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ABSTRACT. The kneading map and Hofbauer tower are tools, developed by F. Hof-
bauer and G. Keller, to study unimodal maps and the kneading theory. In this
paper we survey on the geometric properties of these tools. Results concerning the
topological structure of the critical omega-limit set are obtained.

1. Introduction.

In the seventies and eighties, F. Hofbauer and G. Keller wrote several papers
in which kneading theory plays an important role, e.g. [H1,H2,HK1 HK2 K1 K2].
Independently of the well-known work of Milnor and Thurston [MT], they devel-
oped tools to describe the kneading invariant and certain geometric aspects of the
corresponding unimodal map. These tools are the kneading map and the Hofbauer
tower. Hofbauer and Keller used the word Markov graph and also canonical Markov
extension, because this object ties the dynamics of unimodal maps to the theory
of (countable) Markov chains. Hofbauer and Keller proved some beautiful results,
mainly concerning invariant measures, for unimodal maps.

In this paper we want to overview some of the properties of kneading map and
Hofbauer tower. Hofbauer and Keller [H1,HK1] take a rather combinatorial view-
point. We will argue geometrically as much as possible, hoping to make things more
accessible. Also we will give extensions of the kneading map and Hofbauer tower:
the co-kneading map and extended tower. We use these tools to clarify a part of
the recurrence behaviour of the critical orbit that is less visible in the ordinary
kneading map and tower.

Let f : I —» I, I =[0,1], be a unimodal map. f has a unique critical point ¢, and
we assume that f(c) is a maximum. The forward images of ¢ will be denoted by
C1,C2,C3,.... We assume that f(0I) C 01, but the interesting dynamics take place
on the dynamical core [c2,¢1].

The kneading map is a tool to describe a unimodal map f symbolically, with
emphasis on the recurrence behaviour of the critical point. Therefore kneading
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maps can be used to define, or classify, the combinatorial types of unimodal maps.
The kneading map also describes the combinatorics of the Hofbauer tower. Using
this tower, one can picture the map f as a Markov chain with countably many
states. From a geometric viewpoint, the tower is important because it sheds light
on the image of the central branch of f™. (If H is a maximal interval on which
f™ is monotone, then the restriction flT}{ is called a branch of f™. A branch is
central if H contains the critical point in its boundary.) In many proofs concerning
the growth rate of the derivatives along the critical orbit, cf. [B1,NS,S], this is
important information. Let us present the outline of this paper, and give some
more motivation along the way.

Section 2: We define the Hofbauer tower, the extended tower and give a geo-
metric interpretation of the kneading map and co-kneading map. We extend the
Hofbauer tower to show the maximal branch images of the branches of f™ at the
critical value f(c). If the reader is acquainted with the Koebe Principle (see e.g.
[MMS], he will see the importance of these branch images.

Section 3: We will discuss the splitting of the kneading invariant, indicating the
(original) combinatorial definition of the kneading map. Apart from the proof that
the combinatorial agrees with the geometric definition, we need this part to explain
admissibility conditions better.

Section 4: It is not true that every sequence in {0,1}" can be the kneading
invariant of some unimodal map. In this section we give admissibility conditions
for the kneading and co-kneading map. A good acquaintance with admissibility
conditions is necessary to construct, explicitly, unimodal maps with certain intricate
combinatorial properties. For instance, a unimodal map for which the critical orbit
is dense in the dynamical core.

Section 5: In this section we describe some basic notions as periodic attractor,
renormalization and restrictive interval in terms of the kneading map.

Section 6: The topology of the critical omega-limit set w(c) is very important
for the metric behaviour of unimodal maps. For example, one can prove that ab-
sorbing Cantor sets [BL2,GJ] can only occur if w(c) satisfies a very rigid minimality
property. In this section we will present conditions in terms of the kneading map,
that guarantee that w(c) is nowhere dense, minimal, etc.

Many results in this paper are due to Hofbauer and Keller. However, many
proofs are new, and have a geometric flavour. In this paper we tried to be concise;
more details and results can be found in [B2,S,T], and in Hofbauer’s and Keller’s
papers.

We are indebted to Duncan Sands for sharing his idea on extended towers, and
also to Sebastian van Strien for the many encouraging discussions. We like the
thank the referee for his careful reading of the manuscript.

