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Abstract. We study continuous countably piecewise monotone interval maps,
and formulate conditions under which these are conjugate to maps of constant
slope, particularly when this slope is given by the topological entropy of the map.
We confine our investigation to the Markov case and phrase our conditions in the
terminology of the Vere-Jones classification of infinite matrices.

1. Introduction

For a, b ∈ R, a < b, a continuous map T : [a, b]→ R is said to be piecewise monotone
if there are k ∈ N and points a = c0 < c1 < · · · < ck−1 < ck = b such that T is
monotone on each [ci, ci+1], i = 0, . . . , k − 1. A piecewise monotone map T has
constant slope s if |T ′(x)| = s for all x 6= ci.

The following results are well known for piecewise monotone interval maps:

Theorem 1. [17, 11] If T : [0, 1] → [0, 1] is piecewise monotone and htop(T ) > 0
then T is semiconjugate via a continuous non-decreasing onto map ϕ : [0, 1]→ [0, 1]

to a map S of constant slope ehtop(T ). The map ϕ is a conjugacy (ϕ is strictly
increasing) if T is transitive.

Theorem 2. [16] If T has a constant slope s then htop(T ) = max{0, log s}.

For continuous interval maps with a countably infinite number of pieces of mono-
tonicity neither theorem is true - for examples, see [13] and [5]. One of the few facts
that remains true in the countably piecewise monotone setting is:

Proposition 1. [10] If T is s-Lipschitz then htop(T ) ≤ max{0, log s}.

A continuous interval map T has constant slope s if |T ′(x)| = s for all but countably
many points.

The question we want to address is when a continuous countably piecewise monotone
interval map T is conjugate to a map of constant slope λ. Particular attention will
be given to the case when a slope is given by the topological entropy of T , which we
call linearizability:
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Definition 1. A continuous map T : [0, 1] → [0, 1] is said to be linearizable if it is

conjugate to an interval map of constant slope λ = ehtop(T ).

We will confine ourselves to the Markov case, and explore what can be said if only
the transition matrix of a countably piecewise monotone map is known in terms of
the Vere-Jones classification [22], refined by [19].

The structure of our paper is as follows.

In Section 2 (CPMM: the class of countably piecewise monotone Markov maps) we
make precise the conditions on continuous interval maps under which we conduct
our investigation - the set of all such maps will be denoted by CPMM (for countably
piecewise monotone Markov). In particular, we introduce a slack countable Markov
partition of a map and distinguish between operator, resp. non-operator type.

In Section 3 (Conjugacy of a map from CPMM to a map of constant slope) we
rephrase the key equivalence from [3, Theorem 2.5]: for the sake of completeness
we formulate Theorem 3, which relates the existence of a conjugacy to an “eigen-
value equation” (5), using both classical and slack countable Markov partitions, see
Definition 2.

Section 4 (The Vere-Jones Classification) is devoted to the Vere-Jones classification
[22] that we use as a crucial tool in the most of our proofs in later sections.

In Section 5 (Entropy and the Vere-Jones classification in CPMM) we show in
Proposition 8 that the topological entropy of a map in question and (the logarithm
of) the Perron value of its transition matrix coincide. Using this fact, we are able
to verify in Proposition 9 that all the transition matrices of a map corresponding
to all the possible Markov partitions of that map belong to the same class in the
Vere-Jones classification; so we can speak about the Vere-Jones classification of a
map from CPMM.

In Section 6 (Linearizability) we present the main results of this text. We start
with Proposition 10 showing two basic properties of a λ-solution of equation (5)
and Theorem 7 on leo maps, see Definition 4. Afterwards we describe conditions
under which a local window perturbation - Theorems 8, 9, resp. a global window
perturbation - Theorems 10, 11 results to a linearizable map.

In Section 7 (Examples) various examples illustrating linearizability/conjugacy to a
map of constant slope in the Vere-Jones classes are presented.
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2. CPMM: the class of countably piecewise monotone Markov maps

Definition 2. A countable Markov partition P for a continuous map T : [0, 1] →
[0, 1] consists of closed intervals with the following properties:

• Two elements of P have pairwise disjoint interiors and [0, 1]\
⋃
P is at most

countable.
• The partition P is finite or countably infinite;
• T |i is monotone for each i ∈ P (classical Markov partition) or piecewise

monotone for each i ∈ P; in the latter case we will speak of a slack Markov
partition.
• For every i, j ∈ P and every maximal interval i′ ⊂ i of monotonicity of T ,

if T (i′) ∩ j◦ 6= ∅, then T (i′) ⊃ j.

Remark 1. The notion of a slack Markov partition will be useful in later sections
of this paper where we will work with window perturbations. If #P = ∞, then the
ordinal type of P need not be N or Z.

Definition 3. The class CPMM is the set of continuous interval maps T : [0, 1]→
[0, 1] satisfying

• T is topologically mixing, i.e., for every open sets U, V there is an n such
that Tm(U) ∩ V 6= ∅ for all m ≥ n.
• T admits a countably infinite Markov partition.
• htop(T ) <∞.

Remark 2. Since T ∈ CPMM is topologically mixing by definition, it cannot be
constant on any subinterval of [0, 1].

Definition 4. A map T ∈ CPMM is called leo (locally eventually onto) if for
every nonempty open set U there is an n ∈ N such that fn(U) = [0, 1].

Remark 3. Let T : [0, 1] → [0, 1] be a piecewise monotone Markov map, i.e., such
that orbits of turning points and endpoints {0, 1} are finite. Those orbits naturally
determine a finite Markov partition for T . This partition can be easily be refined, in
infinitely ways, to countably infinite Markov partitions. If T is topologically mixing
and continuous then we will consider T as an element of CPMM.

Proposition 2. Let T ∈ CPMM with a Markov partition P. For every pair i, j ∈ P
satisfying T (i) ⊃ j there exist a maximal κ = κ(i, j) ∈ N and intervals i1, . . . , iκ ⊂ i
with pairwise disjoint interiors such that T |i` is monotone and T (i`) ⊃ j for each
` = 1, . . . , κ.

Proof. Since T ∈ CPMM is topologically mixing, it is not constant on any subin-
terval of [0, 1]. Fix a pair i, j ∈ P with T (i) ⊃ j. Since T is continuous, there has
to be at least one but at most a finite number of pairwise disjoint subintervals of i
satisfying the conclusion. �
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For a given T ∈ CPMM with a Markov partition P, applying Proposition 2 we
associate to P the transition matrix M = M(T ) = (mij)i,j∈P defined by

(1) mij =

{
κ(i, j) if T (i) ⊃ j,
0 otherwise.

If P is a classical Markov partition of some T ∈ CPMM then mij ∈ {0, 1} each
i, j ∈ P.

Remark 4. For the sake of clarity we will write (T,P,M) ∈ CPMM∗ when a
map T ∈ CPMM, a concrete Markov partition P for T and its transition matrix
M = M(T ) with respect to P are assumed.

For an infinite matrix M indexed by a countable index set P we can consider the
powers Mn = (mij(n))i,j∈P of M :

(2) M0 = E = (δij)i,j∈P , Mn =

(∑
k∈P

mikmkj(n− 1)

)
i,j∈P

, n ∈ N.

Proposition 3. Let (T,P,M) ∈ CPMM∗.

(i) For each n ∈ N and i, j ∈ P, the entry mij(n) of Mn is finite.
(ii) The entry mij(n) = m if and only if there are exactly m subintervals i1, . . . ,

im of i with pairwise disjoint interiors such that Tn(ik) ⊃ j, k = 1, . . . ,m.

Proof. (i) From the continuity of T and the definition of M follows that the sum∑
i∈P mij is finite for each j ∈ P, which directly implies (i).

(ii) For n = 1 this is given by the relation (1) defining the matrix M . The induction
step follows from (2) of the product of the nonnegative matrices M and Mn−1. �

A matrix M indexed by the elements of P represents a bounded linear operator M
on the Banach space `1 = `1(P) of summable sequences indexed by P, provided
that the supremum of the columnar sums is finite. Then M is realized through left
multiplication

M(v) :=

∑
j∈P

mijvj


i∈P

, v ∈ `1(P),

‖M‖ = sup
j

∑
i

mij .(3)

The matrix Mn represents the nth power Mn of M and by Gelfand’s formula, the

spectral radius rM = limn→∞ ‖Mn‖
1
n .

Remark 5. If (T,P,M) ∈ CPMM∗ the supremum in (3) is finite if and only if

(4) ∃ K > 0 ∀ y ∈ [0, 1] : #T−1(y) ≤ K.
Since this condition does not depend on a concrete choice of P, we will say the map
T is of an operator type when the condition (4) is fulfilled and of a non-operator
type otherwise.
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3. Conjugacy of a map from CPMM to a map of constant slope

This section is devoted to the fundamental observation regarding a possible con-
jugacy of an element of CPMM to a map of constant slope. It is presented in
Theorem 3.

Let (T,P,M) ∈ CPMM∗. We are interested in positive real numbers λ and nonzero
nonnegative sequences (vi)i∈P satisfying Mv = λv, or equivalently

(5) ∀ i ∈ P :
∑
j∈P

mijvj = λ vi.

Definition 5. A nonzero nonnegative sequence v = (vi)i∈P satisfying (5) will be
called a λ-solution (for M). If in addition v ∈ `1(P), it will be called a summable
λ-solution (for M).

