, which dates back to Renyi [R] and was extended by others,
that a Markov map has an acip. We’ll give a short proof of this, following [MS1],
that shows that the density of this measure is bounded and bounded away from 0.
Property d) guarantees that this measure is ergodic. Notice also that due to b), d)
and e), F'V is uniformly expanding for N sufficiently large. In particular, F’ admits
no periodic attractor.

Using the notation of the previous section we will induce from f a piecewise
continuous map F' and show that F' satisfies properties a) to e). Let as before the
kneading map @ be bounded by B. Let W be an interval containing ¢, with closest
preimages of ¢ as boundary points. These preimages will be specified in a minute.
We can partition W into the sets A;. Since W \ U;A; is countable, property a) is
satisfied. Usually A; N W has two components. On each component we define

_ £Si—1
Fla, —f|A,- :

From (4) we have f5i-1(4;) = (¢,c_s,,,,). So property c) is fulfilled. As Q is
bounded property e) follows too.

Again by the boundedness of the kneading map F(A;) D com(I'p41) for all j.
Let W = UjsoF7(Ap), then it is easy to see that F is surjective on W, and that
property d) is fulfilled. We will now prove property b).

Proof of b). First we prove b) for n = 1. Put § = min(‘FBrEi:(S]cl)', |FEK£S2’C)|)-

Let I = com(A;) for some j, and T D I the largest interval on which f%-1
is monotone. It is easy to see from the previous section that T = com([;_1)
and fSi-1(T) = (cs;_,,Csq;_y)) D ¢ Due to boundedness of the kneading map
f5i-1(T) contains a one-sided é-scaled neighbourhood of f%-1(I) on the side of
c. Now let T' D I be the maximal interval such that fl“gf, is monotone, we see

that T' = com(T;). f5 (T") = (cs;,Csq,,,) and f5(I) = (¢, cs4,,)- f95(T'\I) =
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(cs;,¢) D com(Tpy1), so f5 (T') contains a one-sided d-scaled neighbourhood of
[ (I). Since S; — Sj—1 = Sgu) < Sp, f%~*(T) contains a one-sided §'-scaled
neighbourhood of f5-*(I) on the side of cs,_,, for &' > fgg. Together this is
a d'-scaled neighbourhood of f%-1(I), so the Koebe Principle yields the bounded
distortion of fﬁ"‘l =F.

Now we need to prove that F™ has bounded distortion as well. Let I Cc I' C I"
be intervals of continuity of F?, F*~! and F» 2, Fi= flkl and FG,‘I = f‘kIl,. Let
J D> I and J' D I' be the maximal intervals of monotonicity of f* and f*. By
construction F"~1(I") = com(T;) and F"~(I) = com(A;), where j <i. If j < i,
then F"~1(J) = com(T';_1) C com(T;). The previous argument shows that f*(.J)
contains a §'-scaled neighbourhood of f*(I).

So we're left with the case that ¢ = j. F" 2(I') = com(Ay#) and F"2(I") =
com(Tj1). Again j' < i'. Because FG,T2 is continuous, F" 2(J') D com(l';) and
FE I D (e, ¢s,_,)- This means that F™~1(J') contains a §'-scaled neighbourhood

of F*=*(I). It follows that F} = F o F‘Tl has bounded distortion. O

Since F' is a Markov map, any weak accumulation point

1 nj—1
m = lim — FiX
Jj—oo Ny zZ:;
is an acip. Here A is the normalized Lebesgue measure on W and F{(A) =
A(F~%(A)) for every measurable set A. Invariance and finiteness of m are clear, and
the properties b) and e) provide absolute continuity. Indeed, let A be a measurable
set and I a maximal interval of monotonicity of F”, then

|[F—"(A) N1 AnF™(I)| K

<K —
1| I LA 00 B

A

Summing over all intervals of the partition generated by F™, we obtain |[F'~"(A)| <
& | Al. This is independent of n, so also m(A4) < £|A| and m has bounded density.
In our case the density of m is also bounded away from 0 in a neighbourhood of c.
Let A a measurable set such that A = A and argue as above:

[F=r(A)n 1] 1 AN Fr(D)
- S Q)

1
> ?minﬂA NT| | a component of 'py; \ {c}},

because F™(I) covers one component of I'py1 \ {c}. It follows that m(4) > |4
for some constant K' > 0.

