LEBESGUE ERGODICITY OF A DISSIPATIVE SUBTRACTIVE ALGORITHM

HENK BRUIN

Abstract

We prove Lebesgue ergodicity and exactness of a certain dissipative 2-dimensional subtractive algorithm, completing a partial answer by Fokkink et al. to a question by Schweiger. This implies for Meester's subtractive algorithm in dimension d, that there are $d-2$ parameters which completely determine the ergodic decomposition of Lebesgue measure.

1. Introduction

Consider a triple $x=x^{(0)}=\left(x_{1}, x_{2}, x_{3}\right)$ of positive reals, and form a sequence $\left(x^{(n)}\right)_{n \geq 0}$, by repeatedly subtracting the smallest of the three from the other two. This dynamical system emerged from a percolation problem studied by Meester [M]. Although $\left(x^{(n)}\right)_{n \geq 0}$ is clearly a decreasing sequence, $x^{\infty}=\lim _{n \rightarrow \infty} x^{(n)}$ is different from 0 for Lebesgue-a.e. initial position. Let us write this more formally as iterations of the subtractive map of increasing triples $0 \leq x_{1} \leq x_{2} \leq x_{3}$:

$$
F\left(x_{1}, x_{2}, x_{3}\right)=\operatorname{sort}\left(x_{1}, x_{2}-x_{1}, x_{3}-x_{1}\right)
$$

where sort stands for putting the coordinates in increasing order. It is obvious that $x_{1}^{\infty}=x_{2}^{\infty}=0$, but also that if $x_{3}>x_{1}+x_{2}$, then $\eta:=x_{3}-\left(x_{1}+x_{2}\right)$ is a preserved quantity. This means that once $x_{3}>x_{1}+x_{2}$, the third coordinate will always remain the largest, even under the unsorted subtractive algorithm, and in fact $x_{3}^{\infty}=\eta$. Meester and Nowicki [MN] showed that for Lebesgue-a.e. initial vector, there is indeed some $n \geq 0$ such that $\eta=x_{3}^{(n)}-\left(x_{1}^{(n)}+x_{2}^{(n)}\right)>0$.

Therefore F is non-ergodic w.r.t. Lebesgue measure λ : triples with different non-negative values of η have disjoint orbits, and thus belong to 'carriers' of different ergodic components, which can be defined in the usual way even though λ is non-invariant and in fact dissipative. Let us recall these definitions.

Definition 1. A transformation $(X, \mathcal{B}, \lambda ; T)$ is

- non-singular if $\lambda(B)>0$ implies $\lambda(T(B))>0$;
- ergodic if $T^{-1}(B)=B$ implies that $\lambda(B)=0$ or $\lambda(X \backslash B)=0$;
- conservative if for every set $B \in \mathcal{B}$ of positive measure, there is $n \geq 1$ such that $\lambda\left(T^{n}(B) \cap B\right)>0$;
- dissipative if it is fails to be conservative, and totally dissipative, if there is no invariant subset $X_{0} \subset X$ of positive measure on which T is conservative;
- exact if $T^{-n} \circ T^{n}(B)=B$ for all $n \geq 0$ implies that $\lambda(B)=0$ or $\lambda(X \backslash B)=0$.

All of these properties can be defined even though λ is not T-invariant.

[^0]The result of $[\mathrm{MN}]$ was generalised by Kraaikamp and Meester [KM] to dimension $d \geq 3$. They showed that for the map

$$
F_{d}\left(x_{1}, \ldots x_{d}\right)=\operatorname{sort}\left(x_{1}, x_{2}-x_{1}, \ldots, x_{d}-x_{1}\right)
$$

and Lebesgue-a.e. initial vector x, the quantity $\eta_{3}=x_{3}^{(n)}-\left(x_{1}^{(n)}+x_{2}^{(n)}\right)$ is eventually positive, and so is $\eta_{k}:=x_{k}^{(n)}-x_{k-1}^{(n)}$ for $k>3$. Once $\eta_{3}>0$, all η_{k} are preserved, and, as observed in [FKN], Lebesgue measure is therefore not ergodic. This answers in the negative a question posed by Schweiger [S]. The natural question, however, is whether the level sets

$$
\left\{x \in \mathbb{R}_{\geq 0}^{d}: x_{k}^{\infty}=\sum_{j=3}^{k} \eta_{j} \text { for all } 3 \leq k \leq d\right\}
$$

constitute the ergodic decomposition of Lebesgue measure.
We can rephrase this question by passing from projective space (on which F_{d} acts) to a fixed simplex $\Delta=\left\{x=\left(x_{1}, \ldots, x_{d}\right): 0 \leq x_{1} \leq \cdots \leq x_{d}=1\right\}$, by scaling the largest coordinate to 1 . The map F_{d} then becomes $f_{d}: \Delta \rightarrow \Delta$, defined as

$$
\left\{\begin{array}{l}
x^{\prime}=F_{d}(x)=\operatorname{sort}\left(x_{1}, x_{2}-x_{1}, \ldots x_{d}-x_{1}\right) \\
f_{d}: x \mapsto \frac{1}{x_{d}^{\prime}} x^{\prime}
\end{array}\right.
$$

For $d=2$, the map F_{d} reduces to the Farey map

$$
x \mapsto \begin{cases}\frac{x}{1-x} & \text { if } x \in\left[0, \frac{1}{2}\right] ; \tag{1}\\ \frac{1-x}{x} & \text { if } x \in\left[\frac{1}{2}, 1\right] .\end{cases}
$$

In the next simplest case $d=3$, we know that $\lim _{n \rightarrow \infty} f_{d}^{n}\left(x_{1}, x_{2}, 1\right)=(0,0,1)$ as soon as $x_{1}+x_{2}<1$, so f_{d} is totally dissipative on the simplex Δ.

