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The notion of exactness of a noninvertible map was first introduced by Rohlin who
proved, in the measure preserving case, that exact endomorphisms have no nontrivial
measurable factors with zero entropy [21]. He showed that some piecewise monotone
and continuous interval maps described by Renyi in [20] were exact. In this paper
we address the question of exactness for smooth maps of an interval and study the
structure of many nonexact interval maps as well as give sufficient conditions for S-
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Abstract

We study exactness and maximal automorphic factors of C® unimodal maps
of the interval. We show that for a large class of infinitely renormalizable maps,
the maximal automorphic factor is an odometer with an ergodic nonsingular
measure. We give conditions under which maps with absorbing Cantor sets have
an irrational rotation on a circle as a maximal automorphic factor, as well as
giving exact examples of this type. We also prove that every C3 S-unimodal
map with no attractor is exact with respect to Lebesgue measure. Additional
results about measurable attractors in locally compact metric spaces are given.

Introduction

unimodal maps to be Lebesgue exact.



It is well-known that every exact measure preserving endomorphism has positive
measure theoretic entropy. The notion of exactness of an endomorphism extends easily
to non-measure-preserving, nonsingular maps even though a satisfactory definition of
nonsingular entropy is still elusive. A nonsingular map 7" of a measure space (X, B, )
is ezact if the intersection N,>oT" "B, called the tail field of B, contains only sets of
full measure or measure 0. The maximal automorphic factor of T is its induced action
on the tail field; it is the trivial map on a one-point space if and only if T is exact.

In this paper, the main dynamical systems of interest are smooth unimodal maps
of the interval. Throughout, the measure of interest is one-dimensional normalized
Lebesgue measure A\. We show that a variety of measurable automorphic behavior is
exhibited by these maps; it is well-known that the presence of a measure theoretic
attractor of Lebesgue measure zero forces the map to be dissipative with respect to A,
but does not preclude the existence of conservative Lebesgue factors.

After giving a brief review of nonsingular ergodic theory and preliminary definitions,
we prove some results about dynamical systems with measurable attractors. We show
that every ergodic nonsingular dynamical system of a locally compact metric space with
an attractor of measure zero admits an equivalent invariant infinite o-finite measure.

We then turn to unimodal maps of the interval for examples. We prove that every
C?® S-unimodal map with no attractor is exact with respect to A\. Next, we consider
examples with measure theoretic attractors which have been studied and classified
by several authors [2, 11, 14]. We exhibit the easily identified maximal automorphic
factor in the presence of either a stable periodic orbit or a cycle of intervals (finitely
renormalizable). In the case of an infinitely renormalizable map (of bounded type),
we show that it is a dissipative map with maximal automorphic factor isomorphic to
an odometer. The factor measure on the odometer is nonsingular but not necessarily
invariant.

Finally we discuss the case of maps which have absorbing Cantor sets. These maps
were shown to exist in [5]. We give conditions under which the maximal automorphic
factor is an irrational rotation on a circle as well as an exact example. Irrational
rotation factors, as topological factors were shown to exist in [6]. The authors would
like to thank Gerhard Keller for useful remarks and corrections on an earlier version
of this paper.

2 Preliminaries
We assume throughout this paper that (X, B, 1) is a locally compact metric space with

metric d, Borel o-algebra B on X and p a regular Borel probability measure on B.
Infinite measures are always assumed to be o-finite. We assume that 7" is nonsingular;



ie, T : X — X satisfies: p(4) =0 <= pu(T *A) = 0 for every A € B. We
also assume that every point in X has at most countably many preimages under 7'
Furthermore in all of our examples we will assume without loss of generality that 7" is
forward nonsingular as well; i.e., that u(A) =0 <= p(T'A) = 0 for all measurable sets
A. For example, any C! map of a manifold onto itself whose differential is nonvanishing
except at finitely many points is forward and backward nonsingular with respect to the
Riemannian volume form (locally equivalent to Lebesgue measure). Let By C B denote
the collection of measurable sets of positive measure. In order to stress the presence
of both a topology and a Borel measurable structure, we will refer to (X, B, u,T) as a
nonsingular dynamical system.

Definition 2.1. Let (X, B, u,T) be a nonsingular dynamical system. The nonsingular
dynamical system (Y,C,v, S) is a (measurable) factor of (X, B, u,T) if there exists a
surjective measurable map m : X — Y such that S onw(z) = mwoT(x) p-a.e., and
Ve~ o Tl

A sub-o-algebra B, C B is T-invariant if T-'B, C B,. It is well-known that every
factor map gives rise to a T-invariant sub-c-algebra, {7~'C}cec C B, and conversely.
We refer the reader to Rohlin [21] for details.

2.1 Nonsingular Measure Theory

We review some basic definitions used in nonsingular measure theory; when the map in
question is neither invertible nor measure-preserving, ergodic properties need careful
definitions. Some equivalent definitions are no longer equivalent in this setting and
others simply do not extend. (For example, it is still an open question as to what
the definition of mixing should be for nonsingular noninvertible maps [1]). We assume
(X,B,u,T) is a nonsingular dynamical system though these notions apply in more
general measure theoretic settings.

A measurable set W is (backward) wandering if the sets {T-"W }>° , are all disjoint.
Equivalently, no point in a wandering set W ever returns to W. A measurable set V
is forward wandering if the sets {T™V }>° , are all disjoint. Every forward wandering
set is also (backward) wandering, but the converse is not true. If 7 is invertible the
concepts are identical. We will use the usual convention that wandering set always
refers to a backward wandering set.

The map T is conservative if there exist no wandering sets of positive measure.
There exists a maximal set C' on which 7" is conservative, and C C T'C. A non-
conservative map is called dissipative; if T is not conservative on any set of positive
measure, then T is completely dissipative, and we can write X as the (at most count-
able) union of wandering sets up to a set of measure 0.



The map T is ergodic if T has a trivial field of invariant sets, or equivalently, if
any measurable set B with the property that u(BAT 'B) = 0 has either zero or full
measure.

It follows from the definitions that 7" is conservative and ergodic if and only if for
all sets A, B € B, there is a positive integer n such that u(BN7T"A) > 0.

A map is ezact if it has a trivial tail field N,>,T "B C B, or equivalently, if any set
B with the property u(7~"oT"(B) A B) = 0 for all n has either zero or full measure.
For any set A € B, we define a tail set from it by:

Tail(A) 1= UnenT ™ 0 T"(A).

Denoting the tail sets (¢ mod 0) by 7 C B, we have Ny>o7 "B =T (x mod 0). There
is a natural factor mapping onto 7 called the exact decomposition (of 7" with respect
to u), and T acts as an automorphism on the factor space. We denote the factor space
by (Y,C,v), and the induced automorphism by S; note that a point in Y is an atom of
the measurable partition generated by the relation z ~ w <= T"z = T™w for some
n € N. We call this factor the mazimal automorphic factor; this is because if there is
a factor map ¢ : X — Z with induced factor automorphism R, then R is a factor of
S. We remark that in general (Y,C, S, v) is a nonsingular endomorphism of a Lebesgue
space with no specified topology.

It is well-known that any invertible ergodic nonsingular transformation of a nonatomic
measure space is conservative, and virtually all of the examples we consider below are
ergodic, so their automorphic factors will be either conservative or atomic, or both.
In the next result, we give a condition that rules out the dissipative possibility for an
automorphic factor. We recall that every invertible, dissipative, ergodic, nonsingular
transformation of a o-finite space is isomorphic to x — x+1 on Z with an appropriately
weighted counting measure.

Lemma 2.1. If (X, B, u,T) is a nonsingular dynamical system, and if By contains no
forward wandering sets, then every automorphic factor of T is conservative.

Proof. The trivial factor is conservative, so we assume that 7" has a nontrivial au-
tomorphic factor. We will denote the projection onto the automorphic factor by ,
the factor space by Y, and the induced automorphism by S. Then if S is not con-
servative, there exists a wandering set W of positive measure. Since S is an auto-
morphism, the sets {S "W},cz are all disjoint (in Y). Then, by definition of the
factor, the sets 7 1(S W) are also disjoint and equal to the (disjoint) collection of
sets {T"(7~'W)},ez (in X). This contradicts the hypothesis since 7' W has positive
measure and is forward wandering. O



Remark: One can construct examples of ergodic dissipative maps with conservative
factors. If we consider the product of a K-automorphism S with the dissipative ergodic
endomorphism R(n) = n + 1 on N with counting measure, then the map 7’ = S x R
is dissipative and ergodic with a conservative automorphic factor (which is S). Below
we will show that such examples occur within the family of S-unimodal maps.