Remark 6. Since every T ∈ CPMM is topologically mixing, any nonzero nonneg-
ative λ-solution is in fact positive: If v = (vi)i∈P solves (5), k, j ∈ P and vj > 0
then by Proposition 3(ii) for some sufficiently large n, λnvk ≥ mkj(n)vj > 0.

Let CPMMλ denote the class of all maps from CPMM of constant slope λ, i.e.,
S ∈ CPMMλ if |S′(x)| = s for all but countably many points.

The core of the following theorem has been proved in [3, Theorem 2.5]. Since we
will work with maps from CPMM that are topologically mixing, we use topological
conjugacies only - see [1, Proposition 4.6.9]. The theorem will enable us to change
freely between classical/slack Markov partitions of the map in question.

Theorem 3. Let T ∈ CPMM. The following conditions are equivalent.

(i) For some λ > 1, the map T is conjugate via a continuous increasing onto
map ψ : [0, 1]→ [0, 1] to some map S ∈ CPMMλ.

(ii) For some classical Markov partition P for T there is a positive summable
λ-solution u = (ui)i∈P of equation (5).

(iii) For every classical Markov partition P for T there is a positive summable
λ-solution u = (ui)i∈P of equation (5).

(iv) For every slack Markov partition Q for T there is a positive summable λ-
solution v = (vi)i∈Q of equation (5).

(v) For some slack Markov partition Q for T there is a positive summable λ-
solution v = (vi)i∈Q of equation (5).

Remark 7. Recently, Misiurewicz and Roth [15] have pointed out that if v is a λ-
solution of equation (5) that is not summable, then the map T is conjugate to a map
of constant slope defined on the real line or half-line.

Remark 8. Let T ∈ CPMM be piecewise monotone with a finite Markov partition.
It is well known [23, Theorem 0.16], [1, Theorem 4.4.5] that the corresponding equa-

tion (5) has a positive ehtop(T )-solution which is trivially summable. By Theorem 3
it is also true for any countably infinite Markov partition for T .
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Proof of Theorem 3. The equivalence of (i), (ii) and (iii) has been proved in [3].
Since (iv) implies (iii) and (v), it suffices to show that (iii) implies (iv) and (v)
implies (ii).

(iii) =⇒ (iv). Let us assume that Q is a slack Markov partition for T . Obviously
there is a classical partition P for T which is finer than Q, i.e., every element of P
is contained in some element of Q. Using (iii) we can consider a positive summable
λ-solution u = (ui)i∈P of equation (5). Let v = (vi)i∈Q be defined as

vi =
∑
i′⊂i

ui′ ;

clearly the positive sequence v = (vi)i∈Q is from `1(Q). Denoting (mPij)i,j∈P and

(mQij)i,j∈Q the transition matrices corresponding to the partitions P, Q, we can write

λvi = λ
∑
i′⊂i

ui′ =
∑
i′⊂i

λui′ =
∑
i′⊂i

∑
k∈Q

∑
k′⊂k

mPi′k′uk′(6)

=
∑
k∈Q

(∑
k′⊂k

uk′

)(∑
i′⊂i

mPi′k′

)
=
∑
k∈Q

mQikvk,

where the equality mQik =
∑

i′⊂im
P
i′k′ follows from the Markov property of T on P

and Q:

(7) if T (i′) ⊃ k′ for some k′ ⊂ k then also T (i′) ⊃ k.

So by (6), for a given slack Markov partition Q (for T ) we find a positive summable
λ-solution v = (vi)i∈Q of equation (5).

(v) =⇒ (ii). Assume that for some slack Markov partition Q for T there is a positive
summable λ-solution v = (vi)i∈Q of equation (5). As in the previous part we can
consider a classical Markov partition P finer than Q. Using again property (7) let
us put

(8) ui′ =
∑

T (i′)⊃j

vj , i
′ ∈ P.

Then u = (ui′)i′∈P is positive and we will show that it is a summable λ-solution of
equation (5). Fix an i′ ∈ P and using the property (7) for j ∈ Q for which T (i′) ⊃ j.
Then

(9) λvj =
∑
k∈Q

mQjkvk =
∑
j′⊂j

∑
T (j′)⊃`

v` =
∑
j′⊂j

mPi′j′
∑

T (j′)⊃`

v` =
∑
j′⊂j

mPi′j′uj′ ,

hence summing (9) through all j’s from Q that are T -covered by i′ ∈ P, we obtain
with the help of (8),
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λui′ =
∑

T (i′)⊃j

λvj =
∑

T (i′)⊃j

∑
j′⊂j

mPi′j′uj′ =
∑
j′∈P

mPi′j′uj′ .

Since by our assumption on v = (vi)i∈Q and (8)

∑
i′∈P

ui′ =
∑
i∈Q

∑
j∈Q

mQijvj = λ
∑
i∈Q

vi <∞,

so u = (ui′)i′∈P is a summable λ-solution of equation (5). �

Maps T ∈ CPMM are continuous, topologically mixing with positive topological
entropy. Thus all possible semiconjugacies described in [3, Theorem 2.5] will be in
fact conjugacies, see [1, Proposition 4.6.9]. Many properties hold under the assump-
tion of positive entropy or for countably piecewise continuous maps. One interesting
example of a countably piecewise continuous and countably piecewise monotone
(still topologically mixing) map will be presented in Section 7. However, since the
technical details are much more involved and would obscure the ideas, we confine
the proofs to CPMM.

4. The Vere-Jones Classification

Let us consider a matrix M = (mij)i,j∈P , where the index set P is finite or countably
infinite. The matrix M will be called

• irreducible, if for each pair of indices i, j there exists a positive integer n such
that mij(n) > 0, and
• aperiodic, if for each index i ∈ P the value gcd{` : mii(`) > 0} = 1.

Remark 9. Since T ∈ CPMM is topologically mixing, its transition matrix M is
irreducible and aperiodic.

In the sequel we follow the approach suggested by Vere-Jones [22].

Proposition 4. (i) Let M = (mij)i,j∈P be a nonnegative irreducible aperiodic ma-
trix indexed by a countable index set P. There exists a common value λM such that
for each i, j

(10) lim
n→∞

[mij(n)]
1
n = sup

n∈N
[mii(n)]

1
n = λM .

(ii) For any value r > 0 and all i, j

• the series
∑

nmij(n)rn are either all convergent or all divergent;
• as n→∞, either all or none of the sequences {mij(n)rn}n tend to zero.

Remark 10. The number λM defined by (10) is often called the Perron value of M .
In the whole text we will assume that for a given nonnegative irreducible aperiodic
matrix M = (mij)i,j∈P its Perron value λM is finite.
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4.1. Entropy, generating functions and the Vere-Jones classes. To a given
irreducible aperiodic matrix M = (mij)i,j∈P with entries from N ∪ {0} corresponds
a strongly connected directed graph G = G(M) = (P, E ⊂ P × P) containing mij

edges from i to j.

The Gurevich entropy of M (or of G = G(M)) is defined as

h(G) = h(M) = sup{log r(M ′) : M ′ is a finite submatrix of M},

where r(M ′) is the large eigenvalue of the finite transition matrix M ′. Gurevich
proved that

Proposition 5. [8] h(M) = log λM .

Since by Proposition 4 the value R = λ−1M is a common radius of convergence of the
power series Mij(z) =

∑
n≥0mij(n)zn, we immediately obtain for each pair i, j ∈ P,

Mij(r)

{
∈ R, 0 ≤ r < R,

=∞, r > R.

It is well known that in G(M)

• mij(n) equals to the number of paths of length n connecting i to j.

Following [22], for each n ∈ N we will consider the following coefficients:

• First entrance to j: fij(n) equals the number of paths of length n connecting
i to j, without appearance of j in between.
• Last exit of i: `ij(n) equals the number of paths of length n connecting i to
j, without appearance of i in between.

Clearly fii(n) = `ii(n) for each i ∈ P. Also it will be useful to introduce

• First entrance to P ′ ⊂ P: for a nonempty P ′ ⊂ P and j ∈ P ′, gP ′
ij (n) equals

the number of paths of length n connecting i to j, without appearance of
any element of P ′ in between.

The first entrance to P ′ ⊂ P will provide us a new type of a generating function
used in (37) and its applications.

Remark 11. Let us denote by Φij, Λij the radius of convergence of the power
series Fij(z) =

∑
n≥1 fij(n)zn, Lij(z) =

∑
n≥1 `ij(n)zn. Since fij(n) ≤ mij(n),

`ij(n) ≤ mij(n) for each n ∈ N and each i, j ∈ P, we always have R ≤ Φij, R ≤ Λij.

Proposition 6 has been stated in [19]. Since the argument showing the part (i)
presented in [19] is not correct, we offer our own version of its proof.

Proposition 6. [19, Proposition 2.6] Let (T,P,M) ∈ CPMM∗, consider the graph
G = G(M), R = λ−1M .
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(i) If there is a vertex j such that R = Φjj then there exists a strongly connected
subgraph G′ ( G such that h(G′) = h(G).

(ii) If there is a vertex j such that R < Φjj then for all proper strongly connected
subgraphs G′ one has h(G′) < h(G).

(iii) If there is a vertex j such that R < Φjj then R < Φii for all i.

Proof. For the proof of part (ii) see [19].

Let us prove (i). Fix a vertex j ∈ P for which R = Φjj and choose arbitrary i 6= j.
We can write

(11) fjj(n) = ifjj(n) + ifjj(n),

where ifjj(n), resp. ifjj(n) denotes the number of fjj-paths of length n that do not
contain i, resp. contain i.
I. If lim supn→∞[ifjj(n)]1/n = λM , then there is nothing to prove.