Nogueira $[\mathrm{N}]$ used properties of $G L(2, \mathbb{Z})$ to prove that, although dissipative, the threedimensional system is Lebesgue ergodic. In this paper we use a different method (based on a transient random walk argument with a Lebesgue typical speed of "convergence to $0^{\prime \prime}$, combined with distortion estimates) to reprove ergodicity. Our method also yields Lebesgue exactness, and is, we hope, adaptable to similar (higher-dimensional) systems as well, see also Remark 1.
Theorem 1. Partition the triangle $\Delta=\{(x, y): 0 \leq x \leq y \leq 1\}$ into $\Delta_{L}=\{(x, y): 0 \leq$ $2 x \leq y \leq 1\}, \Delta_{R}=\{(x, y): 0<x \leq y<2 x \leq 1\}$ and $\Delta_{T}=\left\{(x, y): \frac{1}{2}<x \leq y \leq 1\right\}$.

Then with respect to the map $f: \Delta \rightarrow \Delta$ defined as

$$
f(x, y)= \begin{cases}\left(\frac{y-x}{x}, \frac{1-x}{x}\right) & \text { if }(x, y) \in \Delta_{T} \\ \left(\frac{y-x}{1-x}, \frac{x}{1-x}\right) & \text { if }(x, y) \in \Delta_{R} \\ \left(\frac{x}{1-x}, \frac{y-x}{1-x}\right) & \text { if }(x, y) \in \Delta_{L}\end{cases}
$$

see Figure 1, Lebesgue measure is totally dissipative, ergodic and exact.
It follows from $[\mathrm{KM}]$ that for $d \geq 3$ and Lebesgue-a.e. initial vector x, there is $n \in \mathbb{N}$ such that for $x_{3}^{(n)}>x_{2}^{(n)}+x_{1}^{(n)}$, so this case reduces to Theorem 1 as well. In fact, we have the corollary:
Corollary 1. For each $\eta_{3}>0$ and $\eta_{4}, \ldots, \eta_{d} \geq 0$, the map F_{d} restricted to the invariant set $\left\{x \in \mathbb{R}_{\geq 0}^{d}: x_{k}^{\infty}=\sum_{j=3}^{k} \eta_{j}\right.$ for $\left.3 \leq k \leq d\right\}$ is ergodic and exact w.r.t. Lebesgue measure.

Figure 1. The Markov partition for partition $f: \Delta \rightarrow \Delta$ consists of the triangles Δ_{L} (to the left of the line $g_{1}=\{y=2 x\}$), Δ_{R} (between g_{1} and the line $\left\{x=\frac{1}{2}\right\}$) and Δ_{T} (to the right of $\left\{x=\frac{1}{2}\right\}$). Each of these triangles is mapped onto Δ by f. Further diagonal lines g_{k} bound the regions where the first return times to Δ_{R} are constant (namely k between g_{k} and g_{k+1}). The line $\{x+y=1\}$ is invariant and separates the part where $\eta>0$ and where η is not yet determined.

Proof. Since $\eta_{3}>0$, we can divide the space $\left\{x: x_{3}^{\infty}=\eta_{3}\right\}$ into a countable union $\cup_{\tau \geq 0} X_{\tau}$ where $\tau=\min \left\{n \geq 0: F_{d}^{n}(x)_{3}>F_{d}^{n}(x)_{1}+F_{d}^{n}(x)_{2}\right\}$. That is, after τ iterations, the order of the coordinates $F_{d}^{\tau}(x)_{k}$ for $3 \leq k \leq d$ will not change anymore under further iteration. (In fact $\left.F_{d}^{\tau}(x)_{k}=\sum_{j=3}^{k} \eta_{j}+F_{d}^{\tau}(x)_{1}+F_{d}^{\tau}(x)_{2}.\right)$ So from this iterate onwards, we can scale so that $F_{d}^{\tau}(x)_{3}=1$ and restrict our attention to the first two coordinates. Theorem 1 applies to them.

Remark 1. Meester and Nowicki's result was generalised by Fokkink et al. [FKN] to a two-parameter setting, called Schweiger's fully subtractive algorithm, see [S, Chapter 9]:

$$
F_{a d}\left(x_{1}, \ldots x_{d}\right)=\operatorname{sort}\left(x_{1}, \ldots, x_{a}, x_{a+1}-x_{a}, \ldots, x_{d}-x_{a}\right) .
$$

Analogous quantities η_{k} for $k \geq a+2$ are still preserved as soon as $\eta_{a+2} \geq 0$, and [FKN] shows that this happens almost surely. The present paper shows Lebesgue ergodicity and exactness of the level sets of $\left(\eta_{2}, \ldots, \eta_{d}\right)$ for $F_{1, d}$ and all $d \geq 3$. It is hoped that the techniques will be useful to understand $F_{\text {ad }}$ for general $a \in\{1,2, \ldots, d-2\}$.

2. The proof of Theorem 1

2.1. Finding convenient coordinates. To start the proof, it helps to recall from [FKN] the Markov partition of Δ that f possesses, see Figure 1. The Markov partition $\Delta=$ $\Delta_{L} \cup \Delta_{R} \cup \Delta_{T}$ consists of three full branches. In fact, f extends to a diffeomorphism
$f: \overline{\Delta_{i}} \rightarrow \bar{\Delta}$ for $i=L, R, T$. The region Y under the line $x+y=1$ is invariant; it is here that $\eta=1-x-y>0$, and $f^{n}(x, y) \rightarrow(0,0)$ for every $(x, y) \in Y$. Clearly $f\left(\Delta_{T}\right) \supset Y$, and an additional distortion argument ensures that Lebesgue-a.e. (x, y) eventually falls into Y. Therefore f is totally dissipative.
The question is whether the convergence to $(0,0)$ is so chaotic, that $\left.\lambda\right|_{Y}$ is in fact ergodic or even exact. Let us restrict our Markov partition to

