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Abstract

We show that certain billiard flows on planar billiard tables with horns can be modeled
as suspension flows over Young towers [33] with exponential tails. This implies exponential
decay of correlations for the billiard map. Because the height function of the suspension
flow itself is polynomial when the horns are Torricelli-like trumpets, one can derive Limit
Laws for the billiard flow, including Stable Limits if the parameter of the Torricelli trumpet
is chosen in (1, 2).
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1 Introduction

Recent results on the statistical properties of non-uniformly hyperbolic flows in dynamical
systems include polynomial mixing rate, when the flow can be modeled as suspension flow
over a Gibbs-Markov map or over a Young tower, and the roof function h of the suspension
flow has polynomial tails:

µ({x ∈M : h(x) > t}) = `(t)t−β, (1)

where `(t) is a slowly varying function. There are geodesics flows [1] on non-compact
surfaces of curvature −1 where the above tail condition with β = 1 or 2 applies (although
properties of Kleinian groups rather than Young towers are used in the modeling). For
Lorentz gas with infinite horizon, the parameter in (1) is β = 2. So, although the theory
puts no restriction on the parameter β in (1), these examples provide us only with very
specific values of β. The model of [13] based on two convex scatterers with points of zero
curvature directly opposite to each other produces finite measure cases with variable β > 1
for the roof function of the Young tower (but without giving the slowly varying function
in (1)). In dimension one, the Pomeau-Manneville maps allow for inducing schemes where
the induce time satisfies (1) for β = 1/α where α is the order of contact between the
graph and the tangent at the neutral fixed point. Thus β > 0 can be chosen freely, but
despite some higher-dimensional variants, Pomeau-Manneville maps remain too specific
to play a substantial role in the modeling of billiards or other mechanical models. In
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[22, 27, 23, 7, 20] it was shown that almost Anosov diffeomorphisms (and flows [8]) also
allow inducing schemes with tails satisfying (1). These are non-uniformly hyperbolic
invertible systems, and, in contrast to Pomeau-Manneville maps, can be chosen to be C∞

or real analytic, even if β is non-integer.
The purpose of this paper is to provide a class of examples that fit directly in the

context of billiard maps, and which can be modeled by suspension flows over Young towers
with tails as in (1). The basic ingredient is the geodesic flow on a surface of revolution,
which we call horns, of which the Torricelli trumpet is an example. New (or at least we are
not aware of explicit calculations in the literature) is a one-parameter family of Torricelli
trumpets, which provide tails as in (1) where the exponent β is equal to the parameter of
the family.

Let the billiard table Q be a flat compact manifold, such as a torus or a rectangle with
reflecting boundaries. We assume that

• there are finitely many circular horns and/or scatterers Hi, i = 1, . . . , N , of radius
ri (so of curvature 1/ri);

• their closures are disjoint closures, so the minimal flight time between collisions
τmin > 0;

• the horizon is finite, i.e., the maximal flight time τmax between collisions is finite.

• Scatterers are “hard balls”, i.e., the collision rule of the particle with such scatterers
is the rule of fully elastic reflection.

• Horns act as “soft balls”, in the sense that they reflect the particle, but not according
to the law of elastic collision: although the angle of incidence equals the angle of
reflection (up to a minus sign: ϕ+ = −ϕ−), the entrance position on ∂Hi is not
necessarily the exit position.

A unit mass, unit speed particle moves on this surface with scatterers. It reflects fully
elastically at the scatterers, but when it meets a horn Hi, it moves up on the surface of
the horn, keeping its speed but observing the law of preservation of angular momentum
and the holonomic constraint keeping it in Hi, until it exits Hi again and resumes its
trajectory on Q. The excursion time is 2tmax(ϕ+) where ϕ+ ∈ [−π

2 ,
π
2 ] is the angle of

incidence that the particles trajectory makes with the normal vector to ∂Hi, and tmax

is the time for an excursion to reach the highest point in the horn. Due to the radial
symmetry of Hi, the angle of incidence ϕ− = −ϕ+.

We denote the flow on Q ∪
⋃N
i=1Hi by φt. The excursions of the particle on the horn

can take an unbounded amount of time, so that, despite the bounded distance between,
the flow-time between incoming collisions can be unbounded.

Let us parametrize the circle ∂Hj by the position θ− (measured clockwise as an angle
in [0, 2π) but in order to avoid confusion with the angle of incidence/reflection, we will
refer to θ− as the position). The exit position θ+ is a function of the entrance position
θ− and the angle of reflection ϕ+. The rotation function1

∆θ := θ+ − θ−

depends on ϕ+ but (due to radial symmetry) not on θ−. We prefer to let ∆θ depend
on the outgoing angle ϕ+, in order to follow the conditions of Bálint & Tóth [5, 6], see
Section 2.1. Note that ∆θ = 0 at scatterers, and at horns for ϕ+ = ±π

2 , i.e., grazing
collisions. Since ϕ+ = −ϕ−, the resulting reflection map

R : M− →M+, (θ−, ϕ−) 7→ (θ+, ϕ+) = (θ− + ∆θ(−ϕ−),−ϕ−) (2)

1using the terminology in [5]

2



represents the outgoing position and angle as function of the incoming position and angle.
Here M± = ∪Ni=1M

±
i for M±i = ∂Hi×[−π

2 ,
π
2 ] are the incoming and outgoing phase spaces,

copies of one another, but formally not the same.
The flight map F : M+ →M− is given by

(θ+
i , ϕ

+
i ) ∈M+

i 7→ (θ−j , ϕ
−
j ) = (θ−j , π + ϕ+

j + θ−j − θ
+
i ) ∈M−j , (3)

where i, j are the indices of the scatterers or horns of the consecutive collisions. The
composition T = R◦F : M+ →M+ is the billiard map, expressed in outgoing coordinates
from one horn or scatterer to the next. Note that T has singularities at ∪Ni=1∂Hi × {±π

2 }
and at ∪horns Hi∂Hi × {0} (non-compactness of horns).

