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Abstract

Given a non-flat S-unimodal interval map f, we show that there
exists C' which only depends on the order of the critical point ¢ such
that if |[Df™(f(c))| > C for all n sufficiently large, then f admits an
absolutely continuous invariant probability measure (acip). As part
of the proof we show that if the quotients of successive intervals of
the principal nest of f are sufficiently small, then f admits an acip.
As a special case, any S-unimodal map with critical order £ < 2 + ¢
having no central returns possesses an acip. These results imply that
the summability assumptions in the theorems of Nowicki & van Strien
[21] and Martens & Nowicki [17] can be weakened considerably.

1 Introduction

In this paper we consider S-unimodal C® maps f: [0,1] — [0,1]. We assume
the unique critical point ¢ has order ¢ > 1, i.e., for x near ¢, there exists a
C? diffeomorphism ¢ such that f(z) = ¢(|z — c[*).

Theorem 1. There exists C = C(¢) so that provided |Df"(f(c))| > C for all
n sufficiently large, f admits an absolutely continuous invariant probability
measure (acip).
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The problem dealt with in Theorem 1 has a long history, with contribu-
tions by amongst others [1], [22], [8], [5], [19], [20], [21]. In particular Theo-
rem 1 shows that the well-known Collet-Eckmann condition (|Df"(f(c))| <
C~™ for some v € (0,1), see [5]) or the more recent summability condition
>, IDf™(f(c))| ¢ < oo, see Nowicki & van Strien [21]) are far too restric-
tive. No growth is needed. Recently, many people are considering weakly
hyperbolic systems (in particular in dimensions 2 and larger). Perhaps our
techniques indicate that one might not always need to look for growth con-
ditions.

A key idea in our proof is to construct an induced Markov map, and anal-
yse the non-linearities and transition probabilities of the resulting random
walk. This Markov map has branches with arbitrarily small ranges. The
Markov map we construct is based on the so-called principal nest, and the
estimates for the transition probabilities come from a careful analysis of the
geometry of this principal nest. So let us define this nested sequence of neigh-
bourhoods of the critical point ¢ starting with I, = (¢, q), where ¢ € (0,1)
is the orientation reversing fixed point of f and f(§) = f(¢). Then define
inductively I, ,; to be the central domain of the first return map to I,,. To
continue the induction, we need to assume that ¢ is recurrent, i.e., w(c) 3 c.
Without this assumption, f is a Misiurewicz map, and the conclusions of this
paper then follow easily (or from well-known results). Write

pin = [ Ing1|/ L]

Our paper deals with the case that u, is small for all large n.

Before stating our result second theorem, let us first discuss p,. Estimat-
ing the p, has been an eminent problem in one-dimensional dynamics, cf.
6, 7,9, 12]. More precisely, it has been asked if the starting condition [9]

Ve >0 dng > 0 pp, <e. (1)

holds. We speak of a central return of ¢ to I,, if the first return f*(c) of ¢
into I, belongs also to I,1. If £ < 2 and there are no central returns, an
inductive argument ([9], [12]) shows that (1) implies

Ve >0 3dng > 0Vn>ny py <€ (2)

(if there are central returns at times n(k) then in (2) then this only holds at all
‘non-central’ times. Lyubich [12] and Graczyk & Swiatek [6], using complex
methods, have established the starting conditions for quadratic maps.
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Note that prior to the results [6, 12], the starting condition was verified
for quadratic maps with so-called Fibonacci combinatorics [13, 11]. For this
map, it is crucial that the critical order is £ = 2, because for £ > 2, (1) fails:
n, does not tend to zero. More precisely, as was shown in [11],

Je=el)>0Tng>0YVn>mng pup <cande(f) \y0asl\,2. (3)

In fact, when £ is large then p, is close to 1 for all n (for the Fibonacci map);
this implies that a Fibonacci map with large critical order possesses a Cantor
attractor, see [4].

Recently, Shen [23] showed, by purely real methods, that for all C® S-
unimodal maps without central returns that

e (1) holds for ¢ € (1, 2],
e (3) holds for £ > 2 close to 2.