$$
\left\{Y_{L}=\Delta_{L} \cap Y, Y_{R}=\Delta_{R} \cap Y\right\}
$$

and study the first entry map $G: Y \rightarrow Y_{R}$ in a new set of coordinates. First note that the lines $g_{k}=\{(x, y) \in Y: y=k x\}, k \geq 1$, and $g_{0}=\{(x, y) \in Y: x=0\}$ satisfy $f\left(g_{k}\right)=g_{k-1}$ for $k \geq 1$ and g_{0} consists of neutral fixed points. Hence the return time to Y_{R} on the region between g_{k+1} and g_{k+2} is exactly k for $k \geq 1$. For fixed $t \geq 0$, the lines $\ell(p, t)=\{(x, y) \in Y: y=p-t x\}, 0<p \leq 1$, foliate Y and

$$
f\left(\ell(p, t) \cap Y_{L}\right)=\ell(p, t+1-p), \quad f\left(\ell(p, t) \cap Y_{R}\right)=\ell\left(\frac{p}{t+1-p}, \frac{1}{t+1-p}\right) .
$$

Therefore, if $A_{n}(p, t) \subset \ell(p, t) \cap Y_{R}$ is a maximal arc on which the first return time is n, then

$$
G_{n}(p, t):=G\left(A_{n}(p, t)\right)=\ell\left(\frac{p}{t+1-p}, \frac{n+(n-1) t-2(n-1) p}{t+1-p}\right) \cap Y_{R}
$$

Remark 2. The point $(0,0)$ is attracting under G, but not quite under f itself. Namely, on Y_{L},

$$
\left.D f\right|_{Y_{L}}(0,0)=\left(\begin{array}{cc}
1 & 0 \\
-1 & 1
\end{array}\right)
$$

which is a nilpotent shear, whereas on Y_{R},

$$
\left.D f\right|_{Y_{R}}(0,0)=\left(\begin{array}{cc}
-1 & 1 \\
1 & 0
\end{array}\right)
$$

which is hyperbolic with stable eigenvalue $\lambda_{s}=\frac{1}{2}(\sqrt{5}-1)$ on stable eigenspace $E_{s}=$ $\operatorname{span}\left(\lambda_{s}, 1\right)^{T}$ (where ${ }^{T}$ stands for the transpose) and unstable eigenvalue $\lambda_{u}=-\frac{1}{2}(\sqrt{5}+1)<$ -1 on unstable eigenspace $E_{u}=\operatorname{span}\left(\lambda_{u}, 1\right)^{T}$. Therefore, if

$$
\left(p_{k}, t_{k}\right)=G_{n_{1} \ldots n_{k}}:=G_{n_{k}} \circ G_{n_{k-1}} \circ \cdots \circ G_{n_{1}}(p, t)
$$

for successive return times $\left(n_{k}\right)_{k \in \mathbb{N}}$, then $t_{k} \rightarrow \frac{1}{2}(\sqrt{5}+1)$ as $k \rightarrow \infty$ and $n_{j}=1$ for all large j, whereas t_{k} immediately becomes large if n_{k} is large.

Remark 3. For each (p, t), the length of $A_{n}(p, t)$ is $1 / n(n+1)$ times the length of $\ell(p, t) \cap$ Y_{R}. Let

$$
A_{n_{1} \ldots n_{k}}(p, t)=\left\{x \in \ell(p, t) \cap Y_{R}: \text { the first } k \text { return times to } Y_{R} \text { are } n_{1}, \ldots, n_{k}\right\} .
$$

Its length is approximately $\prod_{i=1}^{k} n_{i}^{-2}$. Each map $G^{k}: A_{n_{1} \ldots n_{k}}(p, t) \rightarrow Y_{R}$ acts as the Gauss map with corresponding uniform distortion control, see Lemma 2. Therefore, the conditional probability $\left.\mathbb{P}\left(n_{k+1}=n \mid n_{1} \ldots n_{k}\right\}\right) \sim n^{-2}$, uniformly in k and the history n_{1}, \ldots, n_{k}. The process $\left(S_{k}\right)_{k \in \mathbb{N}}$ given by $S_{k}(x)=n_{1}+\cdots+n_{k}$ if $x \in A_{n_{1} \ldots n_{k}}$ (which is a cone over $A_{n_{1} \ldots n_{k}}(1,1)$) is a deterministic version of the one-sided discrete Cauchy walk. Taking the difference of two sample paths of such a walk, we obtain a symmetric two-sided Cauchy walk, i.e., a random walk where the steps are distributed according to $\mathbb{P}\left(X_{k}=n\right)=\mathbb{P}\left(X_{k}=-n\right) \sim c n^{-2}$. This walk is recurrent, as follows from more general
theory on stable laws (see $\left[\mathrm{D}\right.$, Theorem 2.9] ${ }^{1}$), so for λ-a.e. pair $\left(z, z^{\prime}\right) \in Y_{R}^{2}$, there are infinitely many k, such that their respective sums $S_{k}=S_{k}^{\prime}$, i.e., $f^{k}(z)$ and $f^{k}\left(z^{\prime}\right)$ both belong to Y_{R}. For our proof, however, it suffices to have the somewhat weaker result proved in Proposition 1.

