HOMEOMORPHIC RESTRICTIONS OF UNIMODAL MAPS

HENK BRUIN

ABSTRACT. Examples are given of tent maps 7 for which there exist non-
trivial sets B C [0,1] such that 7 : B — B is a homeomorphism.

1. INTRODUCTION

Let 7 : [0,1] — [0,1] be a unimodal map, i.e. T is a continuous map with a
unique turning point ¢ € [0, 1] such that T . is increasing and T|j.,y; is decreasing.
Obviously, T : [0,1] — [0, 1] is not homeomorphic, but we can ask ourselves if there
are sets B C [0,1] such that 7 : B — B is homeomorphic. If B is a union
of periodic orbits, then this is obviously the case. Also if there is a subinterval
J C [0,1] such that [T™(J)| — 0, it is easy to construct an uncountable set B C
UnezT ™(J) such that T : B — B is homeomorphic. A third example is B = w(c)
(w(z) = N;U;j>;TI(x)), when T is infinitely renormalizable. Indeed, in this case
w(c) is a so-called solenoidal attractor and T : w(c) — w(c) is topological conjugate
to an adding machine and therefore a homeomorphism. For these and other general
results on unimodal maps, see e.g. [1, 10].

In [3] the above question was first raised, and properties of B were discussed.
To avoid the mentioned trivial examples let us restrict the question for maps T
that are locally eventually onto, i.e. every interval J C [0, 1] iterates to large scale:
T™(J) D [T?(c),T(c)] for n sufficiently large. Because every locally eventually
onto unimodal map is topologically conjugate to a some tent map Ty, To(z) =
min(az,a(l — z)) with a > /2, we can restate the question to

Are there tent maps T,, a > v/2, that admit an infinite compact set B
such that T, : B — B is a homeomorphism?

This turns out to be the case. To be precise, we prove

Theorem 1. There ezists a locally uncountable dense set A C [V/2, 2] such that
T, : w(c) = w(c) is homeomorphic for every a € A.

We remark that because w(c) is nowhere dense for each a € A, A is a first category
set of zero Lebesgue measure, see [4, 2].

This paper is organized as follows. In the next section, we discuss, following
[3], some properties that B has to satisfy. In section 3 we recall some facts from
kneading theory. Theorem 1 is proven in section 4 and in the last section we give
a different construction to solve the main question.
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2. PROPERTIES OF B

Throughout the paper we assume that 7 = T, is a tent map with slope a > 1
and that B is a compact infinite set such that 7 : B — B is a homeomorphism.

Proposition 1. Under the above assumptions, B = w(c) modulo a countable set,
and w(c) is minimal.

Let us first recall a result of Gottschalk and Hedlund [8]. A self map f on a compact
metric space is called locally expanding if there exist £g > 0 and A > 1 such that
d(f(z), f(y)) > Ad(z,y) whenever d(x,y) < .

Lemma 1 ([8]). If X is a compact metric space and f : X — X is a locally
expanding homeomorphism, then X is finite.

Proof: Because f~! is continuous and X is compact, there exists § > 0 such that
d(z,y) < e implies d(f~(x), f~1(y)) < &. Obviously J can be taken small as e — 0.
In particular, if £ < &g, local expandingness gives that we can take 6 = %6. Let
U;U; be an open cover of X such that diam(U;) < e for each i. As X is compact
we can take a finite subcover UY ,U;. By definition of §, diam(f 1U;) < § and as
f is locally expanding, diam(f~'U;) < ;diam(U;) < 5. Repeating this argument,
we obtain for each n a finite cover UY | f~"U; of X and diam(f~"U;) < A™"e = 0
uniformly. Hence X must be finite. O

The proof of Proposition 1 uses ideas from [3]:

