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Abstract

In this paper we construct a C' expanding circle map with the property
that it has no o-finite invariant measure equivalent to Lebesgue measure. We
extend the construction to interval maps and maps on higher dimensional tori
and the Riemann sphere. We also discuss recurrence of Lebesgue measure for
the family of tent maps.
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1 Introduction

The problem of constructing smooth maps on manifolds with no equivalent o-finite
invariant measure equivalent to the Riemannian measure has a long history. The map
is called type III (with respect to the measure) in this case. We describe briefly the
history of the problem of constructing type III maps on manifolds with respect to
Lebesgue measure.

Ornstein was the first to construct a type III invertible map [24]; it is a continu-
ous interval map. There are by now many examples of type III diffeomorphisms, the
earliest constructions being C* circle diffeomorphisms [13, 16, 17]. In [12] a nonin-
vertible C* type III map of the torus is given. None of these examples is expanding;
indeed there are obstructions to finding smooth expanding type I/I maps. This fact
is illustrated by a result by Krzyzewski and Szlenk [20], stating that every expanding
C? transformation on a compact manifold carries an absolutely continuous invariant
probability measure (acip).

Later, several authors obtained the same result while weakening the C? assumption
for expanding maps, for example [6, 23, 27]. In each of these papers the map was
assumed to be C' and to satisfy an additional condition on the derivative (Holder,
bounded variation etc.). In the C! expanding case examples have been constructed
which admit no finite absolutely continuous measures [7]; however the existence of
an infinite o-finite invariant measure is not excluded. In addition, many examples
of noninvertible C'*° maps, for instance quadratic maps on the interval, with infinite
o-finite invariant measures have been found, e.g. [2, 14].

In this paper we construct ergodic type III maps of manifolds which are C! and
expanding. Questions on the Lebesgue ergodicity of C' expanding maps have been
addressed by Quas [25] and references therein. We prove the following theorems.

Theorem 1.1 There exist maps [ for which there is no o-finite invariant measure
equivalent to Lebesque. f can be constructed to satisfy one of the following sets of
properties.

o f is a C! expanding circle map of degree d > 2.

e f is an interval map topologically conjugate to the full tent map T, and f is
either C*, or C' and expanding on both branches separately.

e f is an interval map topologically conjugate to the tent map with slope a, for
any a € (1,2] such that the critical point has a nowhere dense orbit.



Theorem 1.2 There exists an ergodic type III Borel measure v on C,, with respect

to the rational map R(z) = 4(:(2;51_)12)

We use a construction of Hamachi [9] of a type III shift map with a product
measure to prove our main result. This gives us in a natural way a type III measure
for the angle doubling map on the circle which is the basis for our smooth examples.

It is known that for noninvertible maps, equivalent measures can exhibit differ-
ent recurrence properties. Given a nonsingular ergodic endomorphism (X, B, u, T'),
pu(X) =1, the (global) Radon-Nikodym derivative of T', denoted w,,, is defined to be
the unique T !B-measurable function satisfying:

/XfoT-wud,uz/de,u for all f € L' (X, p).

The higher derivatives are defined for each n € N by w,(n,z) = [1"4 wu(T?z). The
measure u is said to be recurrent for T if

> wu(n,z) =00 p-ae.
n

In the invertible case, all measures are recurrent. For noninvertible maps, nonre-
current measures equivalent to recurrent ones are known to exist [5]. In general it
is difficult to determine whether a given ergodic measure is recurrent; an invariant
measure 4 is always recurrent since w,(x) = 1 in this case. In a noninvertible system,
if the measure is known to be recurrent, all existing invariants for invertible systems
(e.g. ratio sets and coboundary Radon-Nikodym derivatives) can be used to detect
the existence or absence of an equivalent invariant measure [12]. When the measure
is nonrecurrent none of the noninvertible tests are valid. Furthermore, nonrecurrent
measures provide obstacles to obtaining a conservative natural extension, even if the
original map has an acip [28].

Let T, be the tent map on [0, 1] with constant slope a. For 1 < a < 2, T, is known
to admit an acip (e.g. [21]). We prove the following theorem.

Theorem 1.3 There are only two values of a € (1,2], namely /2 and 2, for which
Lebesgque measure is recurrent.

The paper is organized as follows: after some definitions and notations, we prove
the nonrecurrence of Lebesgue measure for tent maps in Section 3. In Section 4, we
briefly discuss Hamachi’s construction on the shift space. In the next two sections we



apply his construction to obtain our results for circle and interval maps. In the last
section we focus on higher dimensional generalizations.

Acknowledgment: We are very grateful to Anthony Quas for his comments on
the paper.

2 Preliminaries

Throughout this paper we will only consider measurable nonsingular transformations
T of Lebesgue spaces X, where X is usually a manifold, endowed with the o-algebra
of Borel sets, denoted B, and a Lebesgue measure p on B which is o-finite. These
assumptions on T mean that for all A € B, T"'(A) € B, and pu(A4) = 0 if and only
if uT1(A) = 0. By replacing T by an isomorphic copy if necessary, we also assume
that T is forward measurable and nonsingular; i.e., for all A € B, T(A) € B, and
u(A) = 0 if and only if uT(A) = 0 [26]. Under these assumptions 7" will always be
surjective as well with respect to p.

Definition 2.1 Let (X, B, 1) be a Lebesgue measure space with | a finite measure.
We say that T' is a bounded-to-one endomorphism of X is there exrists a measurable
partition P = {A1, ..., An} of X such that u(A4;) >0, T|4, = T; is one-to-one, T is
one-to-one and onto X, and each A; is mazimal with respect to p in X \ Uj; 4;.

Definition 2.2 T is conservative (with respect to ) if for every A € B of positive
measure, there exists an m € N such that u(T~™(A) N A) > 0. T is ergodic (with
respect to ) if for every A € B such that T~'(A) = A, we have pu(A) = 0 or
u(X \ A) =0.