2. Definitions.

Throughout this paper (a,b) denotes an interval with end-points a and b, also if
b < a. If z # ¢ then & denotes the symmetric point, i.e. the unique point different
from z such that f(£) = f(z). The Hofbauer tower, or simply tower, is the disjoint
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union I = || Dy, of intervals D,, C I. Dy = (c,¢1) and inductively

Dn+1={f(D”) ifeg clDn, 1)
(cny1,¢1) ifc € c D,

(If ¢, = ¢, then D, 41 = (; the tower consists of a finite number of levels in this
case.) Notice that ¢, is always an end-point of D,,. If the second case of (1) applies
then n is called a cutting time. The cutting times are denoted by S, where So = 1.
So Dg, +1 = (¢s,+1,c¢1) for all k. Moreover, for every Si < n < Sg41,

D, = (cp,n-s,)- (2)

It follows inductively that D,, C D,,_g,, and that the end-point ¢,,_g, of D,,_g, is
also an end-point of D,,. For n = Sg41, ¢ € Ds,,, C Ds,,,s,, hence Sy 1 — S is
again a cutting time. This leads to the definition of the kneading map Q:

@ :N—=NUoo, SQ(k)ZSk—Skfl. 3)

For the sake of completeness, let Q(0) = 0. If Sy does not exists, we set S = 00
and Q(k) = oo, and leave Siy;, Q(k + j) undefined for j > 1.
The tower is endowed with an action f. If z € D,,, z # ¢, then

Dpia if c ¢ (z,cn),
Dsyhy+1  ifce (z,cn),

@) = f(@) € { @)

where the second case can only occur when n = Sy, is a cutting time. Let w: I — T
be the natural projection. Clearly wo f = fon. Moreover, the construction is such
that for every interval J C 1,

fm(J) is monotone if and only if f™|J is continuous. (5)

Indeed, suppose that J = (x,y) C Dy for some k. Then f"|J is continuous
precisely if 7=(c) N (f/(z), fi(y)) = 0 for all 0 < j < n. But then also ¢ ¢
(f9(n(2)), £ (n(y))) for 0 < j <, so ff ;) is monotone.

Ezample 1. Figure 1 shows the tower for a map with kneading map Q(k) =
max(0,k — 2). In this case So = 1, S; = 2 and Si = Sk—1 + Sk—_2, so the cutting
times are the Fibonacci numbers. This map, the Fibonacci map, received much at-
tention in the literature, e.g. [BKNS,HK2 LM,KN]. It has very extreme recurrence
properties, which leads under certain additional circumstances to the existence of
an absorbing Cantor set.

In the Fibonacci case, there are natural finite covers of w(c) with disjoint intervals
from the tower. For example, the union c¢l(Dg U D7 U Dg U D12 U D13) covers w(c).
In general, the levels between two subsequent cutting levels cover w(c):

Sk—1

Sk
w(e) C el U Dg, ;U U Ds, i
i=1 i=Sp_1+1
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C21
C20
C19
C18
C17
Ci6
—
C15
C14
C13
C12
C11
—_
C10
e
cg
cr
—_—
Ce
—_
Cs
| ca
c3 ’
c2 ’

ClI

Figure 1: The tower for the Fibonacci map.

Except for Ds,,, and Ds,,,, the intervals of this covering are pairwise disjoint.
Details can be found in [LM].

The point c_,, € f~"(c) is a closest preimage of ¢ if f™((c_n,c)) F ¢ for m < n.
Clearly ¢_,, and é_,, are closest preimages simultaneously. An equivalent way to
define the closest preimages is the following: (c_g,,c¢) and (¢, é_g, ) are the result of
a monotone pull-back of the cutting level Dg, ,, along the critical orbit ¢, c1, ...cs,, ., .
This definition makes clear that f~"(c) contains a closest preimage if and only if n
is a cutting time. Let us write

Ap = (C*Sk—17C*Sk) U (é*Sk’é*Sk—l)‘

By definition, (c_g,_,,c) and (¢, é_s,_,) are maximal open intervals on which f* is

S5Qk)

monotone. Because also Sg(x) is the largest integer such that f|(c P

is monotone,
k— 1)

Ccs,_, € cl AQ(k), (6)

for every k. Using closest preimages the next lemma is easy to prove.
Lemma 1. If f has no periodic attractor, then Q(k) < k for every k > 1.

Proof. Suppose Q(k) > k for some k. By (6), cs,_, € (c_gy_;,¢—-5,_,). Moreover
%1 maps both (c_g,_,,c) and (c,é_g,_,) monotonically onto (c,cs,_,). Hence
F5+=1 maps either (c_g,_,,c) or (c,é_s,_,) monotonically onto itself, yielding a
periodic attractor. [

Some important combinatorial concepts are not well incorporated in the Hof-
bauer tower. The branch of f™ at ¢; and the size of its image is of interest. In
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many proofs concerning the growth-rate of |Df™(c1)| this is essential information,
cf. [B1,LM,NS,S]. Also, not every the closest returns of ¢ is clearly visible in the
Hofbauer tower. We call ¢, a closest return if ¢, € (¢m,ém) for every m < n. So
let us extend the usual Hofbauer tower a little. The extended tower is the disjoint
union of intervals D, C I. Dy = (¢, 1), and

. { f(D,) ifedclD,,
Dn+1 = ~ . ~
f(E,) ifc€ecdD,,

where E, is the component of D, \ {¢} containing ¢,. (If ¢, = ¢, we take E, =
D, \ ¢l D,.) Tt follows that D,, C D,, for all n. The usual cutting times {S;} are
also cutting times for this tower, but there are other cutting times. If D, 3 ¢, but
D,, # ¢, then n is co-cutting time, denoted as S;. In Figure 2 the extended tower
of the Fibonacci map is shown. The intervals D; \ D; are indicated by thick lines.