II. Assume that lim supn→∞[ifjj(n)]1/n < λM . Then by our assumption and (11)

(12) lim sup
n→∞

[ifjj(n)]1/n = λM .

Let us denote gij(n) the number of paths of length n connecting i to j, without
appearance of i, j after the initial i and before the final j. If we denote 1,jfii(n) the
number of fii-paths of length n connecting i to i with exactly one appearance of
j after the initial i and before the final i, we can write for n ≥ 2 (the coefficients

jmii(n) are defined analogously as jfii(n) - compare the proof of Theorem 6)

ifjj(n) =
n∑

m=2

m−1∑
k=1

gji(k) jmii(n−m)gij(m− k)(13)

=
n∑

m=2

jmii(n−m)

m−1∑
k=1

gji(k) gij(m− k)

=

n∑
m=2

jmii(n−m) 1,ifjj(m) =

n∑
m=2

jmii(n−m) 1,jfii(m).

By the formula of [1, Lemma 4.3.6] and our assumption (12), for arbitrary i ∈ P\{j}
we obtain from (13) either

(14) lim sup
n

[jmii(n)]1/n = λM

or

(15) lim sup
n→∞

[1,jfii(n)]1/n = λM .

If (14) is fulfilled for some i the existence of a strongly connected subgraph G′ ( G
such that h(G′) = h(G) immediately follows. Otherwise, since
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lim sup
n→∞

[1,jfii(n)]1/n ≤ lim sup
n→∞

[fii(n)]1/n,

we get R = Φii for each i ∈ P and the conclusion follows from [20, Theorem 2.2].
The assertion (iii) immediately follows from (i) and (ii). �

The behavior of the series Mij(z), Fij(z) for z = R was used in the Vere-Jones clas-
sification of irreducible aperiodic matrices [22]. Vere-Jones originally distinguished
R-transient, null R-recurrent and positive R-recurrent case. Later on, the classifi-
cation was refined by Ruette in [19], who added strongly positive R-recurrent case.
All is summarized in Table 1 which applies independently of the sites i, j ∈ P for
M irreducible - compare the last row of Table 1 and Proposition 6. We call cor-
responding classes of matrices transient, null recurrent, weakly recurrent, strongly
recurrent. The last three, resp. two possibilities will occasionally be summarized by
’M is recurrent’, resp. ’M is positive recurrent’.

transient null weakly strongly
recurrent recurrent recurrent

Fii(R) < 1 = 1 = 1 = 1

F ′ii(R) ≤ ∞ ∞ <∞ <∞

Mij(R) <∞ =∞ =∞ =∞

limn→∞mij(n)Rn = 0 = 0 λij ∈ (0,∞) λij ∈ (0,∞)

for all i R = Φii R = Φii R = Φii R < Φii

Table 1.

4.1.1. Salama’s criteria. There are geometrical criteria - see [20] and also [19] - for
cases of the Vere-Jones classification to apply depending on whether the underlying
strongly connected directed graph can be enlarged/reduced (in the class of strongly
connected directed graphs) without changing the entropy. We will use some of them
in Section 7.

Theorem 4. [20, 19] The following are true:

(i) A graph G is transient if and only if there is a graph G′ such that G ( G′

and h(G) = h(G′).
(ii) G is strongly recurrent if and only if h(G0) < h(G) for any G0 ( G.
(iii) G is recurrent but not strongly recurrent if and only if there exists G0 ( G

with h(G0) = h(G), but h(G) < h(G1) for every G1 ) G.

4.1.2. Further useful facts. In the whole paper we are interested in nonzero nonneg-
ative solutions of equation (5). Analogously, in the next proposition we consider
nonzero nonnegative subinvariant λ-solutions v = (vi)i∈P for a matrix M , i.e., sat-
isfying the inequality Mv ≤ λv.

Theorem 5. [22, Theorem 4.1] Let M = (mij)i,j∈P be irreducible. There is no
subinvariant λ-solution for λ < λM . If M is transient there are infinitely many
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linearly independent subinvariant λM -solutions. If M is recurrent there is a unique
subinvariant λM -solution which is in fact λM -solution of equation (5) proportional
to the vector (Fij(R))i∈P (j ∈ P fixed), R = λ−1M .

A general statement (a slight adaption of [18, Theorem 2]) on solvability of equation
(5) is as follows:

Theorem 6. Let M = (mij)i,j∈P be irreducible. The system Mv = λv has a
nonzero nonnegative solution v if and only if

(a) λ = λM and M is recurrent, or
(b) when either λ > λM or

λ = λM and M is transient,
there is an infinite sequence of indices K ⊂ P such that (z = λ−1)

(16) lim
j→∞

lim
k→∞, k∈K

∑∞
α=jmiα Mαk(z)∑∞
α=1miα Mαk(z)

= 0

for each i ∈ P.

Proof. Following Chung [9] we will use the analogues of the taboo probabilities: For
k ∈ P define kmij(1) = mij and for n ≥ 1,

kmij(n+ 1) =
∑
α 6=k

miα kmαj(n);

clearly, kmij(n) equals to the number of paths of length n connecting i to j with no

appearance of k between. Denote also kmij(n) = mij(n) −k mij(n) the number of
paths of length n connecting i to j with at least one appearance of k between. The
usual convention that kmij(0) = δij(1 − δik) will be used. The following identities
directly follow from the definitions of the corresponding generating functions - see
before Table 1 - or are easy to verify: For all i, j, k ∈ P and 0 ≤ z < R,

(i) Mik(z) =j Mik(z) +j Mik(z),
(ii) iMik(z) = Lik(z),
(iii) jMik(z) = Mij(z)Ljk(z),
(iv) Mik(z) = Mii(z)Lik(z),
(v) [22] for i 6= k,∑

α≤j−1miαMαk(z)

Mik(z)
+

∑
α≥jmiαMαk(z)

Mik(z)
=

1

z
,

(vi) [22]
∑

α≥1miαMαi(z) = Mii(z)
z − 1

z is finite.

By [18, Theorem 2] the double limit (16) can be replaced by

(17) lim
j→∞

lim
k→∞, k∈K

∑∞
α=jmiα iMαk(1/λ)

iMik(1/λ)
= 0.

Using the identities (i)-(vi) we can write (17) as
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A(j, k) :=

∑∞
α=jmiα iMαk(z)

iMik(z)
=

∑∞
α=jmiα Mαk(z)

Lik(z)
−
∑∞

α=jmiα
iMαk(z)

Lik(z)

= Mii(z)

∑∞
α=jmiα Mαk(z)

Mii(z)Lik(z)
−
∑∞

α=jmiα Mαi(z)Lik(z)

Lik(z)

= Mii(z)

∑∞
α=jmiα Mαk(z)

Mik(z)
−
∞∑
α=j

miα Mαi(z) =: B(j, k).

Since by (vi), limj→∞
∑∞

α=jmiα Mαi(z) = 0, using (v) we obtain that

lim
j→∞

lim
k→∞, k∈K

A(j, k) = 0

if and only if

lim
j→∞

lim
k→∞, k∈K

B(j, k) = lim
j→∞

lim
k→∞, k∈K

∑∞
α=jmiα Mαk(z)∑∞
α=1miα Mαk(z)

= 0.

The conclusion follows from [18, Theorem 2]. �

Corollary 1. If for each i, mij = 0 except for a finite set of j values, then Mv = λv
has a nonzero nonnegative solution if and only if λ ≥ λM .

4.1.3. Useful matrix operations in the Vere-Jones classes. In order to be able to
modify nonnegative matrices in question we will need the following observation. In
some cases it will enable us to produce transition matrices of maps from CPMM.
Let E be the identity matrix, see (2).

Proposition 7. Let M = (mij)i,j∈P be irreducible. For arbitrary pair of positive
integer k and nonnegative integer ` consider the matrix N = kM + `E. Then

(i) λN = kλM + `,
(ii) if for each i, mij = 0 except for a finite set of j values, the matrix N belongs

to the same class of the Vere-Jones classification as the matrix M .

Proof. Both the conclusions clearly hold if N is a multiple of M , i.e., when ` = 0.
So to show our statement it is sufficient to verify the case when N = M + E.

(i) Since Mv = λv if and only if Nv = (λ+1)v, property (i) follows from Corollary 1.

(ii) By our assumption, for each i, nij = 0 except for a finite set of j values, so
Theorem 6 and Corollary 1 can be applied. Notice that for any nonnegative v,

(18) Mv ≤ λv if and only if Nv ≤ (λ+ 1)v,

so by Theorem 5, the matrix M is transient, resp. recurrent if and only if N = M+E
is transient, resp. recurrent. In order to distinguish different recurrent cases we will
use Table 1. Since by (i) λN = λM + 1, we can write
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(19)
n11(n)

λnN
=

∑n
k=0

(
n
k

)
m11(k)∑n

k=0

(
n
k

)
λkM

=

∑n1−1
k=0

(
n
k

)m11(k)

λkM
λkM∑n

k=0

(
n
k

)
λkM︸ ︷︷ ︸

U(n,n1)

+

∑n
k=n1

(
n
k

)m11(k)

λkM
λkM∑n

k=0

(
n
k

)
λkM︸ ︷︷ ︸

V (n,n1)

.

