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Abstract. We prove Lebesgue ergodicity and exactness of a certain dissipative 2-dimensional
subtractive algorithm, completing a partial answer by Fokkink et al. to a question by
Schweiger. This implies for Meester’s subtractive algorithm in dimension d, that there
are d− 2 parameters which completely determine the ergodic decomposition of Lebesgue
measure.

1. Introduction

Consider a triple x = x(0) = (x1, x2, x3) of positive reals, and form a sequence (x(n))n≥0,
by repeatedly subtracting the smallest of the three from the other two. This dynamical
system emerged from a percolation problem studied by Meester [M]. Although (x(n))n≥0 is
clearly a decreasing sequence, x∞ = limn→∞ x

(n) is different from 0 for Lebesgue-a.e. initial
position. Let us write this more formally as iterations of the subtractive map of increasing
triples 0 ≤ x1 ≤ x2 ≤ x3:

F (x1, x2, x3) = sort(x1, x2 − x1, x3 − x1),

where sort stands for putting the coordinates in increasing order. It is obvious that
x∞1 = x∞2 = 0, but also that if x3 > x1 + x2, then η := x3 − (x1 + x2) is a preserved
quantity. This means that once x3 > x1 + x2, the third coordinate will always remain the
largest, even under the unsorted subtractive algorithm, and in fact x∞3 = η. Meester and
Nowicki [MN] showed that for Lebesgue-a.e. initial vector, there is indeed some n ≥ 0 such
that η = x

(n)
3 − (x

(n)
1 + x

(n)
2 ) > 0.

Therefore F is non-ergodic w.r.t. Lebesgue measure λ: triples with different non-negative
values of η have disjoint orbits, and thus belong to ‘carriers’ of different ergodic components,
which can be defined in the usual way even though λ is non-invariant and in fact dissipative.
Let us recall these definitions.

Definition 1. A transformation (X,B, λ;T ) is
• non-singular if λ(B) > 0 implies λ(T (B)) > 0;
• ergodic if T−1(B) = B implies that λ(B) = 0 or λ(X \B) = 0;
• conservative if for every set B ∈ B of positive measure, there is n ≥ 1 such that
λ(T n(B) ∩B) > 0;
• dissipative if it is fails to be conservative, and totally dissipative, if there is no
invariant subset X0 ⊂ X of positive measure on which T is conservative;
• exact if T−n ◦ T n(B) = B for all n ≥ 0 implies that λ(B) = 0 or λ(X \B) = 0.

All of these properties can be defined even though λ is not T -invariant.
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The result of [MN] was generalised by Kraaikamp and Meester [KM] to dimension d ≥ 3.
They showed that for the map

Fd(x1, . . . xd) = sort(x1, x2 − x1, . . . , xd − x1),

and Lebesgue-a.e. initial vector x, the quantity η3 = x
(n)
3 −(x

(n)
1 +x

(n)
2 ) is eventually positive,

and so is ηk := x
(n)
k −x

(n)
k−1 for k > 3. Once η3 > 0, all ηk are preserved, and, as observed in

[FKN], Lebesgue measure is therefore not ergodic. This answers in the negative a question
posed by Schweiger [S]. The natural question, however, is whether the level sets

{x ∈ Rd
≥0 : x∞k =

k∑
j=3

ηj for all 3 ≤ k ≤ d}

constitute the ergodic decomposition of Lebesgue measure.
We can rephrase this question by passing from projective space (on which Fd acts) to

a fixed simplex ∆ = {x = (x1, . . . , xd) : 0 ≤ x1 ≤ · · · ≤ xd = 1}, by scaling the largest
coordinate to 1. The map Fd then becomes fd : ∆→ ∆, defined as{

x′ = Fd(x) = sort(x1, x2 − x1, . . . xd − x1),

fd : x 7→ 1
x′d
x′.

For d = 2, the map Fd reduces to the Farey map

x 7→

{
x

1−x if x ∈ [0, 1
2
];

1−x
x

if x ∈ [1
2
, 1].

