ENTROPY OF HOMEOMORPHISMS ON UNIMODAL INVERSE LIMIT
SPACES

H. BRUIN AND S. STIMAC

ABSTRACT. We prove that every self-homeomorphism h : Ky — K, on the inverse limit
space K of the tent map T with slope s € (v/2,2] has topological entropy hi.p(h) =
|R|log s, where R € Z is such that h and ot are isotopic. Conclusions on the possible
values of the entropy of homeomorphisms of the inverse limit space of a (renormalizable)
quadratic map are drawn as well.

1. INTRODUCTION

Since Williams’ work on expanding attractors [19], inverse limit spaces play a key role in
constructing and analyzing examples in dynamical systems. For a continuous map f : X —
X of a metric space X, its shift homeomorphism oy : Xy — Xy, where X := l(igl(X 1),
is a homeomorphism of the inverse limit space Xy, and it is the dynamically minimal
extension of f to a homeomorphism. Although the space X/ is defined as a subspace of
XN, Whitney’s Embedding Theorem allows one to embed the inverse limit in a manifold
M (of dimension 3 if X C R), and oy : X; — X can be extended to a homeomorphism of
M for which Xy is a global attractor.

Barge and Martin [5] described a construction to embed the inverse limit of any interval
endomorphism as a global attractor of a planar homeomorphism and their construction
readily generalizes to graphs other than the interval. Bruin [9] showed that for unimodal
maps f, this planar homeomorphism can be taken Lipschitz continuous. Very recently,
Boyland, de Carvalho and Hall have developed a C° parametrized version [8] of the Barge-
Martin construction. In the same paper, they apply their results to the one of the most
studied family of unimodal maps, the tent family 7 : [0,1] — [0, 1] with slope +s, s €
[1,2], defined as Ts(z) = min{sz,s(1 — x)}. For this family it has been proven that for
1 < s <t <2, the inverse limits K, := 1@([0, 1],Ts) and K; are not homeomorphic,
see [12, 18, 17, 2]. By Barge and Martin [5], any map of the interval can be extended
to the disk, and their construction gives a family of extensions of any unimodal family.
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2 H. BRUIN AND S. STIMAC

Thus Boyland, de Carvalho, and Hall provide a continuously varying family ¢, : D — D
of homeomorphisms of the disk D, with ¢, having an embedded copy of K, as a global
attracting set; the dynamics of ¢, restricted to this attractor is conjugate to the shift
homeomorphism o := o7, : Ky — K. Moreover, by [8], these attractors vary continuously
in the Hausdorff topology, although no two are homeomorphic.

In this paper, we add to the description of the group of homeomorphisms h : Ky — K
for arbitrary s. In [6, 7] and [10] it is proven that for s € (v/2,2] and a homeomorphism
h : K, — K,, there exists R € Z such that h is isotopic to of'. Here we study the
topological entropy hy.p,(h) and show:

Theorem 1.1. If s € (v/2,2], h : K, — K, is a homeomorphism and R € Z is such that
h is isotopic to oft) then the topological entropy hy.,(h) = |R|log s.

[sotopy does in general not preserve topological entropy, as is easy to see in dimension
> 2. The one-dimensional situation of Theorem 1.1 is more rigid, and one is inclined to
compare it with skew-products where all fiber maps are monotone interval maps. Indeed
[10], the rigidity of isotopy implies that h can differ from o only at non-folding points, (see
Definition 2.2 below). Using Bowen’s entropy formula and the notion of sequence entropy,
Kolyada, Misiurewicz and Snoha [13, 14] proved that for such skew-products the entropy
is the same as the entropy of the base map. In our case, we cannot easily identify the base
map, and at best it would be defined on a non-compact union of Cantor sets. Therefore
it is unclear if results from the skew-product setting can be applied and a proof must be
given. In this paper we give our own proof.