Now we derive a measure for f itself. Let m; be the measure restricted to
an element A; of the partition of W. So for any m-measurable set B, m;(B) =

m(A; N B) and m(B) = }_,;m;(B). It can be shown [MS1] that

j—1—1

S
p=Yy_, > fim;
i =0
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is an absolutely continuous invariant measure for f. For the whole interval N we

have
j—1—1

S.
p(N) =" > fimi(NV) =) Sjmam(4;) < C Y Sjal4).
ki i=0 7 j

J

where the last inequality follows because m has a bounded density. Similarly,
p(N) > C"32; Sj-1]A;j]- So p is an acip if and only if 3°;S;_1]|A4;| < co. Using
again the boundedness of the kneading map we can simplify this condition to

(2) Zj|Aj| < .

In general (2) doesn’t hold as we show in Theorem 2. In Section 8 we shall derive
topological conditions that guarantee (2). We remark that (2) follows easily from
the metrical condition

35 IDf5 7 e T < oo,
J

This condition is slightly stronger than (1), but it clearly includes all long-branched
maps satisfying the Collet-Eckmann condition. The proof relies on a one-sided
version of the Koebe Principle [MS1]. We omit the details.

5. The combinatorics of the example.

We will now construct inductively the kneading invariant of our example. Us-
ing Lemmas 1 and 2 we can verify that this kneading invariant corresponds to a
long-branched map and that it is the limit map of a saddle node cascade. The
approximating saddle node map are alternated by maps for which the critical point
eventually hits the orientation reversing fixed point p. Two sequences of integers,
which can still be chosen freely, will indicate how close the limit map approaches
the approximating saddle node and Misiurewicz maps.

We start with the kneading invariant

vy = 101101101101101....

The period of v4 is 3, and because Sy, S1,52... = 1,2,4..., it is clear from Lemma
2 that v; corresponds to a saddle node bifurcation. In fact this is easy to check
because v is assumed by the function f(z) = (1 + v/8)z(1 — z). Notice that the
corresponding kneading map is bounded by 1. This will be the case during the
whole construction, yielding a limit map with bounded kneading map.

Let Ay be the block 101, so |A;] is the period of v,. We define inductively

and

E;y1 = E;E;...E;E; 111...111.

a; times 2b; times
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The map f with kneading invariant
v =limy;
K3

is the goal of our construction. Lemma 4 below and its corollary show that the
kneading invariants v; and therefore the limit kneading invariant are admissible for
all choices of a; and b;. But first we study {v;} more precisely.

It is clear that f ‘“'E”(c) is very close to p, the orientation reversing fixed point,
if b; is very large. In fact, the sequence FE;F;...F; E;11111... is also an admissible
kneading invariant, and it corresponds to a map where c¢ is eventually mapped on
p. So we can consider v; as kneading invariants of perturbations of maps with
eventually fixed critical point. On the other hand, f is very close to a map at
a saddle node bifurcation if a; is very large. So f may also be considered as a
perturbation of a saddle node map.

Define k; by Ski—l < |Ez| < Ski and [; by Sl,-—l < ai|E,-| < Sl,'- Clearly
k; < l; < kir1. We will use these sequences in our final estimation. They more or
less indicate the periods of the saddle node maps and the time it takes the critical
point to reach p in the Misiurewicz maps. Let us show that v; indeed corresponds
to a saddle node map for each i, and that the corresponding kneading map is
universally bounded. We claim that

5 |Ei| = Sp, — 1
a;|Ei| = S);, — 1

and argue by induction. For ¢ = 1 it is clear from the form of v4. So assume that it
is true for i. e, g, is followed by 2b; ones, but as E;11 = 10... it is in fact followed
by 2b; + 1 ones. That means es,, is followed by 2b; ones, b; basic blocks 11. Hence

Ski+1 = Siitb; = |Ei+1| +1

Consequently all blocks FE;;1 are split into basic blocks in the same way. Indeed,
it is not hard to see that for v;;1, Sk, ;45 = S; for all j > 0. Therefore

Sli+1 = Saik,- = ai+1|Ei+1| + 1,

which proves the claim.