(1)

In the next simplest case d = 3, we know that limn→∞ f
n
d (x1, x2, 1) = (0, 0, 1) as soon as

x1 + x2 < 1, so fd is totally dissipative on the simplex ∆.
Nogueira [N] used properties of GL(2,Z) to prove that, although dissipative, the three-

dimensional system is Lebesgue ergodic. In this paper we use a different method (based
on a transient random walk argument with a Lebesgue typical speed of “convergence to
0”, combined with distortion estimates) to reprove ergodicity. Our method also yields
Lebesgue exactness, and is, we hope, adaptable to similar (higher-dimensional) systems as
well, see also Remark 1.

Theorem 1. Partition the triangle ∆ = {(x, y) : 0 ≤ x ≤ y ≤ 1} into ∆L = {(x, y) : 0 ≤
2x ≤ y ≤ 1}, ∆R = {(x, y) : 0 < x ≤ y < 2x ≤ 1} and ∆T = {(x, y) : 1

2
< x ≤ y ≤ 1}.

Then with respect to the map f : ∆→ ∆ defined as

f(x, y) =


(y−x

x
, 1−x

x
) if (x, y) ∈ ∆T ,

(y−x
1−x ,

x
1−x) if (x, y) ∈ ∆R,

( x
1−x ,

y−x
1−x) if (x, y) ∈ ∆L,

see Figure 1, Lebesgue measure is totally dissipative, ergodic and exact.

It follows from [KM] that for d ≥ 3 and Lebesgue-a.e. initial vector x, there is n ∈ N
such that for x(n)

3 > x
(n)
2 + x

(n)
1 , so this case reduces to Theorem 1 as well. In fact, we have

the corollary:

Corollary 1. For each η3 > 0 and η4, . . . , ηd ≥ 0, the map Fd restricted to the invariant
set {x ∈ Rd

≥0 : x∞k =
∑k

j=3 ηj for 3 ≤ k ≤ d} is ergodic and exact w.r.t. Lebesgue measure.
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s
A0

sB0

s
B1

sA1sA2sA3sA4

sB2

sB3

sB4

A0 = (0, 0)
Bk = (0, 1)

g0 = {x = 0}

Ak = ( 1
k
, 1)

Bk = ( 1
k+1

, 1− 1
k+1

)

gk = {y = kx}

}
for k ≥ 1

Dynamics of f :
· · · → A3 → A2 → A1 → A0 	
· · · → B3 → B2 → B1 → B0 	
· · · → g3 → g2 → g1 → g0 	

Figure 1. The Markov partition for partition f : ∆ → ∆ consists of the
triangles ∆L (to the left of the line g1 = {y = 2x}), ∆R (between g1 and the
line {x = 1

2
}) and ∆T (to the right of {x = 1

2
}). Each of these triangles is

mapped onto ∆ by f . Further diagonal lines gk bound the regions where the
first return times to ∆R are constant (namely k between gk and gk+1). The
line {x + y = 1} is invariant and separates the part where η > 0 and where
η is not yet determined.

Proof. Since η3 > 0, we can divide the space {x : x∞3 = η3} into a countable union ∪τ≥0Xτ

where τ = min{n ≥ 0 : F n
d (x)3 > F n

d (x)1 +F n
d (x)2}. That is, after τ iterations, the order of

the coordinates F τ
d (x)k for 3 ≤ k ≤ d will not change anymore under further iteration. (In

fact F τ
d (x)k =

∑k
j=3 ηj + F τ

d (x)1 + F τ
d (x)2.) So from this iterate onwards, we can scale so

that F τ
d (x)3 = 1 and restrict our attention to the first two coordinates. Theorem 1 applies

to them. �

Remark 1. Meester and Nowicki’s result was generalised by Fokkink et al. [FKN] to a
two-parameter setting, called Schweiger’s fully subtractive algorithm, see [S, Chapter 9]:

Fad(x1, . . . xd) = sort(x1, . . . , xa, xa+1 − xa, . . . , xd − xa).
Analogous quantities ηk for k ≥ a + 2 are still preserved as soon as ηa+2 ≥ 0, and [FKN]
shows that this happens almost surely. The present paper shows Lebesgue ergodicity and
exactness of the level sets of (η2, . . . , ηd) for F1,d and all d ≥ 3. It is hoped that the
techniques will be useful to understand Fad for general a ∈ {1, 2, . . . , d− 2}.