Let us write $p=\frac{p}{\alpha+\beta t+\gamma p}$ and $t=\frac{\hat{\alpha}+\hat{\beta} t+\hat{\gamma} p}{\alpha+\beta t+\gamma p}$, for integers $\alpha, \beta, \gamma, \hat{\alpha}, \hat{\beta} \cdot \hat{\gamma}$, so the initial values are $\alpha=\hat{\beta}=1$ and $\hat{\alpha}=\beta=\gamma=\hat{\gamma}=0$. Direct computation gives:

$$
\begin{aligned}
& G_{n}\left(\ell\left(\frac{p}{\alpha+\beta t+\gamma p}, \frac{\hat{\alpha}+\hat{\beta} t+\hat{\gamma} p}{\alpha+\beta t+\gamma p}\right)\right)= \\
& \quad Y_{R} \cap \ell\left(\frac{p}{\alpha+\hat{\alpha}+(\beta+\hat{\beta}) t+(\gamma+\hat{\gamma}-1) p},\right. \\
& \left.\quad \frac{n \alpha+(n-1) \hat{\alpha}+(n \beta+(n-1) \hat{\beta}) p+(n \gamma+(n-1) \hat{\gamma}-2(n-1)) p}{\alpha+\hat{\alpha}+(\beta+\hat{\beta}) t+(\gamma+\hat{\gamma}-1) p}\right) .
\end{aligned}
$$

This means that the iteration of G, for initial values $p \in(0,1]$ and $t \geq p$, we find that we can represent the iterations

$$
\begin{equation*}
\left(p_{k}, t_{k}\right)=G_{n_{1} \ldots n_{k}}(p, t)=\left(\frac{p}{\alpha_{k}+\beta_{k} t+\gamma_{k} p}, \frac{\hat{\alpha}_{k}+\hat{\beta}_{k} t+\hat{\gamma}_{k} p}{\alpha_{k}+\beta_{k} t+\gamma_{k} p}\right) \tag{2}
\end{equation*}
$$

by affine transformations on the integer vectors $(\alpha, \hat{\alpha}, \beta, \hat{\beta}, \gamma, \hat{\gamma})^{T}$:

$$
\left(\begin{array}{c}
\alpha \\
\hat{\alpha} \\
\beta \\
\hat{\beta} \\
\gamma \\
\hat{\gamma}
\end{array}\right) \mapsto\left(\begin{array}{cccccc}
1 & 1 & 0 & 0 & 0 & 0 \\
n & n-1 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 1 & 0 & 0 \\
0 & 0 & n & n-1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 1 \\
0 & 0 & 0 & 0 & n & n-1
\end{array}\right) \cdot\left(\begin{array}{c}
\alpha \\
\hat{\alpha} \\
\beta \\
\hat{\beta} \\
\gamma \\
\hat{\gamma}
\end{array}\right)-\left(\begin{array}{c}
0 \\
0 \\
0 \\
0 \\
1 \\
2(n-1)
\end{array}\right)
$$

with initial value $(1,0,0,1,0,0)^{T}$ mapping to $(1, n, 1, n-1,-1,-2(n-1))^{T}$, etc. It is easy to check by induction that

$$
\begin{cases}\alpha_{k}+\beta_{k}+\gamma_{k}=\hat{\alpha}_{k}+\hat{\beta}_{k}+\hat{\gamma}_{k}=1 & \text { for all } k \geq 0, \tag{3}\\ \beta_{k} \leq \alpha_{k} \leq 2 \beta_{k}, & \text { for all } k \geq 0 \\ \hat{\beta}_{k} \leq \hat{\alpha}_{k} \leq 2 \hat{\beta}_{k}, & \text { except that } \hat{\beta}_{1}=0 \\ & \text { when } n_{1}=1, \\ \alpha_{k} \leq \hat{\alpha}_{k} \leq 2 \alpha_{k} & \text { when } n_{k}=2 .\end{cases}
$$

Therefore, as far as asymptotics are concerned, it suffices to keep track of α_{k} and $\hat{\alpha}_{k}$ (or just of α_{k} whenever $n_{k}=2$), cf. Proposition 1, so it makes sense to focus just on the recursive relation

$$
\left\{\begin{array}{l}
\alpha_{k+1}=\alpha_{k}+\hat{\alpha}_{k}, \tag{4}\\
\hat{\alpha}_{k+1}=n_{k+1} \alpha_{k}+\left(n_{k+1}-1\right) \hat{\alpha}_{k},
\end{array} \quad \alpha_{0}=1, \hat{\alpha}_{0}=0\right.
$$

[^1]In fact, there is $\Lambda=\Lambda(p, t)$, but independent of k, such that

$$
\begin{equation*}
1 \leq \frac{\alpha_{k}+\beta_{k} t+\gamma_{k} p}{\alpha_{k}}, \frac{\hat{\alpha}_{k}+\hat{\beta}_{k} t+\hat{\gamma}_{k} p}{\hat{\alpha}_{k}} \leq \Lambda \tag{5}
\end{equation*}
$$

whenever $t \geq p$ and $n_{k}=2$.
2.2. Distortion results. Given intervals $J^{\prime} \subset J$, we say that J is a δ-scaled neighbourhood of J^{\prime} if both component of $J \backslash J^{\prime}$ have length $\geq \delta\left|J^{\prime}\right|$. The following Koebe distortion property is well-known, see [MS, Section IV.1]: If $g: I \rightarrow J$ is a diffeomorphism with Schwarzian derivative $S g:=g^{\prime \prime \prime} / g^{\prime}-3 / 2\left(g^{\prime \prime} / g^{\prime}\right)^{2} \leq 0$, then for every $I^{\prime} \subset I$ such that J is a δ-scaled neighbourhood of $J^{\prime}:=g\left(I^{\prime}\right)$, the distortion

$$
\begin{equation*}
\sup _{x, y \in I^{\prime}}\left|\frac{g^{\prime}(x)}{g^{\prime}(y)}\right| \leq K(\delta):=\left(\frac{1+\delta}{\delta}\right)^{2} \tag{6}
\end{equation*}
$$