We call the fact that the homeomorphisms on a space X can only taking specific values
entropy rigidity. Clearly the circle has entropy rigidity: zero is the only possible entropy. A
related example is the pseudo-arc which can be written as inverse limit space of an interval
map in various ways. Mouron [16] proved that zero and infinity are the only possible values
of entropy for the corresponding shift homeomorphism.

The entropy rigidity result of Theorem 1.1 can be extended to the inverse limit spaces
of quadratic maps ¢,(x) = 1 — az?. Each q,, a € [0, 2], with positive topological entropy, is
semi-conjugate to a tent map 7, with log s = hy,(q,) [15] and the semi-conjugacy collapses
(pre)periodic intervals to points. If ¢, has no non-trivial periodic intervals (i.e., ¢, is not
renormalizable), then Theorem 1.1 applies to its inverse limit space. Otherwise, the first
return map to such a periodic interval is a new unimodal map, called the renormalization of
the previous; thus we get a (possibly infinite) sequence of nested cycles of periodic intervals,

with periods (p;)i>0, where p; divides p;;; and py = 1. The effect of renormalization on the
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structure of the inverse limit space is well-understood [3]: it produces proper subcontinua
that are p;-periodic under the shift homeomorphism and homeomorphic with the inverse

limit space of the renormalized map. This gives the following picture:

Theorem 1.2. Assume that g, is a quadratic map such that log s; is the entropy of the
i-th renormalization with period p;. If h is a homeomorphism on the inverse limit space of
a, then hy,,(h) = 0, or there exist j,i € Ny, j <4, such that

(1.1) hiop(h) = N %log Si

for some N € N with N > If—;ﬁi—? for all j < k <, or (only if ¢, is infinitely renormalizable)

7

hiop(h) = sup <N¢p ~ log Sz’)
for some j; <1 and N; satisfying inequalities analogous to those of N.

As unimodal inverse limit spaces mimic to some extent the structure of Hénon attractors,
Theorems 1.1 and 1.2 can be seen as a step towards an entropy rigidity result for Hénon
attractors. Recall that the Hénon map is H,(z,y) = (1 4y — az?, bx), and for parameters
a € (0,2) and small b, there is a bounded open forward invariant set U such that N,>oH"™(U)
is a continuum, called the (global) attractor. Barge and Holte [4] proved that for parameter
values a where g, has an attracting periodic orbit, and small values of b, H,; restricted to
the global attractor is topologically conjugate to shift homeomorphisms on inverse limit of
an interval with bonding map ¢,. Hence Theorem 1.2 applies in this situation, but due to
a result by Barge [1], this may be the only case where Hénon attractors are homeomorphic
to unimodal inverse limit spaces with a single bonding map.

Despite this, it would be interesting to see if general Hénon (or Lozi) attractors ex-
hibit rigidity of entropy. Specifically, what is the class of Hénon maps H,; for which
entropy of every self-homeomorphism of the corresponding attractor is an integer multiple
of hyop(Hap)?

Let us mention a final example of entropy rigidity pertaining to certain skew-products
of tent maps, see [11]. In this case, the attractor is a projection of the inverse limit space

of a tent map, and the entropy rigidity is as described in Theorem 1.1.

Acknowledgement: We would like to thank the referees for their very useful comments on

this paper.
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2. PRELIMINARIES

Let N = {1,2,3,...} be the set of natural numbers and Ny = NU {0}. We consider
the family of tent maps Ty : [0,1] — [0, 1] with slope £s, s € [1,2], defined as Ts(x) =
min{sz, s(1 — x)}. The critical or turning point is ¢ := 1/2. We write ¢; := T¥(c), so
in particular ¢; = s/2 and ¢ = s(1 — s/2). The closed Te-invariant interval [co,¢q] =
[s — 5%/2,5/2] is called the core.

The inverse limit space K := lim([0, 1], T5) is the collection of all backward orbits

{r=(..,229,2_1,20) : Ts(x_;—1) = x_; € [0,5/2] for all i € Ny},
equipped with metric d(z,y) =, o 2"|zn — yn| and induced (or shift) homeomorphism
or,(x) =0(...,x_ 9,2 1,20) = (..., T_9,T_1,xq, Ts(x0)).
Let 7y, : @n([O, 1],Ts) — [0, ¢1], mg(x) = x_j be the k-th projection map. We fix s € (V/2, 2];
for these parameters T; is not renormalizable and @([02, 1], Ts) is indecomposable.