(7)

C21
C20
—_—
C19
——
C18
C17
C16
C15
C14
C13
C12
C11
C10
Co
cg
cr
Ce
Cs
C4
C3
C2
cln;

Figure 2: The extended tower for the Fibonacci map.

Let S(n) = max{S; | Sk < n} and S(n) = max{S; | S; < n}.
Lemma 2. The following properties are true:
i) A co-cutting time is never a cutting time.
ii) So = & where > 1 is the smallest integer such that ¢, > c.
iii) Forn > Sy, D, = (Cn7§<n>,cn,s(n>).
iv) The difference between two subsequent co-cutting times is a cutting time. So
one can define the co-kneading map Q:N—= N as

Q:N—- NUoo, 51—5‘17125'@(1), (8)

with the same convention S; = co and Q(I) = oo if S; as such does not exist.
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v) Assume that c is not periodic and let H, 3 ¢, be the maximal open interval such
that fﬁ;ﬂl is monotone. Then f* '(H,) = D,.

vi) In particular Dg, = (cg, _5(s,)»CSqu,), and Dg, = (CS,—S<S,)’CSQ(1)) for every k
and | € N. The integers S, — S(S;) and S; — S(S;) are also cutting times.

vii) Statement (5) is also true for the extended tower.

viii) ¢y is approximated from the left by closest preimages ¢i_g, and from the right
(i.e. from the outside of [ca,c1]) by the preimages ¢, _ 3, of ¢. Indeed, H,, =
(61*S<">’cl—.§(n))'

ix) Closest return appear either at cutting or at co-cutting times.

Proof. The proof of these statements is more or less the same as for the Hofbauer

tower. As an example, let us prove that S, - S{S) is a cutting time. Consider the
interval Hg, and its image f*~!(Hs,) = Ds,. c € f*71(Hs,), so C_(se—8(sk)) €
f§<5’c>*1(H5,c). As S(Sp) is the largest co-cutting time less than S, also ¢ €

5(Si)—1 5(8))—1 . Si—5(Sk)
dfSSk)=1(Hyg,). Hence f3(S%)=1(Hg,) D (¢,¢_(5,—3(sy)))- Because f\f’g“k)—’;(Hsk)

is monotone, C_ (5, —5(S,)) Must be a closest preimage, and consequently Sy — S{Sk)
is a cutting time. [

3. The splitting of kneading invariants.

First we will recall some definitions from the kneading theory, and introduce
some notation. The itinerary of a point € I is the sequence v(z) = e;(z)ez(z)es...,
where

0 if fi(z) €[0,¢),
ei(z)=¢ C  if fi(z) =¢,
1 if fi(z) € (c,1].

As we neglect the position of z itself, z and  have the same itinerary. The left
shift o commutes with the map f. The itinerary of the critical point, denoted as
v, is called the kneading invariant. We assume that v starts with 10, otherwise the
dynamics are rather uninteresting. Let

In)=#{1<i<n|e =1}

and
#(n) =min{j > 1|e; #entj}-
It is easy to see that A, = {z | v(z) = v up to exactly entry Si}, cf. formula (6).

There is a unique way to split v into basic blocks:
vV = 1A1A2A3...,

where each block Aj = e;y1€i42...€;1k—1€i4k = €1€2...ep_1€),. Hereej, =0ifep =1
and vice versa. (If ¢ happens to be i + k periodic, so e;4r = C, then we must take
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e, = C.) The block A; coincides with v up to the k — 1th entry. Let |A;| be the
number of entries of A;. We claim that

k
Se=1+>_|Ai,
i=1

or equivalently |A;| = Sg) = #(Si—1). Indeed, j = Sg(;) is the smallest positive
integer such that f7(Ds,_,) 3 ¢. So j = Sg(;) is also the smallest positive integer
such that e; # es,_,+;-

As v is determined completely by its splitting into basic blocks, f is, up to
homtervals (i.e. intervals on which f™ is homeomorphic for all n), determined
completely by its kneading map.

By splitting the kneading invariant v, we regain the cutting times. The co-cutting
times can also be regained, by a different splitting of v, called co-splitting.

vV = 61..€,€A1A2....

Here £ > 1 is the smallest integer such that e, = 1. (This is equivalent to the

definition of k in Lemma 2.) A; are basic blocks. The co-splitting is nothing but
an ordinary splitting starting at entry k. In the same way as above we obtain

Si=r+ Ei=1 |Az| =5+ Eizl |Az|
Lemma 3. Suppose that ¢ is not periodic. Then 9¥(Sy) is odd for all k.