By (10) m11(k)

λkM
≤ 1 for each k and we can put µ = limk→∞

m11(k)

λkM
. For each ε > 0

there exists n1 ∈ N such that m11(k)

λkM
∈ (µ− ε, µ + ε) whenever k > n1. Then using

the fact that

lim
n→∞

U(n, n1) = 0, lim
n→∞

∑n
k=n1

(
n
k

)
λkM∑n

k=0

(
n
k

)
λkM

= 1,

we can write for any δ > 0 and sufficiently large n = n(δ):

µ− ε ≤ n11(n)

λnN
≤ δ + µ+ ε,

hence limn
n11(n)
λnN

= limn
m11(n)
λnM

= µ. By Table 1, M is null, resp. positive recurrent

if and only if N is null, resp. positive recurrent.

Finally, let M = (mij)i,j∈P be positive recurrent and assume its irreducible subma-
trix K = (kij)i,j∈P ′ for some P ′ ⊂ P, denote L = K + E. Then similarly as above
we obtain that λN = λM + 1, resp. λL = λK + 1. If M is weakly, resp. strongly
recurrent, then for some K, resp. for each K we obtain λN = λL, resp. λN > λL
and Theorem 4 can be applied.

This finishes the proof for N = M + E. Now, the case when N = M + `E, ` > 1,
can be verified inductively. �

5. Entropy and the Vere-Jones classification in CPMM

The following statement identifies the topological entropy of a map and the Perron
value λM of its transition matrix.

Proposition 8. Let (T,P,M) ∈ CPMM∗. Then λM = ehtop(T ). and if there is a
summable λ-solution of equation (5) then λM ≤ λ.

Proof. For the first equality, we start by proving λM ≤ ehtop(T ). We use Propo-

sition 4(i) and Proposition 3(ii). By those statements, λM = limn[mjj(n)]
1
n for

any j ∈ P and and for each sufficiently large n, the interval j contains mjj(n)
intervals j1, . . . , jmjj(n) with pairwise disjoint interiors such that Tn(ji) ⊃ j` for

all 1 ≤ i, ` ≤ mjj(n). Clearly, the map Tn has a mjj(n)-horseshoe [12] hence

htop(T
n) = nhtop(T ) ≥ logmjj(n) and ehtop(T ) ≥ [mjj(n)]

1
n . Since n can be arbi-

trarily large, the inequality λM ≤ ehtop(T ) follows.

Now we look at the reverse inequality λM ≥ ehtop(T ). A pair (S, T |S) is a subsystem of
T if S ⊂ [0, 1] is closed and T (S) ⊂ S. It has been showed in [4, Theorem 3.1] that the



14 JOZEF BOBOK AND HENK BRUIN

entropy of T can be expressed as the supremum of entropies of minimal subsystems.
Let us fix a minimal subsystem (S(ε), T |S(ε)) of T for which htop(T |S(ε)) > htop(T )−
ε > 0.

Claim. There are finitely many elements i1, . . . , im ∈ P such that S(ε) ⊂
⋃m
j=1 i

◦
j .

Proof of Claim. Let us denote P = [0, 1] \
⋃
i∈P i

◦. Then P is closed, at most count-
able and T (P ) ⊂ P . Assume that x ∈ P ∩ S(ε) 6= ∅. Then orbT (x) ⊂ P which is
impossible for (S(ε), T |S(ε)) minimal of positive topological entropy. If S(ε) inter-
sected infinitely many elements of P then, since S(ε) is closed, it would intersect
also P , a contradiction. Thus, there are finitely many i1, . . . , im ∈ P of the required
property. �

Our claim together with Proposition 2 say that connect-the-dots map of (S(ε), T |S(ε))
is piecewise monotone and the finite submatrix M ′ of M corresponding to the el-
ements i1, . . . , im satisfies r(M ′) ≥ ehtop(T |S(ε)). Now the conclusion follows from
Proposition 5.

The second statement follows from Theorem 3, Proposition 1 and the fact that
topological entropy is a conjugacy invariant: λM = ehtop(T ) = ehtop(S) ≤ λ. �

We would like to transfer the Vere-Jones classification to CPMM. That is why it
is necessary to be sure that a change of Markov partition for the map in question
does not change the Vere-Jones type of its transition matrix. This is guaranteed by
the following proposition.

Given T ∈ CPMM, consider the family (Pα)α of all Markov partitions for T . Write
Qα = [0, 1]\

⋃
i∈Pα i

◦. The minimal Markov partition R for T consists of the closures
of connected components of [0, 1] \

⋂
αQα.

Proposition 9. Let T ∈ CPMM with two Markov partitions P, resp. Q and
corresponding matrices MP = (mPij)i,j∈P , resp. MQ = (mQij)i,j∈Q. The matrices

MP and MQ belong to the same class of the Vere-Jones classification.

Proof. Since the map T is topologically mixing, each of the matrices MP , MQ

is irreducible and aperiodic. Moreover, by Proposition 8 the value guaranteed in
Proposition 4(i) equals ehtop(T ) and so is the same for both the matrices MP , MQ -
denote it λ. Let P = [0, 1] \

⋃
j∈P j

◦ and Q = [0, 1] \
⋃
j∈Q j

◦.

First, let us assume that P ⊂ Q. Fix two elements j ∈ P, resp. j′ ∈ Q such that
j′ ⊂ j. Let us consider a path of the length n

(20) j = j0 →P j1 →P j2 · · · →P jn = j

with respect to P; by Proposition 2 each interval ji contains ki = kP(ji, ji+1) in-
tervals of monotonicity of T - denote them ιi(1), . . . , ιi(ki) - such that T (x) /∈ ji+1

whenever x ∈ ji \
⋃ki
`=1 ιi. This implies that
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(21)

n−1∏
i=0

ki

is the number of paths with respect to P through the same vertices in order given
by (20) and, at the same time, it is an upper bound of a number of paths

j′ = j′0 →Q j′1 →Q j′2 · · · →Q j′n = j′

with respect to finer Q such that j′i ⊂ ji for each i. Considering all possible paths
in (20) and summing their numbers given by (21), we obtain

(22) mQj′j′(n) ≤ mPjj(n)

for each n. On the other hand, since T is topologically mixing and Markov, there is
a positive integer ` = `(j, j′) such that T `(j′) ⊃ j. It implies for each n,

(23) mPjj(n) ≤ mQj′j′(n+ k).

Using (22) and (23), we can write,∑
n≥0

mQj′j′(n)λ−n ≤
∑
n≥0

mPjj(n)λ−n ≤ λk
∑
n≥0

mQj′j′(n+ k)λ−n−k.

Hence by the third row of Table 1, MP is recurrent if and only if MQ is recurrent.
Again from (22) and (23) we can see that limnm

P
jj(n)λ−n is positive if and only

if limnm
Q
j′j′(n)λ−n is positive and the fourth row of Table 1 for R = λ−1 can be

applied.

In order to distinguish weak, resp. strong recurrence, for a P ′ ⊂ P let Q′ ⊂ Q be
such that

(24) Q′ = {j′ ∈ Q : j′ ⊂ j for some j ∈ P ′}.

Using (22) and (23) again we can see that the Perron values of the irreducible

aperiodic matrices MP
′

and MQ
′

coincide hence the Gurevich entropies h(MP),

h(MP
′
) are equal if and only if it the case for h(MQ), h(MQ

′
); now Theorem

4(ii),(iii) applies.

Second, if P * Q and Q * P , let us consider the partition R, where any element of
R equals the closure of a connected component of the set I \ (P ∩ Q). The reader
can easily verify that R is a Markov partition for T . By the previous, the pairs
of matrices MP , MR, resp. MR, MQ belong to the same class of the Vere-Jones
classification. So it is true also for the pair MP , MQ. �

Remark 12. Let (T,P,M) ∈ CPMM∗. Applying Proposition 9 in what follows
we will call T transient, null recurrent, weakly recurrent or strongly recurrent re-
spectively if it is the case for its transition matrix M . The last three, resp. two
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possibilities will occasionally be summarized by ’T is recurrent’, resp. ’T is posi-
tive recurrent’. It is well known that if T is piecewise monotone then it is strongly
recurrent [23, Theorem 0.16].

6. Linearizability

In this section we investigate in more details the set of maps from CPMM that
are conjugate to maps of constant slope (linearizable, in particular). Relying on
Theorem 3, Theorem 5 and Proposition 9 our main tools will be local and global
perturbations of maps from CPMM resulting to maps from CPMM. Some exam-
ples illustrating the results achieved in this section will be presented in Section 7.

We start with an easy but rather useful observation. Its second part will play
the key role in our evaluation using centralized perturbation - formula (37) and its
applications.

Proposition 10. Let (T,P,M) ∈ CPMM∗.

(i) If T is leo then any λ-solution of (5) is summable.
(ii) Any λ-solution of (5) satisfies

∀ ε ∈ (0, 1/2) :
∑

j∈P,j⊂(ε,1−ε)

vj <∞.

Proof. (i) Since T is leo, for a fixed element i of P, there is an n ∈ N such that
Tn(i) = [0, 1]. Then by Proposition 3(ii), mij(n) ≥ 1 for each j ∈ P. This implies
that any λ-solution v = (vj)j∈P of (5) satisfies

λnvi =
∑
j∈P

mij(n)vj ≥
∑
j∈P

vj ,

so v ∈ `1(P).