The following result is well-known but we include it for completeness.

Lemma 2.2. If T is nonsingular and exact, then T is totally ergodic; i.e., for each
n € N, T" s ergodic.

We give a necessary and sufficient condition for exactness which will be useful in the
context of interval maps.

Proposition 2.1. An ergodic nonsingular endomorphism T is exact on (X, B, u) if
and only if for every set B € By, u(T~™" o T (B) N B) > 0 for some n € N.

Proof. Assume first that T is exact and A € B, with pu(T™" o T"(A) N A) = 0 for
every n € N. This means that u(7Zail(TA) N A) = 0, but this is impossible since
u(Tail(TA)) = 1 by exactness and nonsingularity. To prove the other direction let
(Y,C, v, S) be the maximal automorphic factor of (X, B, u,T), 7 : X — Y being the
factor map. Assume by contradiction that 7" is not exact, i.e. (Y, B, v, S) is nontrivial.
Then there exists C € C such that v(C) > 0 and C N S(C) = (. Take B := 7 (C).
Since the maximal automorphic factor is isomorphic to the tail field of (X, B, 4, T), B
satisfies T~" o T"(B) = B (u mod 0) for all n. The same thing is true for T(B) =
mt 0 S(C). By assumption 0 < u(T"™ o T""Y(B)N B) = u(T™™ o T"(T(B))N B) =
u(T(B) N B). Hence 0 < v(n(T(B) N B)) = v(S(C) N C), contradicting the choice of
C. O

3 Measurable Attractors

An important link between the topological and the measure theoretical dynamics occurs
when there are attractors present. The definition of measurable attractor we give here
was introduced by Milnor [18]. We assume that (X, B, i, T') is a nonsingular dynamical
system.

For any point x € X, the omega limit set w(x) is defined as w(x) = NUjsn T ().
With our standing assumptions on X, for each z € X, w(x) is a Borel measurable set.

Definition 3.1. For a set A, we define

B(A) :={z € X;w(z) # 0,w(z) C A},



and call it the basin of A. An attractor is a compact subset A C X such that u(B(A)) >
0, and there is no proper subset A" C A, such that p(B(A")) > 0.

Obviously, an attractor is invariant: T(A) = A. Milnor defined attractors to be
closed, but as he was considering endomorphisms on compact manifolds and our space
is only locally compact, we define attractors to be compact.

Proposition 3.1. If (X, B, u,T) is ergodic, there can be at most one attractor and
w(X \ B(A)) = 0. Moreover, for any neighborhood U of A and any x € B(A), there
exists N such that T™(x) € U for alln > N.

Proof. The basin of an attractor is clearly completely invariant and has positive mea-
sure, so it must have full measure.

It suffices to prove the second statement for small neighborhoods only. By continuity
of T, we can take U D A so small that T'(U) is contained in a compact set K C X.
If z € B(A), then there exists a sequence {n;} such that 7" (z) — A. Suppose that
T"(x) ¢ U infinitely often. Then there exists a sequence {m;}, m; > n;, such that
Tmi(x) € U but T™ % (x) € K\U. Because K \U is compact, the sequence {T™i*!(z)}
has an accumulation point y € w(x) \ U, contradicting that w(x) C A. O

Without loss of generality we can assume that p is a probability measure on X (by
replacing u by an equivalent one if necessary). Typically we are interested in the case
where u(A) = 0 and u(B(A)) = 1. In this case we can show that the map is completely
dissipative.

Proposition 3.2. If (X, B, u,T) is an ergodic nonsingular dynamical system with an
attractor A satisfying p(A) = 0, then T is completely dissipative.

Proof. Suppose that there exists a set C' € By on which T is conservative. By the
regularity of u, we can find a compact set K C C, u(K) > u(C)/2, and such that K
does not intersect some neighborhood U of A. Conservativity on K implies that p-a.e.
r € K returns to K infinitely often, but the previous lemma shows that K is in the
basin of A p-a.e., so p-a.e. point enters U and stays there. Hence no such K exists. [

3.1 Maps with Attractors have o-finite Measures

Suppose the nonsingular dynamical system (X, B, u, T) has an attractor of measure 0.
Even though T is completely dissipative, we show that there exists a o-finite invariant
measure equivalent to p.

Before giving the proof of the result, we review some properties of nonsingular
countable-to-one maps. We assume that (X, B, u) is a Borel probability space and



T : X — X is a nonsingular ergodic endomorphism which is surjective and countable-
to-one almost everywhere. Since 7' is countable-to-one, we apply a well-known result
of Rohlin [13] to obtain a measurable partition ¢ = {A;, Ay, As, ...} of X into at most
countably many sets, called atoms, satisfying:

1. u(A;) > 0 for each i
2. the restriction of T to each A;, which we will write as T}, is one-to-one;

3. each A, is of maximal measure in X \ |J A; with respect to property 2;
j<i

4. T is one-to-one and onto X (by numbering the atoms A; so that
T A;) > (T Aiyr)

for ie N).

We call a partition ( of this form a Rohlin partition.

The map T ' oT gives an obvious factor map from X onto A;. Since T is countable-
to-one, each fiber over x € A; contains at most countably many points (these are the
points & = wy, ..., Wy, ... such that T'(x) = T'(w;)) and there is an atomic probability
measure i, associated to each point z, p,j = 1,...,n,..., which is just the factor
decomposition of the measure u, viewed as a measure on X over the fibers of A;. The
measures U, vary measurably in x.

We now turn to the main result of this section.

Theorem 3.1. Let (X, B, u,T) be an ergodic nonsingular dynamical system, where
1s a o-finite reqular Borel measure and X 1s a metric space such that T is countable-
to-one and T'(X) = X. Assume that X has an attractor A such that u(A) = 0. Then
there exists a o-finite invariant measure v which is equivalent to .

Proof. As mentioned above, we can assume that u(X) = 1. We define the sets X;,
i > 1, as follows: X := X, Xy; := {x € T(X2i_1);d(T"(z),A) < 27" for all n > 0} and
Xoir1 = T(Xy;). Obviously T(X;) D X;;1 and because A is an attractor, u(X;) > 0
for all .

Let X be the disjoint union ;> X; equipped with the action

X X;y1 if 7 is even,
TxeX;)=T(x) € X;p1 ifiisodd and T(x) € X;41,
Xi if 7 is odd and T(ac) € XZ \ Xi—i—l-



If 7 : X — X is the standard projection, then my 0o T = T o my. We note that each
X; can be viewed as a subset of X with the restriction measure p; := p|x,. Then the
nonsingularity and forward and backward measurability of 7" gives the corresponding
properties for T with respect to the measure

p(B) == Z ni(BNX;).

By construction, Xy; is backward wandering in X for each i. Moreover, for p-a.e.
* € Uj<; X, there exists a unique n > 0 such that T”(a:) € Xo;.

We define a sequence of measures fi, on X starting with fi. Let ju|x, = plx,,
and inductively extend the measure to X; LI X, as follows. By our assumptions we can
write X; = UjT_j (X2), where the sets in the union are mutually disjoint and each has
positive p-measure. By using the ergodicity of 7', we can consider this disjoint union
of X; := X as defining a measurable partition of X;, Q = {T71(X,), T2(X,)...}.
Therefore it is enough to define fiy|;—; (X)" We proceed inductively on j.

Consider any B C T~ X, and, we suppose first that B =T 1o T(B) p-a.e.;ie., B
is 718 measurable set. Then we define

ﬂl(B) = [ (T(B))a

In order to compensate for the fact that 7", hence T is not one-to-one everywhere (and
therefore there are measurable sets not of the above form), we refine @ by a Rohlin
partition (for 7" on X) ¢ = {4y, Ay, ..., Apn,... }. We note that A; intersects every
atom of @ in a set of positive measure since T" maps A; onto X. Define the sets

i = Ak N T_jXQ,
for each 7,k € N. Denote for each j, k, the relative size of each Ay in T‘sz, by

of = ,UA(Q?;) _
FTIX)

Then for every 7, >+, o) = 1. Write By, := BN Q} and define:

fn(Bi) = aj - fuu o T(By) and un(B) =) _ ju(B)-

In particular,



We give the inductive step. If [i; is de_ﬁned on Ui<jT’iX2, we extend it to 79X, as
follows. For B C T 7 X, By := BN @Y, and T(By) C T~ U1 X,, so we define:

n(By) = g - fu o T(By).