We review some of the main tools introduced in [2] and which are necessary here as
well. Since 0 € [0, ¢;] is a fixed point of Ty, the endpoint 0 := (...,0,0,0) is contained in
@1([0, 1], T;). The arc-component of K, which contains 0 will be denoted as C'; it is a ray
converging to, but disjoint from the inverse limit of the core @1([02, a1, Ts).

We define p-points as those points © = (..., 2_9,2_1,29) € K, such that x_, , = ¢
for some k£ € Ny. The number L,(x) := k is called the p-level of x. By convention, the
endpoint 0 of C is also a p-point and L,(0) := oo, for every p.

The ordered set {z!,2%,...,2", ...} of all p-points of the arc-component C' is denoted
by E,, and the ordered set of all p-points of the arc-component C' of p-level k£ by E, ;. The
sequence of p-levels (L,(x))zcp, is called the folding pattern of C', because it indicates the

way how C' “folds” back and forth when it compactifies on the core @1([02, a1, Ts). We
denote the folding pattern as

FP,(C) = Ly("), Ly(23), ..., Ly(z"),. ..

Let ¢ € N, ¢ > p, and E, = {¢y',9%...,9",...}. Since 077 is an order-preserving
homeomorphism of C, it is easy to see that o977(z") = y' for every i € N, and L,(z") =
Ly(y"). Therefore, the folding pattern of C' does not depend on p. In fact, the graph of
TPlj0,c;] oscillates in the same way as the initial arc of C', and therefore F'P,(C) starts as
00010201 ... for every slope s > 1 and p € N.

More generally, given an arc A C K, with successive p-points 2z, ..., 2", the sequence

of their p-levels is denoted as
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Note that every arc of C' has only finitely many p-points, but an arc A of the core of K
can have infinitely many p-points. In this case, if (u);ez is the set of p-points of A, then
FP,(A) = (L,(u"))sez, for some countable index set Z (not necessarily of the same ordinal
type as N or Z).

In [2] it is shown that the asymptotic structure of the folding pattern of C'is a topological
invariant, but it takes a long argument to reach to that conclusion. For instance, p-points
have no topological characterization and a homeomorphism will in general not map p-points
to g-points for any integers p, q. However, among the p-points there are special ones, which
we call salient, which are center points of symmetries in C. Homeomorphisms preserve
these symmetries to such an extent that it is possible to prove that salient points map

close to salient points.

Definition 2.1. We call a p-point y € C salient if 0 < L,(x) < L,(y) for every p-point
r € (0,y). Let (s;)iGN be the sequence of all salient p-points of C, ordered such that
s, € (0,s5t1) for all ¢ > 1.

Since by definition Ly(s)) > 0, for all i > 1, we have Ly(s})) = 1. Also, since s, =

o' !(s}), we have Ly(s}) = i, for every i € N. Therefore, for every p-point = of K, with
Ly(x) # 0, there exists a unique salient p-point s& such that L,(x) = Ly(sy) = k. Also, for
every k € N, among all p-points E, ; of C' with p-level k there exists precisely one p-point
s’; which is salient and has p-level k. Note that the salient p-points depend on p: if p > ¢,

then the salient p-point 5; equals the salient g-point szﬂ’_q.

Definition 2.2. A folding point is any point x in the core of K such that no neighborhood

of x in the core of K is homeomorphic to the product of a Cantor set and an arc.

In [10] it was shown that z € K is a folding point if and only if for some p € N there is

a sequence of p-points (z*)gey such that 2% — x and L,(z*) — oo.