Definition 2.3 The Jacobian and the Radon-Nikodym derivative: Given a non-
singular bounded-to-one endomorphism (X, B, ;T), for each x € A; let J,T(x) =
d(‘i‘g" (z). We set J,T(x) =0 for all x € X \ U; A;. This is called the Jacobian of T
with respect to p.

The (global) Radon-Nikodym derivative of T, denoted wy,, is defined to be the

unique T~ B-measurable function satisfying:

/)(fOT'wud/L:/deu for all f € L*(X, p).



The higher derivatives are defined for each n € N by w,(n,z) = 11 wu(T?z). The
measure |4 1S said to be recurrent for T' if

> wy(n,z) =00  p-a.e.
n

We have the following easily verified identity linking the two types of derivatives:

wir=( Z, 1) N

When T is invertible, all measures are recurrent and the Jacobian and the Radon-
Nikodym derivative are the same function. It is an open problem as to whether every
endomorphism admits an equivalent recurrent measure. In general it is difficult to
determine whether a given ergodic measure is recurrent; an invariant measure p is
always recurrent since w,(z) =1 in this case.

The following theorem represents a compilation of results.

Proposition 2.1 (cf. [28]) Suppose T is countable-to-one and preserves a o-finite
measure v equivalent to u, then the following are equivalent:

1. p is recurrent;

2. ¢ = Z—Z is a T~'B-measurable density function;

3. wy 18 a coboundary; i.e., w, = @;LT [-a.e.
Proof: (3) = (2): Since by definition w, is T~ B-measurable, so is the quotient ¢‘fT.
Obviously ¢ o T is T~ 'B-measurable, so the product of w, with ¢ o T, which is ¢, is
T~!B-measurable as well. (2) = (3) follows since w, = 1 and

Wy ¢poT

w, E(¢|T'B)’

where E(-|.A) denotes the usual conditional expectation onto A C B. (3) = (1) since
coboundaries are easily shown to be recurrent (see [11]). (1) = (3) is proved in [28].
O



Definition 2.4 Let T' be a endomorphism of a Lebesque space (X, B, u) such that u
is ergodic, conservative, and nonsingular. We call i o type II; measure for T if it is
absolutely continuous with respect to some invariant probability measure. When X is
a Riemannian manifold, and p is an invariant probability measure which is absolutely
continuous with respect to the volume form, then we call i an acip. We call i1 a type
11T measure for T or we say T s a type III endomorphism if T admits no o-finite
invariant measure equivalent to p.

In this paper many examples deal with unimodal maps. A map f : I — I,
I = [0,1], is called unimodal, if there exists a unique point, ¢, the critical point,
such that f|j . is increasing and f|( ] is decreasing. We write ¢, := f"(c). The
forward orbit of a point = is denoted as orb(z). A unimodal map is onto on the
dynamical core, i.e. the interval [ce,c;]. Therefore we will always restrict to this
interval. A unimodal map f is bounded-to-one; Definition 2.1 is satisfied by taking
A1 = (¢,c1] and Ay = [eo,¢). For z # ¢, let the symmetric point & be the point such
that & # x and f(z) = f(Z). Restricted to the dynamical core, Z is only defined if
x € [co, Co] \ {c}. We call a Radon-Nikodym g derivative symmetric if g(x) = ¢g(z) for
all © € [co, &) \ {c}.

It can happen that there exists an interval J 3 ¢, J # [co, ¢1], such that f*(J) C J
for some n > 1. In this case f is called renormalizable. Take .J maximal and n
minimal with these properties. Then J is called a restrictive or periodic interval of
period n. An appropriate affine rescaling of f"|;, called the renormalization, is again
a unimodal map, which can be renormalizable or not. Therefore we can distinguish
between infinitely renormalizable and finitely renormalizable maps. In the latter case,
the deepest, i.e. the last renormalization is itself nonrenormalizable.

3 Non-recurrent measures

In this section we consider the family of tent maps on I, defined by
ax ifrx <1

= - 27

To(x) { a(l—z) ifz> 3,

and we take the slope a € (1,2]. Ty is the full tent map. The critical point is ¢ = %

and the interval [T7(c), T,(c)] = [(2—a)$, §] is the dynamical core. It is easily verified
that T, is renormalizable (of period 2) if and only if a < \/2. The renormalization

is the tent map with slope a?. Therefore T, is at most finitely renormalizable for



a > 1. We put the normal Borel structure on the dynamical core, and let m, be the
normalized Lebesgue measure on it. In this setting 7, is bounded-to-one, and the
partition { = {(c, ¢1], [co, )} generates the o-algebra of Borel sets under T,. T, is
clearly nonsingular. It is well known that 7, is ergodic with respect to m,, and also
conservative, provided it is nonrenormalizable.

We can compute wp,, () explicitly from equation (1). At points where the map
T, is one-to-one, (i.e. x =T, 'T,x) we have wy, (z) = a; at the points where T, is
two-to-one, (i.e. {z,2} = T;'T,z, x # ) we have wy, (z) = 2. We do not define
W, (€). We compute the higher derivatives to be:

Wi, (N, T) = a”2’r(""”),

where .
r(n,z) = #{0 < i < n; T, is two-to-one at T"(z)}.

Since 7, admits an ergodic acip v, ~ m,, it follows that

lim (2

exists and is constant v,-a.e.
n—oo n

Define the sequence 6; € {—1,1}Y as follows:

0 — 1 if #{2 <i < m;c; > 1} is even,
"l =1 i #{2<i<mje > 1} is odd.

We have the following theorem describing the density of v,:

Theorem 3.1 ([3]) The Radon-Nikodym derivative

dv, 0,
@ =eln= ¥ =
cn+12m<cl

We use this result to prove the following:

Theorem 3.2 There are only two values of a such that T, has a symmetric density

function for v,. Hence Lebesque measure is not recurrent for tent maps, except for
the slopes a =2 and a = /2.