It is worth comparing the collision with horns to scatterers with finite range potentials
V , as considered in e.g. [3, 17, 18, 24, 25, 26]. Both are modeled by the formula (2) where
in case of finite range, radially symmetric, potentials V and energy level E,

∆θ = 2

∫ ri

rmin

ri sinϕ dr√
r2(1− 2V (r))− r2

i sin2 ϕ
,

see [18, Formula (3.7))] or [5, Formula (5.2)] for the energy level E = 1
2 of a unit mass.

An important quantity is the derivative of the rotation function ∆θ:

κ(ϕ) :=
d

dϕ
∆θ(ϕ) for ϕ = ϕ+. (4)

In [18] it is shown that the billiard flow is hyperbolic and ergodic if the range of κ is
disjoint2 from [−2,−2+δ] for some δ > 0. As shown in [17, Proposition 5.2], if the scatterer
has a smooth finite range potential, then limϕ→±π

2
κ(ϕ) = −2, and indeed, there are

several results showing that the ergodicity of the billiard map can fail, cf. [3, 17, 24, 26, 30].
It is not clear, however, that our horns can be modeled as scatterers with finite range
potentials. For instance, sojourn times in the horn (and hence ∆θ) are not bounded,
contrary to what happens in scatterers with finite range potentials at (all but finitely
many) fixed energy levels.

As usual in billiards, T preserves a measure µ that is absolutely continuous to Lebesgue
measure, with density

dµ =
ri
Λ

cosϕ+ dθ+dϕ+, (θ+, ϕ+) ∈M+,

for the normalizing constant Λ = 4π
∑N

i=1 ri. With respect to this measure, the Sinăı
billiards is known to be ergodic, mixing and even Bernoulli, [9, 21, 31]. Our setting
is similar enough to conclude mixing (see [12, Section 6.7]), but that doesn’t give any
quantitative results.

Theorem 1.1 The billiard flow on billiard tables with horns can be modeled as a suspen-
sion flow over a Young tower with exponential tails, see Section 2.3. The height function
h of the suspension has polynomial tails µ({x ∈M : h(x) > t}) ∼ Ct−β for some constant
C > 0 if the horns3 are Torricelli trumpets with β > 0 equal to the parameter of the
trumpet.

2Since [18] measures ∆θ in incoming angles rather than outgoing as we do, their Theorem 4.2 and 4.3 give
the forbidden range [2− δ, 2]

3The statistical behavior is governed by the trumpet with the smallest parameter.
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It follows that the billiard map has non-zero Lyapunov exponents. This theorem
implies exponential mixing rates for the billiard map, and limit laws of the flow w.r.t. the
Liouville measure. We state these results later on (Theorem 2.1 and 3.1) as they can be
taken from the literature. Although soft-ball billiards will be one of our main tools, the
flow on Torricelli trumpets is a flow on a negatively curved surface (in fact, the curvature
tends to zero in the cusp). There is extensive literature on such flows, e.g. [14, 15, 19, 29]
and references therein to give a sample, but these are predominantly concerned with
ergodicity, mixing and Lyapunov exponents. The application to limit laws, and the exact
computations of our types of horns (despite similarities to [29, Section 2]) seem to be new.

The next section is concerned with building a Young tower for the billiard map [33],
or rather verifying that the methods of Chernov [11] and the soft-ball billiard approach of
Bálint & Tóth [5, 6] applies under appropriate conditions. In Section 3.1 we then estimate
the sojourn times on horn, that lead to the height of the suspension flow of Theorem 1.1.

Notation: We will write (θ, ϕ) ∈M for the position and angle at outgoing collisions, and
use (θ+, ϕ+) ∈ M+ only if we want to emphasize that it is about the outgoing collision.
We write an ∼ bn if limn an/bn = 1 and an ≈ bn if an/bn have a bounded and positive
lim sup and lim inf.

Acknowledgments: HB gratefully acknowledges the support of FWF grant P31950-N45
and Stiftung AÖU Project 103öu6. He also wants to thank Péter Bálint for his explana-
tions of his and Chernov’s papers [5, 6, 11], Ian Melbourne for his input on the literature
on limit laws, and Homero Canales for verifying some of the lengthier computations in
this paper. Thanks also to the referees for their vigilance and many helpful remarks.

2 Billiard maps for tables with horns

2.1 Conditions to build a Young tower

Young [33] introduced a tower construction and used it (among other things) to prove that
the billiard map of the Sinăı has exponential decay of correlations. Chernov [11] formulated
general conditions under which Young tower with exponential or with polynomial tails for
various other billiards besides the Sinăı billiard. One is the uniform hyperbolicity of
the billiard map, so (despite its discontinuities) with uniform expansion and contraction
rates, and the angles between stable and unstable leaves uniformly bounded away from
zero. We discuss this for our setting in Section 2.2. Additionally distortion has to be
controlled, also in order to find a differentiable quotient map (after dividing out the stable
direction). Global distortion control is impossible due to grazing collisions (i.e., collisions
with ϕ = ±π

2 ) at scatterers. Homogeneity strips are therefore introduced in the phase
space near ϕ = ±π

2 within which distortion control is feasible. This leads, however, to the
chopping of unstable leaves and the need for a “growth of unstable manifold” condition
in [11, Section 2]. We discuss this for our setting in Section 2.3.

In their turn, Bálint & Tóth give in Definitions 2 and 3 of [5] sufficient conditions
in the soft-ball scatterer setting to apply the methods of Chernov. We rely on [5] for
the verification of [11, Formulas (26)-(26)]. We summarize these conditions, using their
notation, specifically the derivative of the rotation function ∆θ:

κ(ϕ) :=
d

dϕ
∆θ(ϕ) for ϕ = ϕ+.

1. infϕ |2 + κ(ϕ)| > 0.
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2. τmin > supϕ−2ri
κ(ϕ)
ω(ϕ) where ri is the radius of the scatterers and ω(ϕ) := 2+κ(ϕ)

cosϕ .