(ii) We assume that T is topologically mixing - see Definition 3. For any fixed
element i ∈ P there is an n ∈ N such that Tn(i) ⊃ (ε, 1− ε): since T is topologically
mixing, there exist positive integers n1 and n2 such that Tm1(i) ∩ [0, ε/2) 6= ∅ for
every m1 ≥ n1, resp. Tm2(i)∩ (1− ε/2, 1] 6= ∅ for every m2 ≥ n2. This implies that
the interval Tn(i) contains (ε, 1 − ε) whenever n ≥ max{n1, n2} - fix one such n.
Then mij(n) ≥ 1 for any element j of P such that j ⊂ (ε, 1− ε); hence

λnvi =
∑
j∈P

mij(n)vj ≥
∑

j∈P,j⊂(ε,1−ε)

vj .

for any λ-solution v = (vj)j∈P of (5). �

The fundamental conclusion regarding linearizability of a map from CPMM pro-
vided by the Vere-Jones theory follows.

Theorem 7. If T ∈ CPMM is leo and recurrent, then T is linearizable.
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Proof. By assumption there exists a Markov partition P for T such that the transi-
tion matrix M = M(T ) = (mij)i,j∈P is recurrent. In such a case equation (5) has
a λM -solution described in Theorem 5. Since T is leo the λM -solution is summable
by Proposition 10(i) and the conclusion follows from Theorem 3. �

Remark 13. In Section 7 we present various examples illustrating Theorem 7. In
particular, we show a strongly recurrent non-leo map of an operator type that is not
conjugate to any map of constant slope.

6.1. Window perturbation. In this subsection we introduce and study two types
of perturbations of a map T from CPMM: local and global window perturbation.

6.1.1. Local window perturbation.

Definition 6. For S ∈ CPMM with Markov partition P, let j ∈ P such that S|j is
monotone. We say that T ∈ CPMM is a window perturbation of S on j (of order
k, k ∈ N), if

• T equals S on [0, 1] \ j◦
• there is a nontrivial partition (ji)

2k+1
i=1 of j such that T (ji) = S(j) and T |ji

is monotone for each i.

Notice that due to Definition 6 a window perturbation does not change partition P
(but renders it slack). Using a sufficiently fine Markov partition for S, its window
perturbation T can be arbitrarily close to S with respect to the supremum norm.

In the above definition an element of monotonicity of a partition is used. So, for
example we can take P classical (i.e., non-slack), or to a given partition P ′ and a
given maximal interval of monotonicity i of a map we can consider a partition P ′′
finer than P ′ such that i ∈ P ′′.

Proposition 11. Let T ∈ CPMM be a window perturbation of a map S ∈ CPMM.
The following is true.

(i) If S is recurrent then T is strongly recurrent and RT < RS.
(ii) If S is transient then T is strongly recurrent for each sufficiently large k.

Proof. Fix a partition P for S, let T be a window perturbation of S on j ∈ P. Apply-
ing Proposition 9 it is sufficient to specify the Vere-Jones class of T with respect to
P. Consider generating functions FS(z) = FSjj(z) =

∑
n≥1 f

S(n)zn, resp. F T (z) =

F Tjj(z) =
∑

n≥1 f
T (n)zn, corresponding to S, resp. T and with radius of the conver-

gence ΦS = ΦS
jj , resp. ΦT = ΦT

jj . Notice that

(25) ∀ n ∈ N : fT (n) = (2k + 1)fS(n),

hence ΦS = ΦT .

(i) If S is recurrent then by Table 1 and (25),
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∑
n≥1

fS(n)RnS = 1,
∑
n≥1

fT (n)RnS = 2k + 1.

Then, since RS ≤ ΦS = ΦT ,

∑
n≥1

fT (n)RnT ≤ 1 < 2k + 1 ≤
∑
n≥1

fT (n)(ΦT )n,

hence RT < ΦT and T is strongly recurrent.

(ii) If S is transient then by Table 1 and (25),

s =
∑
n≥1

fS(n)RnS < 1,
∑
n≥1

fT (n)RnS = (2k + 1)s.

If for a sufficiently large k, (2k + 1)s > 1, necessarily RT < RS = ΦS = ΦT and T
is strongly recurrent by Table 1. �

Let M be a matrix indexed by the elements of some P and representing a bounded
linear operatorM on the Banach space `1 = `1(P) - see Section 2. It is well known
[21, p. 264], [21, Theorem 3.3] that for λ > rM the formula

(26)

 1

λ
Mij

(
1

λ

)
=
∑
n≥0

mij(n)/λn+1


i,j∈P

defines the resolvent operator Rλ(M) : `1(P)→ `1(P) to the operator

Mλ = λI −M.

We will repeatedly use this fact when proving our main results. The following theo-
rem implies that in the space of maps from CPMM of operator type an arbitrarily
small (with respect to the supremum norm) local change of a map will result to a
linearizable map.

Theorem 8. Let T ∈ CPMM be a window perturbation of order k of a map
S ∈ CPMM of operator type. Then T is linearizable for every sufficiently large k.

Proof. We will use the same notation as in the proof of Proposition 11.

Let us denote MT (k) = (m
T (k)
ij )i,j∈P the transition matrix of a considered window

perturbation T (k) of S, let λT (k) be the value ensured for MT (k) by Proposition 4,
put RT (k) = 1/λT (k). Since S is of operator type, it is also the case for each T (k).
Using Proposition 11 and Theorem 5 we obtain that for some k0 the perturbation
T (k0) is recurrent and equation (5) is λT (k0)-solvable:

∀ i ∈ P :
∑
`∈P

m
T (k0)
i` F

T (k0)
`j (RT (k0)) = λT (k0)F

T (k0)
ij (RT (k0)),
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where F
T (k0)
`j (z) =

∑
n≥1 f

T (k0)
`j (n)zn, ` ∈ P. Since by (25) for each k,

(2k + 1)
∑
n≥1

fSjj(n)RnT (k) =
∑
n≥1

f
T (k)
jj (n)RnT (k) = 1,

we can deduce that (RT (k))k≥1 is decreasing and

(27) lim
k
RT (k) = 0.

By our definition of a window perturbation, for each i ∈ P \ {j},

(28) ∀ order k ∀ n ∈ N : f
T (k)
ij (n) = fSij(n).

Denote rk0 the spectral radius of the operatorM : `1 → `1 represented by the matrix

M = MT (k0). Using (27) we can consider a k > k0 for which λT (k) > rk0 . Then,

since the resolvent operator (λ −M)−1 represented by the matrix (26) is defined
well for each real λ > rk0 as a bounded operator on `1 [21, p. 264], we obtain from
(28), Remark 11 and (3)

∑
i∈P

F
T (k)
ij (RT (k)) = 1 +

∑
i∈P, i 6=j

F
T (k0)
ij (RT (k)) ≤

∑
i∈P

Mij(RT (k)) <∞;

now since T (k) is recurrent, Theorem 5 and Theorem 3 can be applied. �

Let (T,P,M) ∈ CPMM∗. For any pair i, j ∈ P we define the number

n(i, j) = min{n ∈ N : mij(n) 6= 0}.

In the corresponding strongly connected directed graph G = G(M), n(i, j) is the
length of the shortest path from i to j. In particular, such a path contains neither
i nor j inside, so at the same time

`ij(n(i, j)) 6= 0, fij(n(i, j)) 6= 0

and `ij(n) = fij(n) = 0 for every n < n(i, j). Since

n(j′, i)− n(j′, j)

n(i, j′) + n(j′, j)
≤ n(j, i)

n(i, j)

for every pair j, j′ ∈ P, the suprema

(29) S(j,P) : = sup
i∈P

n(j, i)

n(i, j)
, j ∈ P

are either all finite or all infinite. Moreover, we have the following.

Proposition 12. Let T ∈ CPMM with two Markov partitions P, resp. Q. Then
S(k,P) is finite for some k ∈ P if and only if S(k′,Q) is finite for some k′ ∈ Q.
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Proof. Let P = [0, 1] \
⋃
j∈P j

◦ and Q = [0, 1] \
⋃
j∈Q j

◦. First, let us assume

that P ⊂ Q. Fix two elements j ∈ P, j′ ∈ Q such that j′ ⊂ j. Since the map
T is topologically mixing, there exists a positive integer m for which Tmj′ ⊃ j.
For an i ∈ P and an i′ ∈ Q satisfying i′ ⊂ i we obtain n(i′, j′) ≥ n(i, j) and
n(j′, i′) ≤ n(j, i) +m; hence

(30) (∀ i ∈ P)(∀ i′ ∈ Q, i′ ⊂ i) :
n(j′, i′)

n(i′, j′)
≤ n(j, i) +m

n(i, j)
.

Inequality (30) together with property (29) show that if S(k,P) is finite for some
k ∈ P then S(k′,Q) is finite for some k′ ∈ Q.

On the other hand, there has to exist an i′′ ∈ Q, i′′ ⊂ i such that Tn(i,j)i′′ ⊃ j′, i.e.,
n(i, j) ≥ n(i′′, j′). Since also n(j, i) ≤ n(j′, i′′), we can write for i′′ ∈ Q

(31) (∀ i ∈ P)(∃ i′′ ∈ Q, i′′ ⊂ i) :
n(j, i) +m

n(i, j)
≤ n(j′, i′′) +m

n(i′′, j′)
.

inequality (31) together with property (29) show that if S(k′,Q) is finite for some
k′ ∈ Q then S(k,P) is finite for some k ∈ P.