As E; 11 consists of the same basic blocks as E; (though there are more copies of
each basic block and a lot of basic blocks 11 are added), the kneading map of v;1
has the same bound as the kneading map of v;. In particular the kneading map
of lim; v; is bounded by 1. Furthermore, since |E;| ¢ {S;} for all i, v; is indeed of
saddle node type.

In the next lemma, let < denote the usual order relation between itineraries.
Recall that a kneading invariant is called admissible if there exists a unimodal map
which assumes this kneading invariant. The standard admissibility condition for
kneading invariants reads ¢ (v) < v for all n. An itinerary v(z) is admissible if
o™ (v(z)) X vioralln > 0 [D]. A point g is called nice, if its forward orbit is disjoint
from (g, §).
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Lemma 4. Let f be in a full family of unimodal maps, v its kneading invariant.
Then there exists a nice point q with itinerary v' if and only if v' < v is an admissible
kneading invariant.

Proof. If q is a nice point, then f*(q) < f(q) for all n > 0. So o™~ 1(v') < ' for all
n > 0. This is precisely the admissibility condition for kneading invariants.

Conversely, if v/ < v is an admissible kneading invariant, o™ (v') < v' < v. So v/
is an admissible itinerary with respect to v. This yields the existence of ¢, and it
is easy to see that ¢ is nice as well. O

Corollary. Ify; is admissible, v;1 is also admissible.

Proof. Let f; be the map corresponding to v;. According to the lemma we need to
find a nice (periodic) point ¢ of f; which has itinerary v(q) = v;y1. Recall Sj; =
a;|E;| + 1. Since Q(1+1;) = 0, v; coincides with v(g) up to Si4;;, —1 = S5;,. So the
periodic point g, if it exists, is contained in A; ;. fl-S"' (A1) = (66 54444,,) =
(¢,c_1). Hence fisl"H(AHli) = (¢, ¢1) covers a neighbourhood of the fixed point p.

Let V = {z | fi(z) > cfor0 < j < 2b;}. So V is a neighbourhood of p
and for all x € V the itinerary starts with b; basic blocks of length 2. It is clear
that at least one end-point of V is mapped by ffb" on ¢. Also V contains p, so
f’2bi (V) ) (Cap) ) com(Al-i-li)'

3
Summarizing, fz.S "'+1(A1+li.) covers f;(V)) and f2* (V) covers a component of

Ai14q,. So there exists a point ¢ € Aj4y, such that fiS"'Hb" (@ = fz!Ef“'(q) = q and

v(q) = viy1. Moreover, f7(A14,)NT14, =0 for 0 < j < S;,, f5(q) is close to p
or p. fA(V)NT14y, =0 for 0 < j < 2b;. So orb(q) N (g, §) = 0; q is indeed nice. O

6. The proof of Theorem 2.

Johnson [J] already constructed unimodal maps without acip, and Hofbauer and
Keller [HK1,HK?2] showed that the Bowen-Ruelle-Sinai measure can be quite unex-
pected instead. The main idea was to use almost restrictive intervals. This implies,
just as in our example, that ¢ returns very close to itself, violating summability
condition (1). However, one can show that almost restrictive intervals correspond
to the period doubling type of return. So in a combinatorial sense this example is
different. Furthermore, and unlike Johnson’s example, its properties are persistent
under topological conjugacies as long as we stay in G.

Before proving Theorem 2 we need a statement on conservativity of f, the proof
of which can be found in [BL2]. If f € G admits no periodic attractor or restrictive
intervals, then f is conservative. This is equivalent to the non-existence of Cantor
attractors. It has been proved under much weaker long-branchedness conditions, cf.
[GJ], that such a Cantor attractor doesn’t exist. Recently Lyubich [Ly2] claimed
that a Cantor attractor cannot exist at all in the quadratic setting.