3. CONSTRUCTION OF CHAINS C, AND Cpi

A continuum is chainable if for every e > 0, there is a cover {£!,... ("} of open sets
(called links) of diameter < & such that £/ N ¢ # () if and only if | — j| < 1. Such a cover is
called a chain. Clearly the interval [0, s/2] is chainable. Throughout, we will use sequence
of chains C, of lim([0, 1], T}) satisfying the following properties:

(1) there is a chain {I},I7,..., I’} of [0,s/2] such that & := 7 '(I]) are the links of
Cp;

(2) each point 2 € UY_ T, "(c) is a boundary point of some link I7;
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(3) for each i there is j such that T} (I;H) - ]g.
If max; [IJ| < es77/2 then mesh(C,) := max{diam({,) : £, € C,} < &, which shows
that lim([0, 1], T}) is indeed chainable. Condition (3) ensures that C,.1 refines C, (written
Cp+l = Cp)'

Note that all p-point E,, of p-level k belong to the same link of C,. (This follows by
property (1) of C,, because L,(x) = L,(y) implies m,(z) = my(y).) Therefore, every link of
C, which contains a p—point of p—level k, contains also the salient p-point sk

Let h : L ([0,1],Ts) — L ([0,1],Ts) be a homeomorphism. Take g, p € Ny such that

h(C,y) < C,.

This means that it becomes natural to measure the p-level of p-points close to the images
h(sf}) of salient g-points. Let us denote by ¢; a link of C, which contains the point z. From
[18] and [2] (for the finite and infinite critical orbit case, respectively) we have the following

proposition:

Proposition 3.1. There exists M € 7Z such that the following holds:
M
(i) Let k € N and let s¥ be a salient g-point. Then u := h(s}) € £;”  and the arc

k+1ﬂ
component A, C £,/  containing u, also contains the salient p-point sp

(ii) Let £ € N and let 2’ be a g-point with L,(2') = k. Then u := h(2') € ﬁf,p ™ and

k+M

Sk+M
the arc component A, C ¢,  containing u, also contains a p-point z such that
Ly(z) = k4 M. Moreover, the number of g-points in [s}, s;™'] with g-level k is

M+

M+i+1]
p

the same as the number of p-points in [s;" ™, s with p-level M + k, for every

1€ N.
From [6, 7] and [10] we can derive

Proposition 3.2. The integer R = M + p — q does not depend on M, p,q, and is such

that h and o® are isotopic.

Let us write x ~, y if  and y belong to the same arc component of the same link
of the chain C,. Using this notation we can write Proposition 3.1 in the following way:
h(z) =, ofi(z) for every x € E,. A fortiori, it was shown in [10] that o~ o is the identity
on the set of folding points of @1([02, c1], Ts). At non-folding points, there is flexibility that
a priori might allow a difference in entropies of h and of. For an arbitrary m € N, the
h™-images of links of C, are hard to control; for a link ¢ € C,, images h™(¢) and 0¥ (¢) need
not even be close to “parallel” in C,, where “parallel” in C, means 7,(h™({)) = 7,(c™™(())

for g < p. To overcome this problem, we need to introduce new chains (A,’;,Jr M with very
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elongated links (being the concatenation of links of Cp;ps) such that A™-image of C, can
be shown to be “parallel” to 5{1+Rm = :,JFM (we define the notion ‘basically collinear’ in
Remark 3.5 to make this precise). The rest of this section is devoted to the properties of
these additional chains.

Take p < q € Ny such that h™(C,) < C, and "™ (C,) < C, and let M = Rm+ ¢ —p. For
each j > 1, E, ; is contained in a single link ¢, € C, and by Proposition 3.1, for ¢, O h™({,),
every point of h™(E, ;) is contained in an arc component of ¢, which contains a p-point of
Ep i = Epiar.

By using h~! instead of h if necessary, we can assume that R > 0. Then M > 0 and
Cprm < Cp. Let @,Jr wm be a chain with Cpips < @,Jr m = C, satistying the following property:
Each link Zp+ M E 5p+ » is much wider in the ‘tangential’ direction than in the ‘transversal’
direction; in fact, the ‘tangential’ length of €p+M is the same as the ‘tangential’ length of
(, € C,, and the ‘transversal’ length of £,y = lgy s (vecall that p + M = ¢+ Rm) is the

same as the ‘transversal’ length of {4 ry, € Cyyrm, see Figure 1.

