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ABSTRACT. We prove that the topological entropy of a unimodal map (with a unique
maximum) can increase if the map is perturbed to a map whose graph lies below the
original map. The perturbed map can be symmetric, concave, smooth and/or have
negative Schwarzian derivative, if the original map has these properties.
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Let f: I — I, I =10,1] be a unimodal map. This means that f has a unique turning
point, ¢. Assume that f(c) is the global maximum. The question of increasing
topological entropy concerns the generally observed phenomenon that unimodal
maps becomes more complicated topologically if the map increases. Topological
complexity may be measured by the topological entropy hiop. Then the question
reads:

(1) Does f(z) < g(z) for all z imply hiop(f) < hiop(g) ?
Often this question is put in a stronger form:
(2) Is the map a — hyop(f,) increasing?

Here f,(z) = a- f(z) or fo(z) = a + f(x), where f is some fixed unimodal map.
For tent-maps, f, = a(3 — |z — 1), (2) is true. Indeed hsop(fa) = max(0,loga) in
this case. If f,(z) = a — 2%, £ an even integer, (2) was answered affirmatively in
[DH]. For trapezoidal maps, there are results by Brucks et al. [BML].

In general (2) is not true; several counter-examples have been found [K,NY,Z].
These are not pathological; the scenario described in [NY] is encountered in phys-
ical experiments [BB]. Yet these examples involve asymmetric maps or attracting
fixed points, which restricts their generality. They do not explain why the entropy
decreases in the below example.

Ezample: To the unimodal map f,(z) = 1 —az? we add a symmetric C*® perturba-
tion g, where

(- L (= &) e (),
g(z) = (x+%)3-(w+(%—%))3 if:ve(—ﬁ,—ﬁ+%),
0 otherwise.

Note that f;1(0) = {—ﬁ, \/La} If € is not too large, then f, + &g is concave and

has negative Schwarzian derivative. (The Schwarzian derivative of f is defined as

fJ::I - %(’}—7)2 Maps with negative Schwarzian derivative are very frequently studied

in the theory of iterated interval maps.) Table 1 shows that for certain values of a,
the entropy of f, + eg decreases if € increases.

Table 1 a = 1.72980800

€ htop(fa + 59) € htop(fa + Eg)
-400  0.47755558644103 -0.04  0.47755554758150
-300  0.47755558173050 -0.03  0.47755554758036
-200  0.47755556806528 -0.02  0.47755554757877
-100  0.47755555329306 -0.01  0.47755554757708
0 0.47755554757621 0.00 0.47755554757621
100 0.47755554565188 0.01  0.47755554757532
200  0.47755554203778 0.02  0.47755554757500
300  0.47755553490973 0.03 0.47755554757491

400  0.47755551882449 0.04 0.47755554757457



NON-MONOTONICITY OF ENTROPY OF INTERVAL MAPS. 3

Our Main Theorem explains this example, and it shows that the answer to question
(1) is ‘no’ for a very general set of maps.

A unimodal map f is called long-branched if there exists K > 0 such that for every
n and every maximal interval T' on which f” is monotone, |f™(T)| > K. Here f
denotes the n-fold composition.

For example, f is long-branched if ¢ is not recurrent, i.e. if the forward orbit of ¢
does not accumulate on ¢. But there are also long-branched maps with a recurrent
turning point, see [B].

Main Theorem. Let f a long-branched unimodal map with o recurrent non-
periodic turning point. Then for each ¢ > 0 and r € N, there exists a map g
such that
i) g(z) < f(z) for all x € I,

it) hiop(9) > heop(f),

iii) || g — f ||r< €, where || ||» denotes the C™ norm,

) if f is symmetric, concave and/or has negative Schwarzian derivative, g has the

same properties.

Remarks:

- The set of long-branched unimodal maps is densely uncountable in the following
sense: Let {f,}secr be a one-parameter family of unimodal maps, and let (ag, a1)
be an interval on which a@ — hyop(fs) is not constant. Then f, is long-branched
and has a recurrent non-periodic turning point for uncountable many parameters
a € (ag,a1).

- The Main Theorem can be seen as a partial answer to the C"-closing lemma, as
it asserts that f cannot be C"-structurally stable. The theorem extends a result
of Gambaudo and Tresser [GT], indicating an uncountable set of parameters for
which the map f, is not C" structurally stable.