2. The proof of Theorem 1

2.1. Finding convenient coordinates. To start the proof, it helps to recall from [FKN]
the Markov partition of ∆ that f possesses, see Figure 1. The Markov partition ∆ =
∆L ∪ ∆R ∪ ∆T consists of three full branches. In fact, f extends to a diffeomorphism
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f : ∆i → ∆ for i = L,R, T . The region Y under the line x + y = 1 is invariant; it is here
that η = 1−x−y > 0, and fn(x, y)→ (0, 0) for every (x, y) ∈ Y . Clearly f(∆T ) ⊃ Y , and
an additional distortion argument ensures that Lebesgue-a.e. (x, y) eventually falls into Y .
Therefore f is totally dissipative.

The question is whether the convergence to (0, 0) is so chaotic, that λ|Y is in fact ergodic
or even exact. Let us restrict our Markov partition to

{YL = ∆L ∩ Y, YR = ∆R ∩ Y },
and study the first entry map G : Y → YR in a new set of coordinates. First note that
the lines gk = {(x, y) ∈ Y : y = kx}, k ≥ 1, and g0 = {(x, y) ∈ Y : x = 0} satisfy
f(gk) = gk−1 for k ≥ 1 and g0 consists of neutral fixed points. Hence the return time to
YR on the region between gk+1 and gk+2 is exactly k for k ≥ 1. For fixed t ≥ 0, the lines
`(p, t) = {(x, y) ∈ Y : y = p− tx}, 0 < p ≤ 1, foliate Y and

f(`(p, t) ∩ YL) = `(p, t+ 1− p), f(`(p, t) ∩ YR) = `

(
p

t+ 1− p
,

1

t+ 1− p

)
.

Therefore, if An(p, t) ⊂ `(p, t) ∩ YR is a maximal arc on which the first return time is n,
then

Gn(p, t) := G(An(p, t)) = `

(
p

t+ 1− p
,
n+ (n− 1)t− 2(n− 1)p

t+ 1− p

)
∩ YR.

Remark 2. The point (0, 0) is attracting under G, but not quite under f itself. Namely,
on YL,

Df |YL(0, 0) =

(
1 0
−1 1

)
,

which is a nilpotent shear, whereas on YR,

Df |YR(0, 0) =

(
−1 1
1 0

)
,

which is hyperbolic with stable eigenvalue λs = 1
2
(
√

5 − 1) on stable eigenspace Es =

span(λs, 1)T (where T stands for the transpose) and unstable eigenvalue λu = −1
2
(
√

5+1) <
−1 on unstable eigenspace Eu = span(λu, 1)T . Therefore, if

(pk, tk) = Gn1...nk := Gnk ◦Gnk−1
◦ · · · ◦Gn1(p, t)

for successive return times (nk)k∈N, then tk → 1
2
(
√

5 + 1) as k → ∞ and nj = 1 for all
large j, whereas tk immediately becomes large if nk is large.

Remark 3. For each (p, t), the length of An(p, t) is 1/n(n+ 1) times the length of `(p, t)∩
YR. Let

An1...nk(p, t) = {x ∈ `(p, t) ∩ YR : the first k return times to YR are n1, . . . , nk}.

Its length is approximately
∏k

i=1 n
−2
i . Each map Gk : An1...nk(p, t) → YR acts as the

Gauss map with corresponding uniform distortion control, see Lemma 2. Therefore, the
conditional probability P(nk+1 = n | n1 . . . nk}) ∼ n−2, uniformly in k and the history
n1, . . . , nk. The process (Sk)k∈N given by Sk(x) = n1 + · · · + nk if x ∈ An1...nk (which
is a cone over An1...nk(1, 1)) is a deterministic version of the one-sided discrete Cauchy
walk. Taking the difference of two sample paths of such a walk, we obtain a symmetric
two-sided Cauchy walk, i.e., a random walk where the steps are distributed according to
P(Xk = n) = P(Xk = −n) ∼ cn−2. This walk is recurrent, as follows from more general
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theory on stable laws (see [D, Theorem 2.9]1), so for λ-a.e. pair (z, z′) ∈ Y 2
R, there are in-

finitely many k, such that their respective sums Sk = S ′k, i.e., fk(z) and fk(z′) both belong
to YR. For our proof, however, it suffices to have the somewhat weaker result proved in
Proposition 1.

