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We describe an algorithm, due to F. Hofbauer, to compute the topological entropy of a unimodal

interval map.

In this note we want to draw attention to an al-
gorithm, due to F. Hofbauer, to compute the topo-
logical entropy of an unimodal map. It was devel-
oped in [Hofbauer, 1979, Hofbauer, 1980] as a theo-
retical tool and is maybe therefore less known than
we think it should. The method may be applicable
to multimodal maps too, but for unimodal maps it
is very easy to program.

The entropy is computed directly from the
kneading invariant, as the logarithm of the spec-
tral radius of an appropriate transition matrix
(namely of the canonical Markov extension). Un-
like the algorithm proposed by Block et al.
[Block et al., 1989], tent maps are not used. (Re-
call that the tent map with slope +a has entropy
loga.) Therefore one is not restricted by the large
Lyapunov exponent of the tent map. However, by
means of the tent family, error estimates can be
made.

Let f : I — I be a unimodal map with turn-
ing point ¢. We assume that f(c) is a maximum.
Let K(f) = eiezes... € {0,1}" be the kneading
invariant defined as

0
o

if fi(c) < c,
if fi(c) > c.

The initial word e; ... e, of the kneading invariant
will be denoted by K, (f). Define the cutting times
[Bruin, 1995] as Sp = 1 and

Sk = min{n > Sk_1;5e, # en_g,_, }-
Next let M(n) = (m;;)7;—o be then —1 xn —1-
matrix given by
1 ifj=i+1
1 if7= Sk and

Jj =Sk — Sk—1+ 1 for some k,
0 otherwise.

mi 7j =

Let r(n) be the spectral radius of M (n).

Theorem A. Let h be the topological entropy of f.
Then logr(n) / h and |h — logr(n)| < Ce™"" for
some uniform constant C.

Another algorithm, solely based on the knead-
ing invariant, or more precisely on the knead-
ing determinant was proposed by Collet et al.
[Collet et al., 1988]. They also conclude on an ex-
ponential rate of convergence: assuming that f is
not renormalizable, the error based on K, (f) is of
order O(27%).



Proof. (Sketch) The first statement follows from
[Hofbauer, 1980], see also [Collet et al., 1988]. For
the second statement we remark that any unimodal
map f such that K, (f) = K,,(f), M(n) is the same
for f and f. Furthermore, if T} : [0,1] — [0,1] is
the tent map with slope +a (T3 (z) = min{az,a(l—
z)}), then a — T7(3) is an oscillating function: its
intervals of monotonicity are precisely the parame-
ter windows on which K, _1(7,) is constant. It is
known that

d mn 1 — n
|%Ta (§)| = O0(a"),

see e.g. [Brucks & Misiurewicz, 1996]. Therefore
{a; Kn(f) = Kp(T,) fori < n} is an interval of
length O(e~""). (Here it is important to realize
that if f is renormalizable of period n, f is semi-
conjugate to a tent map with an n-periodic turning
point. The semiconjugacy preserves the entropy.)
This gives the second statement. |

Remarks concerning the implementation

(i) For the calculation of the spectral radius, it
is probably easiest (mainly because of the
sparseness of M (n)), to take an arbitrary unit
vector vg € R"~! and iterate along the scheme
Vigl = % For almost all choices of g,
[[M (n)v;]]

[EA]

(ii) The main difficulty seems to lie in obtaining
K(f) with sufficient accuracy. The number
of accurate kneading coordinates is directly
related to the Lyapunov exponent along the
critical orbit of f. This is because in many
cases Df"~!(c;) and £ f(c) have the same
order of magnitude. For the tent family it-
self, small slopes give a small Lyapunov ex-
ponent, and K(f) is easily computed to large
accuracy. This gain is undone again by the
smaller accuracy of r(n) as estimate for h, see
Theorem A. This effect was observed numer-
ically in [Block et al., 1989]. For arbitrary
unimodal maps the best results seem to be
obtained in the region of larger entropy.

converges (exponentially) to r(n).

(iii) For one-parameter families f, of smooth uni-
modal maps it is well known that there are
windows in parameter space for which f, has
an attracting periodic point. These windows
are followed (or preceded) by countably many

other windows, who together represent a pe-
riod doubling cascade. Along the full range of
this cascade, the topological entropy is con-
stant. However, because the kneading invari-
ant still changes in such parameter regions,
and the algorithm uses truncated matrices,
the algorithm may produce a nonconstant re-
sult here. This effect gradually disappears
when n is increased.
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