Lemma 1. Let f, be a family of unimodal maps such that f, exhibits a saddle
node bifurcation at ag. If a is such that this saddle node bifurcation has not taken
place yet, then htop(fa) < htop(fao)'

Sketch of proof. The proof relies on the fact that each unimodal map is semi-
conjugate to a tent-map with the same topological entropy [ALM,MT]. f,, is semi-
conjugate to a tent-map with a periodic turning point. The topological type of this
periodic point is not exhibited by the tent-map to which f, is semi-conjugate. The
latter tent-map therefore has smaller entropy than the first one. O

As we said before, there are long-branched maps with a recurrent turning point.
Yet the returns of ¢ are somewhat special:

Lemma 2. If f is long-branched, then there exist a neighbourhood U > ¢ such that
whenever f™(c) € U, then |f™(z) — c| has a local minimum in c.

Proof. Let U > ¢ be such that |U|,|f(U)| < K. Clearly ¢ is a turning point of
t — |f™(t) — ¢|. Suppose f"(c) € U. Let y be maximal such that f"|(c,y) is
monotone. By long-branchedness, f™(y) ¢ U. If f(c) is a local maximum of
t— |f"(t) — |, then f(z) = ¢ for some z € (¢,y). So (¢,z) is a maximal interval
such that f"*!|(c,z) is monotone. But then |f"*!((c,z))| < |f(U)|< K. O
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Lemma 3. Let f be long-branched and have a recurrent non-periodic turning point.
Then for every € > 0 there exists f such that

- f(x) > f(z) forallx €1,

- htoy(f) > hiop(f) and

- f=fll-<e.

Proof. Choose z such that fN(z) = c and fi(z) ¢ (2,2) for i < N. Here 2 # z is
the point such that f(2) = f(z). Let U = (2, 2) and assume that z is so close to ¢
that U satisfies the properties of Lemma 2. We construct f by perturbing f in U
in the following way: B B

- f(z) > f(z) for x € U and f(z) = f(z) forz ¢ U, but f # f.

- f=fll<e, )

- ¢ is also the unique turning point of f.

Assume that there exists a conjugacy h such that ko f = foh. We write § for h(y)
for any point y and we use the same notation for sets. By definition of z, z = Z, and
therefore # € U = U whenever x € U. Let no > 0 be the smallest integer such that
frotl(e) > frotl(c). Clearly f™ € U. Let § = frotl(c) — f*o+1(c). Let {ni}iso
be the sequence of subsequent return iterates of ¢ to U. So nj;1 = min{n > n; |
f™(c) e U}.

Let V; 3 f™*1(c) be the maximal neighbourhood such that f™+1="|V; is mono-
tone, f/(V;)NU = 0 for j = 0,..,n41 —n; — 2 and fr+1~"~1(V;) Cc U. The
boundary points of V; are preimages of the turning point, possibly preimages of z
or 3. Therefore fi(V;) = fi(V;) for j =0,...,ns41 —n; — 1.

By Lemma 2, f™+17"|V; preserves orlentation. Therefore if x € V; and Z > =z,
then also

3) Jrevme(@) > frem().

Let V = (f™*(c),y) be such that

- fn0+1(c) < Y,

- V| <6 and

- There exists M such that fM(y) = c and fM|V is monotone.

By definition of V;, f"="(V) € V; whenever n;—no < M. Applying (3) repeatedly,
we obtain that § < y. On the other hand, f"0*!(c) = fmotl(c) + §, but then
frotl(c) > i, a contradiction.

So f and f are not conjugate. By continuity, we can choose f such that
fMAnotl(e) = ¢, while t — [fM*m0+1(¢) — ¢| has a local minimum in ¢. With-
out loss of generality, this new M + ng + 1-periodic point can be taken to emerge
in a saddle node bifurcation. Hence by Lemma 1, hgop( f) > hiop(f). O

Proof of the Main Theorem. Let f be long-branched and have a recurrent non-
periodic turning point. By Lemma 3, there exists f arbitrarily close to f such that
htop(f) > hiop(f). Without loss of generality we may assume that f(z) = f(z) for
all z <c. Let U as in Lemma 3, and let

o= {1 itz ¢ /71U N (e 1),

flof(z) ifzxe f~HUN(c])).

By construction either g(z) = f(z) or g2(z) = f2(z). So g and f have the same
topological entropy. Because f(f(x)) > f?(x) and f|(c,1) reverses orientation,
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g(z) < f(z). Finally, because topological entropy is lower semi-continuous [MS],
there exists n > 0 such that hiop(g — ) > hiop(f). Clearly g(z) —n < f(z) for all
x, and it is not hard to see that g —n can be symmetric, concave and have negative
Schwarzian derivative, if f has these properties. [

[ALM]

(B]
[BB]

[BML]
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