Zﬂl By).

We extend the measure [i; to all of X by setting 11 (B) = 0if B C U;,52X,,. Therefore
fn(B) = fu(T~(B)) if B C X, UX,, and fu(B) = 0 if BN (X; U X,) = 0. Note that
by construction fiy (T7(X;)) = pu(X,) for every j, so iy is infinite and o-finite.

We now continue inductively on n and define /i, by

Then, as before,

N ~ A1
Mnt1 :,U'nOT .

Clearly fin41 > fin; furthermore, if B C Uj<p41X; for any n > 1 then ji,11(B) =
in(T1(B)) = ji,(B), so equality holds.
We claim that X admits a countable partition {X? }] k>1 (up to a set of p-measure
0), where X7 is a measurable subset of X, and fi,(X7) < pu(X,) for all j,k > 1. We
then define the limit measure [ by
a(B Z lim fi, (BN X7).

n—oo
7,k>1

Because fi,, is invariant on Lly<, X}, this limit is a T invariant measure. Since a(X ,g) <
u(Xs) < oo, fi is clearly o-finite. Finally, on X the desired measure is v := jiom, ",
which is T-invariant and absolutely continuous with respect to p. Moreover fi|x, >
f1|x,, and due to the nonsingularity of 7" and the construction of fi; above, [i;|x,,
viewed as a measure on X, is equivalent to pu. Hence v is equivalent to p.

Ergodicity and invariance pass to any factor measure; however we must show that
v is o-finite since this property can fail when taking factors. Recall that v(.4) = 0 and
A = N; U;j»; X;. Therefore, if A, is an e-neighborhood of A, 75" (X \ A.) intersects
only finitely many levels X;. Hence v|x\4,. is o-finite. Since thls is true for all ¢ > 0
and p is regular Borel, v is a—ﬁnite._

It remains to define the sets X] and prove the claim. For each k¥ = 2i and j > 1,
let o . X

Xp =T (Xpy2) N X and X]_ | = T (Xpq2) N Xpp1.

Because the X ,ﬁ are preimages of backward wandering sets, they are pairwise disjoint.
We claim that
sup fin (Xo;) < pu(Xs) for all i.
n



By construction, fi,(Xs) = p(X3) for all n. We continue by induction on i. Because

fn(T1(B)) > ji,(B), it follows that

fin(Xaiv2) < fin(X3;) < fin(Xas)-
j

Furthermore, ,an(XZ) < i (Xoi40) < u(Xz) forall 4,7 > 1 and k = 2i or 2i+1. Because
a( Xk \ U;X7) = 0 for all k, this establishes the asserted partition of X. O

4 S-unimodal Maps

We now consider a class of smooth maps of the interval as our main examples of
nonsingular dynamical systems. Let f : I — I be a unimodal map. By this we mean
that there is a unique point c, called the critical point, such that f is increasing on the
left and decreasing on right of c¢. The iterates f*(c) will be denoted by ¢;. Assuming
that co < ¢ < ¢, we can scale f in such a way that I = [co,¢;]. Forz € I, let 7(z) = &
be the point such that f~' o f(z) = {z,7}. Note that f is two-to-one on [cy, ] \ {c}-
Therefore it is precisely on this set that  # Z, so that 7 is defined; we have 7 o7 = id
on its domain. We call a set A C [c2, G] \ {c} symmetric if T(A) = A.

Throughout the paper we will assume that f is C® and has negative Schwarzian
derivative (f is S-unimodal), i.e. % — %(ff—’,’)2 < 0 wherever defined. This assumption
will enable us to make certain distortion estimates. We call a periodic point of period
n stable if [(f™)'(p)| < 1, thus comprising the hyperbolic attracting and neutral case.
Under the assumption of negative Schwarzian derivative, a stable periodic orbit must
attract the critical point. Hence there can be only one such orbit.

The critical order of f is £ if there exists M > 0 such that % < |fl(z)] <
M|z — c|*! for all x € I. For some of our results it is important that f is nonflat, i.e.
£ < oo. The critical omega limit set, w(c), is of particular importance. If f is nonflat
S-unimodal, then either w(c) contains an interval or has Lebesgue measure 0, see [14].

The ergodic properties of Lebesgue measure, which we will denote by A, for uni-
modal maps are well-understood. We quote a result by Blokh and Lyubich [2]:

Proposition 4.1. Suppose f is C® S-unimodal and has no stable periodic orbit. Then
any forward invariant measurable symmetric set A (i.e. T(A) = A) with A(A) > 0 has
c as density point.

From this, one can easily derive that f is Lebesgue ergodic if and only if there is no
stable periodic orbit. Moreover A-a.e. point accumulates on the critical point in this
case.

10



Theorem 4.1. [2, 11, 1] If f is C? S-unimodal, then f is conservative if and only if
there is no attractor. There is at most one attractor, which is of one of the following

types:
1. a stable periodic orbit,
2. a cycle of intervals (the finitely renormalizable case),
3. a Cantor set (the infinitely renormalizable case),
4. an absorbing Cantor set.
In the cases 1, 3, and 4, A necessarily equals w(c), and f is completely dissipative.

A map is renormalizable if there exists a interval J, ¢ € J # I, such that f*(J) C J
and J, f(J),..., f*!(J) have disjoint interiors. As a rule, we take J minimal with this
property; such a J is called a restrictive interval. The map f"|.J is again a unimodal
map; it is called the renormalization of f. If there is a smallest restrictive interval J,
then f is finitely renormalizable. If there are arbitrarily small restrictive intervals (of
arbitrarily large period) then f is infinitely renormalizable. (The best known example
is the Feigenbaum map; here the periods of the restrictive intervals are the powers of
2.) The attractor is a Cantor set. It attracts all points except for a nullset of first Baire
category. No point in I has a dense forward orbit. By Lemma 2.2, a renormalizable
map cannot be exact.

In case 4, f is not infinitely renormalizable, but w(c) is a Cantor set such that
w(z) C w(c) for z in a full measure set of first Baire category. There is a second
category set of points whose orbit lies dense in I (or if f is finitely renormalizable in
a cycle of intervals). It was shown in [5] that so-called Fibonacci unimodal maps with
sufficiently large critical orders have absorbing Cantor sets. Theorem 3.1 applied to
unimodal maps yields the following result.

Proposition 4.2. If f is a nonflat C?® S-unimodal map with an attractor of type 1,
3 or 4, then f admits a (dissipative) o-finite invariant measure which is absolutely
continuous with respect to .

This result is known when A is a stable periodic orbit, or when A is an absorbing
Cantor set [16]. To our knowledge, the result is new for infinitely renormalizable
maps. We conjecture that the result does not hold for Misiurewicz’ example of a C'*°
Feigenbaum map whose attractor w(c) has positive Lebesgue measure [19]. He showed
that (w(c), f) admits no o-finite absolutely continuous invariant measure, and it seems
likely that A( \ U, f~™(w(c))) = 0.

11



4.1 Exact S-unimodal Maps

In this section we prove some results concerning exactness and automorphic factors
for general S-unimodal maps. Let f be an S-unimodal map; we show that if f has no
attractor then f is Lebesgue exact. We also demonstrate the maximal automorphic
factor of f in the cases where either f has a stable periodic orbit or an attracting cycle
of intervals. In later sections we deal with certain specific (dissipative) unimodal maps
from the remaining two cases; i.e., where f has an attractor of type 3 or 4.

The first result is already known in the case where f admits an absolutely continuous
invariant measure p and is nonrenormalizable. Ledrappier [12] showed that f has a
Bernoulli natural extension in this case and is exact with respect to u < A.

Theorem 4.2. Let f be C® S-unimodal. If f has no attractor, then f is Lebesque
exact.