We will give a short proof of the claim using Markov property b). Assume
that f is not infinitely renormalizable, because this is not compatible with long-
branchedness. Consider f on the orbit of its smallest restrictive interval. Suppose
by contradiction that for a set X, f(X) C X and 0 < |X| < |N|. Let 2 ¢ Upf~ "(c)
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be a density point of X and I,, the interval of continuity of F™ containing z. By
| XN |

taking n sufficiently large, we can get T as close to 1 as we want. So due to
the bounded distortion of F'™, ‘F‘;(,;Tglﬁ)l = pﬁ;f ("I(HI)’T” can be as close to 1 as we

want. But since F™(I,,) = com(T}) for some k < B and f is not renormalizable,
this implies that X has full measure.

Proof of Theorem 2. The proof of the second statement follows from Lemma 3 and
Martens work [Ma2], if f has no periodic attractor. In fact we can prove that the
measure g in Section 4 is o-finite. Let U be a component of the complement of
w(c) and V its middle third interval. We may assume that f is not a Misiurewicz
map, so orb(c) C w(c). It follows that if f{(Ax) NV # O for some 0 < i < Sj,_1,
|f{(Tx)| > 2|U|. Due to (3), there exists N = N(3|U]) such that fi+3(Ty) 3 ¢ for
some j < N. Hence

Sj—1—1

m(f7(V) N 4;)

p(V)y=>"
7 =0

j—1—1

<0 2 mn4

<CY N4,
J
< CON|N| < 0.

Now let Vo =V, Vi = £~ (Vo) \ Vo and in general V; = f~9(Vp) \ Ui, Vi. Clearly
w(V;) < u(f~3(V)) = p(V) < oo. Furthermore [N \ U,V}| is forward invariant,
so its Lebesgue measure must be zero. Hence {Vp, V1, ...} is countable partition in
finite y-measured sets; p is o-finite.

Next we show that the measure p is unique. Suppose ' is a o-finite f-invariant
measure which is absolutely continuous with respect to the Lebesgue measure. We
first claim that p' is also absolutely continuous with respect to p. Suppose by
contradiction that for a set W, p'(W) > 0 and u(W) = 0. As ' is absolutely
continuous with respect to the Lebesgue measure, |IW| > 0. We define the sets W
just as we did for V' above. Since pu(W;) < u(W) =0, it follows that p(N) = 0,
a contradiction. Now it follows from the Radon-Nikodym Theorem and ergodicity
that the density of p' with respect to p is constant p-almost everywhere. Hence u
and ' coincide, up to a multiplicative constant [M].

If f has a periodic attractor, Theorem 2 holds too, though no uniqueness can be
established. We simply construct a fundamental domain V in the immediate basin
of the attractor, and put a constant density on V. Since every point visits f*(V)
at most once for each k € Z, and almost every point visits f*(V') for some k, one
can extend this density to N.

Now to prove the first statement, we construct a saddle node cascade, along the
lines of the previous section, such that the limit kneading invariant satisfies the
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following property:

For all A < 1, limsupai|Ei|)\|Ei| - .
i

Take M arbitrary. We will show that -, S;j_1]A4;| > M, so that (2) is not satisfied.
We know a priori that there exists A\g < 1 such that, unless f has a periodic
attractor, d(cp,c) > Ay for all n > 1. Indeed, if this were not the case, then we can
find n such that |c — ¢, | 102£2¢L" ! < 1. Here L = max,er|Df(z)|- Let x be
such that ¢, € (¢,z) and |c — z| = 2|c — ¢,|, then

170 - (@) < | / Df"(2)dz|
<lc—z|0x8|c — 2|1 Lt
< e = €p]|022% ¢ — cp | !

<le=cyl-

Hence f™((¢,z)) C (¢, ), yielding a periodic interval. Long-branchedness prohibits
infinite renormalization, so for n large enough, (¢, z) contains a periodic attractor.

Choose i such that (a; — 1)|E,-|/\1)E"| > M. Since o!Fil(v) = v up to at least
(a; — 1)|E;| entries, ¢/, € Tk for some k such that Sx_1 > (a; — 1)|E;[. So

Ty| > d(c,cg, ZA‘Eil and
| E:] 0

308 alA > Y08 1lAj] > Sk 1 [Tkl > (ai — DB > M.