3. ∆θ is piecewise Hölder, i.e., there is C > 0 and α ∈ (0, 1) such that

|∆θ(ϕ)−∆θ(ϕ′)| ≤ C|ϕ− ϕ′|α

for all second coordinates ϕ,ϕ′ of points in the same element of a finite partition of
the phase space M+.

4. ∆θ is piecewise C2 on the interiors of the partition in the previous item.

5. There is C > 0 such that |dκ(ϕ)
dϕ | ≤ C|2 + κ(ϕ)|3.

6. There is ε > 0 such that ω(ϕ) from item 2. is monotone on one-sided neighborhoods
[ϕ∗ − ε, ϕ∗) and (ϕ∗, ϕ∗ + ε] of angles ϕ∗ where κ is infinite or discontinuous.

The importance of these conditions is underlined by the fact that hyperbolicity and een
ergodicity can fail even if κ = −2, see [32] where finite range potentials and configurations
near grazing collisions are established that lead to homoclinic orbits with nearby elliptic
islands.

We list some comments on these properties for Torricelli trumpets, and mention where
in this paper they are addressed further.

ad 1. This condition holds because κ(ϕ) < −2.

ad 2. This condition holds because ω(ϕ) < 0 and supϕ−2ri
κ(ϕ)
ω(ϕ) = 0. However, if the

horns have the shape of pseudo-spheres, which give exponential tails in Theorem 1.1,
κ(±π

2 ) = −2 at grazing collisions and supϕ−2ri
κ(ϕ)
ω(ϕ) =∞. Hence hyperbolicity and

even ergodicity when the horns are pseudo-spheres remain unproven.

ad 3. Hölder continuity of the rotation function ∆θ(ϕ) holds in our case for ϕ ≈ ±π
2 ,

but fails near head-on collisions with horns (i.e., ϕ ≈ 0). In fact, if ϕ = 0, the
particle will never leave the horn again. As we will see, ∆θ(ϕ) and hence of κ are
the unbounded. This situation is not covered in [6]; it requires extra arguments
(in the shape of adding more “homogeneity strips”) to control the distortion. More
precisely, we will introduce an equivalent of homogeneity strips, denoted by I±k,
which accumulate from both directions on the equator {ϕ = 0}, within which we
can control the distortion of ∆θ(ϕ) on these Ik, see Proposition 2.2. Fortunately,
unstable leaves become automatically long, in a way that the need for additional
growth lemmas is avoided.

ad 4. The rotation function ∆θ(ϕ) is C2 on all the intervals of continuity in [−π
2 ,

π
2 ].

Because ∆θ(ϕ) blows up near {ϕ = 0}, we have to resort to C2 smoothness on the
(artificial) homogeneity strips I±k near {ϕ = 0}.

ad 5. This is unproblematic for Torricelli trumpets (see Sections 3.3).

ad 6. This is unproblematic; the computations in Section 3.3 yield this condition auto-
matically.

2.2 Distortion control of the billiard map.

In this section, we study the distortion of the billiard map T . Since the flight map F has
bounded distortion inside homogeneity strips (as in [12, Section 5.3], but see Formula (8)
below) and the reflection at scatterers goes as for standard billiard maps, we concentrate
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on the reflection map R for the horns. Here the distortion control when cosϕ ≈ 0 is not
an issue, as it can be dealt with in the standard way of introducing homogeneity strips

H±k = {x ∈M+ : | ± π

2
− ϕ+| ∈ [(k + 1)−2, k−2)},

see [12, Section 5.3], and the fact that κ(ϕ+) is bounded near ϕ+ = ±π
2 . The additional

problem occurs for ϕ+ ≈ 0 because ∆θ and hence κ are unbounded here. Our solution is as
with grazing collisions at scatterers, introduce homogeneity strips within which distortion
is controlled. Fortunately, the large expansion in such strips overcomes the artificial
chopping in one iterate. Hence the analysis of this case is easier, and doesn’t require
additional growth lemmas. We start this section by describing these homogeneity strips,
and then deal with the distortion control, with Proposition 2.2 as main result.

For each horn Hj select an other horn or scatterer Hi, opposite to it.

(i) If Hi is a horn, then there is a maximal arc Aj ⊂ M+
j such that for each x ∈ Aj ,

the trajectory starting at x collides with Hi head-on, i.e., F (x) = (θ−i , 0), and such
a trajectory will not exit Hi anymore.

(ii) If Hi is a scatterer, then Aj is the maximal arc Aj ⊂ M+
j such that F (x) ∈ M−i

and F ◦ T (x) = (θ−j , 0) ∈ M−j . In other words: trajectories of the flow starting at
x ∈ Aj first bounce with Hi before head-on colliding with Hj , and thus not exiting
Hj again, see Figure 1.

horn Hj

•
Cj

•
scatterer Hi

Aj

θ+
j

θ−j

Figure 1: Trajectories asymptotic to the center Cj of Hj.

In either case, Aj is a smooth curve in M+
j that stretches across M+

j in the vertical

direction and is transversal to {ϕ+
j = 0}. Let bj = (θ+

j ,+
π
2 ) and b′j = (θ+

j ,−
π
2 ) be the

endpoints of Aj . The reflection map

R : M−j \ {ϕ
−
j = 0} →M+

j \ {ϕ
+
j = 0}, (θ−j , ϕ

−
j ) 7→ (θ− + ∆θ(−ϕ−j ),−ϕ−j ),

is a bijection. The closer to the equator S1×{0} ⊂M−j , the stronger the shear of R. That
is, an arc {θ} × (0, π2 ] is mapped by R to a spiral curve wrapping infinitely often around
the annulus M+

j , compactifying on S1 × {0} from below, while {θ} × [−π
2 , 0) is mapped

by R to a spiral curve wrapping infinitely often around the annulus M+
j , compactifying

on S1 × {0} from above. Conversely, Ψj := R−1(Aj \ {ϕ+
j = 0}) consists of two spirals

wrapping infinitely often around M−j and compactifying on the equator, one from above

and one from below. For every point (θ−j , ϕ
−
j ) ∈ Ψj ,
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(i) if Hi is a horn, then F ◦ R(θ−j , ϕ
−
j ) represents a particle head-on colliding with Hi,

so that T ◦R(θ−j , ϕ
−
j ) is not defined: the particle never leaves Hji.