Let us write p = p
α+βt+γp

and t = α̂+β̂t+γ̂p
α+βt+γp

, for integers α, β, γ, α̂, β̂.γ̂, so the initial values
are α = β̂ = 1 and α̂ = β = γ = γ̂ = 0. Direct computation gives:

Gn

(
`(

p

α + βt+ γp
,
α̂ + β̂t+ γ̂p

α + βt+ γp
)

)
=

YR ∩ `

(
p

α + α̂ + (β + β̂)t+ (γ + γ̂ − 1)p
,

nα + (n− 1)α̂ + (nβ + (n− 1)β̂)p+ (nγ + (n− 1)γ̂ − 2(n− 1))p

α + α̂ + (β + β̂)t+ (γ + γ̂ − 1)p

)
.

This means that the iteration of G, for initial values p ∈ (0, 1] and t ≥ p, we find that we
can represent the iterations

(pk, tk) = Gn1...nk(p, t) =

(
p

αk + βkt+ γkp
,
α̂k + β̂kt+ γ̂kp

αk + βkt+ γkp

)
(2)

by affine transformations on the integer vectors (α, α̂, β, β̂, γ, γ̂)T :
α
α̂
β

β̂
γ
γ̂

 7→


1 1 0 0 0 0
n n− 1 0 0 0 0
0 0 1 1 0 0
0 0 n n− 1 0 0
0 0 0 0 1 1
0 0 0 0 n n− 1

 ·


α
α̂
β

β̂
γ
γ̂

−


0
0
0
0
1

2(n− 1)


with initial value (1, 0, 0, 1, 0, 0)T mapping to (1, n, 1, n− 1,−1,−2(n− 1))T , etc. It is easy
to check by induction that

αk + βk + γk = α̂k + β̂k + γ̂k = 1 for all k ≥ 0,

βk ≤ αk ≤ 2βk, for all k ≥ 0,

β̂k ≤ α̂k ≤ 2β̂k, except that β̂1 = 0
when n1 = 1,

αk ≤ α̂k ≤ 2αk when nk = 2.

(3)

Therefore, as far as asymptotics are concerned, it suffices to keep track of αk and α̂k (or
just of αk whenever nk = 2), cf. Proposition 1, so it makes sense to focus just on the
recursive relation{

αk+1 = αk + α̂k,

α̂k+1 = nk+1αk + (nk+1 − 1)α̂k,
α0 = 1, α̂0 = 0. (4)

1In fact, the Cauchy distribution models the position on the horizontal axis where a standard random
walk on Z2, starting from (0, 0) returns to the horizontal axis. Since the standard random walk on Z2 is
recurrent, the Cauchy walk is recurrent as well.
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In fact, there is Λ = Λ(p, t), but independent of k, such that

1 ≤ αk + βkt+ γkp

αk
,
α̂k + β̂kt+ γ̂kp

α̂k
≤ Λ, (5)

whenever t ≥ p and nk = 2.

2.2. Distortion results. Given intervals J ′ ⊂ J , we say that J is a δ-scaled neighbour-
hood of J ′ if both component of J \J ′ have length ≥ δ|J ′|. The following Koebe distortion
property is well-known, see [MS, Section IV.1]: If g : I → J is a diffeomorphism with
Schwarzian derivative Sg := g′′′/g′ − 3/2(g′′/g′)2 ≤ 0, then for every I ′ ⊂ I such that J is
a δ-scaled neighbourhood of J ′ := g(I ′), the distortion

sup
x,y∈I′

∣∣∣∣g′(x)

g′(y)

∣∣∣∣ ≤ K(δ) :=

(
1 + δ

δ

)2

. (6)

Möbius transformations g have zero Schwarzian derivative, so (6) holds for g and g−1 alike.

Lemma 1. The foliation of Y into radial lines

hθ = {(r cos θ, r sin θ) : 0 ≤ r ≤ (sin θ + cos θ)−1}
with θ ∈ [π/4, π/2] is invariant. Moreover, the distortion of Gk : hθ → hθk is bounded in
the sense of (6) uniformly in θ ∈ [0, π/2] and k ∈ N.