Our proof relies on a result by Martens and involves a property which he calls the
strong Markov property [15, 14, 17].

Proposition 4.3 (Strong Markov Property). Suppose f has no attractor of type
1, 8, or 4. Then there exist symmetric neighborhoods U and V of ¢, c € clU C intV,
such that for A-a.e. x the following holds: There ezist integers ki(z) < kao(z) < ...
and nested intervals x € --- C I (z) C I (x) such that for all i, 5@ (z) € U and f*(®)
maps I;(x) monotonically onto V.

Remark. Let L; and L, be the components of U \ V, and say A(L1) < A(Ls);
define ¢ := ’}\%})). Then the Koebe Principle (see [17, Theorem IV 1.3]) gives the
distortion bound K (6) = (1£2)2:

dist(f*@) I;(x) N f4E(U)) =
sup{ DLy 2 € La) 1 fHE D)} < K(6). )
Proof of Theorem 4.2: Let U C V be as in Proposition 4.3 and let § > 0 and distortion
bound K = K(6) > 1 be as in (1).

Let p be the orientation reversing fixed point of f. Without loss of generality, we
can assume that V C (p,p). It is well-known (see e.g. [17, Theorem III 4.6]) that,
since f is not renormalizable, U, f*(U) = I. Therefore there exists a minimal r > 0
such that p € int f"(U). Let H C f"(U) be an interval such that f(H) C f"(U).
Let Hy, H, C U be such that f™ maps H; and H, diffeomorphically onto H and f(H)
respectively. Let Ky = Ky(Hy, Hy) such that dist(f™', Hy), dist(f", Hy) < K,. Take
e := min{\(H;), \(H2)}.

12



Now let A be any set of positive measure. Let x be a Lebesgue density point of
A such that the integers k; and intervals I;(z) from Proposition 4.3 are well-defined.
Since x is a density point, we can take ¢ so large that Adi(e\A) %K, By the Koebe

Ali(z)) — 3
Principle dist(f*, I;(z) N f=*i(U)) < K. Therefore

ME N\ F4(4) _ AUNHA) AV) _ e 1 1
and similarly %;23(‘1)) < ﬁ Using the distortion bound Ky of f™*!|H; and f"|Hy,
we obtain I N
ASE) N HHA)) ASE)NAGTT(A) 1
A(f(H)) ’ A(f(H)) ~ 3
It follows that A(f*71(A) N fR+7(A)) > IA(f(H)) > 0. By Proposition 2.1, f is
exact. 0

4.2 Maps with Stable Periodic Orbits

We have shown that an S-unimodal map without an attractor has a trivial maximal
automorphic factor. We next characterize the maximal automorphic factor of f if f
has an attractor of type 1 or 2.

Theorem 4.3. 1. If (I,B, )\, f) has a stable periodic orbit, then its mazimal auto-
morphic factor is isomorphic to (R, B,\,z — x + 1).

2. If (I, B, A\, f) has an attractor JU f(J)U---U f*=1(J) of type 2, then its mazimal
automorphic factor is isomorphic to (Z/nZ,i — i+ 1 mod n) with counting
measure.

Proof. Suppose p is an n-periodic stable periodic point with immediate basin B. Then
w(z) = orb(p) M-a.e. If p reverses orientation, take b € B\ {p} and U := (b, f>"(b)].
If p preserves orientation, then take points b and & in either component of B\ {p}
and U := (b, f™(b)] U [f™(b'),b). (If B\ {p} has only one component, namely because
I(f™)(p)] = 1, then take U := (b, f*(b)].) In each case U is a forward wandering
and fundamental in the sense that for A-a.e. x € I, there exist 4,5 > 0 such that
fi(xz) = fI(y) for a unique y € U. Define m(z) = (y,7 — j). Then it is easy to see
that 7 : I — U x Z is a factor map and (U x Z, (y,n) — (y,n + 1)) is the maximal
automorphic factor. This system is obviously isomorphic to (R, B, A,z +— = + 1).

If f has an n-period restrictive interval J, then for A-a.e. x there exists 7 such that
fi(x) € J. The map m(x) =i mod n is obviously a factor map. If JU---U f*1(J)
is the attractor, then by Theorem 4.2, f"|J is exact. Hence (Z/nZ,i+— i+ 1 mod n)
is also the maximal automorphic factor. O
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The next result states that many dissipative unimodal maps have conservative
maximal automorphic factors.

Proposition 4.4. Let f be a C® nonflat S-unimodal map having no stable periodic
orbit. Then the mazimal automorphic factor of (I,B, ), f) is conservative.

Proof. A result by Blokh & Lyubich [2, Section 7] states that f does not admit wan-
dering sets. (The proof was carried out for critical order £ = 2, but can be generalized
to any £ € (1,00).) The proposition follows now from Lemma 2.1. O

4.3 Infinitely Renormalizable Maps

As mentioned earlier, a unimodal map is infinitely renormalizable if it has arbitrarily
small restrictive intervals. We first review the structure of infinitely renormalizable
maps in detail.

Let f denote an infinitely renormalizable S-unimodal map. Then f has a forward
invariant Cantor set (2, and the following hold:

e There exists a decreasing chain of closed subsets of I, denoted by ¥ and satisfying
LM R cQtc =1,
each OQF contains the critical point and each is mapped onto itself by f.

e There exists a sequence {p }ren, such that py divides pyg1, such that the following
hold. For each k € N, there exist p; disjoint closed subintervals €, ., i; €
{0,1}, which are cyclically permuted by the first p, — 1 iterates of f, and such
that fP%(Qy, i) C Qiy,..i; furthermore QF = UQ;, ;..

ik

e The critical point ¢ always lies in the subinterval which is labelled €2, ... o; i.e.,
0,0,.. 0 1s a restrictive interval, and the rest are labelled so that the action of
f moves the cylinders in the usual {p;}-odometer order (add 1 to iy and carry
when necessary).

e The intervals are nested in the obvious way; that is,

Q C

U5yl — 150k 1yeenll—1"

As fPr(Qy,. i) C Q4 4, we can rescale fP#|(); ;. toa map on the unit interval.
For this reason, f is called renormalizable. The fact that we can do this for every
k makes f infinitely renormalizable.
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e The intersection
Q=M1 Uy, = ﬂk219k

is known to be a Cantor set of Lebesgue measure 0 when f is nonflat S-unimodal
(however cf. [19]). Furthermore, 2 = w(c), the w-limit set of the critical point,
and f|Q is the {py}-odometer.

e The orbit of A-a.e. point z converges to the Cantor set {2 in the sense that for
every k, the orbit of z eventually lands inside QF; i.e., Q is an attractor. By
QF(x) we will denote the specific subinterval €, ;, . ; containing z. Therefore
QF(x) is defined for all k for M-a.e. z.

k

If p, = 2* for an infinitely renormalizable S-unimodal map of the interval, then f is
commonly known as a Feigenbaum map. Independently, Feigenbaum [8] and Coullet
and Tresser [7] discovered this pattern of renormalization for these maps.

Lemma 4.1. If f is S-unimodal and infinitely renormalizable, for \-a.e. x € I there
exists a unique y € Q such that |f™(z) — f"(y)| = 0 as n — oo. In this case we say
that = copies y € Q).

Proof. Using the subintervals €2;, . ;. as a basis for the topology of the Cantor set, we
have that the sequences (i, ...,i,...) from the corresponding basis elements give a
{pr}-adic coding for each y € 2, and, as mentioned above, the labeling is chosen to
correspond under the action of f to the usual odometer action.

We fix some x € I such that w(z) C Q. For each k£ > 0, there exists a smallest
positive integer ny such that f™(x) € J, = Q..o (k zeroes). As f"(z) € Ji only if
n = ny + jpg for some j > 0, it follows that p, divides ngr1 — ng. Let 4q1,...,4x_1 be
such that ny + Zf;ll i;p; = 0 mod py. Then f™(z) € f™ (S, i _,). Furthermore,
Qirsin_y O iy, for each k. Let y = M€Y, ;.. We will show that x copies y and
no other point.