Möbius transformations g have zero Schwarzian derivative, so (6) holds for g and g^{-1} alike.
Lemma 1. The foliation of Y into radial lines

$$
h_{\theta}=\left\{(r \cos \theta, r \sin \theta): 0 \leq r \leq(\sin \theta+\cos \theta)^{-1}\right\}
$$

with $\theta \in[\pi / 4, \pi / 2]$ is invariant. Moreover, the distortion of $G^{k}: h_{\theta} \rightarrow h_{\theta_{k}}$ is bounded in the sense of (6) uniformly in $\theta \in[0, \pi / 2]$ and $k \in \mathbb{N}$.
Proof. Since f preserves lines and $(0,0)$ is fixed, the invariance of the foliation is immediate.
Let t_{k} be as in (2) and θ_{k} the angle of the image of h_{θ} under $G_{n_{1} \ldots n_{k}}$. The line $\ell\left(1, t_{k}\right)$ and $h_{\theta_{k}}$ intersect at a point $\left(R_{k} \cos \theta_{k}, R_{k} \sin \theta_{k}\right)$ for $R_{k}=\left(\cos \theta_{k}+t_{k} \sin \theta_{k}\right)^{-1}$. Using (2) again, we see that $G_{n_{1} \ldots n_{k}}$ acts on the parameter r as a Möbius transformation

$$
M_{k}: r \mapsto R_{k} \frac{r}{1+\beta_{k}(1-r)},
$$

which has zero Schwarzian derivative, and so has its inverse. Therefore, within an interval $J \Subset\left[0, R_{0}\right]$ such that both components of $\left[0, R_{0}\right] \backslash J$ have length $\delta|J|$, the distortion $\sup _{r_{0}, r_{1} \in J}\left|M_{k}^{\prime}\left(r_{0}\right)\right| /\left|M_{k}^{\prime}\left(r_{1}\right)\right|$ is bounded by $K(\delta)$ uniformly in k and n_{1}, \ldots, n_{k}.

The following lemma is straightforward, using $d=1$ in (6).
Lemma 2. The map f preserves the line $\ell(1,1)=\{(x, y): x+y=1\}$ and acts on it like the Farey map (1). Hence the return map G acts like the Gauss map, and the distortion of every branch $G_{n_{1} \ldots n_{k}}: \cup_{n \geq n_{k}} A_{n_{1} \ldots n_{k} n} \rightarrow \ell(1,1)$ is uniformly bounded by $K=4$.
2.3. Growth of α_{k} and $\hat{\alpha}_{k}$ at different points. Let $\alpha_{k}(x)$ and $\hat{\alpha}_{k}(x)$ be as in (4). The first component of the expression (2), together with (5), shows that the $\alpha_{k}(x)$ roughly dictate the distance between $F^{k}(x)$ and the origin. Hence the following proposition should be interpreted as: typical pairs of points infinitely often visit regions of similar distance to the origin.
Proposition 1. There is $L \geq 10$ such that for Lebesgue-a.e. $(x, y) \in Y_{R}^{2}$,

$$
\begin{equation*}
\frac{1}{L} \leq \frac{\alpha_{k}(x)}{\alpha_{l}(y)}, \frac{\hat{\alpha}_{k}(x)}{\hat{\alpha}_{l}(y)} \leq L \quad \text { for infinitely many } k, l \in \mathbb{N} \tag{7}
\end{equation*}
$$

Proof. The heuristics behind proving (7) is that the numbers $\log \alpha_{k}$ are dominated by random variables

$$
X_{k}=\sum_{j=1}^{k}\left\lceil 3 \log n_{j}\right\rceil .
$$

Figure 2. Left: The lines $\ell\left(p_{A}, 1\right)$ and $\ell\left(p_{A}(1-\varepsilon), 1\right)$ enclose $H_{0}(A)$ and the area of large density near a. Right: The strips $H_{k+4}(x)$ and $H_{l+4}(y)$ must intersect.

This follows immediately from (4). The probabilities $\mathbb{P}\left(\left\lceil 3 \log n_{k}\right\rceil=t\right)=O\left(e^{-t / 3}\right)$ for all k and t, so X_{k} is the sum of k random variables of finite expectation μ. Standard probability theory (see e.g. [D, Theorem 4.1]) gives that $\frac{1}{r} \#\left\{k: X_{k} \in[0, r]\right\} \rightarrow 1 / \mu>0$ as $r \rightarrow \infty$. Therefore, almost every sample path of $\left\{\Gamma_{k}\right\}_{k \in \mathbb{N}}$ is a sequence with positive density, and since $\log \alpha_{k} \leq X_{k}$ also for λ-a.e. x, the sequence $\left(\log \alpha_{k}\right)_{k \in \mathbb{N}}$ has positive density. It follows that there is L_{0} such that for $\lambda \times \lambda$-a.e. pair (x, y), there are infinitely many integers k, l such that $\left|\log \alpha_{k}(x)-\log \alpha_{l}(y)\right| \leq L_{0}$. Taking the exponential function, we obtain the required result for α_{k} in (7). Since $\hat{\alpha}_{k}=n_{k} \alpha_{k-1}+\left(n_{k}-1\right) \hat{\alpha}_{k-1}$ and the event $\left\{n_{k}=2\right\}$ is basically independent of the previous choices of n_{j}, the result for $\hat{\alpha}_{k}$ in (7) follows as well.
2.4. The main proof. The total dissipativity of f already follows from [FKN]; it is a direct consequence of $f^{n}(x, y) \rightarrow(0,0)$ Lebesgue-a.e. We will now finish the proof of Theorem 1.
Proof. Assume that $A, A^{\prime} \subset Y_{R}$ are sets of positive measure such that $f^{-1}(A)=A$ and $f^{-1}\left(A^{\prime}\right)=A^{\prime}$. To prove ergodicity, we will find some $i, j \in \mathbb{N}$ such that $f^{i}(A) \cap f^{j}\left(A^{\prime}\right) \neq \emptyset$, so A and A^{\prime} cannot be disjoint.