Proof. Since f preserves lines and (0, 0) is fixed, the invariance of the foliation is immediate.
Let tk be as in (2) and θk the angle of the image of hθ under Gn1...nk . The line `(1, tk)

and hθk intersect at a point (Rk cos θk, Rk sin θk) for Rk = (cos θk + tk sin θk)
−1. Using (2)

again, we see that Gn1...nk acts on the parameter r as a Möbius transformation

Mk : r 7→ Rk
r

1 + βk(1− r)
,

which has zero Schwarzian derivative, and so has its inverse. Therefore, within an interval
J b [0, R0] such that both components of [0, R0] \ J have length δ|J |, the distortion
supr0,r1∈J |M

′
k(r0)|/|M ′

k(r1)| is bounded by K(δ) uniformly in k and n1, . . . , nk. �

The following lemma is straightforward, using d = 1 in (6).

Lemma 2. The map f preserves the line `(1, 1) = {(x, y) : x+ y = 1} and acts on it like
the Farey map (1). Hence the return map G acts like the Gauss map, and the distortion
of every branch Gn1...nk : ∪n≥nkAn1...nkn → `(1, 1) is uniformly bounded by K = 4.

2.3. Growth of αk and α̂k at different points. Let αk(x) and α̂k(x) be as in (4). The
first component of the expression (2), together with (5), shows that the αk(x) roughly
dictate the distance between F k(x) and the origin. Hence the following proposition should
be interpreted as: typical pairs of points infinitely often visit regions of similar distance to
the origin.

Proposition 1. There is L ≥ 10 such that for Lebesgue-a.e. (x, y) ∈ Y 2
R,

1

L
≤ αk(x)

αl(y)
,
α̂k(x)

α̂l(y)
≤ L for infinitely many k, l ∈ N. (7)

Proof. The heuristics behind proving (7) is that the numbers logαk are dominated by
random variables

Xk =
k∑
j=1

d3 log nje.
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Figure 2. Left: The lines `(pA, 1) and `(pA(1 − ε), 1) encloseH0(A) and
the area of large density near a. Right: The strips Hk+4(x) and Hl+4(y) must
intersect.

This follows immediately from (4). The probabilities P(d3 log nke = t) = O(e−t/3) for all k
and t, so Xk is the sum of k random variables of finite expectation µ. Standard probability
theory (see e.g. [D, Theorem 4.1]) gives that 1

r
#{k : Xk ∈ [0, r]} → 1/µ > 0 as r → ∞.

Therefore, almost every sample path of {Γk}k∈N is a sequence with positive density, and
since logαk ≤ Xk also for λ-a.e. x, the sequence (logαk)k∈N has positive density. It follows
that there is L0 such that for λ × λ-a.e. pair (x, y), there are infinitely many integers k, l
such that | logαk(x) − logαl(y)| ≤ L0. Taking the exponential function, we obtain the
required result for αk in (7). Since α̂k = nkαk−1 + (nk − 1)α̂k−1 and the event {nk = 2}
is basically independent of the previous choices of nj, the result for α̂k in (7) follows as
well. �

2.4. The main proof. The total dissipativity of f already follows from [FKN]; it is a
direct consequence of fn(x, y) → (0, 0) Lebesgue-a.e. We will now finish the proof of
Theorem 1.

Proof. Assume that A,A′ ⊂ YR are sets of positive measure such that f−1(A) = A and
f−1(A′) = A′. To prove ergodicity, we will find some i, j ∈ N such that f i(A)∩ f j(A′) 6= ∅,
so A and A′ cannot be disjoint.

Use coordinates u ∈ [0, 1], v ∈ [0, p] to indicate points below the line `(p, 1): (x, y) =
(uv, u(p−v)). First take a = (vA, pA−vA) a density point of A, where it is not restrictive to
assume that pA ∈ (0, 1). By Fubini’s Theorem, we can find ε ∈ (0, 1−pA) such that, letting
H0(A) be the strip between parallel lines `(pA, 1) and `(pA(1 − ε), 1) (see Figure 2, left),
there is a set VA ∈ [0, pA] of positive measure such that {u ∈ [1−ε, 1] : (uv, u(pA−v)) /∈ A}
has measure ≤ ε/(10KL) for every v ∈ VA and K as in (6) and L as in Proposition 1.