In this paper we will show that (3), i.e., large values of |I,,|/|I,+1| when n
is large, guarantee the existence of an f-invariant measure p that is absolutely
continuous with respect to Lebesgue (acip).

Theorem 2. There exists ¢ = e(f) such that if |In41] < €|l,| for all n
sufficiently large, then f admits an acip.

Remark 1. We do not need to assume that f has no central returns for this
theorem to hold.

Theorem 2 extends a theorem of Martens & Nowicki [17] stating that
don ,u,ll/ <« implies the existence of an acip. In fact, as they show,

don ,u,l/ f < implies the Nowicki-van Strien summability condition. Theo-
rem 2 is strictly stronger: for example for the Fibonacci map with critical
order 2 + ¢ the summability conditions fail, but our assumption holds. The-
orem 2 also extends the result of Keller & Nowicki [11] for Fibonacci maps
of order 2 + n to more general maps:

Corollary 1. There erists n > 0 such that for every C*® S-unimodal map
f with critical order ¢ < 2 + n, and with a finite number of central returns
holds: If f has no periodic attractor, then f has an acip.



Proof of Corollary 1. This follows from Shen’s result [23] that under the
above conditions, there exists ¢ = ¢(¢) such that |I,41]| < ¢[I,| for n suffi-
ciently large and that ¢ — 0 as n — 0. 0

In [3], conditions (reminiscent of Fibonacci combinatorics) are given under
which f has an acip, irrespective the critical order as long as £ < oo. One
can interpret Corollary 1 as a proof that the only mechanism for unimodal
maps with critical order £ < 2 4+ 7 not to have an acip, is by (deep) central
returns, either of almost restrictive interval type (cf. [10]) or of almost saddle
node type (cf. [2]).

2 Preliminaries and structure of the proof

Let us start making precise the condition on f. It is a C® unimodal map with
negative Schwarzian derivative such that f?(c) < ¢ < f(c) and f3(c) > f*(c).
Hence we can rescale f such that f?(c) = 0 and f(c) = 1. The critical order
£ € (1,00), the critical point is recurrent but not periodic.

Let us first show that Theorem 2 implies our first theorem:

Proof of Theorem 1. Let k(n) be the minimal integer for which f*™(c) €
I,. Then I, is the pullback of I, by f*™. By real bounds, [18], there exists
d > 0 (which does not depend on n) and a neighbourhood T of f(1,,+1), such
that f*()~1 maps T diffeomorphically onto a é-scaled neighbourhood of I,.
Hence

IDFE(F)] = D) D f (o))

< opr . g0
B | f(In+1)]
¢
< LMK I 7 S EKLB,
|In+1| |In+1|

where we have used the non-flatness of f and Koebe. Therefore, one obtains
that [I,,.1|/|L,| is small provided |Df*¥™(f(c))| is large.

It is possible that f is renormalizable. In that case k(n) is equal to
the period p of this renormalization for all n large and I,, shrinks to the
largest periodic renormalization interval J (and so |I,41|/|I,] — 1). Then
use the same argument for the renormalization: repeat the construction of
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the principal nest for fP|J. Assume f is s times renormalizable and J; is
its s-th renormalization interval with period p,. Intervals I, associated to
its (s — 1)-th renormalization shrink to the s-th renormalization interval J,

and therefore |Df?s(f(c))| < K |I” ~7 < 2K for n sufficiently large. But
since p, > 2°, this and the assumptlon of Theorem 1 imply that s must be
bounded, and so f can only be finitely often renormalizable. Then consider
instead of f its last renormalization f*®|.J;. Since the above inequality gives
that |I,,|/|In+1| is large for all n large (and in particular |I,| — 0 as n — o0),
we can apply Theorem 2 and obtain an invariant measure. O

So it suffices to prove Theorem 2. The boundary points of each I,, are
nice in the sense of Martens [16], which means that f*(d1,) ¢ I,, for all i > 0.
In fact, f1(0I,) ¢ I,_1. This allows the following priori estimates:

Lemma 1. If J C I, is a component of the domain of the first return map
to I, for some n > 0, say f°|J is this return, then there erists an interval
T D f(J) such that f~(T) C I,, and such that f*7|T is a diffeomorphism
onto I,,_1.