Use coordinates $u \in[0,1], v \in[0, p]$ to indicate points below the line $\ell(p, 1):(x, y)=$ $(u v, u(p-v))$. First take $a=\left(v_{A}, p_{A}-v_{A}\right)$ a density point of A, where it is not restrictive to assume that $p_{A} \in(0,1)$. By Fubini's Theorem, we can find $\varepsilon \in\left(0,1-p_{A}\right)$ such that, letting $H_{0}(A)$ be the strip between parallel lines $\ell\left(p_{A}, 1\right)$ and $\ell\left(p_{A}(1-\varepsilon), 1\right)$ (see Figure 2, left), there is a set $V_{A} \in\left[0, p_{A}\right]$ of positive measure such that $\left\{u \in[1-\varepsilon, 1]:\left(u v, u\left(p_{A}-v\right)\right) \notin A\right\}$ has measure $\leq \varepsilon /(10 K L)$ for every $v \in V_{A}$ and K as in (6) and L as in Proposition 1.

Since a 1 -scaled neighbourhood of $\left[p_{A}(1-\varepsilon), p_{A}\right]$ is still contained in $[0,1]$, we can choose $K=4$ here as the common distortion bound in Lemmas 1 and 2. We can also assume that v_{A} is a density point of V_{A}.

We do the same for A^{\prime}, finding a point $p_{A^{\prime}} \in(0,1)$, a set $V_{A^{\prime}} \subset\left[0, p_{A^{\prime}}\right]$ of positive measure and a density point $a^{\prime}=\left(v_{A^{\prime}}, p_{A^{\prime}}-v_{A^{\prime}}\right)$ of $V_{A^{\prime}}$.

By Proposition 1, it is not restrictive to assume that $a=\left(v_{A}, p_{A}-v_{A}\right)$ and $a^{\prime}=\left(v_{A^{\prime}}, p_{A^{\prime}}-\right.$ $v_{A^{\prime}}$) satisfy:

$$
\frac{1}{L} \leq \frac{\alpha_{k}(a)}{\alpha_{l}\left(a^{\prime}\right)}, \frac{\hat{\alpha}_{k}(a)}{\hat{\alpha}_{l}\left(a^{\prime}\right)} \leq L \quad \text { and } \quad n_{k}=n_{l}^{\prime}=2
$$

for infinitely many $k, l \in \mathbb{N}$. Let $Z_{n_{1} \ldots n_{k}} \ni a$ denote the k-cylinder set containing a, intersected with $H_{0}(A)$. Then $G^{k}\left(Z_{n_{1} \ldots n_{k}}\right)=H_{k}(A) \cap Y_{R}$, where $H_{k}(A)$ is the strip between the lines $G^{k}\left(\ell\left(p_{A}, 1\right)\right.$ and $G^{k}\left(\ell\left(p_{A}(1-\varepsilon), 1\right)\right)$. Due to the small difference between initial values p_{A} and $p_{A}(1-\varepsilon)$, formula (2) gives that these lines are roughly parallel.

Applying (4) twice we get

$$
\left\{\begin{array}{l}
\alpha_{k+2}=\left(n_{k+1}+1\right) \alpha_{k}+n_{k+1} \hat{\alpha}_{k}, \tag{8}\\
\hat{\alpha}_{k+2}=\left(n_{k+2} n_{k+1}+n_{k+2}-n_{k+1}\right) \alpha_{k}+\left(n_{k+2} n_{k+1}-n_{k+1}+1\right) \hat{\alpha}_{k}
\end{array}\right.
$$

For $x \in Z_{n_{1} \ldots n_{k}}$, the variables $\alpha_{k}(x), \hat{\alpha}_{k}(x), \beta_{k}(x), \hat{\beta}_{k}(x), \gamma(x)$ and $\hat{\gamma}_{k}(x)$ are all well-defined and constant. By choosing $x \in Z_{n_{1} \ldots n_{k}}(a)$ so that $n_{k+2}(x)=n_{k+1}(x)=1$ (which corresponds to choosing a $k+2$-subcylinder $\left.Z_{n_{1} \ldots n_{k} 11}(x)\right)$, formula (8) simplifies to

$$
\left\{\begin{array}{l}
\alpha_{k+2}=2 \alpha_{k}+\hat{\alpha}_{k}, \\
\hat{\alpha}_{k+2}=\alpha_{k}+\hat{\alpha}_{k},
\end{array}\right.
$$

and we have $\hat{\alpha}_{k}(x) \leq \alpha_{k+2}(x) \leq 2 \alpha_{k+2}(x)$ for each x in this subcylinder. In view of (2) and (5), this means that the slope of the strip $H_{k+2}(a)$ is between Λ and $1 / \Lambda$. More precisely:

$$
\frac{1}{\Lambda} \leq t_{k+2}(x) \leq \Lambda \quad \text { for each } x \in Z_{n_{1} \ldots n_{k} 11}
$$

Similarly for cylinder $Z_{n_{1}^{\prime} \ldots n_{l}^{\prime}} \ni a^{\prime}$, choosing also $n_{l+1}^{\prime}=n_{l+2}^{\prime}=1$ and taking a similar $l+2$-subcylinder $Z_{n_{1}^{\prime} \ldots n_{l}^{\prime}}$, we find $\Lambda^{\prime}=\Lambda^{\prime}\left(p_{A^{\prime}}, \varepsilon\right)$ such that $\frac{1}{\Lambda^{\prime}} \leq t_{k+2}(y) \leq \Lambda^{\prime}$ for each $y \in Z_{n_{1} \ldots n_{l} 11}$.