Proof: We divide the proof into two steps. First we claim that the set orb(c)
is not 7, !B-measurable, unless a = 2 or a = V2. Indeed, suppose it were, then
¢m € orb(c) for every m € N. So there exists n such that ¢, = ¢,. In particular,
if @ # 2, there exists n > 2 such that ¢, = ¢é;. Then ¢,11 = c3, whence c3 is n — 2-
periodic. Setting n = 3, we see that this can occur with c3 a fixed point. In this
case orb(c) = {ci,ca,c3 = &} is indeed symmetric. This is met when a = /2. Using
Theorem 3.1, one can show that jﬁ is constant on (cg,é) for both a = /2 and
a = 2. Hence by Proposition 2.1, u, is recurrent. We show that nothing else can
occur.

If n > 3, then ¢, # éo. If ¢35 ¢ [c2, ), then ¢35 = (2 — a)“2—2 > W = ¢y. This in
turn implies that a® —a® —2a+2 < 0, which is impossible for a > /2. If a < v/2, then
T, is renormalizable: T2([cz, Ca]) C [c2, 2] and [ca, éa] N [e3, 1] = 0. Now ¢4 € (c2,é2),
and é; = ¢, for some n' > 4. But this is impossible because ¢z is periodic. The
remaining possibility is ¢3 € (cg, ), but then also é3 = ¢, for some n’ > 3. This
again is impossible because c3 is periodic.

In the second step of the proof we show that ¢ is not a symmetric density if
orb(c) is not symmetric. Let ¢, be such that ¢, ¢ orb(c), but exists. The function
o(z) = Zc = Z—Z clearly has a discontinuity at c¢,,, with a jump of size am%l
Choose k satisfying fkﬁ < aim —: ¢, and choose neighbourhoods U of ¢, and U of

ém such that ¢; ¢ UUU for all i < k. Then it follows that SUp, yerr |2(2) — 0(y)| > ¢,
while sup, , i [¢(7) — ¢(y)| < e. Hence ¢ cannot be symmetric. This concludes the
proof of the theorem. O

Remark: A similar situation may hold for differentiable families, and in particular

the quadratic family f,(x) = bx(1 — z). For the full quadratic map, i.e. b = 4, the

. . . . % — l 1 . . .
invariant density is known to be %% (z) = - T which is clearly symmetric. For

b = 3.67857.. ., the parameter value corresponding to the tent map with slope /2,
the density is not symmetric, see [8]. Therefore Lebesgue measure is nonrecurrent for
this value.

For all other values of b € [0,4] such that f, has an acip, we expect Lebesgue
measure to be nonrecurrent. We outline why this should be true. Using the same
proof as for the tent maps, we can show that the critical orbit is not symmetric.
If an acip exists, its density function will have a pole at every forward image of c,
cf. [18]. For example, if f, additionally satisfies the Collet-Eckmann condition (i.e.
lim inf,, *log Df"(c;) > 0), the density has the form %(x) = g(2) X1 ATz — ¢ |2

7



for some A € (0,1) and a function g of bounded variation (see [19]). Whenever the
closure of the critical orbit is nonsymmetric, this density is clearly nonsymmetric.

4 Hamachi measure

The starting point for all the constructions in this paper is an example of Hamachi
from 1981 [9]. He constructed a measure u for the two-sided shift space X = {0,1}?
with the usual Borel structure with the following properties.

Theorem 4.1 ([9]) There exists a Borel measure o for the shift o on X = {0,1}%
such that:

1. « s a product measure on X;
2. « is nonsingular, conservative, and ergodic for o;

3. a s a type III measure for o.

Later it was shown by Dajani and Hawkins that a one-sided version of Hamachi
measure gives a type III one-sided shift [4]. This observation about the Hamachi
measure was also made independently by Silva and Thieullen [28]. We state the
precise result since it is the basic measure on which further constructions are based.

Corollary 4.1 ([4]) There exists a Borel measure for the shift on X+ = {0,1}N
such that:

1. « is a product measure on XT;

2. « s nonsingular, conservative, and ergodic for o;
3. « is recurrent for o;

4. a 1s a type III measure for o.

We give a brief description of the type /] measure of Hamachi here.



4.1 A description of the Hamachi product measure

We define the measure o to be of the form o = [],>; o, by specifying each factor
measure «,. We begin by defining some measures on the 2-point set {0, 1}:

1. We denote by § the equally distributed measure 3(0) = (1) = % If we put the
measure 3 on each factor of X+, we will denote this Bernoulli measure by 8.

2. For a sequence A\, such that /\1 > Ao 1 (to be chosen by induction later),

we define a measure 7,(0) = 15~ and ’yk( )= li’j\k

We will define sequences of integers {Mk}kZb {Ny}i>1, satisfying: My > 1is arbitrary,
also N1 > M, is arbitrary, and Ny = My + ng, M1 = N + my. Here, ny and my
are positive integers chosen inductively, with the inductive step outlined below.

We then define:
B if0<n< M,

ap =< Y if My <n < Ny,
ﬁ lka <n< Mk—|—1-

As was shown in [15], the measure y is nonsingular for the shift if and only if
Z log \)? < oo. (2)

For later purposes we will choose the A;’s such that [];2; Ay < :5. Clearly formula
(2) is still satisfied. We add another condition on the choice of )\k in the inductive
step.

Hamachi gives an inductive algorithm for choosing the sequence (Ag, ng, my)k>1
so that the shift is nonsingular, ergodic, and type II] with respect to a. Since we
will modify the measure later, we will outline the inductive step, omitting the details
since they are carefully written out in [9].