If P * Q and Q * P , we can consider the partition for T

R = P ∨Q = {i ∩ i′ : i ∈ P, i′ ∈ Q}.
Clearly, R = [0, 1] \

⋃
j∈R j

◦ = P ∪ Q and we can use the above arguments for the
pairs R,P and R,Q hence the conclusion for the pair P,Q follows. �

So, in (29), for fixed (T,P,M) ∈ CPMM∗ and j ∈ P, we compare the shortest path
from j to i (numerator) to the shortest path from i to j (denominator) and take
the supremum with respect to i. For example, for our map from Subsection 7.3 the
values (29) are equal to 1, when T is leo, (29) is finite for every j ∈ P. Theorem 8
explains the role of a window perturbation in case of maps of operator type. In
Theorem 9 we obtain an analogous statement for maps of non-operator type under
the assumption that the quantities in (29) are finite.

Theorem 9. Let S ∈ CPMM with a Markov partition Q and such that the supre-
mum in (29) is finite for some j′ ∈ Q. Let T ∈ CPMM be a window perturbation
of order k of S. Then T is linearizable for every sufficiently large k.

Proof. Fix a partition P for S and j ∈ P. A perturbation of S on j of order
k ∈ N will be denoted by T (k). By our assumption, Proposition 12 and (29), the
supremum S(j,P) is finite. The numbers n(j, i), n(i, j), i ∈ P, do not depend on
any window perturbation on an element of P, because such a perturbation does not
change P; we define V (n) = {i ∈ P : n(i, j) = n}, c(n) = max{n(j, i) : i ∈ V (n)},
V (n, p) = {i ∈ V (n) : n(j, i) = p}, 1 ≤ p ≤ c(n). Obviously for every n,

(32)
c(n)

n
≤ sup

i∈P

n(j, i)

n(i, j)
= S(j,P) <∞.
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To simplify our notation, using Proposition 11 we will assume that S is strongly
recurrent, so this is also true for T (k). Similarly as in the proof of Proposition 11
we obtain for each k,

(33) 1/λT (k) = RT (k) < RS = 1/λS < ΦS = ΦT (k) = 1/λ.

Moreover, as in (27), the sequence (RT (k))k≥1 is decreasing and limk RT (k) = 0, i.e.,
limk λT (k) =∞.

Let us show that for each sufficiently large k there is a summable λT (k)-solution
v = (vi)i∈P of equation (5). Using (28), we can write for any ε > 0, sufficiently large
n0 = n0(ε) ∈ N and some positive constants K,K ′,

B :=
∑
n≥n0

∑
i∈P\{j}

f
T (k)
ij (n)RnT (k) =

∑
n≥n0

∑
i∈P\{j}

fSij(n)RnT (k)(34)

≤
∑
n≥n0

∑
m≥n

c(n)∑
p=1

∑
i∈V (n,p)\{j}

`Sji(p)f
S
ij(m)RmT (k) ≤

∑
n≥n0

∑
m≥n

c(n)∑
p=1

fSjj(p+m)RmT (k)

≤
∑
n≥n0

∑
m≥n

c(n)∑
p=1

(λ+ ε)p+mRmT (k) ≤ K ·
∑
n≥n0

(λ+ ε)c(n)
∑
m≥n

(
λ+ ε

λT (k)

)m

≤ K ′ ·
∑
n≥n0

[
(λ+ ε)1+

c(n)
n

λT (k)

]n
.(35)

Since by (33) the value λ does not depend on k and limk λT (k) = ∞, from (32)
follows that

(λ+ ε)1+
c(n)
n

λT (k)
≤ (λ+ ε)1+S(j,P)

λT (k)
< 9/10(36)

for any k > k1. Clearly the value

A =

n0−1∑
n=1

∑
i∈P

f
T (k)
ij (n)RnT (k)

given by a finite number of summands is finite, so taking (34), (35) and (36) together,

using
∑

n≥n0
f
T (k)
jj (n)RnT (k) < F

T (k)
jj (RT (k)) = 1 we obtain∑

i∈P
F
T (k)
ij (RT (k)) = A+ (B + 1) ≤ A+ 1 +K ′ ·

∑
n≥n0

(9/10)n <∞

whenever k > k1. This finishes the proof. �
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6.1.2. Global window perturbation. Let S be from CPMM. In this part we will
consider a perturbation of S with a Markov partition P consisting of infinitely many
window perturbations on elements of P (and with independent orders) done due to
Definition 6.

Definition 7. A perturbation T of S on P ′ ⊂ P will be called centralized if there is
an interval [a, b], a, b ∈ (0, 1) \

⋃
i∈P i

◦ such that
⋃
P ′ ⊂ [a, b].

For technical reasons we consider also an empty perturbation (T = S) as centralized.

Let T be a global (centralized) perturbation of S on P ′ ( P, denote Q = P \ P ′.
We can write for j ∈ P ′∑

i∈Q
F Tij (RT ) =

∑
i∈Q

∑
n≥1

∑
k∈P ′\{j}

gP
′

ik (n)RnTF
T
kj(RT ) +

∑
i∈Q

∑
n≥1

gP
′

ij (n)RnT(37)

=
∑

k∈P ′\{j}

F Tkj(RT )
∑
i∈Q

∑
n≥1

gP
′

ik (n)RnT +
∑
i∈Q

∑
n≥1

gP
′

ij (n)RnT ,

where the coefficients gP
′

ij (n) were defined before Remark 11. We use formula (37)
to argue in our proofs.

In the next theorem the perturbation T need not be of an operator type.

Theorem 10. Let (S,P,M) ∈ CPMM∗ be recurrent and linearizable. Assume
that T is a recurrent centralized perturbation of S on P ′. If there are finitely many
elements of P ′ that are S-covered by elements of P \ P ′, then T is linearizable.

Proof. Let k1, . . . , km be all elements of P ′ that are S-covered by elements of Q =
P \ P ′. Then

∀ k ∈ P ′ :
∑
i∈Q

∑
n≥1

gP
′

ik (n)RnT ≤
∑
i∈Q

∑
n≥1

gP
′

ik (n)RnS(38)

≤ max
1≤`≤m

∑
i∈Q

∑
n≥1

gP
′

ik`
(n)RnS ≤ K := max

1≤`≤m

∑
i∈P

FSik`(RS) <∞.

Here, the last inequality follows from our assumption that the map S is recurrent
and linearizable together with Theorem 5 and Theorem 3. Using (37), (38) and
Proposition 10(ii) we obtain∑

i∈P
F Tij (RT ) =

∑
i∈P ′

F Tij (RT ) +
∑
i∈Q

F Tij (RT )

≤
∑
i∈P ′

F Tij (RT ) +K ·

1 +
∑

k∈P ′\{j}

F Tkj(RT )

 <∞.

So by Theorem 5 and Theorem 3 the map T is linearizable. �

In the next theorem the perturbation T need not be of operator type.

Theorem 11. Let S ∈ CPMM be of operator type. If the transition matrix
M = M(S) represents an operator M of the spectral radius λS then any central-
ized recurrent perturbation T of S such that htop(T ) > htop(S) is linearizable. The
entropy assumption is always satisfied when S is recurrent.
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Proof. Let T be a centralized perturbation of S on P ′ ⊂ P, denote Q = P \ P ′.
From Proposition 8 and our assumption on the topological entropy of S and T we
obtain 1/λT = RT < RS = 1/λS . We can write for j ∈ P ′

∑
i∈Q

F Tij (RT ) =
∑
i∈Q

∑
n≥1

∑
k∈P ′\{j}

gP
′

ik (n)RnTF
T
kj(RT ) +

∑
i∈Q

∑
n≥1

gP
′

ij (n)RnT(39)

=
∑

k∈P ′\{j}

F Tkj(RT )
∑
i∈Q

∑
n≥1

gP
′

ik (n)RnT +
∑
i∈Q

∑
n≥1

gP
′

ij (n)RnT

≤
∑

k∈P ′\{j}

(∑
i∈Q

FSik(RT )

)
F Tkj(RT ) +

∑
i∈Q

FSij (RT ) = V,(40)

where the last inequality follows from the fact that gP
′

ik (n) ≤ fik(n) for each k ∈ P ′
and n ∈ N - for the definition of gP

′
ik (n), see before Remark 11. By our assumption,

formula (26) represents the resolvent operator Rλ(M) for every λ > λS . In partic-
ular, RλT (M) is a bounded operator on `1(P) [21, p. 264], hence with the help of
Remark 11 we obtain

∀ k ∈ P :
∑
i∈Q

FSik(RT ) <
∑
i∈P

FSik(RT ) <
∑
i∈P

MS
ik(RT ) ≤ λT ‖RλT (M)‖

and (39), (40) can be rewritten as

∑
i∈P

F Tij (RT ) ≤
∑
i∈P ′

F Tij (RT ) + V(41)

≤
∑
i∈P ′

F Tij (RT ) + λT ‖RλT (M)‖

1 +
∑

k∈P ′\{j}

F Tkj(RT )

 <∞,(42)

because
∑

k∈P ′ F Tkj(RT ) < ∞ for topologically mixing T by Proposition 10(ii) and

Theorem 5. The conclusion follows from Theorem 5 and (41), (42). It was shown in
Proposition 11(i) that for a recurrent S we always have htop(T ) > htop(S). �

In order to apply Theorem 11 let us consider any map R ∈ CPMM of operator
type, fix ε > 0. By Theorem 8 there is a strongly recurrent linearizable map S of
operator type for which ‖R− S‖ < ε. Similarly as in (27) we can conclude that the
transition matrix of S satisfies the assumption of Theorem 11. By that theorem,
any centralized perturbation T (operator/non-operator) of S is linearizable (such a
centralized perturbation T can be taken to satisfy ‖R− T‖ < ε).
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7. Examples

7.1. Non-leo maps in the Vere-Jones classes. For some a, b ∈ N consider the
matrix M = M(a, b) = (mij)i,j∈Z given as

(43) M(a, b) =



. . .
. . .