Proof. At cutting times, either cs, > ¢ and f% has a local maximum at ¢, or
cs, < c and f has a local minimum at c. In the first case, f5*~! is increasing
in a neighbourhood of ¢, so ¢; visits (¢,¢;] an even number of times in the first
Sk — 1 iterates. Hence #(Sy, — 1) is even and, as eg, = 1, ¥(Sy) is odd. The second
case goes likewise. [

Remark. In fact, this shows that ¥(n) is odd if and only if ¢, > ¢ and f™ has
a local maximum at ¢, or ¢, < ¢ and f" has a local minimum at c¢. It follows
that 9(S;) is even for all [ and that the number of ones in each basic block is even.
Furthermore, if f[7. is a branch of f such that ™(T) = (ca,c) # ¢, then Y(a) is
odd and 9(b) is even or vice versa. In this sense one can speak about the odd and
even end-point of f™(T'), being the end-points farthest from and closest to c.

4. Admissibility conditions.

In this section we confine ourselves to maps for which the critical point is not
periodic. It is not true that every sequence in {0,1}" corresponds to a kneading
invariant. Neither is it true that every map on the natural numbers is a kneading
map corresponding to a unimodal map. A map @ (sequence v) is an admissible
kneading map (invariant) if there exists a unimodal map having @ (v) as knead-
ing map (invariant). In this section we will discuss two equivalent admissibility
conditions on kneading maps. But let us first recall the admissibility condition for
kneading invariants.
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There is a standard order relation < for itineraries: Let n be the smallest entry for
which v(z) and v(y) differ, then v(z) < v(y) if either e,(z) < en(y) and d(n — 1)
is even, or e,(z) > en(y) and d(n — 1) is odd. As f(z) — v(z) is increasing,
v = v(c) = v(z) for every x € I. This is the key observation in the admissibility
condition Al

Admissibility condition Al. v is an admissable kneading invariant if and only
if o™(v) < v for everyn € N.

The proof can be found in [CE,MT]. More generally, let = € I be nice if f™(z) ¢
(z,z) for every n > 1. A point z is nice if and only if o™ (v(z)) < v(z) for every
n > 1.

A family of unimodal maps is called full, if it exhibits all admissable kneading
invariants. The quadratic family z — az(1 — z) is a full family, as was proved in
[MT]. The family of tent maps T} : # — s(% — |z — 3|) is not full, since it does not
admit every possible renormalization, see Section 5.

In the language of kneading maps, Hofbauer [H1] gave the following condition:

Admissibility condition A2. @) is an admissable kneading map if and only if

{Qk+ i)}z = {QQ* (k) + 1) }j>1 9)

for all k > 1. Here > denotes lexicographical order.

In [H1] one can find a combinatorial proof that A1l and A2 are equivalent. We will
give a geometric proof.

Proof of A2. First we will show that (9) is necessary. Choose k arbitrary. By (6),
cs,_, € Agr) and as f5@® is monotone on AQ(ry, Csi € [cSQZ(k),c], see Figure 3.
This observation is the geometric interpretation of (9).

Aoy .
C—Sqm-1  C=Sqwu C—Sk_1
fSk 1
cSk 1
\ foeuw
1
CSq2n) Csk

Figure 3.



COMBINATORICS OF THE KNEADING MAP 9

We will prove it by induction, using the induction hypothesis

CSuts € [CSgas -

We just showed it for j = 0. Suppose it is true for j, then we obtain from (6)
that Q(k+j +1) > Q(Q*(k) + j + 1). If the inequality holds, (9) is true for this
value of k. If Q(k +j + 1) = Q(Q*(k) + j + 1), then cg,,, and CS42(ny4, A€ both
contained in Aggj41)- If we substitute k + j+1 for k in Figure 3, then we obtain
CSusse1 € [f5Q<k+j+1)(cSQz(km),c] = [fSe@2m+i+n (g ,d = [es
the hypothesis for j + 1. Hence (9) is necessary.

02(k)+j) 02(k)+:‘+1’c]’
Now let us prove that (9) is sufficient. Let @ be a kneading map satisfying (9),
and let v € {0,1} and {S}}1 be the corresponding kneading invariant and cutting
times. (If ¢ is periodic, then argue as if ¢ is attracted to a periodic attractor.)
Define
R(k) = Q*(1) + k-1,

where [ is the smallest integer such that Q(Q%(1)+j) = Q(I+j) forall1 < j < k—I.
Notice that [ exists; possibly I = k, so that R(k) = Q?(k).

fo(z) = 4az(1 — ) is known to be a full family of unimodal maps. In the rest
of the proof we will write v, and c¢,(a) to denote parameter dependence. Let

My, = {a | v, = v at least up to entry Si}.