(ii) if Hi is a scatterer, T ◦R(θ−j , ϕ
−
j ) represents a particle outgoing from Hi and head-on

colliding with Hj , so that R ◦ T ◦R(θ−j , ϕ
−
j ) is not defined: the particle never leaves

Hj again.

Now M−j \Ψj consists of two strips that wrap around M−j infinitely often and approaching

{ϕ = 0} in a spiral fashion from above and below. Let ej = R−1(bj), e
′
j = R−1(b′j), and

let Ej be the straight line connecting ej and e′j in M−j . Then Ej cuts M−j \ Ψj into
infinitely many strips I±k, k ∈ N, whose closures are curvilinear rectangles except that
they coincide at two opposite corners; note that they wrap around M−j once.

ϕ = 0

−π
2

+π
2

•
ej

•
e′j

Ej

R
ϕ = 0

−π
2

+π
2

Aj

•
b′j

•
bj

Figure 2: The curves Ej,Ψj = R−1(Aj) ⊂M−
j and Aj, R(Ej) ⊂M+

j .

The sets I±k play the role of homogeneity strips, within which unstable derivatives are
uniformly bounded.

Lemma 2.1 Let Ĩ±k be the arcs I±k∩({0}×[−π
2 ,

π
2 ]). Then |Ĩ±k| ≈ k−(1+ 1

β
)

= o(d(Ĩk, 0))
as k →∞ for some β > 0, where d is the Euclidean distance on [−π

2 ,
π
2 ].

Proof. The precise computation depends on the shape of the horn Hj , but there is always
a leading term of the map ∆θ : [−π

2 ,
π
2 ]→ R of the form g : ϕ 7→ Cϕ−β for some 0 6= C ∈ R

and β > 0. Now

Ĩk ∼ g−1(2πk, 2π(k + 1)) =

((
C

2π(k + 1)

)1/β

,

(
C

2πk

)1/β
)
,

so |Ĩk| ∼ 1
βk

(
C

2πk

)1/β ∼ 1
βkd(Ĩk, 0). The same argument works for −k. �

Proposition 2.1 Assume that κ(ϕ+) ≤ 0 on M+. Then the stable and unstable leaves
W u/s of the billiard map T are uniformly transversal to each other.

Proof. In standard hard ball billiards, written in ϕ+
i and arc-length coordinate si

parametrizing ∂Hi, with associated coordinates dϕ+
i and dsi in the associate tangent

space TMi, the cones fields

C̃u
(si,ϕ

+
i )

:= {dsi · dϕ+
i ≥ 0} and C̃s

(si,ϕ
+
i )

:= {dsi · dϕ+
i ≤ 0}
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serve as unstable and stable cone fields. Indeed, the derivative of the corresponding billiard

map from scatterer i to scatterer j is DT̃ =

(
1 0
0 −1

)
·DF̃ , where the derivative of the

flight map

DF̃ =
−1

cosϕ+
j

 τ
ri

+ cosϕ+
i τ

− τ
rirj
− cosϕ+

j

ri
− cosϕ+

i
rj

− τ
rj
− cosϕ+

j

 ,

in coordinates (si, ϕ
+
i ) and (sj , ϕ

+
j ) can be easily reconstructed from see [12, Formula

(2.26)]. Here τ is the flight time between Hi and Hj , and we wrote 1/ri and 1/rj for their
curvatures. Since all the entries of DT̃ are negative, the above cones are indeed preserved
under forward and negative times respectively. The difference with our setting is:

• We use θ+
i = risi and θ+

i = risi as coordinates. The necessary change of coordi-

nates requires multiplying DF̃ on the left and right with the matrices

(
1 0
0 rj

)
and(

1 0
0 1/ri

)
, respectively. This gives

DF = − 1

cosϕ+
j

( τ
ri

+ cosϕ+
i

τ
ri

− τ
ri
− rj cosϕ+

j

ri
− cosϕ+

i − τ
ri
− rj cosϕ+

j

ri

)
. (5)

• The extra shear of the reflection map R : M−j →M+
j , (θ−j , ϕ

−
j ) 7→ (θ− + ∆θ,−ϕ−j ),

with derivative

(
1 κ
0 −1

)
with κ = d∆θ(ϕ+)

dϕ+ , instead of the derivative

(
1 0
0 −1

)
of

the reflection map of a standard scatterer.

The resulting derivative is

DT =

(
1 κ
0 −1

)
·DF

=
−1

cosϕ+
j

 τ
ri

+ cosϕ+
i −

κτ
ri
− κrj cosϕ+

j

ri
− κ cosϕ+

i
τ
ri
− κτr

ri
− κrj cosϕ+

j

ri

τ
ri

+
rj cosϕj

ri
+ cosϕ+

i
τ
ri

+
rj cosϕ+

j

ri

 .

Since κ ≤ 0, again all entries of DT are negative, so

Cu(θ+,ϕ+) := {dθ+ · dϕ+ ≥ 0} and Cs(θ+,ϕ+) := {dθ+ · dϕ+ ≤ 0} (6)

are preserved under forward and backward iteration of DT , respectively. If κ is very
negative, then DT(θ+,ϕ+)(Cu(θ+,ϕ+)) aligns itself with the horizontal axis. However, the im-

ages of the stable cones DT−1(CsT (θ+,ϕ+)) are uniformly compactly contained in Cs(θ+,ϕ+)

because the matrix DF−1 is applied after4 (the large shear of) DR−1. Hence the angle
between stable and unstable leaves is uniformly bounded away from zero. This proves the
lemma. �

The backward singularity sets Sm := ∪mj=0T
−j(
⋃
i ∂Hi×{−π

2 ,
π
2 } ∪

⋃
horns Hj

∂Hj×{0})
for m ≥ 1, also belong to the stable cone field, and the forward singularity sets S−m :=
∪mj=0T

j((
⋃
i ∂Hi × {−π

2 ,
π
2 } ∪

⋃
horns Hj

∂Hj × {0}) for m ≥ 1, belong to the unstable cone
field.