For ¢ > 0, let k be so large that each component of QF has length < . Then
lf™(z) — f"(y)| < diam(f" " (Jy)) < € for all n > ng. Since this holds for any € > 0,
|f™(z) — f™(y)| — 0. On the other hand, f|Q is distal: If ¥/ € Q, ¥’ # vy, then
|f™(y) — f™(y')| is bounded away from 0 uniformly in n. Indeed, for & sufficiently large,
y and ¢’ are contained in different components of ¥, and these components remain
disjoint under iteration of f. Hence y is the unique point copied by . O

Define the map 7 : I — Q by 7(z) = y; i.e., z is mapped to the unique point that
it copies. This map is well-defined except on a set of A measure zero. Using g for the
odometer action on 2, we have 7o f(x) = gon(x). It is easy to see from the dynamics
of the map that the usual Borel structure generated by cylinder sets on {2 agrees with
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the factor measure structure (i.e., a set C is Borel in Q <= 7 'C is Borel in I.)
With respect to the factor measure p(-) = A o7 !(-), the factor map is invertible. We
take the completion of the Borel sets in {2 with respect to u to obtain a factor Lebesgue
space. Note that as a factor space, the space 2 has p measure 1 (in contrast with the 0
Lebesgue measure it has as a subset of I). The aim of the rest of this section is to show
that (Q,7(B), u, g) is the maximal automorphic factor for a certain class of infinitely
renormalizable maps.

We have defined Ji = €y (k zeroes) to be the k-th restrictive interval; its period
is px. For each z € B(Q), let

g (z) := min{n; f*(z) € Ji}

and
mi () := min{m; fP*="(y) € Ji for y = f" ()}

In this way (taking po = 1) we obtain ny = Zle mypr—1. Basically, my plays the same
role for fPk=1|Jy_; as my plays for f|I.

A unimodal map f is infinitely renormalizable of bounded type if it is infinitely
renormalizable and the sequence the quotients py/pr_1 is bounded. The geometry of
the Cantor set €2 has been particularly well-studied for these maps, see [17, Chapter
VI]. For our purposes we need the following facts.

Proposition 4.5. 1. Let f be a nonflat S-unimodal infinitely renormalizable map.
Then there exists K > 1 such that for all restrictive intervals Jy the following
holds: if f™ : J — Ji is a branch of the first return map to Ji, then the distortion
dist(f",J) < K. (In particular f™ : J — Ji is a diffeomorphism; if J = Jy then
we should take n = 0.)

2. If in addition f is renormalizable of bounded type, then there exist p— < py <1
such that p" ' \(Jy) < A{z € Jp_1;mp(z) = n}) < p"FA(Jp).

Proof. We only sketch the proof, since most of the details can be found in [17, Section
VI.2 ]. In particular, it is shown that the central gaps of the k-th level, i.e. the
components of I\ QF adjacent to the restrictive interval .Ji, have size > o|Jy| for
some uniform constant ¢ > 0. (The proof in [17] of this fact deals with infinitely
renormalizable maps of bounded type, but it remains valid for arbitrary non-flat S-
unimodal infinitely renormalizable maps.) Let J be any maximal interval such that
f™:J — Ji is a diffeomorphism. Let 7" D> J be the maximal interval such that f™|T
is a diffeomorphism. Then there exist a < b < n such that ¢ € 9f%(T),df°(T), and
fM(T) = (cn—a,Cn_b) D Ji. Because n —a and n — b #n, ¢y and c,_p lie in QF \ J;.
Hence f™(7T) contains both gaps adjacent to Ji. Therefore the components of f(7T)\ Ji
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both have size > o|Ji|. This is the space needed to apply the Koebe Principle that
yields the distortion bound given in formula (1).

For the second statement we remark that the dynamics of fP*-1 on Jy_; \ Ji are
hyperbolic (see e.g. [17, Theorem III.5.1]). More precisely, there exist 7 > 1 and
C > 0 depending only on A(Jx)/A(Jx_1), such that |Df"1(z)| > C7™ whenever
fiPe-1(z) € Jp_1 \ Ji, for 0 < j < n. If f is infinitely renormalizable of bounded type,
A Jg)/A(Jg-1) is bounded uniformly away from 0. This implies that the assertion holds
for a uniform choice of p_ and p,. O

We now state the main result of this section.

Theorem 4.4. Every S-unimodal infinitely renormalizable map of bounded type has
as its maximal automorphic factor an ergodic conservative nonsingular adic odometer
action with respect to the factor measure induced by .

The idea of the proof is to show that for A-a.e. z, (@) i bounded for sufficiently
many k’s in a sense made precise in Proposition 4.6 below. From this it will follow that
for A x A-a.e. pair (z,y), w is bounded sufficiently often. Passing to fibers
I, = 7 Y(w), we can show that for p-a.e. w € Q and A\, x A\ -a.e. (z,y) € I, X I,
me@)=me)| 5 hounded infinitely often. (Here )\, denotes the fiber measure that A
induces on I,.) We apply this to density points of certain tail sets and complete the
proof by a distortion argument which shows that the tail sets must intersect eventually

under forward iteration.

Proposition 4.6. Under the assumptions of Theorem 4.4, there exists N > 0 and a
sequence {k;} (k; = 72 will suffice) such that for A-a.e. z € B(Q),

1 2
liminf —#{j <i; ng; (2) < Npg—1} > 5.
1—00 7 3
Proof. Recall the constants p, < 1 and K > 1 from Proposition 4.5. Choose N; so
large that

PN NBHL N-No2 s

N+1 + + +

——py <K + + <p (2)
L—py'F l—py 1-p2 1-ps *

for all N > N,. We show that for any £ and N > N,
P(n, > Npi1) = A{z; m(z) > Npr_i}) < p}°. (3)

We will use induction on k. For k = 1, Proposition 4.5 and (2) immediately give

= K
P(ny > Npo) = P(mi > N) < E Kp’flgﬁpfﬂgpf/?’
=N +
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for all N > N,. For the induction step,

N-1

P(r > Npet) < P(mi = N)+ 3 Plmi =i and my > (N = )pis)
1=0
N—Np/2
S T Z Kpi P(ng—y > 2(N = i)pe—s)
- +
+ Z KpH—l.
i=N—Np/2

Here we used Proposition 4.5 and the fact that py_; > 2py_o. By induction, P(ng 1 >
2(N —i)pg_9) < pi(N_Z)/?’ for i < N — Ny/2. Together with (2), this gives

N—No/2
P(ng 2 Npet) < s———p{ "+ K Z Pt NI 4 K Z it
P+ i=N—No/2
N1 2N/3+1 N—No/2

P+ P+ + N/3
< K( + + ) < pi’”.
L—pp  1-p%  1-p4 i

This proves formula (3).
Now take k; = ¢*. Since p, > 2p,_; for all n > 2, we have py,,, 1 > 2%p, 1. By
(3) we find for i sufficiently large

221 /342

1 1 Pr; -1
;lpki—l) S Py )

P(nki > Z-_ka¢+1—1) = P(nk¢ > 2_2 Ph 1

which is summable over ;. The Borel-Cantelli Lemma gives that the set
e 1
X ={z; I Vi> jng(z) < ~_2pki+1—1} (4)

has full measure in the basin of Q. Write W;(z) := Zf’ ki 141 M (2)pj—1. The random
variables W; are not independent. Nevertheless, by the arguments that proved (3) we
can show that for any sequence vq,...,v;,_1 € N and any N > Nj,

P(W; > Npj,_1|W; = v; for j < i) =
A({z; Wi(x) > Npg,—1, Wi(z) = v; for j < i}) < pN/?’.

Next take N; > Ny so large that pfl/?’ < 373, By the binomial formula and Stirling’s
formula,

! NI . .
P(-#{j <is W; 2 Nipya} 2 5) < ) ( Z )[le/?’]”/?’ < z( )3—z < 9 /3,
i 3 28] i/3 i/3
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which is summable in 7. Therefore the Borel-Cantelli Lemma gives

1 1
limsup —#{j <i; Wj(z) > Nipp;—1} < 5 A-ace.
isoo 3

Combining this with (4), and noting that Y, 1/:%> < 2, we obtain

) | 1

limsup ~#{j <1; Ng; > (Ny + 2)pkj_1} < = for Ma.e. z € X.

isoo ¢ 3

This proves the proposition using N = N; + 2. O

Let N be the integer chosen in Proposition 4.6, and recall that ), is the fiber
measure that Lebesgue measure induces on the fiber I, = 77 (w).