Since a 1-scaled neighbourhood of [pA(1−ε), pA] is still contained in [0, 1], we can choose
K = 4 here as the common distortion bound in Lemmas 1 and 2. We can also assume that
vA is a density point of VA.
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We do the same for A′, finding a point pA′ ∈ (0, 1), a set VA′ ⊂ [0, pA′ ] of positive measure
and a density point a′ = (vA′ , pA′ − vA′) of VA′ .

By Proposition 1, it is not restrictive to assume that a = (vA, pA−vA) and a′ = (vA′ , pA′−
vA′) satisfy:

1

L
≤ αk(a)

αl(a′)
,
α̂k(a)

α̂l(a′)
≤ L and nk = n′l = 2

for infinitely many k, l ∈ N. Let Zn1...nk 3 a denote the k-cylinder set containing a,
intersected with H0(A). Then Gk(Zn1...nk) = Hk(A)∩YR, where Hk(A) is the strip between
the lines Gk(`(pA, 1) and Gk(`(pA(1 − ε), 1)). Due to the small difference between initial
values pA and pA(1− ε), formula (2) gives that these lines are roughly parallel.

Applying (4) twice we get{
αk+2 = (nk+1 + 1)αk + nk+1α̂k,

α̂k+2 = (nk+2nk+1 + nk+2 − nk+1)αk + (nk+2nk+1 − nk+1 + 1)α̂k.
(8)

For x ∈ Zn1...nk , the variables αk(x), α̂k(x), βk(x), β̂k(x), γ(x) and γ̂k(x) are all well-defined
and constant. By choosing x ∈ Zn1...nk(a) so that nk+2(x) = nk+1(x) = 1 (which corre-
sponds to choosing a k + 2-subcylinder Zn1...nk11(x)), formula (8) simplifies to{

αk+2 = 2αk + α̂k,

α̂k+2 = αk + α̂k,

and we have α̂k(x) ≤ αk+2(x) ≤ 2αk+2(x) for each x in this subcylinder. In view of (2) and
(5), this means that the slope of the strip Hk+2(a) is between Λ and 1/Λ. More precisely:

1

Λ
≤ tk+2(x) ≤ Λ for each x ∈ Zn1...nk11.

Similarly for cylinder Zn′1...n′l 3 a′, choosing also n′l+1 = n′l+2 = 1 and taking a similar
l + 2-subcylinder Zn′1...n′l , we find Λ′ = Λ′(pA′ , ε) such that 1

Λ′
≤ tk+2(y) ≤ Λ′ for each

y ∈ Zn1...nl11.
Furthermore,

1

L
≤ αk+2(x)

αl+2(y)
,
α̂k+2(x)

α̂l+2(y)
≤ L,

which implies that
1

ΛL
≤ pk+2(x)

pl+2(y)
≤ ΛL for all x ∈ Zn1...nk11 and y ∈ Zn′1...n′k11.

In other words, Hk+2(x) and Hl+2(y) are two strips of roughly the same slope and ordinates
pk+2(x) and pl+2(y) differing by no more than a uniform factor ΛL.

The next step is to choose a k + 4-subcylinder of Zn1...nk11 and a l + 4-subcylinder of
Zn′1...n′l11 so that their images Hk+2(x) and Hl+2(y) must intersect. We use (3) and (8) for
k + 4 instead of k + 2 to find

pk+4 =
pk+4

pk+2

pk+2 =
αk+2 + βk+2t+ γk+2p

αk+4 + βk+4t+ γk+4p
pk+2

=
αk+2 + βk+2t+ γk+2p

(nk+3 + 1)(αk+2 + βk+2t+ γk+4p) + nk+3(α̂k+2 + β̂k+2 + γ̂k+2p)
pk+2

∼ pk+2

nk+3
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and

tk+4 =
tk+4

tk+2

tk+2 =
α̂k+4 + β̂k+4t+ γ̂k+4p

αk+4 + βk+4t+ γk+4p

αk+2 + βk+2t+ γk+2p

α̂k+2 + β̂k+2t+ γ̂k+2p
tk+2

=

(nk+4nk+3 + nk+4 − nk+3)(αk+2 + βk+2t+ γk+2p) +

(nk+4nk+3 − nk+3 + 1)(α̂k+2 + β̂k+2t+ γ̂k+2p

(nk+3 + 1)(αk+2 + βk+2t+ γk+4p) + nk+3(α̂k+2 + β̂k+2t+ γ̂k+2p)