4If we had used a billiard map T : M− → M− in terms of incoming coordinates, it would have been the
unstable image cones rather than the stable image cones, that would have been uniformly compactly contained
in the unstable cone fields.
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Proposition 2.2 Let W = W u be an unstable leaf contained in I±k and bounded away
from {ϕ = ±π

2 }. Then there is Cdist ∈ R such that the distortion in the unstable direction

log
|JuR(y)|
|JuR(x)|

≤ Cdist dR(W )(R(x), R(y)), (7)

where dR(W ) indicates arc-length in R(W ). In fact, log |J
uR(y)|
|JuR(x)| = o(dR(W )(R(x), R(y)))

as k →∞, i.e., as ϕ→ 0.

Proof. First we assume that W is transversal to horizontal lines in M , i.e., transversal to
lines of constant ϕ. Thus W can be written as the graph of a C1-function w : Ĩ±k → S1.
The length-element of arc-length along W is ds = ds(ϕ) =

√
1 + (w′(ϕ)2)dϕ. Recall that

R(θ, ϕ) = (θ + ∆θ(ϕ),−ϕ) is the reflection map, and ∆θ′(ϕ) = κ(ϕ). Then the image of
ds under R is

dR(s) =
√
dϕ2 + (w′(ϕ) + κ(ϕ))2 dϕ2 =

√
1 + (w′(ϕ) + κ(ϕ))2 dϕ.

Transversality of W means that |w′| is bounded, so

dR(ϕ)

dϕ
=
√

1 + (w′(ϕ) + κ(ϕ))2 ≈ κ(ϕ) ≈ Cβϕ−(β+1).

where we used that leading term of κ is Cβϕ−(β+1) as in Lemma 2.1. Hence, taking
x = (w(ϕ), ϕ) and y = (w(ϕ+ ε), ϕ+ ε), the distortion

log
|JuR(y)|
|JuR(x)|

≈ −(β + 1) log(1 +
ε

ϕ
) ≈ −ε(1 + β)

ϕ
.

Now to find dR(W )(R(y), R(x)) we integrate dR(s) over [ϕ,ϕ+ ε]. This gives∫ ϕ+ε

ϕ

√
1 + (w′(v) + κ(v))2 dv ≈

∫ ϕ+ε

ϕ
|κ(v)| dv

= |∆θ(ϕ+ ε)−∆θ(ϕ)| ≈ C
(
ϕ−β − (ϕ+ ε)−β

)
= Cϕ−β

(
1− (1 +

ε

ϕ
)−β
)
∼ βCεϕ−(1+β),

where in the last approximation we used that |ε| is small compared to |ϕ| as shown in
Lemma 2.1. Formula (7) follows.

For ϕ → 0, we get 1 + sup |w′(ϕ)|2 = o(κ(ϕ)), so that the ≈ becomes ∼ in this case,
and the extra factor ϕ−β accounts for the little o. �

The flight map F has similar distortion properties as (7), as can be derived from the
distortion result in [12, Lemma 5.27], except that the exponent on the right-hand side is
1/(1 + 1/β), where 1 + 1/β is the exponent in the width in the strips |I±k| ≈ k1+1/β, see
[12, Formulas (5.8), (5.21) and Lemma 5.27] and the adaptation for general exponents in
e.g. [16, Lemma 3.1]. Because of Lemma 2.1 for I±k and the usual width of the strips
H±k, this exponent becomes min{1

3 ,
β
β+1}.

Because the uniform expansion of the billiard map T = R ◦ F , we get the following
distortion estimate for the billiard map:

log
|JuTn(y)|
|JuTn(x)|

≤ Cdist dTn(W )(T
n(x), Tn(y))

min{ 1
3
, β
β+1
}
, (8)
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for a potentially large uniform constant Cdist and all n ≥ 1 and x, y in the same unstable
leaf of Tn. The absolute continuity of holonomies in [11, Formula (2.3)] is a corollary
of (8), see [10, 34]. Together with [12, Theorem 5.2 and Section 5.7] this give sufficient
distortion control to conclude that the quotient tower map T∆̄ presented in the next
section, has a Hölder derivative.

2.3 Building a Young tower with exponential tails

A Young tower [33] is a schematic dynamical system, in fact an extension over a dynamical
system (X,T ), of the form (∆, T∆, µ∆), where the space

∆ =
⊔
i

σi−1⊔
`=0

∆i,`.

The sets ∆i,` are copies of the ∆i,0 and the tower map T∆ acts as

T∆ : x ∈ ∆i,` 7→

{
x ∈ ∆i,`+1 if 0 ≤ ` < σi − 1;

T σ(x)(x) ∈ ∆0 := ti∆i,0 if ` = σi − 1,

and (∆, T∆) factors over (X,T ) via π : ∆ → X, π(u, `) = T `(u) for (u, `) ∈ ∆i,`)).
The return map T σi : ∆0 → ∆0 to the base ∆0 = t∆i,0 is a uniformly hyperbolic map
with certain distortion properties, preserving an SRB-measure µ0. Here σ : ∆0 → N
with σi := σ|∆i,0 constant for all i is called the roof function. We speak of exponential
tails if there is λ ∈ (0, 1) such that µ0({x : σ(x) > n}) = O(λn). We can extend µ0 to
an T∆-invariant measure by setting µ∆|∆i,`

= σ̄−1µ0|∆i,0 for normalizing constant σ̄ =∑
n≥1 nµ0({σ(x) = n}). This measure µ∆ pushes down to a T -invariant SRB-measure on

(X,T ) via µ = µ∆◦π−1. The existence of a Young tower with exponential tails implies that
the underlying system (X,T, µ) is exponentially mixing (provided gcd(σi : i ∈ N} = 1)
and satisfies the Central Limit Theorem for Hölder observables, see [33]. A step in the
argument is to consider the quotient tower (∆̄, T∆̄) obtained by collapsing stable leaves
to points. The smoothness (Gibbs-Markov) of the quotient map T σi

∆̄
, as described in e.g.