Proof: The map T is locally expanding on every compact set that excludes c.
Therefore, if ¢ ¢ B, the previous lemma shows that B is finite. Assume therefore
that ¢ € B, and hence w(c) C B. If w(c) is not minimal, then there exists € w(c)
such that ¢ ¢ w(z). Then T : w(z) — w(z) is a homeomorphism. Hence by
Lemma 1, x must be a periodic orbit, say with period N. Take U 3 x so small that
for each 0 < i < N, T~(T%(U)) has only one component that intersects B. This
is possible because 7 : B — B is one-to-one and ¢ ¢ orb(z). Let m be minimal
such that ¢,, € UNG'TH(U), say ¢m € TH(U). But then ¢,,_; € B belongs to a
component of 71(7¢(U)) that does not intersect B. This contradiction shows that
w(c) is minimal.

Now assume that z € B \ w(c) is such that ¢ € w(z). Let 0 < € < d(z,w(c)),
and let Uy = B(c; §) be the open $-ball centered at c. By taking e smaller if
necessary we can assume that if U is any interval disjoint from 7 (U;) and with
diam(U) < &, at most one component of 71 (U) intersects B. Finally assume that
T™(OU;) Uy = 0 for all n > 1. This happens if e.g. OU; contains the point in a
periodic orbit which is closest to the critical point. Because c¢ is an accumulation
point of such periodic points (for tent maps T, with a > 1), this last assumption
can be realized.

For i > 1 define U;y; to be the component of 7-1(U;) that intersects B. As
diam(U;—1) < € and T has slope > 1, diam(U;+1) < € and we can continue the
construction, at least as long as U; N T(Uy) = @. Let N be minimal such that
Un NU; # 0. Because c is recurrent, N exists. Then Uy C Uy, because otherwise
OU; C Uy and TN(9U,) C U;. This would contradict the assumption on 9U;.

Because ¢ € w(z), there exists m minimal such that 7™(z) € UN U, say
T™(x) € U;. Then, as before, 7" !(z) € B lies in a component of 71(U;)
that is disjoint from B. This contradiction shows ¢ ¢ w(z) and using the above
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arguments z must be a periodic point. Therefore B C w(c) up to a countable
set. |

3. PRELIMINARIES ABOUT KNEADING THEORY

Let us start with some combinatorics of unimodal maps. Write ¢,, := T"(c). We
define cutting times and the kneading map of a unimodal map. These ideas were
introduced by Hofbauer, see e.g. [9]. A survey can be found in [5].

If J is a maximal (closed) interval on which 7™ is monotone, then 7" : J —
T™(J) is called a branch. If c € 8J, T™ : J — T™(J) is a central branch. Obviously
T™ has two central branches, and they have the same image. Denote this image by
D,,.

If D, 3 ¢, then n is called a cutting time. Denote the cutting times by {S;}i>o,
So < S1 < S2 < ... For interesting unimodal maps (tent maps with slope > 1)
So =1 and S; = 2. The sequence of cutting times completely determines the tent
map and vice versa. It can be shown that Sy < 2S;_; for all k. Furthermore, the
difference between two consecutive cutting times is again a cutting time. Therefore
we can write

(1) Sk = Sk—1+ Sq(r)>

for some integer function @, called the kneading map. Each unimodal map therefore
is characterized by its kneading map. Conversely, each map @ : N - N U {0}
satisfying (k) < k and the admissibility condition

(2) {QUk + ) }iz1 = {QQ*(R) + ) }ix

(where > denotes the lexicographical ordering) is the kneading map of some uni-
modal map. Using cutting times and kneading map, the following properties of the
intervals D,, are easy to derive:

L

[¢n+1,c1] ifc€ Dy.
Equivalently:
(3) D, = [cn,cn_s,], where k = max{i;S; < n},
and in particular
Ds, = [cSkJCSQ(k)]'
Let z; < ¢ < Zi be the boundary points of the domains the two central branches of
TSk+1. Then z, and 3 lie in the interiors of the domains of the central branches
of T and T5*(z) = T5%(3) = c. Furthermore, 77 is monotone on (z,c) and