Corollary 4.1. For p-a.e. w € Q and A, X Ay-a.e. (x,y) € 1, % 1,, there are infinitely
many values of i such that |ng, () — ng, (y)| < Npg,—1.

Proof. By a standard argument on fiber measures, Proposition 4.6 implies that for
p-a.e. w € Q and A\,-a.e. x € 1,

1
limsup _#{] S /L7 nkj 2 Npkjfl} S

i—oo 1

W =

Hence the lower density of the set of integers 7 such that ny, < Npg,_; is at least %
within each fiber. The corollary follows immediately since ny, > 0. O

We are now ready to prove Theorem 4.4.

Proof. Let Q be the attractor of f and let 7 : I — €2 denote the factor map. We know
that (Q,C, u,g) with C = 7(B) and © = A o7~ ! is a measurable automorphic factor
of (I,B,), f) and that it is isomorphic to some odometer. Assume by contradiction
that it is not the maximal automorphic factor. Then there exist B, B’ € B, such that
n(B) = m(B') € C4, but f*(B)N f*(B') = 0 for all n > 0. Take x and 2’ Lebesgue
density points of B respectively B'. By Corollary 4.1 we can assume that 7(z) = 7 (z'),
and that there is an integer N such that |ng(x)—ng(2")| < Npp_1 < Npy infinitely often.
Let I;, > z and I}, 5 7' be the maximal intervals such that f™® (1) = @) (1) = J;.

Given r > 0, write Ji, = {y € Ji; mgy1(y) = 7}, so Jeo = Jx+1. By Proposi-
tion 4.5, A(Jgr) > p A (Jg). Write § := pV*!. Because = and 2’ are density points,
we can take ng(z) < ng(z') = ng(x) + rpx (for some r < N) so large that

MIN\B) AIG\B) _ 5
M) M) T O3K®
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Here K > 1 is the distortion constant from Proposition 4.5. It follows that A(Jxo \
Jre@(B) < 3 MJko) and A(Jg, \ [ (B)) < 5=A(Jky). Applying another rpy
iterates to f™(B) N J, we find (using the same dlstortmn bound K) that A(Jxo \
fre@+ree(B)) < LX(Jy). Therefore fm@)(B') 0 fr+(=)(B) # (). This contradicts the
choice of B and B'. O

5 The Fibonacci Unimodal Map

The aim of this section is to prove that a Fibonacci map with a Cantor attractor has
a circle rotation as maximal automorphic factor. For this we have to recall some facts
from [5, 6].

5.1 Factors of (w(c), f)

Fix a unimodal map f. Let D, be the image of the central branch of f* (the largest
monotone subinterval containing ¢). If ¢ € D,,, we say that n is a cutting time. The
cutting times are denoted as

1=5<851<85<....

They are very important as they determine the combinatorial structure of the unimodal
map completely. Obviously ¢, is one endpoint of D,,. It is not hard to show that ¢, _g,,
where Sy is the maximal cutting time less than n, is the other.

It can be shown that the difference of two subsequent cutting times is again a

cutting time. Hence
Sk — Sk-1= Sq)

for some integer function @, which is called the kneading map, [10]. For more details
see [3]. We assume for the rest of the paper that

Q(k) = o0 as k — oo. (5)

If the cutting times are the Fibonacci numbers 1,2,3,5,8, ..., i.e. Q(k) = max{0,k —
2}, then f is called a Fibonacci map.

Lemma 5.1. If Q(k) — oo, then A\(D,) — 0 and w(c) is a minimal Cantor set.
Proof. See [3]. O

For the Fibonacci map, (w(c), f) is isomorphic to (S', R,), where R, is the circle
rotation over 7y = % This was shown in [13]. In [6], the result was generalized
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to many other unimodal maps and group rotations. We will discuss some tools from
[6]. First there is the S-adic transformation (where S = {Si} refers to the sequence of
cutting times). Let

E:={ec{0,1}";e,=1=¢;=0for Qi +1) < j < i},

endowed with product topology. On E we define 7" to be the addition of 1 by means of
“add and carry”; ones at entries i and Q(i+ 1) carry to a one at entry i+ 1. If S = 2%
(i.e. f is the Feigenbaum map), we recover the usual dyadic odometer. The set

Ey:={ecE; #{i;e;, =1} < o0}

is the greedy representation of NU{0}, see e.g. [9]. Indeed, if n > 0, there is a canonical
way of assigning a sequence (n) € Ey such that n =) _.,(n);S;. Take ¢ := max{k;S; <
n} and set (n); = 1. Repeat this process with n — S;, etc. Then the restriction in the
definition of E will automatically be satisfied.

Lemma 5.2. If Q(k) — oo, then T : E — E is continuous, T((n)) = (n+1) and T
is invertible, with a possible exception at (0).

Let m : E — w(c) be a projection defined on Ey by 7 ({n)) = f"(c), and extended
to E by uniform continuity. Equivalently we can define:

m((n)) = ¢, and for e ¢ Ey, m(e) = NgD,,, (6)
where n;, = Zigk e;S;. We have f om = m oT1. Note that m; need not be invertible.
For z € R, choose the fractional part frac(z) € [—3, 3) such that z — frac(z) is an

integer. If there exists o € R such that
Z | frac(aS;)| < o0, (7)
then we can define a second projection my : E — St by

mo(e) := Zei frac(aS;) mod 1.

One can show that my o T'(e) = mo(e) + o for all e € E.

In particular, the Fibonacci numbers can be written as S, = 5+3‘/5(1 + )k +

10
5—3v5 _ /51
10 - 2

Hence there exists L such that

LT P U0

for all k. Therefore (7) is satisfied, and the projection g is well-defined.

(—7)*, where

| frac(ySk)| = | frac((1 + 7)Sk)| = | frac(Sk+1 + (1 + 27)
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Proposition 5.1. If Q(k) — oo and Y, | frac(aSy)| < oo, then m = myom; ' is a
well-defined continuous mapping and the diagram

(E,T)

commutes.

Proof. The case where Sy, are the Fibonacci numbers was shown already in [13]. More-
over 7 is one-to-one, except on the backward orbit of ¢, where it is two-to-one. The
general case was presented in [6]. O

The projection 7 can be shown to be one-to-one on a set of full Lebesgue measure
on S! for many other unimodal maps as well.

5.2 Fibonacci Maps with Attractors

The main result of [5] is the following:

Theorem 5.1. If f is a C? unimodal Fibonacci map with a sufficiently degenerate
critical point, then w(c) is an absorbing Cantor set.

The idea of the proof is as follows: Let u; = p, where p is the orientation reversing
fixed point, and for £ > 2,

S [t (up 1) N (ug_1,c) if cs,_, <, ()
k- 751 () N (up—y,¢) if Csp_y > C.

It is shown in [5] that this is a valid definition. In fact, the points uy are closest-to-c
prefized in the sense that if (uy,_1, U 1)Nf"(p) # 0, then n := min{s; f*(ux) € {p,p}}-
Uy =1\ [uy, 8] and Uy = (ug_1,ug) U (Gg, 1) for k£ > 2. Define an induced map F
by

F|U == f5-1 for all k > 1.
By construction, for k > 2, F(Uy) = (ug—3, Ug—1) if cs,_, > c and F(Uy) = (ug—1, Ug—3)
if cs,_, < c. (Here up = u_, = p.) Hence F preserves the partition of I into sets U.

Let
Xn(z) =k if F"(z) € Uy.
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As was shown in [5], there exists a constant K such that the distortion dist(F",J) < K
for any n > 0 and interval J on which F" is continuous. The behavior of points under
iteration of F'is interpreted as a random walk. It is shown that for maps of sufficiently
large critical order, the expectation (with respect to Lebesgue measure)

E(xXn — klxn-1 = k) 20 >0, (10)

where 7 is independent of k, of n and of the precise path used to get to state Up. A
similar estimate can be made for the variances:

Var(x, — klxn-1 =k) <V < 0. (11)

These estimates imply that x,(z) — oo AM-a.e., and this implies that f"(z) — w(c)
A-a.e.