[33, Section 3.1] and [12, Theorem 5.2 and Section 5.7] relies on the distortion estimates
given in Section 2.2, specifically Formula (8).

Chernov [11, Theorem 2.1] proved a general theorem on the existence of a Young
tower with exponential tails for non-uniformly hyperbolic invertible maps, based on a
set of conditions concerning expansion and distortion control along unstable leaves and
specific “growth of unstable manifolds” conditions (2.6)-(2.8) in [11]. He continues to
verify these conditions for various billiard systems, of which the standard Sinăı billiard
maps5 is the most relevant to us, see [11, Sections 6 & 7]. Bálint & Tóth verify these
conditions for soft scatterers, expressed as Definition 2 & 3 in [6]. In the previous sections
we verified most of the Chernov resp. Bálint & Tóth conditions, and here we combine these
steps to the final verification. That is, we indicate which adaptations in the arguments of
[11, Section 7] are still required.

Chernov [11, Section 7] uses two metrics to obtain hyperbolic expansion:

• The p-(pseudo-)metric which has the best expansion properties, but only that af-
ter a close-to-grazing collision with corresponding cut into homogeneity strips, the
expansion has a one iterate delay.

5i.e., disjoint strictly convex fully elastic scatterers with C3 boundaries on a compact flat table, first fully
treated in [33]
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• The Euclidean metric. Now the expansion factor in unstable directions occurs instan-
taneously at collisions, but it is not always ≥ 1. Therefore a particular iterate Tm

of the billiard map T is chosen, which multiplies the number of discontinuity curves
Sm−1 and ∪m−1

n=0 T
−n(∪j∂Hj × {0}), and corresponding boundaries of homogeneity

strips ∪k≥k0 ∪
m−1
n=0 T−n(∂I±k).

However, combining the two metrics, one can prove uniform expansion (contraction) of
unstable (stable) leaves, see [11, Lemma 7.1].

Let W be any unstable leave of length ≤ δ0. It may be cut into at most Km + 1
pieces by Sm−1, where Km depends only on m and the number of scatterers and horns.
In the next m iterate, it may be cut again, even into countably many pieces, by curves
in ∪m−1

n=0 T
−n({ϕ = 0 at horns} ∪

⋃
k≥k0 ∂I±k)∪ {ϕ = ±π

2 } ∪
⋃
k≥k0 ∂H±k). We label these

pieces as Wk1,...,km,j , where 1 ≤ j ≤ Km + 1, ki ∈ Z and Tm−n(Wk1,...,km,j) ⊂ Ikn . Bear in
mind that some of these labels can refer to the empty set. Head-on collisions with horns
and grazing collisions have their own homogeneity strips I±k and H±k where the expansion
of the billiard map is ≈ k1+β and ≈ k2 respectively; we will use ν := min{2, 1 + β} for
the worst case of the two. The unstable expansion for T1 = Tm on a piece Wk1,...,km of
unstable manifold thus becomes

|Ju1 (x)| ≥ Lk1,...,km := max{Λ1,
1

Cexp

∏
ki 6=0

kνi }.

This product
∏
ki 6=0 then reappears in the definition6 of Θ := 2

∑
k≥k0 k

−ν ≤ 7
ν k

1−ν
0 . We

need to choose k0 so large that, as in [11, Formula (7.5)] with corresponding constant B0,

(Km + 1)(Λ−1
1 + 2B0Θ) < 1. (9)

Also [11, Lemma 7.2] needs to be adjusted to:

Lemma 2.2 For all δ > 0, there is B = B(m) such that∑
k1,...,km≥2

min{δ, (κ1 · · · km)−ν} < B(m)δ
ν−1
2m .

But the proof goes as in [11, Appendix], with some minor and obvious adaptations.
Thus we can apply Chernov’s main theorem for the billiard map, which we restate

here:

Theorem 2.1 For any type of horn discussed in this paper, for every α ∈ (0, 1) there is
λ ∈ (0, 1) such that the billiard map (M,T ) has exponential decay of correlations:∣∣∣∣∫

M
v · w ◦ Tn dµ−

∫
M
v dµ

∫
M
w dµ

∣∣∣∣ = O(λn)

for the SRB-measure µ and α-Hölder functions v, w : M → R and also the Central Limit
Theorem holds for v provided it is not cohomologous to a constant function.

6This Θ is called θ0 in [11].
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3 The billiard flow

The billiard flow can now be modeled as a suspension flow over this Young tower, i.e.,
the space is now ∆h := ti,`∆i,` × [0, h(x)]/ ∼ where (x, h(x)) ∼ (T∆(x), 0), and the flow
φt∆(x, u) = (x, u+ t) ∈ ∆h. The height function h is either equal to the (bounded) flight
time τ(x) between a horn/scatterer and a scatterer, or equal to the flight time τ(x) between
a scatterer and a horn plus the sojourn time 2tmax in the horn. The φt∆-invariant measure
µh∆ = h̄−1µ∆⊗Leb for the normalizing constant h̄ =

∫
∆ h(x) dµ∆ or h̄ = 1 if this integral is

infinite, because in this infinite measure case, there is no normalization. The corresponding
flow-invariant measure µh is the push-down µh∆ ◦ π

−1
h where πh(x, u) = φu ◦ π(x).

The computations in Section 3.3 show that the tails of h have the asymptotics

µ({x ∈M+
i : h ◦ F (x) > t}) =

ri
Λ

∫
{x∈M+

i :τ(x)+2tmax◦F (x)>t}
cosϕdµ ∼ Ct−β (10)

for some constant depending only on the shape of the horns. In fact, the exponent β is
equal to the parameter β of the Torricelli trumpet, and therefore µh is finite if and only
if β > 1.