(¢, 2k) for all 0 < j < Si. These points are called closest precritical points, and the
relation (1) implies

(4) T5=1(c) € (2o -1, 2Q(k)] Y [2ak) Zo(k)—1)-

We will use these relations repeatedly without specific reference.
Let us also mention some relations with the standard kneading theory. The
kneading invariant k = {kp}n>1 is defined as

0 7™ <ec,
kn=1< * if T"(c) =¢,
1 i 7T™(c) >e.
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If we define
(5) 7: N2 N, 7(n) = min{m > 0;km # Em+n},
then we retrieve the cutting times as follows:
So =1 and Sg1 = Sy, + 7(Sk) = Sk + Sg(k+1) for k> 0.
In other words (writing «} = 0 if k; = 1 and vice versa),
(6) Ki...Kg, = nl...nsk_lﬁl...ngmk).

For the proofs of these statements, we refer to [5].

4. PROOF OF THE THEOREM

Let us introduce an adding machine-like number system that factorizes over
the action T : w(c) = w(c): Let {Sk} be the cutting times of a unimodal map and
assume that the corresponding kneading map @ tends to infinity. Any non-negative
integer n can be written in a canonical way as a sum of cutting times: n =3 e;S;,
where

e; = { L if i = max{j; S; <n =34, exSk},
0 otherwise.
In particular e; = 0 if S; > n. In this way we can code the non-negative integers
N as zero-one sequences with a finite number of ones: n — (n) € {0,1}N. Let
Ey = (N) be the set such sequence, and let E be the closure of Ej in the product
topology. This results in

E={e€{0,1}N;e;=1=¢; =0for Qi +1) < j < i},

because if e; = eg(;41) = 1, then this should be rewritten to e; = eg(;+1) = 0 and
ei+1 = 1. It follows immediately that for each e € E and j > 0,

(7) eOSO+eISI ++€]S] <Sj+1.

There exists the standard addition of 1 by means of ‘add and carry’. Denote
this action by P. Obviously P((n)) = (n + 1). It is known (see e.g. [6, 7]) that
P : E — E is continuous if and only if Q(k) — oo, and that P is invertible on
E\ {(0)}. The next lemma describes the inverses of (0) precisely.

Lemma 2. For a sequence e € E, let {g;};>0 be the index set (in increasing order)
such that e,; = 1. We have P(e) = (0) if and only if e ¢ Eo, Q(qo +1) = 0 and
Qg +1)=gj—1+1 forj>1.

Proof: This follows immediately from the add and carry construction, because the
condition on {g;} is the only way the addition of 1 carries ‘to infinity’. O

The next lemma gives conditions under which P is invertible on the whole of E.
Lemma 3. Let QQ be a kneading map such that Q(k) — oo. Suppose that there is
an infinite sequence {k;} such that for all i and k > k;

o cither Q(k) > k;,
e or Q(k) < k; and there are only finitely many | > k such that Q™(l) = k for
somen €N,

then P is a homeomorphism of E.
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Proof: Because P is continuous and invertible outside (0) and E is compact, it
suffices to show that #P~({0)) = 1. Let e € P ((0)) and let {g;}; be the index
sequence of the non-zero entries of e. By the previous lemma and our assumption,
we see that {k; — 1} must be a subsequence of {g;};. But because any ¢; determines
g;j for j' < j, there can only be one such sequence {g;}; and one preimage e. [

Example 1 Take any sequence {k;} with k; > k; 1 + 10 and define @ as

k—4 if k> K and k—4 € {k;},

Q) = k—3 ifk>K and k-5 € {k;},
) arbitrary if k<K,
k—2 otherwise,

provided @ is admissible. It is shown in [5] that @ belongs to a renormalizable map
of period Sy, if and only if

(8) Q(k+1)=kand Q(k+j) >k forall j >1.

Because Q(k) < k — 2 for k > K, we can avoid renormalizable maps. This shows
that there is a locally uncountable dense set of tent maps, whose kneading maps
Q satisfy Lemma 3 and Q(k) — oo. In fact, this example also satisfies conditions
(11) and (12) of Theorem 2 below.