Furthermore,

$$
\frac{1}{L} \leq \frac{\alpha_{k+2}(x)}{\alpha_{l+2}(y)}, \frac{\hat{\alpha}_{k+2}(x)}{\hat{\alpha}_{l+2}(y)} \leq L
$$

which implies that

$$
\frac{1}{\Lambda L} \leq \frac{p_{k+2}(x)}{p_{l+2}(y)} \leq \Lambda L \quad \text { for all } x \in Z_{n_{1} \ldots n_{k} 11} \text { and } y \in Z_{n_{1}^{\prime} \ldots n_{k}^{\prime} 11}
$$

In other words, $H_{k+2}(x)$ and $H_{l+2}(y)$ are two strips of roughly the same slope and ordinates $p_{k+2}(x)$ and $p_{l+2}(y)$ differing by no more than a uniform factor ΛL.

The next step is to choose a $k+4$-subcylinder of $Z_{n_{1} \ldots n_{k} 11}$ and a $l+4$-subcylinder of $Z_{n_{1}^{\prime} \ldots n_{l}^{\prime} 11}$ so that their images $H_{k+2}(x)$ and $H_{l+2}(y)$ must intersect. We use (3) and (8) for $k+4$ instead of $k+2$ to find

$$
\begin{aligned}
p_{k+4} & =\frac{p_{k+4}}{p_{k+2}} p_{k+2}=\frac{\alpha_{k+2}+\beta_{k+2} t+\gamma_{k+2} p}{\alpha_{k+4}+\beta_{k+4} t+\gamma_{k+4} p} p_{k+2} \\
& =\frac{\alpha_{k+2}+\beta_{k+2} t+\gamma_{k+2} p}{\left(n_{k+3}+1\right)\left(\alpha_{k+2}+\beta_{k+2} t+\gamma_{k+4} p\right)+n_{k+3}\left(\hat{\alpha}_{k+2}+\hat{\beta}_{k+2}+\hat{\gamma}_{k+2} p\right)} p_{k+2} \\
& \sim \frac{p_{k+2}}{n_{k+3}}
\end{aligned}
$$

and

$$
\begin{aligned}
t_{k+4}= & \frac{t_{k+4}}{t_{k+2}} t_{k+2}=\frac{\hat{\alpha}_{k+4}+\hat{\beta}_{k+4} t+\hat{\gamma}_{k+4} p}{\alpha_{k+4}+\beta_{k+4} t+\gamma_{k+4} p} \frac{\alpha_{k+2}+\beta_{k+2} t+\gamma_{k+2} p}{\hat{\alpha}_{k+2}+\hat{\beta}_{k+2} t+\hat{\gamma}_{k+2} p} t_{k+2} \\
= & \frac{\left(n_{k+4} n_{k+3}+n_{k+4}-n_{k+3}\right)\left(\alpha_{k+2}+\beta_{k+2} t+\gamma_{k+2} p\right)+}{\left(n_{k+3}+1\right)\left(\alpha_{k+2}+\beta_{k+2} t+\gamma_{k+4} p\right)+n_{k+3}\left(\hat{\alpha}_{k+2}+\hat{\beta}_{k+2} t+\hat{\gamma}_{k+2} p\right)} \\
& \cdot \frac{\left(n_{k+2} n_{k+3}-n_{k+3}+1\right)\left(\hat{\beta}_{k+2}+\hat{\beta}_{k+2} t+\gamma_{k+2} p\right.}{\hat{\alpha}_{k+2}+\hat{\beta}_{k+2} t+\hat{\gamma}_{k+2} p} \cdot t_{k+2} \\
\sim & \frac{n_{k+4}}{n_{k+3}}
\end{aligned}
$$

By interchanging the role of A and A^{\prime}, we can assume that

$$
p_{l+2}(y) \leq p_{k+2}(x) \leq \Lambda L p_{l+2}(y)
$$

for and $x \in Z_{n_{1} \ldots n_{k+4}}, y \in Z_{n_{1}^{\prime} \ldots n_{l+4}^{\prime}}$. Next choose $10<M<2 \Lambda L$ and

$$
n_{l+3}^{\prime}=n_{k+4}=2, \quad n_{l+4}^{\prime}=n_{k+3}=8 M
$$

so that $\sum_{j=1}^{4} n_{k+j}=\sum_{j=1}^{4} n_{l+j}^{\prime}=4+8 M$. Furthermore, for x in the corresponding $k+4$ subcylinder of $Z_{n_{1} \ldots n_{k}}$, and y in the corresponding $l+4$-subcylinder of $Z_{n_{1}^{\prime} \ldots n_{l}^{\prime}}$, we have

$$
t_{k+4}(x) \sim \frac{1}{4 M}, \quad t_{l+4}(y) \sim 4 M
$$

Let $H_{k+4}(x)$ be entire strip between $\ell\left(p_{k+4}(x), t_{k+4}(x)\right)$ and $\ell\left(p_{k+4}(x(1-\varepsilon)), t_{k+4}(x(1-\varepsilon))\right)$, and similarly for $H_{l+4}(y)$. By the above estimates on p_{k+4} and t_{k+4}, we see that $H_{k+4}(x)$ and $H_{l+4}(y)$ intersect, see Figure 2, right.