Due to Theorems 1.1 and 2.1 with (10) we can apply results from [28] or [8] to derive
the following distributional limit theorems for the flow.

Theorem 3.1 Consider a Sinăı billiard with Torricelli trumpets as horns, where β >
1 is the smallest parameter of these trumpets. Let v be a measurable bounded7 Hölder
observable such that infx∈Hi |v(x)| > 0 for at least one horn Hi with parameter β. Then:

• If β ∈ (1, 2), then v satisfies a Stable Law:

1

T 1/β

(∫ T

0
v ◦ φt dt− T

∫
v dµh

)
⇒d Gβ as T →∞.

• If β = 2, then v satisfies a non-Gaussian Central Limit Theorem:

1√
T log T

(∫ T

0
v ◦ φt dt− T

∫
v dµh

)
⇒d N (0, 1) as T →∞.

• If either β > 1 and supp(v) is compact (rather than containing a horn), or β > 2,
then v satisfies a standard Central Limit Theorem: provided v is not cohomologous
to a constant function, there is a constant σ > 0 such that

1

σ
√
T

(∫ T

0
v ◦ φt dt− T

∫
v dµh

)
⇒d N (0, 1) as T →∞.

3.1 Dynamics of the flow on horns

Let H be a surface of revolution in R3 obtained by revolving the curve x = x(z) around
the z-axis. We will use the radius r = r(z) =

√
x2 + y2 as radius of H and z = z(r) is

the inverse function. Thus H has the parametrization

σ(z, θ) = (r(z) cos θ, r(z) sin θ, z), z ≥ z0, θ ∈ [0, 2π). (11)

Abbreviate r0 := r(z0).

7Note that the space is not compact, so Hölder continuity doesn’t imply boundedness.
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Example 3.1 The area and volume of H are

A := 2π

∫ ∞
z0

(1 + r′2)r dz and V := π2

∫ ∞
z0

r2 dz

respectively. For r(z) = z−β, we get A = ∞, V = π
2β−1 < ∞ (painter’s paradox) for

β ∈ (1
2 , 1]. This holds specifically for the case β = 1, i.e., r = 1/z, when H is called

the trumpet of Torricelli (or also Gabriel’s horn). For β > 1 we have A, V < ∞ and for
β ≤ 1

2 , both A, V =∞. The Gaussian curvature of such a surface

κG = − r′′

r(1 + r′2)2
= − β2 + β

z2(1 + β2z−2(1+β))2
→ 0 as z →∞.

For the next exposition, see [2, Section 4C]. A geodesic Γ is the path on H traced out
by a unit mass particle moving along H at unit speed with no external forces other than
the holonomic constraints keeping it on H. Assume the geodesic starts at (θ0, z0) ∈ ∂H,
making an incoming angle ϕ0 ∈ [−π

2 ,
π
2 ] with the inward vertical meridian. Since ϕ±

are angles with the outward normal vector to ∂H, we have ϕ0 = −ϕ− = ϕ+, so that
κ(ϕ0) = κ(ϕ+) as used in Section 2.1. The kinetic energy

Ekin =
1

2
|v|2 =

1

2
((1 + r′2)ż2 + r2θ̇2) =

1

2
(12)

is one constant of motion. Due to the rotational symmetry (using Noether’s Theorem),
the z-component of the angular momentum

r2θ̇ = r0|v| sinϕ0 = r0 sinϕ0 (13)

is the second constant of motion. Inserting rθ̇ = |v| sinϕ (where ϕ = ϕ(z) is the angle with
the inward vertical meridian) we get a derived constant of motion (Clairaut’s Theorem)

r(z) sinϕ(z) = r0 sinϕ0. (14)

The absolute value of sinϕ is largest at the highest point of the geodesic (where sinϕmax =
1, rmin = r0 sinϕ0, θ = θmax and z = zmax = z(rmin)), then the geodesic spirals down
again (symmetrically to the upwards spiral), until it hits ∂H at an angle −ϕ0 with the
inward vertical meridian.

The question we pose ourselves is:

What is the time tmax needed of the geodesic particle to reach the top at zmax?

This has a direct consequence for the tails of geodesic flow if these sojourns inside the horns
are modeled by suspension flow with height function 2tmax and base map R : M−j →M+

j

as in (2).

3.2 Computation of tmax and θmax

From (12) combined with (13) we find

ż =
dz

dt
=

√
1− r(z)2θ̇2

1 + r′(z)2
=

√
1− r2

0r(z)
−2 sin2 ϕ0

1 + r′(z)2
.

Therefore

dt =

√
1 + r′(z)2

1− r2
0r(z)

−2 sin2 ϕ0
dz
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and

tmax =

∫ tmax

0
dt =

∫ zmax

z0

√
1 + r′(z)2

1− r2
0r(z)

−2 sin2 ϕ0
dz.

Using the change of coordinates u = r0
r(z) | sinϕ0|, so z(r(u)) = z( r0| sinϕ0|

u ), z = z0 ⇔ u =

| sinϕ0|, z = zmax ⇔ u = 1 and dz = − r0| sinϕ0|
u2

1

r′(z(
r0| sinϕ0|

u
))
du, we find8

tmax = r0| sinϕ0|
∫ 1

| sinϕ0|

1

u2
·

√
1 + r′(z( r0| sinϕ0|

u ))−2

1− u2
du. (15)

Now for the difference between the entrance position θ0 and the position θmax reached at
the top of the geodesic, we find, using (13) and the previous computation for ż:

θmax − θ0 =

∫ θmax

θ0

dθ =

∫ tmax

0
θ̇ dt =

∫ tmax

0

r0 sinϕ0

r2
dt

=

∫ zmax

z0

r0 sinϕ0

r2

1

ż
dz

= r0 sinϕ0

∫ zmax

z0

1

r2

√
1 + r′(z)2

1− r2
0r(z)

−2 sin2 ϕ0
dz.