Remark: Lemmas 2 and 3 also indicate how to construct a number systems (E, P)
where for d € NU {No}, (0) has exactly d preimages. For example, if Q(k) =
max(0, k—d), then (0) is d preimages. The rest of this section makes clear that this
yields examples of maps where 7 : w(c) — w(c) is one-to-one except for d points in

Unon_n(C).

Given n € (Sk—_1,Sk], define f(n) = n — Si_1. It is easy to check that (5(n))
is (n) with the last non-zero entry changed to 0. The map £ also has a geometric
interpretation in the Hofbauer tower: It was shown in [6, Lemma 5] that for all
n>2,

(9) D, C Dﬁ(n)-

In fact, Dy, and Dg(y,) have the boundary point cg(,) in common. Recall that for
e € E, {g;}; is the index sequence of the non-zero entries of e. Define

b(l) = Z eij.
AL
We have b(i) > S, by definition of ¢; and b(i) < Sy 41 by (7). It follows that
B(b(i)) = b(i —1). By a nest of levels will be meant a sequence of levels Dy ;).
By (9) and the fact that B(b(i)) = b(: — 1), these levels lie indeed nested, and

because Q(k) — oo implies that |D,| — 0 (see [5]), each nest defines a unique
point z = N; Dy(;y € w(c). Therefore the following projection (see [6]) makes sense:

m((n)) = cn
and
(10) 7r(e ¢ Eo) = miDb(i)-

Obviously 7 o = 7o P and it can be shown (see [6, Theorem 1]) that 7 : E — E
is uniformly continuous and onto.

Note that a nest contains exactly one cutting level Dy(g). If {Dy; }: is some nest
converging to x, then {7 (Dy(;))}: is a nested sequence of levels converging to 7 ().
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To obtain a nest of 7 (z), we may have to add or delete some levels, but {7 (Dy;))}
asymptotically coincides with a nest converging to 7 (z).

Theorem 2. If ) is a kneading map that satisfies Lemma 3 as well as

(11) Qk+1)>Q(Q*(k)+1) +1
for all k sufficiently large, and

(12) Q(s+1)=Q(5+1) for s # 5 implies Q" (s) # Q" (3),

for any n,7 > 0 such that Q™(s) # Q™(3), then any map T with kneading map Q
is homeomorphic on w(c).

Proof: In view of Lemma 3 we only have to show that 7 : E — w(c¢) is one-to-
one. First note (see also [6, Theorem 1]) that 7=!(c) = (0). Indeed, if e # (0) and
m(e) = ¢, then, taking k < [ the first non-zero entries of e, ¢ € Dg, ts,- Then S;+.5;
is a cutting time S, and we have m =1+ 1 and k = Q({ +1). This would trigger a
carry to e, = ¢, = 0 and e,;, = 1. Because P is invertible, also #7 "(¢) Nw(c) =1
for each n > 0. Assume from now on that z € w(c) \ Up>o7 "(c). We need one
more lemma:

Lemma 4. Let T be a unimodal map whose kneading map satisfies (11) and tends
to infinity. Then there exists K such that for any n ¢ {S;}; such that B(n) is a
cutting time (i.e. n = S, + Sy for somer <t withr < Q(t+1)), and every k > K,
int Dy, does not contain both cs, and a point from {2q(k+1)—1,2Q(k+1)—1}-

Proof: Assume the contrary. Write n = S, + S; with r < Q(¢ + 1) and let k
but such that zgri1)—1 Or Zg(kt1)-1 € Dn C Dg,. Formula (4) implies that
Q(r+1) < Q(k+ 1), see figure 1.