A. Starting the inductive argument.

We choose A; > 1 to be arbitrary; also n; € N is arbitrary (greater than 1) and
my; € N is any number such that m; > n; + 1. Choose any decreasing sequences of
positive numbers {py} and {ex}, ¥ > 1, such that

1. Ask — 00, pr > 0and € — 0;

2. YRl =0



3. Ypei €k < 00;
4. Define np = Y12, &; (the tail of the g series).

B. The inductive choice of )\; in order to introduce the distortion from the
(3,3) measure B.

Keeping in mind that if Ay = 1 for all k£, then we have the  measure on each
factor, and preserving the nonsingularity condition given by formula (2), we choose

1 < Ap < Ap_1 so that
_ My €
(2X6/1 + Ap) M-t < N5 < Bk

We also choose p > 0 such that

1< (M) Me-1 < (\)Pr

C. The inductive choice of n;, the integer which determines how long we
must distort the measure by ).

We consider for the moment all possible cylinders of length N, = M}, + ny; and
we note that the measure of all such cylinders with exactly ¢ 1’s occurring somewhere
between M) and Ny is given by the binomial distribution formula:

0= (") 2 ™

t=0,1,...,n,. We choose n; large enough so that fi(t) is the “correct size for enough
of the t’s enough of the time” in order to reflect the fact that we have changed from
the (3,3) measure to the (;7x-, t3%-) measure. In particular, if we solve for ¢ > 0
so that . .
k
. =s*/2)gg =
e s = P,
o /_ o Pk

then we apply the Central Limit Theorem and choose n, large enough so that

P
> Je(t) > 1
- 23 < L5 o,

D. The inductive choice of m;, the integer which determines how long we
must spend back at the § measure for conservativity.

10



There are two conditions that determine our choice at this step. We choose my,
large enough so that
N, e2M+1 /\i’Nk £k
- < —
my — N, k 2
This maintains conservativity of «;; but in addition, in order to ensure that the product
measure « is of type III (and not just equivalent to an infinite invariant measure), we
need to choose my large enough so that we can obtain some correct Birkhoff Ergodic
Theorem averages with respect to the measure ﬁ on most of the space X (on a set
of § measure > 1 — ex) for certain real-valued functions. We refer the reader to [9]
for the details of this inductive step.

For the invertible shift, the measure is extended to the negative indices by setting
an, = [ ifn < 0. We will call the original two-sided measure constructed by Hamachi
@, and it is easy to show that the noninvertible measure « constructed above satisfies:

dao’
d&v

e T, %0, %) = we(t,x) for all z € X, and z; € {0,1}, j <0.
j

The choice of my will insure that:

for the invertible shift, giving conservativity, and for the noninvertible one we have

oo
> wa(i, ) = .
i=0
Therefore o constructed in this way is a recurrent measure.

Definition 4.1 We will call the measure o constructed in this way, using [9], the
Hamachi (type III) measure.

4.2 Some variations on the Hamachi measure.

Given X = [I,,en{0,1,...,2d — 1}, we define a product measure a4 closely related
to the Hamachi measure on X as follows.

11



Choose any positive numbers py,...,pq and ¢4, ..., qq such that

Since the Borel structure on X is generated by cylinders, we define o by specifying
its values on cylinder sets. We note first that the p;’s and ¢;’s determine a measure
on X by:
P = H Pn,
neN
with
Pn(()) :pl,Pn(l) :pg,,Pn(d— 1) = Pd,
P.,(d)=q,...,P,(2d—1) =qq

for each n € N. The measure P is a Bernoulli measure preserved by the shift o, so
wp(z) =1 for all x € X. Each cylinder C,, . of length n lies in a dyadic cylinder
of length n, by recoding each e; into a 0if 0 < e, <dorasalifd<e, <2d. We
denote the coding map from 2d symbols to 2 symbols by 7; 7 is defined pointwise in
the obvious way. We now define

mCe,...c,,
ad(Ce1...en) - P(Cel...en) A( ! )a
B(1Ce...c,.)
where « is the Hamachi measure constructed above, and B the (%, %) Bernoulli mea-

sure. With this definition, we have linearly rescaled the Hamachi measure to any
even number of states, so that ag = P - % o.

Letting o, denote the shift on the k-symbol space, we have the following lemma.
Lemma 4.1 The Radon-Nikodym derivative wy,(x) for oaq equals wy(mx) for os.

Proof: We note that since J,,094(2) = £Jpoag(z)Jao2(mz), then it is easy to com-

pute that
~1

1
Jay024(Y)

Way = Z

-1
YE€0,, 024%

= wo(mx).

12



Remark. Choose any two sequences of positive numbers {px} and {gx} such that
o o 1
Y= 4= 5
k=1 j=1

The py’s and ¢;’s determine a probability measure on: X3 = [12,{0,1,...,2k, 2k +
1,...}n by: P =Tl,>1 P, with P,(2k) = pi, P,(2k 4+ 1) = gy, for each k > 0 for each
n. We define a factor map 7 from X3, onto the dyadic X above by

7(x) = (x1(mod 2),z9(mod 2),...,).
We can consider the usual one-sided shift map on on Xy. If we define the measure

a(ﬂ—cel en)
B(chl---en) ’

where « is Hamachi measure and C,, ., is any cylinder of length n, then way (z) =
we (7).

aN(Cel...en) = P(Cel...en)

5 Hamachi measure for circle maps

In this section we construct the basic differentiable example, on which the other
examples are built. A map f on a metric space X (endowed with metric p) is called
expanding if there exists C' > 1 such that p(f(x), f(y)) > Cp(z,y) for all z,y € X.

Theorem 5.1 There exists a C* expanding circle map which is type III with respect
to Lebesgue measure m. Furthermore m s recurrent for this map.