This should be compared to Formula (5.2) in [5] expressing ∆θ in terms of the potential
of a soft scatterer. Applying the transformation u = r0

r(z) | sinϕ0| as before, we get

θmax − θ0 = sgn(ϕ0)

∫ 1

| sinϕ0|

√
1 + r′(z( r0| sinϕ0|

u ))−2

1− u2
du. (16)

Throughout (and following the notation of [5, 6]) we let

∆θ = 2(θmax − θ0) = 2 sgn(ϕ0)

∫ 1

| sinϕ0|

√
1 + r′(z( r0| sinϕ0|

u ))−2

1− u2
du. (17)

be the difference in incoming and outgoing angle of the obstacle as function of angle of
incidence ϕ0. Its derivative w.r.t. ϕ0 is

κ(ϕ0) =
∂∆θ(ϕ0)

∂ϕ0
= −2

√
1 + (r′(z0))−2 + 2r0 cosϕ0 ×∫ 1

| sinϕ0|

z′( r0| sinϕ0|
u )√

1 + r′(z( r0| sinϕ0|
u ))2

r′′(z( r0| sinϕ0|
u ))

r′(z( r0| sinϕ0|
u ))2

1

u
√

1− u2
du. (18)

For convex obstacles, i.e., with z′ < 0 and r′′ > 0, the two terms in this expression have
the same sign. The first term < −2, whereas the second varies between 0 (as ϕ0 → ±π/2)
and potentially −∞ (as ϕ0 → 0∓). Therefore, unless r′(z0) = −∞ (as would be the case
for a pseudo-sphere) κ(ϕ0) is bounded way from [−2, 0] as required in [6] to obtain uniform
hyperbolicity.

8Because r′ < 0, we obtain an extra minus sign when moving r′ into the square-root.
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3.3 Torricelli’s trumpets

Assume that the horn is the surface of revolution of the curve r(z) = z−β, with r′(z) =
−βz−(1+β), r′′(z) = β(1 + β)z−(2+β) and z(r) = r−1/β. Inserting the equations for r(z)

into (15) gives r′( r0| sinϕ0|
u ) = β−2z( r0| sinϕ0|

u )2(1+β) = β−2z( u
r0| sinϕ0|)

2(1+β)/β and

tmax = | sinϕ0|−
1
β β−1r

− 1
β

0

∫ 1

| sinϕ0|

1

u2
·

√
β2(r0 | sinϕ0|)

2(1+β)
β + u

2(1+β)
β

1− u2
du︸ ︷︷ ︸

I(ϕ0)

.

The integral I(ϕ0) tends to a positive constant I0 = β−1r
− 1
β

0

∫ π
2

0 (sinα)
β−1
β dα as ϕ0 → 0,

so the leading asymptotics of tmax is | sinϕ0|−1/βI0. This gives tails on the height function,

µ((θ, ϕ0) : 2tmax > t) = 2π µ

(
| sinϕ0| < (

t

2r0I(ϕ0)
)−β
)
∼ 4π(

t

2r0I0
)−β.

Applying the same formulas to (16), we get

∆θ(ϕ0) =
2 sgn(ϕ0)

| sinϕ0|
1+β
β

1

βr
1+β
β

0

∫ 1

| sinϕ0|

√
β2(r0 | sinϕ0|)

2(1+β)
β + u

2(1+β)
β

1− u2
du

︸ ︷︷ ︸
J(ϕ0)

,

and J(ϕ0) → β−1r
− 1+β

β

0

∫ π
2

0 (sinα)
1+β
β dα as ϕ0 → 0. Therefore the reflection map R :

M−j →M+
j becomes

R : (θ−, ϕ−) 7→ (θ− + 2 sgn(ϕ0)| sinϕ0|−
1+β
β J(ϕ0), −ϕ−), ϕ0 = −ϕ−.

Since J(ϕ0) → 0 as ϕ0 → ±π
2 we get R(θ, ϕ−) → (θ,∓π

2 ) as ϕ− → ±π
2 . Inserting the

above into (18), we find

κ(ϕ0) = −2 sgn(ϕ0)

√
1 + β−2r

−2(1+β)/β
0 − 1 + β

β2

2 sgn(ϕ0)| secϕ0|
(r0| sinϕ0|)(1+β)/β

×∫ 1

| sinϕ0|

1√
u2(1+β)/β + β2(r0| sinϕ0|)2(1+β)/β

u2(1+β)/β

√
1− u2

du.

As ϕ0 increases from 0 to π/2, κ(ϕ0) increases from −∞ to −2

√
1 + β−2r

−2(1+β)/β
0 , and it

is smooth with a finite limit as ϕ0 → ±π
2 , giving the Hölderness of ∆θ away from ϕ0 = 0.

Also κ([−π
2 ,

π
2 ]) ∩ [−2, 0] = ∅, so that hyperbolicity is guaranteed.

The leading term of κ(ϕ0) is C|ϕ0|−
1+2β
β for some C > 0, so, since κ is a smooth

function of ϕ0 6= 0, the leading term of κ′(ϕ0) in absolute value is

1 + 2β

β
C|ϕ0|−

1+3β
β ≤ C|ϕ0|−3 1+2β

β = O(|2 + κ(ϕ0)|3) as ϕ0 → 0,

whenever β > −2/3. Hence, for every β > 0, item 5. in Section 2.1 holds. By the same

token, recalling that ω(ϕ0) = 2+κ(ϕ0)
cosϕ0

(see item 2. in Section 2.1),

ω′(ϕ0) :=
κ′(ϕ0) + (2 + κ(ϕ0)) tanϕ0

cosϕ0
is bounded away from 0,

for ϕ0 close to 0. Therefore ω(ϕ0) is monotone in one-sided neighborhoods of {ϕ0 = 0},
and item 6. in Section 2.1 holds.
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[30] Y. Sinăı, On the foundations of the ergodic hypothesis for dynamical systems of
statistical mechanics, Dok. Akad. Nauk SSSR 153 (1963), 1261–1264.
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