CS.+S,

> Cg,

Cs,

c £Quir)-1
Figure 1: The levels Dgs, and Dg, s,

It follows that also zg(r41) OF 2g(r+1) € Ds,+s, and therefore S, + S; + Sq(ry1) =
S¢r1- This gives

(13) r+1=Q(t+1),

and S, + 8¢ = Siy1 — Sg241)- If also zg(ry1)41 O 2Q(r41)41 € Ds,+s,, then
SQ(r+1)+1 — SQ(r+1) + St+1 = Si+2, which yields QA(r+1)+1) = Q(t+2). Using
(13) for t + 1, this gives Q(t + 1+ 1) = Q(Q?(t + 1) + 1). This contradicts (11), if
t is sufficiently large. For smaller ¢, there are only finitely many pairs r < ¢t. For k
sufficiently large (recall that Q(k + 1) — oo, so ¢s, — ¢), Ds,+s, # c¢s,- Hence

(14) Dg, s, contains at most one closest precritical point.

Therefore, as cs, € Ds,ts,, Q(r +1) = Q(k + 1) — 1. Take the Sg(,41)-th iterate
of Ds, s, and [c, cs,] to obtain Ds, 154, N Ds,,, # 0, see figure 2.
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CSppq

CSa(r+1) > CSi+Sq(r+1)

2Q(Q(r+1)+1) ZQ(H—I2)71 c

Figure 2: The levels Dg,,,,,+s, and Dsg,

By (13) we have Q(Q(r + 1) + 1) = Q(Q*(t + 1) + 1), and using (11) on t + 1, we
obtain

QI+ +1) < Qt+1+1)—1=Q(t+2) 1.
Hence there are at least two closest precritical points contained in Dg, 55,4,
This contradicts the arguments leading to (14). O

We continue the proof of Theorem 2. Observe that if 7(e) = 7(é) = z for some
e # &, then the corresponding nests {Dj(;)} and {Di(i)} are different, but both
nests converge to z. Because 2 ¢ Up>oT ~"(c), #r(T™(z)) > 1 for alln > 0. We
will derive a contradiction.

Claim 1: We can assume that b(0) # b(0).

Let i be the smallest integer such that b(i) # b(i), say b(i) < b(i). Then also
¢ < G. Letl = Sz 1 — b(i). By (7), I is non-negative. By the choice of I,
(PL(€)); = 0 for all j < §, but because b(i) < b(i) and I + b(i) < Sj,41, there is
some j < g; such that (P'(e)); = 1.

Replace 2 by T?(z), and the corresponding sequences e and & by P!(e) and P!(é).
Then for this new point, go < o and b(0) < b(0). This proves Claim 1.

Claim 2: We can assume that Q(go + 1) #Z Q(go + 1)

Assume that Q(go + 1) = Q(go + 1) =: . We apply P°" to e and é. Write s =
min{j; (P (e)); = 1} and § = min{j; (P°"(é)); = 1}. To make sure that Claim
1 still holds, assume by contradiction that s = §. Then (using (7)), Zj;é e;jS; =
E;;é €;S; = Ss — S;. But this would imply that e; = €; for all j < s, which is not
the case. Hence s # 5.

From the add and carry procedure it follows that e;_; = 1 for j = Q(s), Q*(s),

..y go+1=Q"(s) for some n, and similarly &;_; = 1 for j = Q(3), Q*(3),...,Go +
1 = Q®(3) for some 7. As Q(go + 1) = Q(do + 1), hypothesis (12) implies Q(s +
1) # Q(3+ 1). This proves Claim 2. Replace = by 7°"(z) and the corresponding
sequences e and é by P5"(e) and P (&).