Proof: TLet S : S! — S!, S! ~ R/Z, be the ordinary angle doubling map: =
2z(mod1). S preserves Lebesgue measure m. Let a be Hamachi measure on 3 =
{0,1}N. Because (3, 0) is measure-theoretically isomorphic to (S*,S), S is type III
with respect to the measure p which is induced by . We fix an orientation on S*,
and define h : S' — S' as h(x) = u([0,2)). As u is nonatomic and its support is
the whole circle, h is indeed a homeomorphism, and the measure o h~! is Lebesgue
measure. Therefore f := hoSoh™! is a type III circle map with respect to Lebesgue
measure. We will analyze h in detail to show that f can be a Lipschitz map. Using a
slight perturbation of h, we can obtain an expanding C! map which is type III with
respect to Lebesgue measure.

13



Let {Mk}kZIa {Nk}kZb 1 < M < N < Mk—|—1 < Nk—|—1---: and {)‘k}kZb AL >
Ay > ... > 1, be the sequences appearing in the construction of the Hamachi product
measure. Recall that [[, \r < I5. Let & = {e;} be a sequence of nonnegative reals. If
e = 0, then the construction below yields h(z) = u([0, z)). Otherwise we will choose
er > 0 inductively (with e; = 0.1 and g, \, 0) to obtain a C* degree 2 circle map
fe =he.oSoh;'. Foreach k € N and n € (—3,3) let ¢y, (satisfying ¢,(0) = 0) be
the map with a piecewise linear derivative:

[(1+ ﬂ;iz if z € [0, &),
2 if z € [eg, 3 + 1 — &l

1+
_1_
Dippg(z) =4 1= 20120 g e (Lan—ep,t+n+ey),

£k 14+
12+)\/{ck ifxe[%-l-n-i—sk,l—sk],
1+‘”E—;1i—§§ if x € (1 — ey, 1].

Then [y Dpy,(z)da = 1+ 20373k, and ¢y, (I) = I if 5 = 0. Moreover, Dt ,(0) =
Dty »(1) = 1. This is necessary to glue these maps together and still have a C!
diffeomorphism.

Let Cye,.c, C S' be an n-cylinder, labelled by the first n coordinates of its
itinerary: Co = [0,%), C1 = [3,1), Co1 = [,3), and so on. Therefore S! =
Ueres...enc{0,13n Ceren...cn- Define hy, as follows:

o If n < My or N, <n < My, for some k, then h,, is the identity.

o If M, < n < N for some k, then h, is made up of 2" ! scalings of Vi -
Let & = hy_1 o...h1(¢), where ¢ is the midpoint of C,, ., ,. Let [z,y) =
hp—10...0h1(Ce..c,_,) and n, = 5:—; - % (Note that if e, =0, hyp—y 0...0 hy is
linear on C,, . _, and 7, = 0.) Let izn(O) = 0, and assuming inductively that
h., is defined on the cylinder [z',y") to the left of [z,y), we define for z € [z,y).

~ Z2—T

ha(2) = Jim, ha(2') + (y = m)wk,nn(m)a (3)

Finally let hy,(z) = t,hn(2), where t, > 0 is such that t, fy Dhy(z)dz = 1.

Let H, = h,o...0hy and h, = lim,, H,,. We will see below that t,, — 1 exponentially.
This will imply that lim,, H,, exists pointwise. Define also f, = H,o0SoH,'. We need
to show that for {&;} well chosen, {f,} is a convergent sequence in the C' topology.
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Suppose that we have chosen ¢; for [ < k and take M, < n < N,. Let us first
derive some estimates for D fy, which hold if ¢, = 0. Then we choose upper bounds
gy for g;, for the inductive step in formula (4) using a continuity argument.

By the relative displacement of a point ¢ € (a,b) due to a homeomorphism h
we mean ZEZ;:ZEZ% #==. BEach number 7, measures the relative displacement of the
midpoint of (one of the) Ce, . _, due to H,_;. We estimate 7, under the tempo-
rary assumption £, = 0. We only have to consider h,, for m < Njy_q, since for all
Ny—1 < m < n, the homeomorphisms h,, are piecewise affine on H,_1(Ce,. c,_,)-
For m < Ny, the interval H,, 1(Ce, ., ,) is exponentially small compared to

H, 1(Ce,..c,_,)- Indeed, because the distortions S“If’g}?’ < % forall Il € N and

L | H1(Coye )| < 197 H (Coye )] Hence the relative dis-
placement of any ¢ € Hy,_1(C,,.. .. ,) due to hy, is < O((1.9)~™=™). This gives a rel-
ative displacement due to H,_; (as & —k— > 1) 5, < TV O(1.9)" (™)) < (1.8)™
By the same argument 7, > —(1.8)™". Because this is true for every cylinder C, ., ,
and [y Dy, (2)dz = 1+ QUn;—il:, it follows also that sup, |hn(z) — 2| < O((1.8)™™)
and also 1 —O((1.8)™") <t, <1+ 0O((1.8)™"). Therefore the normalized homeomor-
phism h,, satisfies sup, |h,(2) — 2| < O((1.8)™") as well.

Clearly Df,(x) = %Dﬁ, 1(y), where y = h'(z). Now setting n = Ny
and y; = h;to---0 h]_vk( x), we get (because hy, is the identity for Ny ; < m < My)

DhNk—1+1(ka—1 (yNk—1+1)) Dh’Nk (kafl(yNk))

Dka (.T) = Dka—l (yNk,l—l—l)

DhNk_1+1(yNk_1+1) o DhNk (yNk)
_ DfN (yN 1)Dth+1(.ka(yMk+1)) DhNk (ka—l(yNk))
fot kot Dth—}—l(yMk—i—l) Dh’Nk (yNk)

By construction, f,_o(h,*;(2)) lies in the left part of H,_3(Ce,...,_,) if and only if z

lies in the left part of H,,_1(Ce,. ., ,), for all My < n < Nj. Hence |Dh”—|}j(’{:Z;S/|"—1))‘ =
tn

L and

DhNk(kafl(yNk)) ﬁ ln-1
Dby 1 (Yngs1) n=Mgt2 b

Dfn, . (yn, 1+1) Dhy, (fa,-1(yn,))
D (@) Dfy,_,(z) Dhag,1(Yage+1)
< Dfn,_,(x)(1+O((1.8) M)A,

Dka (CU) = Dka—1 (yNk—1+1)

n

IN
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Dfn,_1(yn;,_q+1

where the estimate of ) follows because
Dfn,_,(z)

lyn, 41— x| < sup lhyt 410-..0hy(2) — 2]

= sgp\hﬁﬁlo...oh&i(z)—d

< Y O((L8) ) < O((18) M.