. . .
. . . a 0 b 0

0 a 0 b 0
0 a 0 b 0

0 a 0 b 0

0 a 0 b
. . .

. . .
. . .

. . .


Clearly M is irreducible but not aperiodic. It has period 2, so we consider only
mii(2n). Obviously,

mii(2n) =

(
2n

n

)
anbn.

Using Stirling’s formula, we can write

(44) mii(2n) ∼ 22n

π1/2n1/2
anbn.

So, λM = 2
√
ab = R−1. At the same time we can see from (44) that

lim
n→∞

mii(n)Rn = 0 and
∑
n≥0

mii(n)Rn =∞,

so by Table 1, M(a, b) is null recurrent for each pair a, b ∈ N.

In the following statement we describe a class of maps that are not conjugate to any
map of constant slope. In particular they are not linearizable. A rich space of such
maps (not only Markov) has been studied by different methods in [14].

Proposition 13. Let a, b, k, ` ∈ N, k even and ` odd, consider the matrix M(a, b)
defined in (43). Then N = kM(a, b) + `E is a transition matrix of a non-leo map
T from CPMM. The map T is null recurrent and it is not conjugate to any map
of constant slope. The matrix N represents an operator N on `1(Z) and

(45) λN = 2k
√
ab+ `.

Proof. Notice that the entries of N away from resp. on the diagonal are even, resp.
odd. Draw a (countably piecewise affine, for example) graph of a map T from
CPMM for which N is its transition matrix. Since M(a, b) is null recurrent, the
matrix N is also null recurrent by Proposition 7. Solving the difference equation

(46) a xn−1 + b xn+1 = λ xn, n ∈ Z,
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one can verify that equation (5) with M = M(a, b) has a λ-solution if and only if

λ ≥ λM = 2
√
ab (this follows also from Corollary 1) and none of these solutions is

summable. So by Proposition 7 and Theorem 3, the map T is not conjugate to any
map of constant slope. �

For some a, b, c ∈ N let M = M(a, b, c) = (mij)i,j∈N∪{0} be given by

(47) M(a, b, c) =



0 c 0 0 0 . . .
a 0 b 0 0 . . .
0 a 0 b 0
0 0 a 0 b
0 0 0 a 0
...

. . .
. . .

. . .


,

Again, the matrix M is irreducible but not aperiodic. It has period 2, so we consider
only the coefficients f00(2n), see Subsection 4.1. In order to find a λ-solution for
M we can use the difference equation (46) for n ≥ 0 with the additional conditions
x0 = 1 and x1 = λ/c. Using Corollary 1 and the direct computation one can show:

Proposition 14. (a) For any choice of a, b, c ∈ N,

f00(2n) = c bn−1an
1

n

(
2n− 2

n− 1

)
∼ c bn−1an4n−1

π1/2n(n− 1)1/2
,

so that Φ−1ii = (2
√
ab)−1.

(b) If 2b > c then λM = 2
√
ab and M is transient. There is a summable λM -

solution for M if and only if a < b.
(c) If 2b = c then λM = 2

√
ab and M is null recurrent. There is a summable

λM -solution for M if and only if a < b.
(d) If 2b < c then λM = c

√
a/(c− b) > 2

√
ab, and M is strongly recurrent.

There is a summable λM -solution for M if and only if a+ b < c.

Using Propositions 7 and 14 we can conclude.

Proposition 15. Let a, b, c ∈ N. The following hold:

(i) The matrix K = 2M(a, b, c) + E is a transition matrix of a strongly recur-
rent non-leo map T ∈ CPMM if and only if 2b < c. The map T is not
linearizable for a+ b ≥ c.

(ii) The matrix L = 2M(a, b, b) +E is a transition matrix of a transient non-leo
map T ∈ CPMM. The map T is linearizable if a < b.

Proof. Clearly K and L are transition matrices of non-leo maps from CPMM.
The property (i), resp. (ii) follows from the above properties (a),(b),(d), resp.
(a),(b),(c),(e). �

7.2. Leo maps in the Vere-Jones classes. We have shown in Section 5 that the
subset of maps from CPMM that are linearizable is sufficiently rich in the case of
non-leo maps of operator/non-operator type. In order to refine the whole picture, in
this paragraph we show how to detect interesting leo maps of operator/non-operator
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type. In the next two collections of examples we will use a simple countably infinite
Markov partition for the full tent map and test various possibilities of its global
window perturbations.

7.2.1. Perturbations of the full tent map of operator type. For the full tent map
S(x) = 1− |1− 2x|, x ∈ [0, 1], consider the Markov partition

P = {in = [1/2n+1, 1/2n] : n = 0, 1, . . . }.
We will study several global window perturbations of S of the following general form:
let a = (an)n≥1 be a sequence of odd positive integers and consider a global window
perturbation T a of S such that

• the window perturbation on in is of order (an − 1)/2 (i.e., if an = 1 we do
not perturb S on in).

Then using the notation of Section 4 and Remark 11 we can consider generating
functions F (z) = F a(z) = F a00(z) =

∑
n≥1 f

a
00(n)zn corresponding to the element i0:

fa00(n) = f(n) for each n. One can easily verify that

(48) f(1) = 1, f(n) = a1 · · · an−1, n ≥ 2.

With the help of Proposition 8 we denote λ = λa, resp. Φ = Φa the topological
entropy of T = T a, resp. radius of convergence of F a(z); also we put R = Ra = 1/λa.

Strongly recurrent: First of all, consider the set A(`) = {1, . . . , `} and the choice

an(0) =

{
1, n ∈ A(`),

3, n /∈ A(`).

Then by (48), f(n) = 1 for n ∈ A(`) and f(n) = 3n−`−1 for each n ≥ `+ 1, hence

(49) lim
n→∞

[f(n)]1/n = 3, Φ = 1/3,
∑
n≥1

f(n)Φn =∞.

Therefore by Table 1, R < Φ, i.e., htop(T ) = log λ ∈ (log 3, log 4) - for the upper
bound, see [1]. This implies that the map Ta(0) is strongly recurrent hence by
Theorems 5 and 8 also linearizable for any `.

Transient: Denoting B(1) = {1, 2, 3, 4} ∪
⋃
k≥2{3k + 1, 3k + 2} let us define

(50) an(1) =

{
1, n ∈ B(1),

3, n /∈ B(1).

From (48) we obtain limn→∞[f(n)]1/n = 3, i.e., Φ = 1/3. Moreover, by direct
computation we can verify that

(51)
∑
n≥1

f(n)Φn < 1 hence also
∑
n≥1

f(n)Rn < 1

since always R ≤ Φ. It means that the map Ta(1) define by the choice (50) is
transient and by Table 1 from Section 4 in fact R = Φ, i.e., Proposition 8 implies
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htop(T ) = log 3. If we consider in (50) any set B′(1) ⊃ B(1) such that the inequalities
(51) are still satisfied, the same is true for a resulting perturbation T ′.

Remark 14. Misiurewicz and Roth [15] observed that the map Ta(1) is not conjugate
to any map of constant slope. It can be shown that for each choice of a sequence
a = (an)n≥1 such that the corresponding T has finite topological entropy the following
dichotomy is true: either T is recurrent and then equation (5) has no λ-solution for

λ > eh(T ), or T is transient and then equation (5) does not have any λ-solution.

Null recurrent: The choice (50) was proposed to satisfy f(n) ∼ 3n/n2. Using this
fact and (51) we obtain (R = 1/3)

∑
n≥1

f(n)Rn < 1 and
∑
n≥1

nf(n)Rn =∞.

Let us define inductively a new set B(2) ⊂ B(1) as follows: put n0 = 0 and B(2, 0) =
B(1); assuming that for some k ∈ N∪{0} we have already defined nk and B(2, k) ⊂
B(1), to obtain B(2, k + 1) we omit from B(2, k) the least number - denoted nk+1-
such that the choice

an,k+1 =

{
1, n ∈ B(2, k + 1),

3, n /∈ B(2, k + 1)

still gives
∑

n≥1 f(n)Rn < 1 for corresponding window perturbation of TB(2,k).

Clearly nk < nk+1 for each k. Let B(2) =
⋂
k≥0B(2, k) and consider the global

perturbation of S corresponding to a(2) = (an(2))n≥1 given by formula (50) with
B(1) replaced by B(2). The set B(2) contains infinitely many units (by (49) any
choice A(`) gives

∑
n≥1 f(A(`);n)Rn =∞). Moreover, our definition of B(2) implies

R = L = 1/3,

∑
n≥1

f(n)Rn = 1 and
∑
n≥1

nf(n)Rn =∞.

So, the corresponding perturbation TB(2) of S is null recurrent hence by Theorem 8
it is linearizable. By Proposition 8, htop(TB(2)) = log 3.

7.2.2. One more collection of perturbations of the full tent map. Expanding on the
example of Ruette [19, Example 2.9] (see also [18, page 1800]), we have the following
construction. Let (an)n≥0 be a non-negative integer sequence with a0 = 0, let

λ > 1 a slope determined below in (52), and let in = [λ−n, λ−(n+1)], n ≥ 0, be
adjacent intervals converging to 0. Also let jn, n ≥ 1, be adjacent intervals of length
λ−(n+1)(1 − λ−1)(1 + 2an) converging to 1 and such that λ−2(2λ − 1) is the left
boundary point of j1.
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Figure 1. The map T ∈ CPMM.