5.3 The Maximal Automorphic Factor of a Fibonacci Map

Let f be a Fibonacci map with an absorbing Cantor set. To be precise, assume that
(10) and (11) hold. For z € I define

ﬂk(x) = max{n; Xn(x) S k}v

and let by(z) be such that FA@|{x} = fe@|{z}. Because x,, — 0o A-a.e., these
sequences are defined M-a.e. Recall that (n) denotes the S-adic representation of n.
Define

() == lim mo((bx())),

k—o0

whenever it exists.

Lemma 5.3. If 7(x) exzists, then for every N > 0, #(fN(z)) erists and #(fN(z)) =
7(xz) — Nr.

Proof. We will show that for every fixed N > 0, there exists 7,7 > 0 such that
F'(z) = F/(f¥(x)). (12)

From this it follows that bg(f"(z)) = bx(z) — N for k sufficiently large, which proves
the lemma.

Let {m;} and {n;} be such that F*[{z} = f™ and FI/|{f"(x)} = f™. Find 4,j
maximal such that m; < N and n; + N < m;y,. If in one of these cases equality holds,
(12) is true. Let y = F'(z) and y' = F/(f¥(z)). Then ¢’ = f"'(y) for some N’ > 0.
Take also s and s’ such that y € U; and 3/ € Uy. In this notation, N' < S,_; <
Sg_1+ N'.
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Recall that the points {u;} are the closest-to-c¢ prefixed points, none omitted.
Therefore

f"(uk) & [ug, ux) for all n > 0 and f"(ug) & [ug_1,tx 1] forall 0 <n < Sp_1.  (13)

Indeed, if f™(ug) € [ug, Ux], then uy is not a closest-to-c prefixed point. If f"(uy) €
(ug—1,ug) or (g, ux_1), then uy is not the first closest-to-c prefixed point after uy_i.
Finally, by equation (9), f%1(uz) € {ug_1, Ux_1}. Therefore f™(uy) & {ug_1, Ug_1} for
n < Sk:—l-

Since fV'(y) =9/, fV'(U,) intersects Uy. We distinguish three cases:

o fN(U,) C Uy. Then ¢ € f5%-1(U,) c f%1~N'(Uy). This contradicts that
Sy 1+ N >8, 4.

o uy € fN'(U,). By equation (13), s' < s — 2. On the other hand, f%-1="'"(u,) €
F(Us) C (us_3,us 3). Therefore s —3 < s’ — 1. This contradicts s’ < s — 2.

e uy_; € fN'(U,). By equation (13), s —1 < s — 2. On the other hand,
fo1"N'(ug_y) € F(U,) C (us_3,%s_3). Therefore s —3 < s’ — 2, contradict-
ings'—1<s—2.

These contradictions establish the proof. O

The main result of this section is that the map 7 is defined A-a.e., and that the circle
rotation with appropriate measure algebra is the maximal automorphic factor.

Theorem 5.2. Let (I,B, )\, f) be a Fibonacci map satisfying (10) and (11) (and there-
fore has an absorbing Cantor set). Then 7@ : I — S' is defined A\-a.e. If p:= o7~ !
and C := 7(B), then the rotation (S',C, p, R;l) is the mazximal automorphic factor.

Proof. Let Vi, = {x € Ug; xm(x) > k for all m > 1}. Equations (10) and (11) show
that a definite proportion of the set Uy never returns to U;<;U;. Hence there exists
m > 0 such that A\(Vy) > mA(Uy) for all £ > 1. Moreover, the branches on F™ have a
uniform distortion bound K. Therefore, taking 1y = 7, /K, we find that the probability

P(F™(z) € Vilxm(z) = k) = no. (14)

These estimates are independent of m and of the precise path used to get to state Uy.
If Bry1(x) — Be(x) > k, then F(x) € UisiU; \ V; for bi(x) < i < Bi(z) + k. Therefore

P(By1(x) = Be(x) > k) < (1 —1m0)".
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The Borel-Cantelli Lemma gives that P{S11(x) — Bx(z) > k infinitely often} = 0.
Write 7g(x) = mo({bx(z))). For A-a.e. = € I there exists kg such that

biy1(z) — b (z Z ki () Sk+i, Where Z agi(z) <k,

>0

for all k > ko. Therefore (8) gives

a1 (z) — (@) <) agifrac(ySess) < k| frac(ySi)| = Lk~y*.

i>0

Hence 7, (z) is a Cauchy sequence, converging to 7(x). This shows that 7 is defined -
a.e. and that C = 7(B) and u = Ao7~! are well-defined up to measure 0. The relation
7o f(z) = R, o 7(z) was already established in Lemma 5.3. It follows that R’
nonsingular with respect to p, and that (S',C, p, R ') is a measurable automorphic
factor.

We need the following lemma to show the automorphic factor is maximal.

Lemma 5.4. There ezists a decreasing function £ : R, — [0,1] converging to 0 as
x — 0o such that

P(by > NSg) := A{z; be(z) > NSi}) <E(N)
for all k.

Proof. Using the 1y obtained in (14), define for any N € R*,

E(N) =1 (1= (1—10)/2)(1 = %0“ — )™,

with M = logjl\gg#. Clearly £(N) — 0 as N — oco. We will show that (V) gives the
desired estimate.
Fix k&, N € N and let x € B(w(c)) arbitrary (provided by(z) exists). Let M =

M(N) = 'aN-logl0 "piygt we calculate the probability that
log 5

X;j(z) > k+ M for some j < fBy(z). (15)
If this occurs, then, since a point can jump back no more than two states under one

iteration of F, j < By(x)—M/2. Since Fi(x) ¢ V,, for j <i < Bg(x)and k < m < k+M
(cf. formula (14)), the probability that x; > k + M is less than (1 — 179)™/2,
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Next we verify, using (14) again, that P(#{j;x; = m} >t) < (1 —np)" *. Indeed,
because points have to avoid the set V,, ¢ — 1 times to make ¢ returns to U, possible,
it follows that

P#{j < Br;x;=m}>2M +k—mforsome 1 <m < k+ M)

—m— 16
< Zl:nJr:ﬂ{I(l . 770)2M+k 1 < nLo(l . UO)M- ( )

If neither (15) nor (16) occurs, i.e. if #{j < Be(x); xj(x) = m} < 2M + k — m for all
1<m<k+ M and xj(z) < k+ M for all j < Si(x), then

k+M k+M
be(z) = > #{J < Be(@)ixi(@) =m}Sm1 < Y (2M +k—m)Sp 1 < NS;.
m=1 m=1

This happens with probability at least (1 — (1 — 79)™/2)(1 — (L=mo)M) =1—¢&(N)
which tends to 1 uniformly in £ as N — oo. This proves the lemma. O

Returning to the proof of Theorem 5.2, we copy the arguments of Theorem 4.4. That
is, we find a subsequence {k;} of N which increases fast enough so that ). P(by, >

k1) < 2 E(5 Sk"“) < 00. Then by the Borel Cantelli Lemma,

2 Ski
. . . 1
X ={z;3jVi>j by, < 5.}
)

has full measure in the basin of w(c). Take N; so large that £(N;) < 373. A proof
similar to the one of Lemma 5.4 gives P(by, — by,_, > N1Sk,) < £(N1) < 37%. Then
we can derive (cf. Proposition 4.6) that liminf; 1#{j < i;by,(z) < NSy} > 2 for
N = N;+2 and Ma.e. © € B(w(c)). Given s € S, let I, := 7! be the fiber over s and
let A\s; be the fiber measure that A induces on ;. Then (cf. Corollary 4.1) for u-a.e.
s and A; X As-a.e. (z,2') € I; x I, we have established that |by(z) — bg(z')] < NSk
infinitely often.