1=Mp+1

A similar argument gives D fy, (z) > Dka_l(ac)i(l — O((1.8)M*)). These deriva-
tives depend continuously on ;. We choose £, > 0 so small that

Diy, +(@)5-(1 = (1L7)7) < Dfy () < Dfs @M1+ (LD, (@)

for all 0 < &4 < & and z € S*. Then both fy, and Dfy, converge uniformly on S*.
The limit f. satisfies 2], l_(l)\ﬁ < Df(x) < 211 M(1 + (1.7)=M*) and therefore

is an expanding C! circle maup.]c

We now check that f. is indeed type III with respect to Lebesgue measure. Define
Yen(x) = Dhyy(Hy—1(2)), and if e = 0, we write ¢, (x). If ¢, = 0, then f. is Lipschitz
continuous, and pu corresponds to the original Hamachi product measure. For g5 Z 0,
h. defines a measure by u. := m o h.. We will show that for £; small enough, © and
e are equivalent. The Radon-Nikodym derivative is ®.(z) := dd%(x) =TI, ‘p;;:”((;g).
We can make sure that ®, is bounded and bounded away from 0 p-a.e. Indeed, let

on(@) n? " ()

Obviously, [T, %((w‘;) is finite and positive if x is not too often contained in A,. But

g,n 1 g,n 1
n

because the numbers \; are the same for ¢, and ¢, n, p(A,) — 0 as g, — 0. Take
er < & so small that u(A,) < Z5 for all M < n < Ni. The Borel-Cantelli Lemma
gives p(N; Uns: An) = 0, so the set of points visiting an A, infinitely often has zero
measure. Hence p is equivalent to p..

It is a property of Hamachi measure that u is a recurrent measure for S. We claim
that p. is also recurrent for S, which is equivalent to showing that the measure m is
recurrent for f.. Since pu ~ ., it suffices to show that ®, is constant on symmetric
points of S ([12]). Suppose that = and y are such that S(z) = S(y). Then z =y + 3
and by the symmetry in the construction of h., ®.(x) = ®.(y). O

16



Remark: Using a Hamachi measure on the one-sided shift on d symbols, and the
techniques developed in this section, we can construct C' expanding type III circle
maps of any degree d > 2.

6 Hamachi measure for interval maps
In this section we modify the previous construction for tent maps.

Theorem 6.1 There exists a unimodal map, conjugate to the full tent map which is
type 11T with respect to Lebesque measure m. This map can be chosen to be C*, or
piecewise C' and expanding.

Proof: It is well-known that (X, 0) is measure-theoretically isomorphic to (I,7),
where T' = Ty is the full tent map. Indeed, take a = ajas ... € X, and let ¥(a; - . - a,)
be the number of ones in ¢, ...qa,. Let a be defined as

M if 9(ay ...a;_1) is even,
Ul 1—a; ifd(ay...a; 1) is odd.

If 2(a) is the point in I\ U,<oT™(3) whose itinerary is @, then a — z(a) is the
required isomorphism. So we can again pull back Hamachi measure «, obtaining a
measure with respect to which T is type III. We proceed as in the circle case; the
only adjustment to be made is to change formula (3) into

{ (v — )Yk, (35) if 9(eq...e,_1) is even,

ha(z) = lim hy(2') + (Y = &) P (1) = Prm (=2))  if I(er .. €n1) is 0dd.

Zl/lyl

This will give us the required piecewise C' and expanding map f.

Note that f’(0) = —f’(1). In order to obtain a C' (but no longer expanding)
example, we can do the following. It can be easily checked that T" and the quadratic
map Q(z) = 4z(1 — z) are smoothly conjugate: If g(z) = =2 then goT = Qog.
Applying the same conjugacy on f, we get a C! map f=gofog!, which is type
IIT with respect to the measures m o ¢g~! and m. O

These results allow the following generalization:
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Theorem 6.2 For every a € (1,2] such that the tent map T, has a nowhere dense
critical orbit, there exists a map f, topologically conjugate to T,, which is type III
with respect to Lebesgue measure.

Proof: Assume a > v/2, because otherwise 7, is renormalizable, and we can consider
the deepest renormalization of T, instead. Let V C [cz, ¢1] be an open interval such
that orb(c) NV = (. Due to the expansion properties of T, there exists n minimal
such that ¢ € T(V). Take any p € T™(V), p # ¢, such that also p € T*(V) and
orb(p) N (p,p) = (ZJ Let U = T, ™((p,p)) N V. Then orb(c) and orb(0U) are disjoint
from U, and ¢ = T;™(c) N U is the middle point of U. It follows that the first return
map F : U — U “has countably many branches F : J — U, F|; = T:) all of
which are onto. Also F(g) is not defined and F(g +¢) = F(q —¢) for all e < ;|U]|.
By the techniques discussed previously, there exists an ergodic nonsingular nonatomic
measure y with respect to which F'is type I11. Also u(U’) > 0 for every nondegenerate
subinterval U’ C U. We can pull back p to a measure fi of the original map 7, as

s(J)—1

ZZ“ B)n.J),

where the first sum is taken over all branch domains of F'. Due to a result of Silva and
Thieullen [28], T, is type III with respect to fi. It is easy to show that i is again ergodic
nonatomic and nonsingular, and that (/") > 0 for every nondegenerate subinterval
I' C [eg, ¢1]. Define again the homeomorphism A : [cg, ¢1] — [0, 1] as h(x) = (e, x)).
Then f = hoT, o h™! is conjugate to Tylies e}, and f is type III with respect to
Lebesgue measure. O

7 Hamachi measure for maps on the sphere

In this section we extend our construction to the Riemann sphere, C U co = C,.
Our example is motivated by a classical construction given by Lattés to construct a
rational map of the sphere whose Julia set is the whole sphere [22].