We define the interval map T : [0, 1]→ [0, 1] with slope ±λ by

T (x) =


λx if x ∈ [0, λ−1],

2− λx if x ∈ [λ−1, λ−2(2λ− 1)],

composed of 1 + 2an branches of slope ∓ λ alternatively

mapping into in if x ∈ jn, n ≥ 1.

To make sure that limx→1 f(x) = 0, we need λ ∈ (0,∞) to satisfy

(52) λ = 2 +
∑
n≥1

2an(1− λ−1)λ−n.

So, any sequence (an)n≥0 such that (52) has a positive finite solution λ leads to the
linearizable map T ∈ CPMMλ. One can easily see that P = {in}n≥0 is a Markov
(slack) partition for T as defined in Section 2.

Applying Proposition 2 we associate to P the transition matrix

M = M(T ) = (mij)i,j∈P =


1 1 + 2a1 1 + 2a2 1 + 2a3 · · ·
1 0 0 0 . . .
0 1 0
... 0

. . .
. . .


and also the corresponding strongly connected directed graph G = G(M):

In particular, the number of loops of length n from i0 to itself is f00(n) = 1 + 2an−1.

We use the rome technique from [2] (see also [6, Section 9.3]) to compute the entropy
of this graph: it is the leading root of the equation

(53) z = 1 +
∑
n≥1

(1 + 2an)z−n.
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Figure 2. The Markov graph of T ∈ CPMMλ; 1 + 2an indicates
the number of edges in G from i0 to in.

If we divide this equation by z, then we get

1 = z−1 +
∑
n≥1

(1 + 2an)z−(n+1) =
∑
n≥1

f00(n)z−n;

from Table 1 follows that the graph G (the matrix M , the map T ) is recurrent for
any choice of a sequence (an)n≥0 and corresponding finite λ > 0. Proposition 8 and

comparing equations (52) and (53) we find that ehtop(T ) = λM = λ.

By Remark 5 the map T is of operator type if and only if supn an <∞. In this case,
by Table 1 and Proposition 8, Φ00 = 1 > 1/2 ≥ R = 1/λM , so the corresponding
map is always strongly recurrent. For the choice an = an for some fixed integer
a ≥ 2 the map T is of non-operator type. In this case,

∑
n≥1 f00(n)a−n = ∞, so

e−htop(T ) = 1/λM = R < a−1 = Φ00, hence by Table 1 the map T is still strongly
recurrent.

We can also take an = an−ψn for some sublinearly growing integer sequence (ψn)n≥1
chosen such that (53) holds for z = a, i.e., a = 1 +

∑
n≥1 a

−n + 2a−ψn . In this case,

Φ00 = R and
∑

n f
(n)
00 R

n = 1, and the system is null-recurrent or weakly recurrent

(not strongly recurrent) depending on whether
∑

n na
−ψn is infinite or finite.

7.2.3. Transient non-operator example from [7]. Although up to now all our main
results have been formulated and proved in the context of continuous maps, many
statements remain true also for countably piecewise monotone Markov interval maps
that are countably piecewise continuous.1 We will present a countably piecewise
continuous, countably piecewise monotone example adapted from [7], where it is
studied in detail for its thermodynamic properties.

Let (wk)k≥0 be a strictly decreasing sequence in [0, 1] with w0 = 1 and limk wk = 0.
We will consider the partition P = {pk}k∈N, where the interval map T is designed
to be linear increasing on each interval pk = [wk, wk−1) for k ≥ 2, p1 = [w1, w0],
T (pk) =

⋃
i≥k−1 pi for k ≥ 2 and T (p1) = [0, 1]. With a slight modification of our

definition from Section 2, P is a Markov partition for T and T is leo. Let M = M(T )
be the matrix corresponding to P, see below. In order to have constant slope λ, we
need to solve the recursive relation

1This example can be made continuous by replacing each branch with a tent-map of the same
height. The λ will be twice as large, and the entropy increases accordingly in that case
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{
wk+1 = wk − wk−1/λ for k ≥ 1;

w0 = 1, w1 = 1− 1/λ

The characteristic equation α2 − α + 1/λ = 0 has real solutions α± = 1
2(1 ±√

1− 4/λ) ∈ (0, 1) whenever λ ≥ 4. We obtain the solution:

w4
k = 2−k(1 + k/2) if λ = 4,

and

wλk =
1− 2/λ

2
√

1− 4/λ
αk+ +

2
√

1− 4/λ− 1 + 2/λ

2
√

1− 4/λ
αk− if λ > 4.

M =



1 1 1 1 1 . . .
1 1 1 1 1 . . .
0 1 1 1 1
0 0 1 1 1
0 0 0 1 1
...

. . .
. . .

. . .


Sλ(x) := λ(x− wλk ) if x ∈ pk �
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Figure 3. Right: The map T : [0, 1]→ [0, 1].

It is known that htop(T ) = log 4 hence by Proposition 8, λM = 4. If we remove
site p1 (i.e., remove the first row and column) from M , the resulting matrix is M
again, so strongly connected directed graph G = G(M) contains its copy as a proper
subgraph and due to Theorem 4(i), M and also T is transient.

Writing vλk = |pk| = wλk−1 − wλk , we have found, in accordance with Theorem 5, a
positive summable λ-solution of equation (5) for each λ ≥ 4. Summarizing, the map
T is conjugate to a map of constant slope λ whenever λ ≥ 4. T is also linearizable,
since λ = 4 = λM = ehtop(T ).

7.2.4. Transient non-operator example from [5]. Let V = {vi}i≥−1, X = {xi}i≥1
V,X converge to 1/2 and 0 = v−1 = x0 = v0 < x1 < v1 < x2 < v2 < x3 < v3 < · · · ;
the interval map T = T (V,X) : [0, 1]→ [0, 1] satisfies

(a) T (v2i−1) = 1− v2i−1, i ≥ 1, T (v2i) = v2i, i ≥ 0,
(b) T (x2i−1) = 1− v2i−3, i ≥ 1, T (x2i) = v2i−2, i ≥ 1,

(c) Tu,v =
∣∣∣T (u)−T (v)u−v

∣∣∣ > 1 for each interval [u, v] ⊂ [xi, xi+1],

(d) T (1/2) = 1/2 and T (t) = T (1− t) for each t ∈ [1/2, 1].

Property (c) holds for our V,X since by (a),(b), we have Txi,xi+1 > 2 for each i ≥ 0.

Let us denote F(V,X) the set of all continuous interval maps fulfilling (a)-(d) for a
fixed pair V,X and put F :=

⋃
V,X F(V,X). It was shown in [5] that
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Figure 4. The leo map T ∈ F ⊂ CPMM.

• F is a conjugacy class of maps in CPMM.
• strongly connected directed graph G = G(M) contains its copy as a proper

subgraph [5, Theorem 4.5, Fig. 3], so due to Theorem 4(i), T is transient.
• the common topological entropy equals log 9.
• equation (5) has a positive summable λ-solution for each λ ≥ 9 = ehtop(T ).

(a) (b)

1/2 1/20 01 1
0

1

Figure 5. T ∈ F is conjugate to a map of slope 9 (a) and and of
slope 20 (b).

We can factor out the left-right symmetry of this map by using the semiconjugacy
h(x) = 2|x− 1

2 |, and the factor map T̃ has transition matrix

M =



4 4 4 4 4 . . .
1 4 4 4 4 . . .
0 1 4 4 4
0 0 1 4 4
0 0 0 1 4
...

. . .
. . .

. . .


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with similar properties as the previous example. Therefore T is conjugate to a map of
constant slope λ whenever λ ≥ 9, and also linearizable, since λ = 9 = λM = ehtop(T ).

7.3. One application of our results. Using Proposition 13 let K = 2M(1, 1)+E.
We have discussed the fact that K is a transition matrix of a non-leo map T ∈
CPMM with corresponding Markov partition denoted by P. Clearly by Remark 5
K represents a bounded linear operator - denote it by K - on `1(P), so T is of
operator type. We can conclude that:

(i) λK = 5 = ehtop(T ) - Propositions 8, 13.
(ii) λK = rK = ‖K‖ - Proposition 13, Section 2(3).
(iii) T is not conjugate to a map of constant slope (is not linearizable) - Propo-

sition 13.
(iv) T is null recurrent - Proposition 13.
(v) Let P ′ be a Markov partition for T , denote K ′ the transition matrix of T

with respect to P ′ representing a bounded linear operator K′ on `1(P ′). Since

∀ y ∈ (0, 1) : #T−1(y) = 5,

we have λK′ = rK′ = 5 - see (i), Section 2 and Proposition 8. Then by
Theorem 11 any recurrent centralized (operator/non-operator) perturbation
of T is linearizable. In particular it is true for any local window perturbation
of T on some element of P ′ - Proposition 11(i).

(vi) Let P ′ be a Markov partition for T which equals P outside of some interval
[a, b] ⊂ (0, 1). Let T ′ be a local window perturbation of T on some element of
P ′; from the previous paragraph (v) follows that T ′ is strongly recurrent and
linearizable. Consider a centralized (operator/non-operator) perturbation
T ′′ of T ′ on some P ′′ ⊂ P ′. Then if T ′′ is recurrent it is linearizable by
Theorem 10. Otherwise we can use either Theorem 8 (an operator case) or
Theorem 9 (non-operator case, S(j,P ′) is finite for j ∈ P ′) to show that a
local window perturbation of T ′′ of a sufficiently large order is linearizable.
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