· αk+2 + βk+2t+ γk+2p

α̂k+2 + β̂k+2t+ γ̂k+2p
· tk+2

∼ nk+4

nk+3

By interchanging the role of A and A′, we can assume that
pl+2(y) ≤ pk+2(x) ≤ ΛLpl+2(y)

for and x ∈ Zn1...nk+4
, y ∈ Zn′1...n′l+4

. Next choose 10 < M < 2ΛL and

n′l+3 = nk+4 = 2, n′l+4 = nk+3 = 8M,

so that
∑4

j=1 nk+j =
∑4

j=1 n
′
l+j = 4 + 8M . Furthermore, for x in the corresponding k + 4-

subcylinder of Zn1...nk , and y in the corresponding l + 4-subcylinder of Zn′1...n′l , we have

tk+4(x) ∼ 1

4M
, tl+4(y) ∼ 4M.

Let Hk+4(x) be entire strip between `(pk+4(x), tk+4(x)) and `(pk+4(x(1−ε)), tk+4(x(1−ε))),
and similarly for Hl+4(y). By the above estimates on pk+4 and tk+4, we see that Hk+4(x)
and Hl+4(y) intersect, see Figure 2, right.

The foliation of Y into radial lines hθ is invariant, see Lemma 1. There is an interval
Θ, depending only on ε and M , such that if θ ∈ Θ then the radial line hθ intersects
Hk+4(x) ∩Hl+4(y). More precisely, the length

|hθ ∩Hk+4(x) ∩Hl+4(y)| ≥ pk+4(x)ε

4M
≥ 1

8L
min {|hθ ∩Hl+4(y)|, |hθ ∩Hk+4(x)|} .

Write h(v) for the radial line intersecting the point (v, pA − v), and similarly for h(w).
If these lines are chosen such that both Gk+4(h(v)) and Gl+4(h(w)) are subset of hθ, and
v ∈ VA, w ∈ VA′ , then we derive from the definition of VA and VA′ , using the distortion
bound K in Lemma 1, that

Gk+4(h(v) ∩ A) ∩Gl+4(h(w) ∩ A′) 6= ∅.
Since vA and vA′ are density points of VA and VA′ respectively, we can assume that k and
l are so large that the relative measure of VA′ in ∪n′≥MZn′1...n′l+2n

′ ∩ `(pA′ , 1) is at least
1− |Θ|/2K and similarly, the relative measure of VA in ∪n≥1Zn1...nk+2n ∩ `(pA, 1) is at least
1− |Θ|/2K.

Recall that K = 4 is also the uniform distortion bound for iterates of the Gauss map in
Lemma 2, and that G|`(1,1) acts as the Gauss map. Thus expressed in terms of polar angle
θ ∈ [π/4, π/2], the distortion bound is similar.

From this we can conclude that for each θ in a subset of Θ of positive measure, hθ indeed
intersects both Gk+4(H0(A) ∩ h(v)) for some v ∈ VA and Gl+4(H0(A′) ∩ h(w)) for some
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w ∈ VA′ . Therefore hθ ∩ Gk(A) ∩ Gl(A′) 6= ∅, proving that f i(A) ∩ f j(A′) 6= ∅ for some
i, j ≥ 0. This concludes the ergodicity proof.

Now to prove exactness, we invoke [BH, Proposition 2.1], which states that a non-singular
ergodic transformation (X,B, λ;T ) is exact if and only if for every set A ∈ B of positive
measure there is n ∈ N such that λ(T n+1(A) ∩ T n(A)) > 0. Choosing a = (vA, pA − vA)
for density point vA ∈ VA and ε ∈ (0, 1 − pA) as before, we can assume that (ni(a))i∈N
contain infinitely many k such that nk(a) = nk+1(a) = 1. Let us consider the k + 2-
subcylinder Zn1...nk+11 as the set A′ with a′ = (vA′ , pA′ − vA′) for pA′ = pB and vA′ a
density point of VA′ = VA. Also set l = k + 1. Then the above methods show that
Gk+4(A′) ∩ Gl+4(A) intersect, and since A′ ⊂ A, we have verified the above condition for
exactness with n = k + 4, n+ 1 = l + 4. �
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