Clearly Mo D M; D .... We will prove that M}, is an interval, say ¢l My, = [ag, bx],
and My, =, cl My, # 0. We use the induction hypothesis:

a — cg, (a) is monotone on My,

10
cs, (ax) = ¢ and cg, (bg) = €55, (br)- (10)

Clearly v, = v for every a € M.

We assume that v starts with 10. The other cases are trivial. It is easy to check
that My = (3,1] and M; = (1+4\/g,1]7 and that (10) is fulfilled. So assume that
(10) is true for k¥ and My, is found. As v, = v up to Sy for all a € My, the closest
preimages c¢_s; can be found for j < k. By hypothesis cl cs, (M) = [csq, (bk), €],
and s, € AQR(k)+1)-

i) fQ(k+1) =00, 50 v =eq...e5,€1...€5, €1.-.., then My, is such that ap41 = ag
and by satisfies cg, (bg+1) = c—s, (bg+1)- The induction terminates here, and
that suffices. Indeed, if a € Myy1 = My, then cs,(a) € f3*([c,c_g,(a)]) C
[c,c_s,(a)]. As f2*|[c,c_s, (a)] is monotone, there exists a periodic attractor
with itinerary e;...eg, e1...es,€1..., which attracts c.

i) If Q(k +1) > Q(R(k) + 1), then R(k+ 1) = Q*(k + 1). My is such that
cs,(ak1) = ¢ Sgupn (@rs1) and es, (Ber1) = ¢ sgupn_y (Brer). As f2°0 is
monotone on Agx41)(a) for all a € My, a — cs,,(a) is monotone on My ;.
Moreover CSkt1 (ak+1) = ¢ and CSkt1 (bk-i-l) = fSQ(k_H)(C—SQ(k+1)—1(bk+1)) =
€So2guss (Ok+1) = €Sp(ys) (brt1). This proves (10) for k + 1.
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iii) If Q(k +1) = Q(R(k) + 1), then R(k + 1) = R(k) + 1. Mpyy1 is such that
CSy, (ak+1) = C—Sp)+1 (a’k-i-l) and cg, (bk+1) = CSR(k)(bk-i-l)' S0 bgy1 = bk. As
before a — cg, ., (a) is monotone on M1, cs,,, (ar+1) = ¢ and cs, ., (bpy1) =
fSQ(R(kH'l)(CSR(k)(bk-i-l)) = CSp(r)+1 (bk+1) = cSR(k+1)(bk+1)' Again we obtain
(10) for k+1. O

Having defined both the kneading and co-kneading map, we can formulate another
admissibility condition.

Admissibility condition A3. Suppose v = eiey.. such that e; # C for all i, then
v is admissible if and only if () satisfies (3) and () satisfies (8).

A similar admissibility condition is discussed in [T].

Sketch of proof of A3. Since always ¢, € A, for some m, #(n) = S,,. This is true
in particular for n € {Sy} or {S;}, proving the only if part.

For the if part we use the same argument as in the proof of A2. However, we
need an (equivalent) definition of R(k) in terms of kneading and co-kneading maps.
Recall that S(n) = max{S; | §; < n}. Let R(k) be such that

SR(k) = Sk - S(Sk)
This implies that we also have to prove that Sy — S(S;) is indeed a cutting time.
We keep the definitions of My, ar and by, and prove (10) inductively with this new
definition of R(k). Any kneading invariant starts with

100...00100...001

m 0’s n 0’s

for some m,n € N. m = §,,_; is a cutting time. Moreover, n < m. Indeed, if

n > m, then S,, =2m+1 and S,, — S,,_1 = m + 1 is not a cutting time, violating

(3). If n = m then v must be periodic: S,, does not exist, because otherwise

Sm — Sm—1 is not a cutting time. Finally, if n < m, then S,, = n +m + 3 and

5(S;m) = Sy —1. So R(m) = Q*(m) = 0 and S,, — S{Sy,) is indeed a cutting time.
Now for the induction step, let us only give the necessary adjustments concerning

the values of R(k). Assume (10) is true up to k.

i) Q(k+1) = co. See A2.

i) Qk+1) > Q(R(k) +1). Then (c,cs,) C (¢,¢-Sgupn—1) C (6C8z4)- SO
Sk + SQ(k+1)—1 is the co-cutting time S(Sy, + SQk+1)) = 5(Sk11). Also Spi1 —
5'(Sk+1) = Sk +8Q(k+1) — (Sk + SQ(k+1)-1) = S@2(k+1) is indeed a cutting time:
R(k+1)=Q*(k+1).

i) Q(k +1) = Q(R(k) +1). Now (c,cs,) C (¢,¢554,) C (6,6 8g(41)_1)- In this

case the next co-cutting time is larger than the next cutting time. So S(Sk+1) =
S(Sk), and Spy1 — S(Sk+1) = Squrt1) + Sk — S(Sk) = So(r(k)+1) + Sr(K) =
SR(k)+1 is again a cutting time: R(k 4+ 1) = R(k) + 1.