The last step in the proof is to assume by contradiction that (S',C, pu, R> 1) is not
the maximal automorphic factor. Then there exist B, B’ € B, such that 7(B) = «(B’)
and A(f"(B)Nf™(B')) = 0 for all n > 0. We choose Lebesgue density points z and z’ of
B and B' respectively such that 7(z) = 7(z). By the above arguments we can assume
that |bg(x) — bg(2')| < NSk infinitely often. Take such a k; then (bx(z)); = (bx(z'));

for all i > k + P for P = P(N) = —%2£¥. Abbreviate x = X () and X' = Xg,(u), 50

FP@)(z) € U, and FP@)(z') € Uys. Because 7(z) = 7(z'),
(b (x) + Sy—1)i = (be(a’) + Sy—1)i

for all i < k. By definition of £, both FA®+1(3) and FP@)+1(2!) are contained
in (ug, ). Let Wy be the component of U, N F~*([ug,u;]) that contains FP(®)(g);
similarly, let W, be the component of U, N F~*([uy, ux]) that contains F%(*)(z').
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F(T) F(T")
Ug ]?ﬁk@0+1(x) }?ﬂﬂ$3+1($ﬁ Ug

F F

T CcW, T Cc Wi

| |
U, UX'A
[ Br(x) I FBr(a)

‘ !
x x

Construction of T, T", W), and W}

Take
k+P k+P
di=Su 1+ Y (@) + Sy1)iSiciand d' == S+ Y (bp(x) + Sy-1)i Si1-
i=k+1 i=k+1

Then D := by(z) + d = b,(z') + d'. Find the unique interval T C W) whose orbit is
given by (d) in the following sense: Let ig, 1, ...,4, (with 1 < n < P) be the indices
for which (d); = 1. Then T is taken such that

FY(T) C Uy, F*(T) C Uy, ..., FMT) C Ui, and F""N(T) = [ugp, Ug1p).

The interval 7" C W] is chosen similarly. Then F™*'(T) = F"+(T"). Recall that
the distortion of the branches of iterates of F' is uniformly bounded by K. From
this, one can derive that there exists ¢ = (P, K) > 0 such that A\(T) > eA\(W},) and
M) > EX(W}).

We now take intervals J > z and J' 5 2’ such that the maps f%®) : J — W, and
f%@) . J' — W/ are monotone onto, and such that

AMJ\B) XJ'\B) €
AJ) A(J) T 3K?%
Since z and z’ are density points, such intervals can be found for k sufficiently large.
Therefore

MTN\ f DI NB))  MI'\ f (N BY) _ 1
MT) ’ A(T") = 3K’
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Applying F™t! to fo%@(J)NT and F**' to fo)(J) N T, and using the distortion
bound K once more, we obtain

0< %)\(Fn-l-l(T)) < )\(Fn—H ofbk(z)(JﬂB) an’—H Ofbk(z’)(JlﬂBl))
< Af(B)NFP(BY).

O

This contradicts the choice of B and B'.

Remark 1: We now have 7 : I — S' (defined M-a.e.) such that 7o f = R7' o7
and 7 : w(c) — S! such that 7 o f = R, om. One can show that 7 is defined on w(c)
and that 7(y) = —n(y) for all y € w(c). This relation plays no role in our results, so
we omit the proof.

Remark 2: In view of the previous remark, (7|w(c)) ! o7 gives a factor map from
I directly onto the attractor. One might expect that for A-a.e. z there exists y € w(c)
such that | f™(z)—f"(y)| — 0. This is not true, in spite of the fact that for the candidate
y € 7' o7(z) Nw(c) there is a sequence {n;} such that |f™(x) — c|,|f™(y) — c|
simultaneously tend to 0. The reason is as follows. Assume that f™(z) € Uy is so
close to cg, or ¢g, that f"*5k-1(z) € Uyyq. Then fritSi-1t5=1(g) = fritSiti=l(z) is
close to cg, , 1. Checking the kneading invariant of f shows that cg, , 1 is close to
f7Ye) N e, e1] if k is even and close to f~*(c) N [cy, ¢ if k is odd. If at the same time
[ (y) € Ujsk42Uj, then fritSee1-1(y) is close to cg, ,, 1, which is close to f*(c)N[c, ¢1]
if k is odd and close to f~'(c) N [ey, c] if k is even. Therefore limsup |f"(z) — f™(y)| >
diam(f1(c)) > 0.

6 A Dissipative Exact Unimodal Map

The results of Section 5 can be generalized to other unimodal maps with absorbing
Cantor sets. In [4] combinatorial conditions are given under which a unimodal map f
with sufficiently large critical order has an absorbing Cantor set. The main condition on
the kneading map @ is that k£ — Q(k) is bounded. This applies to many examples from
[6], for which (w(c), p, f) (p being the unique invariant probability measure) is shown
to be isomorphic to some circle and torus rotation with Haar measure. In particular,
for the maps with kneading maps Q(k) = max(k — d,0) for d = 2,3,4, (w(c),p, f) is
shown to be isomorphic to a rotation on a d — 1-dimensional torus.

However, for d > 5, (w(c), p, f) has no nontrivial group as factor [6]. In this section
we show that the unimodal map f with kneading map Q(k) = k — 5 for £k > 5 is
exact on I, even in the presence of an absorbing Cantor set. The proof that f, for a
sufficiently large critical order, has a Cantor attractor is similar to the proof for the
Fibonacci map. The inequalities (10) and (11) can be proven. The difference with
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the Fibonacci map is that the leading root o of the equation z° — z* — 1 = 0 is not

a Pisot-Vijayaraghavan number. More precisely, this equation has two roots on, two
roots inside, and one root outside the unit circle. Therefore | frac(a.S;)| is not summable
and the map my cannot be defined. Related to this is the following lemma.

Lemma 6.1. Suppose Sy are the cutting times corresponding to the kneading map
Q(k) = max(k — 5,0), i.e. Sy =k+1 for 0 <k <4 and Sy = Sk_1 + Sk—5 otherwise.
Then for k > 3

Sk_g + Sk_g ka =1o0r4 mod 6,
Sk = Sk_g + Sk_g +1 ka =2o0r3 mod 6,
Sk_o+Sk_s3—1 ifk=0o0r5 mod 6.

Proof. Straightforward by induction. O

Theorem 6.1. Let f be the unimodal map with kneading map Q(k) = max(0,k — 5).
Suppose that the critical order ¢ is so large that f has a Cantor attractor, and a fortiors,
(10) and (11) hold. Then f is Lebesgue ezact.

Proof. Take A arbitrary such that A(A4) > 0. Without loss of generality, we can assume
that A C (ug,u1). We will show that Proposition 2.1 applies. Because f has a Cantor
attractor, and a fortiori y,(z) — oo A-a.e., we can assume that y,(z) — oo for all
x € A. Let x € A be a density point of A, such that f(z) is a density point of f(A).
The proof of the existence of Cantor attractors [4] gives rise to the following dis-
tortion estimate: For any n and any J on which F™|J = f™|J is continuous, we have
dist(f™, J) < K, where K depends only on £. The proofs also yield that there exists

C’>Osuchthat& < % S%forallk. Lete:m>0. Because z is a
density point, there exists J 3 x such that
AANJ
MANT) S,
A(J")

for any subinterval J' such that x € J' C J. Take from now on n so large that J, C J
whenever J,, 3 z is the maximal interval on which F"|.J,, is continuous.

Assume that x,(x) = k where £ = 2,3 mod 6. Let U C Uy be the component
containing F™(z) = f™(z). Define Wi C U to be the maximal interval such that
F(W1) C Uy and F2(W1) C Ugy1. Similarly Wy C U will be the maximal interval
such that F(WQ) C Uk+3. Because (Uk+5,ﬂk+5) C F(U/H_l),F(U]H_g) C (uk_go,ﬂk_go),
the overlap F(Ugi1) N F(Ugys) satisfies A(F(Uyy1) N F(Ugys)) > %)\(F(Uk+1)) for ¢
sufficiently large. We can find maximal intervals W; C Wl and Wy C Wg such that
F3(Wy) = F?(W,), and

A(Wy)  A(Wh) S 1
AU) T AU) ~ 20?02K
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Let Vi = f™(Wi)NJ, and V, = f~™(W5) N J,. Using the distortion argument once
more, we derive that

A1) A% 1

By the choice of ¢,
AANVY) MANV) o1 1
AVi) 7 A(Ve) T 3K
Remember that k£ = 2,3 mod 6, so by Lemma 6.1, Sy + Sky1 = Sky3 — 1. Let N :=
m+ Sk + Sk + Sgy1 =m — 1+ Sg + Sky3- Then

1

AUT(A) N YA = SAE (Uen) 0 F (Ukss)) > 0.
It follows that A(f~" o fN*1(A) N A) > 0. This is the assumption of Proposition 2.1.
The cases £k =0,1,4,5 mod 6 can be dealt with in a similar way. O
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