J
Corrr € Corm

FIGURE 1. Impression of the links ¢, (blue), !7;, i € Cpa1 (red dashed lines)
and éf,JrM € Cprm (black).

To further understand the chains C,, Cyyrm, 5'q+Rm and C,, note that for every link
ZquRm € aHRm, there is a link ¢, € C, such that every arc component G € @+Rm is an
arc component of ¢, as well. In other words, if G, and G} are two arc components of ¢,
then they can belong to different links of Cq+Rm, say G, C Eq +rm and Gy C ZI; +Rrm» but
if arc components G, C ¢, and G, C £q+Rm are such that G, N G, # (), then G, = G,.
Therefore, all points of h™(E, ;) are contained in the link ZHRm € aﬁ rm Which contains

E,imj = Egirmj. Moreover, by construction of C~q+ Rrm, We have that h™(C,) < 5p+ M=

Cq+Rm .
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Let Cg = (gé)?:ql and Coirm = (€q+Rm)?qTRm- Let 4, = [0, 3;] and Agympr = [G,Sé+mR],
where s and s, are the first salient g-point and salient (¢ + mR)-point respectively.
Then 7,(4,) = [0,c1] = 7rq+m§(Aq+mR) Also 0 € £}, 0 € 0%,k 8L € 4" and sl,,.p €
Eni?n?. Therefore, Cyy rpm and Cyy gy, coil through C, in the same way with the same number
of laps as TH™ maps [0, ;] to itself. Also, a™™(C,) is collinear with (?quRm, i.e., a(C,)
goes straight through a1+Rm~ More precisely, for every t € [cg, ¢1] there exists a unique j

such that either ' () C o™ (), or 7 p (t) C o™ (00) N g ™m (03 H).

Remark 3.3. Note that if a,b € N are such that all of h"(¢}), a < i < b, are mapped into

the same link of (ZHRm, i.e., if U_ hm (L) C ﬁfHRm

(t) Vh™(€) # 0 for all a < i < bevenif b—a > 2. To

for some j, it is possible that there

exists t € [cg, ¢1] such that 7~

q+Rm
avoid this, let us consider the chain V' = (v7 )é\;l such that
j _ aj+1—1 k . . ) N-+1,
o v/ =U 2 L, for an increasing sequence (a;);Z7;

e a; =1, any; =n,+ 1 with ¥ = () by convention;
e forevery j € {1,..., N} we have Uaﬂ+1 1hm(€k) C €;+R ,forsomei € {1,...,ngrrm};

o W (L) ¢ €q+Rm except for a4 (smce 0 =nm(l") C €q+Rm)

Such a chain exists since h™(C,) < Cq+ rm, and in fact, by construction we have h™ (V') <

a]—i-Rm'
The following lemma is needed for the proof of the main theorem. In that proof we need
the property that h™(C,) coils through C, in roughly the same way with the same number

of laps as T™ maps [0, ¢;] into itself.

Lemma 3.4. The image chain h™(C,) is basically collinear with 5,1+ Rm, &€, h(C,) goes

straight through 5(1+ Rm-

Remark 3.5. In the above lemma “basically collinear” means exactly that there exists a
chain V' = (v/)}_; as in Remark 3.3 for which every link v/ is a union of consecutive links
of Cy, such that for every t € [cs, ¢1], there exists a unique j with either p (t) C h™(v7),

or 7 g (t) € ™ (07) O A (07T,

Proof of Lemma 3.4. Let V be as in Remark 3.3. By Remarks 3.3 and 3.5 we only need
to prove that the number of links in V' is the same as the number of links in CNq+Rm, 1.e.,
N = ng i rm. In this case, for every link v/ € V there exist a unique link !E +Rm € 5q+ Rm
such that h™(v/) C & .
Note firstly that by Theorem 1.1 of [10], we have h(x) = o%(x) for every folding point

r in K,. Therefore, if the critical point ¢ is dense in the core [co, ], then h = o on the

implying that 2™(V') is collinear with 5q+ Rm-
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inverse limit of the core @([02, 1], Ty). Since o™™(C,) is collinear with é;r Rm, also R (C,)
is collinear with Cyy ry,-