With these adjustments, the proof of A3 is complete. [

5. Restrictive intervals and periodic attractors.
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An interval J > cis called restrictive if f(J) C J for some integer n. So J is an
n-periodic interval, see e.g. [CE,G]. Let us take n minimal and J maximal for this
property. Then f; is unimodal, f™(8J) C 8J and fi(J) N J has empty interior
if j < n. If f has a restrictive interval of period n > 1, then f is renormalizable.
The unimodal map fl’} is the renormalization. We will classify renormalizable maps
with respect to the existence of periodic attractors.

Let J be a restrictive interval of period n. There are three cases:

i) f™(J) # c. Then there is an orientation preserving n-periodic attractor.
ii) f™(J) 3 ¢, and there is an orientation reversing n-periodic attractor.
iii) f™(J) 3 ¢, but there is no n-periodic attractor. However, there may be a periodic
attractor with a multiple of n as period.
In the following proposition we only consider periodic attractors that are visible in
the kneadings. So we assume that a periodic attractor attracts the critical point.

Proposition 1.
i) If f has an orientation preserving n-periodic attractor, then n = S, for some 1
and 5’1+1 = 0.
ii) If f has an orientation reversing n-periodic attractor, then n = Sy for some k
and Sk-l,-l = 0.
iii) f has a restrictive interval J such that f*(J) 3 c if and only if n = Sy and
Q(m) > k for every m > k.

Remark 1. The well-known Feigenbaum map, which is so to say renormalizable
as often as possible, has kneading map Q(k) = k — 1.

Remark 2. If f is renormalizable with period S, then f*(D;) C ;s s, Di for
every n > 0. So points in Dg, are trapped in | |,y g D;.

Remark 3. For almost restrictive intervals of Johnson’s example [J], the situation
is as follows: Let J be an almost restrictive interval of period n, then n = S}, for
some k and there exists some large integer jo such that Q(k+j) = k for 0 < j < jo
and Q(k + jo) < k.

If the central branch of f™ is almost tangent to the diagonal, we have an almost
saddle node bifurcation, see e.g. [B1]. In that case n = S; for some I and Q(I + 1)
is very large, but not infinite.

Proof of i). Let g be the orientation preserving n-periodic attractor and J the
corresponding restrictive interval. Since ¢, and ¢ lie on the same side of ¢, v =

o™(v) = v(q), so v is n-periodic. f"(J) & ¢ and ¢, is a closest return, son = S is
a co-cutting time. Because f7((cp,c)) Fcforall 1 > 1, QI+ 1) = .

Proof of ii). Let this time ¢ be the orientation reversing n-periodic attractor. Again
¢n and ¢ lie on the same side of ¢, so v = ¢"™(v) = v(g). Since f*(J) > ¢ and
fI(J) Fcfor 0 < j<n,n =S is a cutting time. f7((c,,c)) # ¢ for all j > 1, so
Q(k+1) = oo.

Proof of iii). Let J be the restrictive interval of period n. From i) and ii) it
follows that n is a cutting time if and only if f*(J) 3 ¢. Let J = [p, ], where
p is the orientation preserving periodic boundary point of J. As fI(J) ¥ c for
0 <j <mn,v(p) = eer..€gere...egei.... Alsop € Ay, As Ds.11 C f(J),
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and J is restrictive, the subsequent cutting time can only occur at multiples of Sy.
Because J C (¢c_s,_,,¢-5,_,), Q(k +j) > k for every j > 1.

On the other hand, suppose that Q(k + j) > k for all j > 1. Let p be the Si-
periodic point with the (admissable) itinerary elez...efgkelez..efgleel.... It is easy
to check that v > v(p), and because f(z) — v(z) is increasing, cs,+1 > f(p). So
¢s, € [p,p] and [p, p] is a restrictive interval. O

Example 2. As an illustration of Proposition 1, we will follow the kneading
invariant of the quadratic family x — ax(1 — z) as it undergoes the saddle node
bifurcation and the subsequent period doubling cascade. We took the saddle node
bifurcation creating the 3-periodic point with itinerary 101101101....

a v Table 1
1. before restr. interval 3.818 1.0.11.0.11.0.11.0.1010.11....
2. saddle node 3.82842... 1.0.11.0.11.0.11.0.11.0.11.0....
3. 3.83 1.0.11.0.11.0.11.0.11.0.11.0....
4. ¢ periodic 3.83187... 1.0.C.10C10C10C10C10C...
5. before per. doubl. 3.84 1.0.0.100100100100100...
6. past per. doubl. 3.844 1.0.0.100100100100100...
7. ¢ periodic 3.84456... 1.0.0.10C.10010C10010C...
8. 3.847 1.0.0.101.100101100101...
9. Feigenbaum case 3.84944... 1.0.0.101.100100.100101100101....
10. 3.85680... 1.0.0.101.101.101.101....
11. past restr. interval 3.86 1.0.0.101.101.101.101.11....