Note that we can take qo # do arbitrarily large, with say Q(qo + 1) < Q(go + 1).
Then we are in the situation of Lemma 4, which tells us that Dy) N DB(o) = 0.
Therefore the two nests cannot converge to the same point. This contradiction
concludes the proof. O

Proof of Theorem 1: Combine the previous theorem with Example 1. O

5. A DIFFERENT CONSTRUCTION

In this section we give a different construction which does not involve the as-
sumption Q(k) — oo. Let ky be arbitrary and ks = k; + 1. Put recursively for
i>3,

ki =2k;_1 —ki_o+1, de. ki —ki_1 =ki_1+ki_o+1.
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Define the kneading map as
(15) Q(k;) =k; — 1 for i > 3,

and choose Q(k) arbitrary for k¥ < ks so that (2) and (11) below are not violated
for k < ky + 2. To finish the definition, let

(16) Qki +J) = Q(ki1+j—1)fori>2,1<j<kiy1 —ki.
A direct computation shows that (15) and (16) imply (11) for all k& > ks. Therefore
the construction is compatible with the admissibility condition (2). Moreover, (15)

and (16) show that condition (8) is not met for k& > ka. Therefore @ does not
belong to a renormalizable map of period > Sy, .

Theorem 3. If T is a unimodal map with the kneading map constructed above,
then T : w(c) = w(c) is a homeomorphism.

Proof: Write B = w(c). Using the levels D,, of the Hofbauer tower, we will construct

. . Sk,
covers of B to show that 7 : B — B is a homeomorphism. Let A; = Un'“:’Sk'_lJran.

We will use the following claims:

(17) csy, 1 € [cs, 1 —cs,] for every k < k;.
(18) cn ¢ int Dg, for 0 <n < Sg,.
(19) A; consists of disjoint intervals.
(20) cn € Aj for Sg,_1 <n < Sp,py 1
(21) Ay CA;

Proof: Claim (17): Recall the function 7 from (5). Obviously 7(n) > 7(m) implies
that ¢, € (c¢m,1 — ¢m). By construction and equation (6), 7(Sk;—1) = Sq(k;) =
Ski—1 > Sq(r+1) for all k < k;. Hence cs, _, € [cse, 1 — cg,] for every k < k;,

Claim (18): By construction Dg, = [cs, ;Cs4,,] = [csy, s Csi,_,]- We have

G,- = min{T(Ski),T(Ski_l)} = Ski—l—l‘
Because 7(Si) < G; for all k < k; — 1, k # k;—1 — 1, we obtain cg, ¢ Dg, for these
values of k. If k = k; — 1, then cg, € HDS,%, and not in the interior. With respect
to ki1 — 1, note that by (16), Q(ki—1 — 1) = Q(k; — 1), so ks, _, = Ks,,_, and
csy,_,—, and cg, _, lie on the same side of c. Because also 7(Sk;_, 1) = Sq(k;_,) <
SQ(ki) = 7(Sk; 1), CSh;_1—1 ¢ Dski .

It remains to consider non-cutting times n < Sy,. Assume by contradiction
that ¢, € int Dg, , i.e. D, intersects Dg, in a non-trivial interval. Then also
Dg(ny intersects Dg, where j is as in (9). By taking B (n) instead of n for some
Jj >0, we may assume that $(n) is a cutting time. In particular, ¢, € int Dg, and
n =S+ St < Sk,, where Q(¢t + 1) > k. If k is such that 7(Sk) < G;, then by (11)
and Lemma 4, D,, N Dg, =0. If k =k; — 1, then Q(t + 1) > k implies t > k; — 1,
contradicting that Sy + lSt < Sk;- The last possibility is that ¥ = k;—1 — 1 and
t = ki—1 — 1. The above arguments showed that cg, _, and cg,,  _, lie on the same

side of ¢. Because 7(Sk;_,—1) < 7(Sk;—1), Lemma 4 applies after all. This proves
Claim (18).
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Claim (19): Suppose by contradiction that D,, N D,, # 0 for some Si,_1 < m <
n < Sk,. Then also 7% ~"(D,,) N T+ ~"(D,,) = Dyt s, —n N Ds,, # 0. Because
Sk, +m — n is not a cutting time, at least one endpoint of Dy s, —n is contained
in Dg, . This contradicts the previous claim.