(1) Let us assume that the critical point ¢ is not dense in the core [cz,c;]. The con-
struction of C,, 4 and Proposition 3.1 imply that A™(2) ~e4pm o™ (z) for every z € B,
meaning that h™(C,)|¢ is basically collinear with 5q+ rm|c, €., that h™(C,)|c goes straight
through CNq+3m|C.

(2) Let v’ be any link of V, and let A; be an arc-component of v/ which is contained
in the core of K, and does not contain any folding point. Since we want to prove that
N = ngipm, we need not consider those arcs B such that A (B) is contained in only one
link of CNq+Rm. Hence, by extending the arc A; to A = [z,y] D A; if necessary, we can
assume without loss of generality that = and y are g-points (and/or folding point), but
A contains no folding point in its interior. Since C'is dense in the core, for every § > 0,
there exists an arc Dy C C such that A and Dy are d-close in the Hausdorff metric, and
that FR,(A) = FP,(Ds). (In the case that one of the boundary points is a folding point
FR,(Int A) = FP,(Int Ds).) By continuity of h, this implies that there exists an arc D C C'
such that h™(A) and h™(D) go through C,+ gy, in the same way. Therefore, in this case it
suffices to consider only arcs contained in C'

(3) Let us suppose that the arc-component A; of v’ contains a folding point z (if A,
contains more than one folding point, let z and 2’ be such that the arc [z, 2] C A; contains
all folding points of A;). Let A;_; C v/~! and A;;; C v/*! be those arc-components for
which A; M A;_1 #0 and A; N A1 # 0 (in the case that A; contains also a g-point, we
have either A; 1, A; 11 C 0771 or Aj_1,Aj41 C v9™). Let us assume that A;_; and A; 4
do not contain any folding point. Since h(u) = o¥(u) for every folding point u in K, it
suffices to consider arcs A = [z,2] D A;_y and A" = [¢/,y] D A,+1 such that A and A" do
not contain any folding point in its interiors (if A; contains only one folding point, then
z = 2'). Now, as in (2), we can find arcs D, D" C C such that h™(A) and A" (D), as well
as h"(A’") and h™(D’), go through C~q+Rm in the same way.

(4) If A;_y, or Aj44, contains folding points, then either at least one of A;_;1\A;, A;11\A4;
is contained in the single link of V', or we can find j; < j—1 (and/or jo > j+ 1) such that
A, (and/or Aj,) does not contain any folding point. In the first case, let us suppose that
A;_1\ A; is contained in a single link of V. Then h™(A;_; \ A;) is contained in the single
link of 5q+ rm, implying that we need not consider this arc (to prove that N = n,i g, it
suffices to consider those arcs B such that h™(B) goes through several link of 5q+ rm). The
same conclusion follows if A, \ A; is contained in a single link of V. In the second case

we can proceed as in (3).
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From the above steps we conclude that it is sufficient to consider only arcs contained in
C'. Since by (1), h™(C,)|c is basically collinear with 5'q+ rm|c, this implies that N = ng4 gm.
This completes the proof. U

4. PROOFS OF THEOREMS 1.1 AND 1.2

We will use Bowen’s definition of (n, ¢)-separated sets to compute topological entropy of
h. For interval maps T, the entropy is also the exponential growth-rate of the lap-number
of T, i.e., hiop(Ts) = lim,, o0 % log [(TT), where

[(T7) := #{maximal intervals on which 77" is monotone}.

Proof of Theorem 1.1. Fix homeomorphism % and let R be such that h and ot are isotopic.
By using h~! instead of h if necessary, and noting that hye,(h) = hp(h™'), we can assume
that B > 0.