Dots indicate the cutting times. Close before the saddle node bifurcation (1), v
has only a periodic initial part. The length of this initial part increases until, at
the saddle node bifurcation (2), v is periodic. At this point the restrictive interval
emerges. Q(k) is still defined for all k, but Q(1) = oo (case i) in Proposition
1). v remains the same past the saddle node (3), but changes when ¢ becomes
periodic (4). At this point, the orientation of the attractor switches, so as in case
ii), Q(3) = Q(3) = oo. Notice that v does not change if the map undergoes
the first period doubling bifurcation (from (5) where case ii) applies to (6) where
case i) applies for n = 6). At (7) ¢ becomes periodic again, but this time of
period 6. The second restrictive interval arises. Close to (8) we get the next
period doubling bifurcation, and this procedure repeats itself until we arrive at
the infinitely renormalizable case (9). At this point the first renormalization of f
is conjugate to the Feigenbaum map. At (10) the restrictive interval is about to
disappear. cis eventually periodic and the renormalization is conjugate to the map
z — 4z(1 — z). Past this point (11) case iii) of Proposition 1 is no longer valid,
because Q(7) =1 < 2 = Q(3).

6. The topology of w(c).

The topological structure of the critical orbit is an interesting thing to study,
not only for its own sake, but also because this structure plays a major role in the
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metric properties of unimodal map. The critical omega-limit set w(c) can be (cf.
[BL1,G])

i) a finite set, if ¢ is (eventually) periodic, or attracted to a periodic orbit.

ii) the finite union of intervals,

iii) a Cantor set. For instance w(c) is a Cantor set if f is infinitely often renormal-

izable.

The topological structure of w(c) can have consequences for the metric structure of
a unimodal map. For example, every S-unimodal map for which w(¢) is a Cantor set
and which is not infinitely often renormalizable, has a o-finite absolutely continuous
invariant measure [Ma,HK2]. Also for the existence of an absorbing Cantor set, a
certain rigid structure of the critical orbit is essential (persistent recurrence, see
below, cf. [BL2,GJ]).

In this section we will formulate conditions on the kneading map that ensure
that w(c) is nowhere dense. It is well-known that w(c) is nowhere dense if f is a
Misiurewicz map: f is a Misiurewicz map if it has a non-recurrent critical point (i.e.
¢ ¢ w(c)) and no periodic attractor. The next results show that f is a Misiurewicz
map if and only if the co-kneading map is bounded.

Lemma 4.
If Q is bounded, then Q is bounded.
Iflimg oo Q(k) = 00, then lim;_, o Q(I) = oo.

Proof. Suppose limsupy @(k) = co. Assume by contradiction that there exists an
upper bound B < oo of ). Choose a such that Q(a + 1) > B and b minimal
such that Qb+ 1) > a. cs, € (¢,¢-545441y-1) C (¢,¢—s,). By minimality of b,
Ds, D (¢c,c_s,). Hence Sp+ S, = S is a co-cutting time, and cg, € 5 ((c,c s,) =
(¢s,,c). By definition of a and (6), (c—sz,¢-s55) D (cs,,€) 3 cg,. So Q(+1) > B,
a contradiction.

For the second statement, we first have to prove that Dg, C (c:;q(k),cSQ2 (k))
for every k > 1. As in Lemma 2, let H,, 3 ¢; be the maximal interval such that
fﬁ;ﬂl is monotone. We know that f"~'(H,) = Dn. ¢s,_, € (c_5401,¢) (OF
(¢,6-84()-1))- This is a maximal interval on which fSe® is monotone. Hence
fSk_l_l(HSk) C (Cac—SQ(k)_1) and thus fSk_l(HSk) C fSQ(k)((cac—SQ(k)—J) =
(CSQ(k)JcSQQ(k)))' ~

Assume by contradiction that liminf; Q(I) = B < co. As Q(k) — oo, there
exists a such that Q(k) > B for every k > a. Secondly, there exists b such that
Q(Q?*(k) + 1) > a for every k > b. Choose I such that S; > Sy and Q(I +1) < B.
Then by (6), ¢, ¢ (ffsB,éfsB). Dg, = (csg,,,¢5-5(3)), and by Lemma 2,
property vi), S; — S(S) is a cutting time, say S,. Moreover, as c5 € (c,cs,),
cs, ¢ (c_sp,¢é_s5). So by definition of a, r < a. Let S, = S(S;). By the choice
of I, k > b. So by (6) and the definition of b, cg2(x) € (¢_s,,¢s,). It follows that
c € Ds, = f5 1 (Hg) = f&(f% 1 (Hg,) C 5 ((csg2q,,€)) C 7 ((e=s.,¢-s5,))
On the other hand, as a > r, 5 ((c_s,,¢_s,)) # c. This contradiction shows that
liminf; Q) = c0. O
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Lemma 5. f is Misiurewicz map if and only if the co-kneading map is bounded.