Claim (20): Clearly CSy,_1 € [CSk,-aCSk,-_l] = Dg,, C A; and for Sy, 1 <n < Sk,
¢n € D, C A; by definition. So let us consider n = Si, + 1. By construction of @
and (6) we obtain

m = Ski+1*1 — Sk
(22) = SQki+1) T S@ui+2) T+ SQki 1)
= 5Qhic1) T SQ(hica+1) T+ SQ(ki—1)
= Ski-1 = Ski_1—1 = SQ(k;) = Ski_1—15

K:Ski-f-l e HS’%+1—1 = Hski_1_1+1 e K:SQ(k,-) = I{J,gki_1+gki_1_1+1 e K:‘Iski .
Here we ‘shifted’ the word ks,  _,+41...sq,, Over Sk,—1 entries and used (6)
to obtain the second equality. Therefore cg, 1 lies in the same interval of mono-
tonicity of 7™~! as the level Ds, _ 15, 141 = €S, 448k, ;141> CSu,_,—1+1]-
Furthermore 7™ *(cs,, +1) = cs,,,,_, and

(23) Tm_l(DSk,-—1+Sk,-_1—1+1) = TSQ(ki)_l(DSk,-—1+1) = Dsk,- .
Claim (17) gives cs,,,,_, € Ds,,. Therefore

(24) CSi+1 € Dy 148,141
and ¢p € Dg,. 48, | _14n-S,, C A for all Sg, <n < Sk, 1.
Claim (21): We need to show that
Ds,, ., _1+5 CAifor 1 <j < Spiy — Skipa—1 = Shiya—1-

Because 7(Sk; 1) < T(Skiy1-1); CSiyyy -1 € [C8y,1, 1 —Cs,, ] Hence Dy, 145 C
DSk,-—H-J' for0<j< SQ(ki) = Skifl.

For j = Sq(t;), Dsy,.1+i = Ds,,, and the above line shows that Dg, D
DSk,-+1—1+J' and these two intervals have the boundary point CSaem;) in common.
Because also Q(ki) = ki — 1, we get D, _,+; C Dg, i 4(j—s,,_q) for Sg,—1 <
J< Ski*l + SQ(k,) = Ski'

By formula (24), one boundary point cs, +1 € 8ngi+1_1+5ki+1 belongs to
Dski—l+ski_1—l+1' A fortiori, DSki+1—l+j N DSki—1+Ski_1—1+(j*Ski) # 0 for Sk, <
Jj < Sk, + (Sk; — (Ski—1 + Sk;_,-1))- In particular (cf. (23)), for j = Sk, +
(Sk;, — (Sk;—1 + Ski_1-1)) = Sk, + Ski—1 — Sk;_, -1, Ds,, ., _1+; intersects the level
Ds,. 1454, ,-1+(G—5s,) = D2s,,_, = Ds,,- (Here we used Q(k;) = k; — 1, i.e.
Sk, = 2Sk,—1). At the same time, by (22), j = Sk, + Sk;—1 — Sk;_,-1 = Sk¢+1—1
and therefore Ds,  _,1; = Ds,, . Thus the intersection is actually an inclu-
sion: DSki+1 C Dy, and D‘Ski+1_1+-j C Dsy. 148k, _1+(—S;) for all j, Sk, < j <
Skis1—1- This proves Claim (21).

Let i be arbitrary. By construction, A; D {c,c1,...,¢s,, }. Claim (21) used
repeatedly gives orb(c) C A;, and because A; is closed, B C N;A;. Finally, to prove
that 7 : B — B is homeomorphic, it suffices to show that 7 : B — B is one-to-one.
Suppose by contradiction that there exist y,y’ € B, y # ', such that T (y) = T (v').
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Take i so large that y and g’ lie in different intervals of A;. Say y € D, and
y' € D,,. Because y # ¢ # y', we can assume that Si, 1 < m <n < Si,. But then

T(D

m) N T(Dp) = D1 N Dyt # 0, contradicting Claim (19). This concludes

the proof. O

(1]

(10]
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