7.1 Analytic type I/l maps of the Torus

We begin by extending our construction above to the torus T? = R?/Z? as follows.
Let us first remark that the angle doubling map Sz = 2z (mod1) gives rise to a

18



measure preserving Bernoulli four-to-one map of T? by S x S(z,y) = Q(z,y) =

2 0
o
denoted me, this is a one-sided Bernoulli shift of entropy log4. We can identify T?
with S! x S! and put p, the Hamachi measure we constructed in Section 6, on one
copy of S!. The measure we now have on S' x S' is m x u, which we denote by ps.
We have the following result. We will write B, = B x B.

](az,y) (mod1). With respect to two-dimensional Lebesgue measure on T2,

Theorem 7.1 The map Q =S x S on (S! x S, By, ) satisfies:
1. Q is a 4-to-1 map with respect to ps ;
2. @ 1is continuous, nonsingular, conservative, and ergodic with respect to po;
3. g s recurrent for Q;

4. Q admits no o-finite invariant measure absolutely continuous with respect to pis.

Proof: It is clear that @ is a nonsingular, 4-to-1 continuous endomorphism on T2.
(It is enough to show there exists a partition P = {P,, Pi, P», Ps} of T? into 4 sets
such that the restriction of () to each set is one-to-one and onto with respect to ps.
The partition into four sets with endpoint coordinates 0,1, and % obviously works.)
Since S is exact with respect to m, and since S is ergodic with respect to p, it follows
by [1] that @ is ergodic with respect to ps.

Let w,, denote the Radon-Nikodym derivative of S with respect to m. Then clearly
wm = 1. Let w, denote the Radon-Nikodym derivative of S with respect to Hamachi
measure. If w,,, = ws denotes the Radon-Nikodym derivative of ) with respect to
mo, since w, is Q~'(B x B)-measurable, it follows that ws(z,y) = w,(y) for every
(x,y). The fact that @ is type III for ms now follows exactly as in [12]. O

The following corollary can be proven using the same methods as in the circle
case.

Corollary 7.1 On the d-dimensional torus, there exist maps f with one of the fol-
lowing sets of properties:

e f is a toral group endomorphism and f type III with respect to some ergodic
and conservative Borel measure.
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e f is type III ergodic and conservative with respect to Lebesque measure, and f
is C' expanding.

Regarding @ as a map of R?/Z? we note that Q(—(z,y)) = —Q(z,y) for all
(z,y) € T2 We now review some basic facts about the Weierstraf} elliptic p function
in conjunction with a classical method of constructing analytic maps of the sphere
given by Lattes [22].

7.2 Lattes examples on the Sphere

We consider the Weierstraf elliptic function of the complex plane C; i.e., a meromor-
phic function on C which is periodic with respect to a given lattice and is even. In
our case we are primarily interested in the lattice L = {m+in : m,n € Z}. We recall

that . . .
ole) ==+ weg,:,,#o l(z —w)? wQ]

satisfies the definition of an even elliptic function and can be regarded as a map
from the period parallelogram C/L which is homeomorphic to T?. Furthermore
p:T? 5 8?2 T?/z ~ —z is a two-fold branched covering of the sphere by the torus.

Using the identification z = = + iy = (x,y) € C, when no confusion arises, )
defines a complex endomorphism on T? such that Q(—z) = —Q(z). We can pass
to the quotient space to obtain an analytic (rational) map of the sphere such that
po@ = Rogp. In fact, using a classical “angle doubling” formula for p, and the fact
that Q(z) = 2z (mod L), we obtain the following explicit formula for R in this case:

(22 + 1)2
R(z) = 4z(22 = 1)

If we put Lebesgue measure my on the torus, then @, and hence R (using the obvious
factor measure) will be isomorphic to the one-sided Bernoulli shift of entropy log 4.
By varying the lattice and the integer in the original endomorphism on C, we obtain
the earliest examples known of rational maps of the sphere with Julia set the whole
sphere.

By varying the measure on T2, we obtain different factor measures on Cy, in the
obvious way; i.e., by using the measure o o p~! on the sphere if o is the measure
on the torus. The map g gives a 2-set partition (not unique) of T? minus exactly
4 branch points with the property that the restriction of p to each atom of the
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partition maps injectively onto the sphere minus 4 points. We will fix from now
on a choice of partition and call the 2 disjoint sets Ay and A;; they can be chosen
to be connected, but we will not use that here. We choose Ay to be the union
of 2 atoms from the partition P defined earlier for (). We define py = p|a, and
©1 = p|a,- Using this partition, any nonatomic Borel o-finite measure p on Cq
gives rise to a measure on the torus via the map g as follows. For each set C' € Bs,
define —C' = {(—z,—y)(mod L) : (z,y) € C}. Recall that Q(—C) = —Q(C) and
Q7'(-C)=-[Q7'(O)].

If C = p~top(C), we call C a saturated set (under p). We can form the saturation
of any set B € B, by B, = p~' 0 p(B) D B. It is clear that B, = BU —B, where the
union may or may not be disjoint.