Proof. If f is a Misiurewicz maps, then there exists a neighbourhood U 3 ¢ such
that ¢, ¢ U for all n > 1. In terms of kneadings, this means that #(n) is bounded.
So in particular, the co-kneading map is bounded.

On the other hand, if the co-kneading is bounded, then, by Lemma 4, the knead-
ing map is bounded too. Since closest returns of ¢ occur either at cutting or at
co-cutting times, this implies that #(n) is bounded. If f has a periodic attractor,

then either Q(k) = oo for some k or )(l) = oo fore some [. This is not the case, so
f must be a Misiurewicz map. O

If only the kneading map is bounded, then f need not be a Misiurewicz map, cf.
[B1]. Still

Lemma 6. If Q) is bounded, then w(c) is nowhere dense.

Proof. Assume that f is not renormalizable; otherwise we consider the first return
map on the smallest restrictive interval. If w(c) is finite, then there is nothing to
prove. Therefore we may assume that @ is defined for all £ € N and Q(k) < B.

Recall that ¢, is an odd return if ¥(n) is odd. If ¢, is a closest odd return,
then D,, 3 ¢, so n is a cutting time. If Q(k) < B for all k, an odd return ¢, €
(c_s5,C_s5) is not possible.

Let V C (c_gy,c) be an interval adjacent to c_g, such that fS8(V) C (c_sp,c¢).
Now take n minimal such that ¢, € V. ¢, must be an even return, so D,, 3 ¢_g.
But then D15, 3 ¢, so n+Sg is a cutting time, say Sy. Moreover cs, € f52(V) C
(c_sg,¢)- So by (6), Q(k + 1) > B. This proves the lemma. O

Presently, we will discuss the notions of minimality, uniform recurrence and
persistent recurrence. w(c) is minimal if for every z € w(c), w(zx) = w(c). In
particular, if w(c) is minimal, w(c) is nowhere dense. The critical point ¢ is uniformly
recurrent if for every neighbourhood U 5 ¢, there exists N = N(U) € N such that
whenever ¢, € U, cp4; € U for some 0 < j < N.

Lemma 7. w(z) is minimal if and only if x is uniformly recurrent.
Proof. See for example [BC Chapter V, Proposition5]. O

Following Milnor [Mi], ¢ is called persistently recurrent if the critical point is
recurrent, and for every neighbourhood U 3 ¢, there exist only finitely many iterates
n such that for some V(n) 3 c1, f*(Va) D U, and f[j, is monotone. In other

words, for each neighbourhood U > ¢ there are only finitely cutting levels D,, in
the extended tower such that U C D,. (The original definition of persistence
recurrence comes from complex dynamics. It states that Yoccoz’ 7-function of the
critical tableau tends to infinity. [Mi].)

Lemma 8. Persistent recurrence implies uniform recurrence.

Proof. Recall that z is nice if f*(x) ¢ (x, %) for every n > 1. Assume by contra-
diction that ¢ is not uniformly recurrent, and let U 5 ¢ be a neighbourhood that
allows arbitrary large return times. Without loss of generality we can assume that
OU consists of nice points. If ¢, € U, let b, be the first return time of ¢,, to U,
and let W, be the smallest neighbourhood of ¢,, such that f’(0W,,) C OU. As oU
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is nice, f|bv’;," is monotone, whenever W,, # c. Moreover, the sets W,, and W,, are
disjoint if b, # by,. Hence fb»(W,,) = U unless W,, = W.

Let V,, 3 ¢; be such that f*~1(V;,) = W,,. If n is indeed the smallest integer such
that ¢, € W, then fl"‘,zl is monotone. Because ¢ is not uniformly recurrent, there
are infinitely many different sets W,,, and therefore infinitely many different sets
V,, which are mapped monotonically onto U by f**+*»~1. So f is not persistently
recurrent. [

Proposition 2. Iflim_,o Q(k) = oo, then f is persistently recurrent.

Proof. Lemma, 4 shows that both Q(k) and Q(I) tend to infinity. Choose U 3 ¢
arbitrary. Let H,, be as in Lemma 2. Choose n such that ¢, € U and f* 1(H,) D
U. Clearly n is either a cutting or a co-cutting time. If n = S, then f*~1(H,) =
(CSQ(k)7CSk—.§(Sk))' As Q(k) — oo, there are only finitely many choices of n such
that csy,, ¢ U. I n+1 =5, then (V) = (cs;,,,¢5,_s(5,)- Again, as Q) —
00, there are only finitely many choices of n such that ¢s. ¢ U. So f is persistently

Q)
recurrent. [
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