We start with the upper bound. Take n > 0 arbitrary, and find m € N such that the
lap-number [(TF™) < s™(#+1 and also (log2)/m < 7.

Fix ¢ > 0 and let p € N be such that mesh(C,) < /2. Find ¢p,e; > 0 such that
g1 < €9/200 < g9 < mesh(C,). Take ¢ € N such that mesh(C,) < &1, h™(C,) < C, and
ofm(C,) < Cp.

Let G = (¢7)}; be a ‘chain’ composed of ‘half-open links’ ¢/ = (UZJ:;],E’;) \ g for an
N/

increasing sequence (a;);=; such that the following two conditions hold:
(a) a1 =1, anry1 = ng + 1 and %"+ = () by convention,
(b) UZQJIW; C ¢, for every j € {1,...N'}.
Note that the sequence (aj)j-v:/l is chosen so that
o < diam(g?) < /2.

Since diam(ﬁ’q“) < ¢ there must be at least €o/e; > 200 links E’; inside each ¢/, and ¢’
is much wider in the ‘tangential’ direction than in the ‘transversal’ direction. Although
G is not a chain since g' N ¢/ = () for every i # j, we have the intersection of closures
Cl(g") N Cl(g’) # 0 if and only if [i — j| < 1. Clearly, 0 € g* and s} € g"', where s} is the
first salient ¢-point. Note that G is coarser than V' from Remark 3.3, but sufficiently close
to it that Lemma 3.4 applies, so A" (G) is collinear with C,i.mr as well as ™ (V). In fact,
G is a partition of K and we can use GG to code n-orbits of A™ unambiguously.

Since by Lemma 3.4, h™(C,) is basically collinear with C,.,,r (it goes straight through

Cy+mnr), and therefore it coils through C, in roughly the same way with the same number of



ENTROPY OF UNIMODAL INVERSE LIMITS 11

laps as T maps [0, ] into itself, each ¢’ intersects h™(¢?) for at most 2[(T™F) < 2sm(F+n)
values of j. Continuing by induction, we see that each g¢° intersects h"™(g’) for at most
27 ™M) yalues of j, counted ‘with multiplicity’, since the h™-image of ¢/ can go through
g' several times. Let us use the partition (gi)fvzlo to code the n-orbits, i.e., for x € K, we
define an itinerary e(x) = ey(z)r>o by setting en(z) =i if h™*(z) € g'. Then there are at
most N'2"s"™(F+7) different itineraries, and h™-orbits that are (n, e)-separated must have
different length n itineraries. Hence

htop(h) - Ehtoz?(hm) < E nll_{glo ﬁ log N/2”3"m(R+77)

log 2
= (R+77)logs—|—£ < Rlog s + 2.
m

Here n > 0 is arbitrary, so the upper bound h¢,,(h) < Rlog s follows.

Now for the lower bound, let X5 = {z € [0,s/2] : d(orb(z),5) > 0}. If z € X,
then for any n € N and maximal interval J > z such that 77|, is monotone, we have
d(TM(x), 0T (J)) > 6. It is well-known that hiy,(Ts|x,) — logs as § — 0. Take n > 0
arbitrary and fix § > 0 so that h,(Ts|x,;) > log(s —n). Let m be so large that for any
interval J of length > 25, T™(J) has at least (s — 2n)™% branches intersecting Xj.

Take € € (0,20/s™) and take ¢ so large that mesh(C,) < €. For each ¢-point z € C,
let D, C C be the arc of arc-length 24 centered at z, and set Zs := Uxe E, D,. Let W, =
h=(h™([0, s;]) \ Zs); then Wy has at least (s —2n)™" connected components. Continue to
define inductively W; = h=7™(h/™(W;_1) \ Zs) for 2 < j < n. The choice of m guarantees
that W, has at least (s — 27)/f™ connected components. If z and y belong to different
connected components, then there is 0 < j < n and 0 < k < m such that mo(h/™*(x)) and
7o(RI™*(y)) are separated by a §-neighborhood of %, so x and y are (n,2§/s™)-separated

nRm

for h™. Since € < 2§/s™, we can select an (n, €)-separated set of cardinality > (s —2n)""™,

and therefore

huop(h) = —op(h™) 2 inf lim ——log(s —21) fm = Rlog(s — 21).