The foliation of Y into radial lines h_{θ} is invariant, see Lemma 1. There is an interval Θ, depending only on ε and M, such that if $\theta \in \Theta$ then the radial line h_{θ} intersects $H_{k+4}(x) \cap H_{l+4}(y)$. More precisely, the length

$$
\left|h_{\theta} \cap H_{k+4}(x) \cap H_{l+4}(y)\right| \geq \frac{p_{k+4}(x) \varepsilon}{4 M} \geq \frac{1}{8 L} \min \left\{\left|h_{\theta} \cap H_{l+4}(y)\right|,\left|h_{\theta} \cap H_{k+4}(x)\right|\right\}
$$

Write $h(v)$ for the radial line intersecting the point $\left(v, p_{A}-v\right)$, and similarly for $h(w)$. If these lines are chosen such that both $G^{k+4}(h(v))$ and $G^{l+4}(h(w))$ are subset of h_{θ}, and $v \in V_{A}, w \in V_{A^{\prime}}$, then we derive from the definition of V_{A} and $V_{A^{\prime}}$, using the distortion bound K in Lemma 1, that

$$
G^{k+4}(h(v) \cap A) \cap G^{l+4}\left(h(w) \cap A^{\prime}\right) \neq \emptyset .
$$

Since v_{A} and $v_{A^{\prime}}$ are density points of V_{A} and $V_{A^{\prime}}$ respectively, we can assume that k and l are so large that the relative measure of $V_{A^{\prime}}$ in $\cup_{n^{\prime} \geq M} Z_{n_{1}^{\prime} \ldots n_{l+2}^{\prime} n^{\prime}} \cap \ell\left(p_{A^{\prime}}, 1\right)$ is at least $1-|\Theta| / 2 K$ and similarly, the relative measure of V_{A} in $\cup_{n \geq 1} Z_{n_{1} \ldots n_{k+2} n} \cap \ell\left(p_{A}, 1\right)$ is at least $1-|\Theta| / 2 K$.

Recall that $K=4$ is also the uniform distortion bound for iterates of the Gauss map in Lemma 2, and that $\left.G\right|_{\ell(1,1)}$ acts as the Gauss map. Thus expressed in terms of polar angle $\theta \in[\pi / 4, \pi / 2]$, the distortion bound is similar.

From this we can conclude that for each θ in a subset of Θ of positive measure, h_{θ} indeed intersects both $G^{k+4}\left(H_{0}(A) \cap h(v)\right)$ for some $v \in V_{A}$ and $G^{l+4}\left(H_{0}\left(A^{\prime}\right) \cap h(w)\right)$ for some
$w \in V_{A^{\prime}}$. Therefore $h_{\theta} \cap G^{k}(A) \cap G^{l}\left(A^{\prime}\right) \neq \emptyset$, proving that $f^{i}(A) \cap f^{j}\left(A^{\prime}\right) \neq \emptyset$ for some $i, j \geq 0$. This concludes the ergodicity proof.

Now to prove exactness, we invoke [BH, Proposition 2.1], which states that a non-singular ergodic transformation $(X, \mathcal{B}, \lambda ; T)$ is exact if and only if for every set $A \in \mathcal{B}$ of positive measure there is $n \in \mathbb{N}$ such that $\lambda\left(T^{n+1}(A) \cap T^{n}(A)\right)>0$. Choosing $a=\left(v_{A}, p_{A}-v_{A}\right)$ for density point $v_{A} \in V_{A}$ and $\varepsilon \in\left(0,1-p_{A}\right)$ as before, we can assume that $\left(n_{i}(a)\right)_{i \in \mathbb{N}}$ contain infinitely many k such that $n_{k}(a)=n_{k+1}(a)=1$. Let us consider the $k+2$ subcylinder $Z_{n_{1} \ldots n_{k+1} 1}$ as the set A^{\prime} with $a^{\prime}=\left(v_{A^{\prime}}, p_{A^{\prime}}-v_{A^{\prime}}\right.$) for $p_{A^{\prime}}=p_{B}$ and $v_{A^{\prime}}$ a density point of $V_{A^{\prime}}=V_{A}$. Also set $l=k+1$. Then the above methods show that $G^{k+4}\left(A^{\prime}\right) \cap G^{l+4}(A)$ intersect, and since $A^{\prime} \subset A$, we have verified the above condition for exactness with $n=k+4, n+1=l+4$.

References

[BH] H. Bruin, J. Hawkins, Exactness and maximal automorphic factors of unimodal interval maps, Ergod. Th. \& Dyn. Sys. 21 (2001), 1009-1034.
[D] T. Durrett, Probability. Theory and examples, The Wadsworth \& Brooks/Cole Statistics/Probability Series. Wadsworth \& Brooks/Cole Advanced Books \& Software, Pacific Grove, CA, 1991.
[FKN] R. Fokkink, C. Kraaikamp, H. Nakada, On Schweiger's problems on fully subtractive algorithms, Israel J. Math. 186 (2011), 285-296.
[KM] C. Kraaikamp, R. Meester, Ergodic properties of a dynamical system arising from percolation theory, Ergod. Th. \& Dyn. Sys. 15 (1995), no. 4, 653-661.
[M] R. Meester, An algorithm for calculating critical probabilities and percolation functions in percolation models defined by rotations, Ergod. Th. \& Dyn. Sys. 9 (1989), 495-509.
[MN] R. Meester, T. Nowicki, Infinite clusters and critical values in two-dimensional circle percolation, Israel J. Math. 68 (1989), no. 1, 63-81.
[MS] W. de Melo and S. van Strien, One-Dimensional Dynamics, Springer, Berlin Heidelberg New York, (1993).
[N] A. Nogueira, The three-dimensional Poincaré continued fraction algorithm, Israel J. Math. 90 (1995), 373-401.
[S] F. Schweiger, Multidimensional continued fractions, Oxford University Press, Oxford, 2000.

Faculty of Mathematics
University of Vienna
Oskar Morgensternplatz 1
A-1090 Vienna, Austria
henk.bruin@univie.ac.at

[^0]: The hospitality of the Mittag-Leffler Institute in Stockholm (2010 Spring programme on Dynamics and PDEs) is gratefully acknowledged. This paper grew out of a project on subtractive algorithm for which I would like to thank Delft University of Technology for its hospitality over the summer of 2009.

[^1]: ${ }^{1}$ In fact, the Cauchy distribution models the position on the horizontal axis where a standard random walk on \mathbb{Z}^{2}, starting from $(0,0)$ returns to the horizontal axis. Since the standard random walk on \mathbb{Z}^{2} is recurrent, the Cauchy walk is recurrent as well.