Lemma 7.1 Let p be any nonatomic, nonsingular Borel measure for R. Then there
exists an associated lifted measure py on T? such that:

1. py is nonsingular for Q;

2. if p is ergodic for R, then ps has at most 2 ergodic components with respect to

Q;
3. if p is (o-)finite, then so is py;

4. if p is invariant for R, then py is invariant for Q.

Proof: Given any C' € By, we can write C' = Cy U Cy U Gy, , where Cy = C'N Ay,
Cy = C N Ay, and Cp. = CN(branch points of p). Clearly the union is disjoint, and
any of these sets in the union could be empty. Define

pA(C) = Soloo(Co)) + 3pen(C)
= 50e1(=Co) + 5p(n(C1)

- %p(po(CO)) + %p(po(—a)),

since p;(C;) = p;(—Ci),4,7 = 1,2,i # j. We remark that if C is a saturated set, then
p2(C) = p(pC), and for any measurable B, ps(B,) = 0 if and only if p(B) = 0.

To show 1, we suppose po(C) = 0. By the above formulas, this implies that
p2(p ' p(C)) = p2(C,) = p(pCy) = 0. By nonsingularity, p(R™'p(C,)) = 0, and it is
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easy to see that for any saturated sets C, € By, po Q™ 1C, = R o pC,, so it follows
that po(Q71C,) = 0 = po(Q~1C). Similarly we can show that if p,(Q1C) = 0,
p2(C) = 0 as well, by saturating Q'C.

We will now prove 2. We assume that p is ergodic for R and let B be a positive
measure ()-invariant set in By. If B is saturated, then by the ergodicity of p for R,
we have that B has full p» measure. Furthermore, we can show that B N —B, which
is saturated, is also @) invariant. Therefore it has full or zero measure. Suppose then
that po(B N —B) = 0 (or we are done because if not, then B is saturated hence has
full measure). Then since the set B U —B is invariant and saturated, we now have
2 disjoint sets, B and —B, each of positive measure, disjoint, and invariant. Their
union has full measure; this follows from the ergodicity of R with respect to p and
the fact that B U —B is saturated. Then from the discussion it follows that p maps
B injectively onto C4,. From this it follows that no smaller set can be invariant; i.e.,
the ergodic decomposition can have at most 2 atoms in it, each of which completely
covers the sphere. Therefore there are at most two distinct ergodic components.

3. follows easily. Finally we establish the invariance of p; for () when R preserves
p. Let A denote the o-algebra of Borel sets on the sphere. If C is a saturated set in
B,, then py(Q~'C) = po(C) by the hypothesis on R and the above discussion. So it is
enough to check invariance for invariance for C C Ay (or A4,); assume C' = CNAj € A.

Then C N (—C) =0 and (Q 'C)NQ (-C)=(Q 'C)N—(Q 'C) =0. Then

1 1 1

p2(C) = 5p(00C) = 5p(6C) = (R (200)) = 50(p(@'C).

Writing Q'C = (Q1C)o U (Q ()4, this equals

%[p(po(Q‘IC)o) + p(p1(Q'C) )] = p(Q71C).

This concludes the proof. O

7.3 Type II] Rational Maps of the Sphere

We construct the type III map on T? as above, using the measure p, which is the
product of one-dimensional Lebesgue measure m with Hamachi measure p. On the
sphere we use the natural factor measure defined by the factor map g; i.e., define
v(A) = ps(p~'(A)) for every Borel set A on S? = C,. It is clear that v is ergodic
and conservative for the factor map R defined above, so the following holds.
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Theorem 7.2 There exists a Borel measure v on C,, such that, with respect to the

rational map R(z) = 4(5(2;1—)12) .

1. v is supported on the Julia set of R (which is the whole sphere);
2. R 1s a 4-to-1 map with respect to v ;
3. R is continuous, nonsingular, conservative, and ergodic with respect to v;

4. R admits no o-finite invariant measure absolutely continuous with respect to v.

Proof: From the discussion above and Lemma 7.1, it is clear that we only need to
check 4. We suppose that R admits an invariant measure p ~ v, and that p is o-finite.
Then p is ergodic since v is, so we lift p to an invariant measure for @ on T? as in
the preceding lemma. We denote by p, the lifted measure on T2, and it has all the
properties listed in Lemma 7.1. It remains to show that p, is equivalent to us which
would contradict the hypothesis on ps.

One can easily establish that pu, < py since:

p2(C) =0 = p(po(Co)) + p(p1(Ch)) + p(po(—C1)) + p(po(—C1)) = 0

= p(pC) =0
= v(po(Co)) + v(p1(C1)) + v(po(—C1)) + v(po(—C1)) =0

If the measure py is ergodic for (), then we suppose there exists a measurable set C'
such that ps(C) = 0 and po(C) > 0. We can generate an invariant set for @) by C
which then has full p; measure by ergodicity of ps; its complement will have p,-, hence
o-measure 0. It cannot happen that s gives measure 0 to a set and its complement.
Therefore we assume, using Lemma 7.1, that py has two ergodic components with
respect to @; then we will write the measure as the sum of two ergodics: p, =
%pg + %pé We repeat the above argument on each component separately; i.e., any set
C such that ps(C) = 0 but po(C) > 0 must lie completely in one ergodic component
of py (otherwise we repeat the above argument verbatim). Therefore u, ~ p9 say. The
set C generates an invariant set of full p} measure whose complement has measure 0.
Hence ps gives both C' and its complement measure 0 and the contradiction establishes
the result. O
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Remarks. 1. The Lattes examples are constructed for any endomorphism of the
form QQz = nz for any n > 2. In this way we can construct type III examples of
degree n?.

2. We can also vary the lattice used in the definition of the Weierstrafl elliptic
function to obtain different conformal equivalence classes of maps. The measure
theoretic properties will remain the same however, as changing the lattice is a measure
theoretic isomorphism.

3. Because of averaging that occurs in the Weierstral factor map, our method
does not immediately lead to a C' type III version of the example.
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