J jzk
Uniqueness of p shows that there is no finite measure. O

7. The derivative |Df"(c1)|.

In this section we will merely give a proof that liminf,, | D f™(c;)| is finite in our
example, provided we choose the integers a;, and consequently [;, properly. We
claim that if the map f is close enough to a map with a saddle node bifurcation
of period n, |Df™(c1)| is bounded. This is of course clear from continuity; at the
saddle node bifurcation |[Df™(¢1)| < 1. The next lemma states that |Df™(c1)] is
still small, if the iterates f/"(c;) are close to ¢; for j < m, where m > n. For
example m = 2n will do. In view of the proof of Theorem 1 in the next section,
this is small enough to derive (2).

Lemma 5. Let f € G have kneading invariant v. Then there exists M = M(f) > 0
with the following property: If n is such that o™ (v) = v for at least mn entries and
m > n then |Df"(c1)] < M.

Proof. Let V 3 ¢; be the maximal interval on which f™ is monotone and let U C
[¢, 1] be the maximal interval adjacent to ¢; such that f*(U) C V. If o™(v) = v
up to at least mn entries, it follows that f™"(c¢;1) € U. So we need to find un upper
bound for |Df™(c1)] if f™"(c1) € U.
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If |IDf™(c1)| < 1 then there is nothing to prove, so assume 1 < |Df"(¢c1)| =
IDF(FPHe)|IDF 2 er)| < Olf™(c1)—ca| T |DF™|(cy), where the last inequal-
ity follows from non-flatness. Taking L' = L7 and O' = Oﬁ, (notice that we
use explicitly that £ > 1) this yields

1.1

|fn(cl) —Cl| > |0Df"_1(c1)|li;1 > a(?)"

As ¢ is the global maximum of f, fl’[‘] is increasing. Due to negative Schwarzian
derivative, [Df[;| is decreasing. Let M = O'L’ and assume |Df"(c1)| > M. Let
g(z) = M(xz — c1) + ¢1, then the graph of [l lies below the graph of g, which
in its turn lies below the diagonal. Consequently, f*(z) < g(x) and by induction
fm=On(z) < gmY(z) if f*(z) € U for 0 < k < m — 1. A straightforward
calculation gives |[g™ ! (z) — c1| = M™ Y|z — ¢1], so

fm(e) < e =M™ e = (e,
ie. M™ter — f(c1)| < ler — f™(c1)|. Because f™"(c1) € U, we get

1 1
UL = Jer = f™(e)] 2 M™ e = f™(en)| 2 M™ o (—)"™
L1
|U| < 1, so by definition of M, m < n. If both m > n and f™"(¢;) € U, |Df™(¢1)]
can only be less than M. O

8. The proof of Theorem 1.

The next stage is to investigate methods to get a bound for (2). Because A; C T';,
it is enough to prove that |I';| decreases exponentially. This is why the following
lemma is of interest.

Lemma 6. Let f € G, B the maximum of the kneading map of f and R > B some
integer. There exists A < 1 with the following property. If ¢, ¢ T'g for jo <n < ji,
where jo is taken minimal for this property, then |f(Tx)| < A=™|f(T,,)| for all
2jo + Sp < Sm < Sk < J1-

Proof. Choose € and n such that |z —¢| >cifx ¢ Tgand |z —¢| >nif z ¢ Tpyq.
From (3) we obtain that there exists § = d(¢) such that |f™(I)] > J whenever
|[I| > € and [t is monotone. We may assume that § <& <.

Take m minimal such S,, > 2jp + Sp and k, S,, < S < 71, arbitrary. Let
Ui D f(T'y) be the largest interval on which fS*-1~1 is monotone. We will show that

fﬁ’z;;;l has bounded distortion, by showing that fS*-1=1(Uy) contains a J-scaled

neighbourhood of f%-171(f(T})) = (c,cs,_,]- Indeed, by long-branchedness, it
contains a one-sided 7-scaled neighbourhood on the side of ¢. Let J = Uy \ N
and let b be the iterate such that ¢ € df°~1(J). If b > jo, then f°(c) ¢ Tg, so
|fo=1(J)| > € and |f5+-1(J)| > &. This yields the required d-scaled neighbourhood

and the distortion of fﬁ’z;;;l is bounded by K = K(§). So it suffices to show
that b < jo is impossible. By minimality of jo, » and o®(v) differ at some entry
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n < jo+ Sg. So f™((¢,c)) D ¢, but S, is the smallest positive iterate such that
£ (Tx) 3 c. It follows that S, <b—1+n < 2jo + Sp contradicting our choice of
k.