As n was arbitrary, the lower bound hy,,(h) > Rlog s follows. O

We finish with the

Proof of Theorem 1.2. Let q, : * — 1 — ax® be a quadratic map with critical point 0,
¢; = ¢.(0) and left fixed point v = 5-(—1 — /1 + 4a). Assume that ¢, is renormalizable,
say it has a period p cycle of intervals J, k =0,...,p — 1 and uy € dJ; is an orientation
preserving p-periodic point. The structure that emerges from [3] of the inverse limit space

1&1([11, 1], qa) of q, is as follows: The core of 1&1([1/1, ¢1], qo) has p proper subcontinua Gy,
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k= 0,...,p— 1, which are permuted cyclically by the shift homeomorphism, and each
of them is homeomorphic to the inverse limit space of the renormalization ¢' = ¢?|,,.
One side of the composant of the point (..., %k—2 mod ps Uk—1 mod p; Ux) cOmpactifies onto the
core of Gy, playing the role of the zero composant of l&l([u, 1], qa) itself. Outside UGy,
the core inverse limit space has no other subcontinua than points and arcs. Hence, each
homeomorphism A of Lm([u, ¢1], ¢a) can at most permute the Gy in some way (isotopically
to oft); however, within the Gy, h need not act isotopically to off. For example, if h acts
as o outside {G}.}, then it can still be arranged that h maps G}, to Gy r mod p isOtopically

to some other(!) power, say Ny, of o. In this case, the entropy of h becomes

1
(4.1) maX{Rhtop(Qa> J maX#oT(uk) Z Nlhtop(q/>}'
weorb(ug)

If g, is multiply (or infinitely) renormalizable, then there are nested sequences of subcon-
tinua G for each ¢ > 1 and 0 < k < p;. The homeomorphism h has to preserve the levels
of the subcontinua, but can otherwise permute the G, ; in some way that is consistent with

Ni-1 at the previous level. A formula similar to (4.1) holds, but the

the action of h ~ o
permutation of G, must be consistent with the permutation of the G;_; .

To estimate the possible values of ., (h), let us assume that j € Ny is the largest value
such that h fixes the components G; ; for all i < j and 0 < k < p;. Then on G, 1 \UpnGjt1,m,
h is isotopic to o™i for some N; € N, and the corresponding entropy is Njlog s;; hence
the smallest positive entropy in this case is log s;, and it can for example be achieved by
stipulating that b : Gj11m — Gji1mip; (mod p;4p) 18 the ‘identity’ for all 0 < m < pji1.

If instead h : Gj110 — Gjy1p,; 18 isotopic to oNi+1 for some Nijzi € Nand h: Gjgy1m —
Gt 1,m4p; (mod p; +1) is the ‘identity’ for all 1 < m < p;41, then the resulting entropy is

max{log s;, N]H log sj+1}. The second term in this maximum takes effect whenever

log s;
Ny > Bt 8%
AR pj logsjt1

For the next step, assume that N; = Nj,1 =1, let h: Gj120 — Gjia,,,, be isotopic to

oNit2 for some Nji2 € Ny and let b : G0 — Gjyo, m+p+1 (mod p;42) D€ the ‘identity’ for
all 1 <m < pjio. The resulting entropy is max{log s], : log 541, N]+2p - log s;4+2}, and

lo, lo
the third term in this maximum takes effect when NHQ Z max{ P2 085 P2 O85HLY,
pj logsjy2’ pj+1logsjto

Continuing by induction, we obtain formula (1.1).
If g, is infinitely renormalizable, there may be an infinite sequence of such values
(hi)ien = (N Yilog s; ) satisfying (1.1) for some (j;)ien, and hyy,(h) = sup; h;. O
ieN
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