[5=1(Tk) = (¢,c5,_,) and f5*=1(Trq1) = (c—54(,,CS_y)- This means that
|f5+=1(Tk \ Tgy1)| > n > n|f5*-1(T)|- Since distortion is bounded we obtain
|[f(Ck \Tkt1)| > 2 |f(Tk)|, or in other words |f(Tr41)| < (1—#)|f(Tk)|.- Now it is
also clear that |f(I')| < (1 — )" ™|f(I')|- Non-flatness ensures the exponential
decrease of |I';|. O

Finally, we shall give an upper bound for expression (2). We will fix {k;} and
{l;} by an inductive procedure that only depends on S, where B > Q(k) for all k.
Then we fix f € G such that it has the limit kneading invariant v. The constants &,
C1 and Cs of the final estimation depend on f, butif f € G, k < 1 and Cp,C5 < oo.
The choice of k; and [; determines a certain partition of N. This partition contains
pieces where |T';| decreases exponentially, and in pieces where |T';| decreases, but
the rate of decrease is unknown.

From the definition of v it is clear that o7 (v) starts with 11 whenever S;, < j <
Skiy1 for some i. So ¢; ¢ T's for S, < j < S,,,. This is the assumption of the
previous lemma. Suppose we have found ;. Take m; such that S,,, > 2S;, + Sp
and k;y1 such that ki1 — m; > m;. Hence, from Lemma 6 we get |f(T'x)| <
NE=mi| £(Tp.—1)| whenever m; — 1 < j < kiy1. It follows that |T'y,| decreases
exponentially in k;. To be precise,

i1
Ty, | < O N i1 kix1—mi

Fkll
< C}\I% S kig1—ks

Fkl'
< Ckli—h |Fk1 |7

where k = VA’ = A2 and C emerges from non-flatness. Since |T'y,| and k; are
fixed numbers, we may write |T,| < C1kF:.

Statement (5) gives |E;| = Sk, — 1, and by Lemma 5 it is enough to repeat the
block E; at least |F;| + 1 times to make sure that D f!Fi!(¢c;) is uniformly bounded.
Suppose we have found k;. We took S,,; > 25, + Sg, but for I; > B we may also
assume Sp,; < 35;;. Due to the boundedness of the kneading map, 7 < S; < Sgj.
So m; < 3Sgl; and we may take l; such that Sgk? < l; < m; < P(k;) for an
appropriate quadratic polynomial P. In fact, any subexponential function will do.
Let C5 be un upper bound of Ej jAj. Then
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m;—2 kig1—1

ZJ|A|<ZJITI<ZZJITI+Z > il

i j=m;—1

m;—2 kiy1—

DIDIEIVIEDD Z NI, |

i Jj=k; i j=mi—

<Zmz|1“k,|+z ml_ + Cs)

<ZP V2O kR +

)Clli
< oo.

This concludes the proof of the finiteness of 3, j|A;|.

In order to check that Theorem 1 holds for all maps having v as kneading invari-
ant, we check the dependence of the constants in the proof. Clearly the integers B
and R of Lemma 6 depend only on v. The constants M of Lemma 5 and x depend
on the non-flatness constants O, O, and £. M depends on L = maz,|Df(z)| and
x depends on § = §(g) of (3). € in its turn appears in the proof of Lemma 6, and
depends only on L, Oy, Os, £ and R.

For any map in G, we have for the corresponding constants 0 < 01,4 and
O3, L,¢ < oo, implying M < oo and k < 1. So Theorem 1 holds. It is possible
to find a sequence {f,} of conjugate maps such that the corresponding constants
k — 1 or M — oo. But for each map in this sequence Theorem 1 holds and the
limit map, if it exists, lies outside G.
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