Proof of Lemma 1. See Martens [16] or Section V.1 in [18]. O

The idea is now to construct a Markov induced map G over f with the
intervals I, as countable set of ranges: G is defined on a countable collection
of intervals J;, G|J; = f*|J; is a diffeomorphism and G(J;) = I, for some n.
We then will construct a G-invariant measure v < Leb, and estimate v(I,,):

Proposition 1. Assume that p, < e for alln > ny. If € is sufficiently small,
then the induced tmnsformation G admits an acip v. Moreover, there exists

Co = Co(f) such that v(I,) < Cy/|1,,| for all n.

Corollary 2. Under the above conditions, f admits no Cantor attractor.

Proof of Corollary 2. This follows easily, for example, from the observa-
tion that any Cantor attractor has zero Lebesgue measure (see [15]), and,
disregarding c, is invariant by G. Hence G cannot carry an acip if a Cantor
attractor is present. O

It should be noted that the distortion of the branches of G is in general
not bounded; this comes from the fact that if G|J = f*|J is such a branch
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and G(J) = I, then this branch need not be extendible, i.e., if T D J is
the maximal interval on which f* of monotone, then f*(7T) need not contain
a definite scaled neighbourhood of I,. In particular, dv(z)/dx can not be
expected to be bounded on any of the sets I, \ I,,1. However, we will still
be able to derive the following result:

Theorem 3. There exists € = £(€) such that if |I,11| < €|l,| for all n > ny,
then Y siv(J;) < 00.

Once this is obtained, the proof of the main theorem is straight forward.

Proof of Theorem 2. This follows by a standard pull-back construction.
Given the G-invariant measure v, define u by

si—1

p(A) = 33w ).

i §=0

As f is non-singular with respect to Lebesgue, i is absolutely continuous,
and the f-invariance of y is a standard exercise. The finiteness of p follows
directly from Theorem 3. O

Comments on constants: In the following, £ is fixed, ¢; denotes constants
depending only on ¢ which are small provided that ¢ is. Constants p; depend
only on /. Constants C; depend only on f. The numbers ng € N and
A € (0,1), which are defined in Section 4, also depend on f. For local use
(i.e., within a proof), B and C' = C(f) will denote a constant, which might
vary within equations.

3 Construction of induced maps G, and G

Let G be the first return map to I,. Then G has a finite number of branches,
the central branch is the branch with the largest return time, and each non-
central branch maps diffeomorphically onto ;.

In this section we shall construct a sequence of maps G,,: U; Ji"Jrl — Iy
inductively such that

1. U,-JZ."Jr1 is a finite union and for n > 1, G,, = G,,_; outside I,;

2. The central branch J{}“ = I,+1 and Gy|I,41 is the first return map to
Iy;



3. for each 7 # 0, there exists b; < n such that such that G, : Ji”Jr1 — Iy,
is a diffeomorphism;

4. the outermost branch maps onto Iy; more precisely, J*t' C I, and
OJM N oI, # 0 imply G, (J**') = I, (and the external point of such
an interval J'™' maps to the fixed point g);

5. Gp(x) = f*(x) implies that f(z),..., f* ' (z) ¢ I;

By definition G satisfies the above statements, so let us assume that by
induction G, exists with the above properties, and construct G, ;.

Set Gpii1(z) = Gu(x) for x ¢ I,,41. Let k, € N := {1,2,3,...} be
minimal so that G*(c) € I,,;,. This means that k, = 1 if the return to I,
is central. Define K° = I,,,,, K*» = I, .5 and, for 0 < j < k, — 1, let K7 be
the component of dom(G?*!) which contains c. Next define on K7\ K/+!

Gitl(z) if GITY(x) € T4y
Gni1(z) = '
GIt2(z)  otherwise.

GriilInye = GF|I,, 5 is the first return map to I, ;. Properties (1) and (2)
hold by construction for G, ;. Property (3) holds because if GZ!(z) € I,,44
for some x € I,41 \ L,y2 then G, 1(J") = I, for the corresponding
domain J'"*!' 5 x and if GI*(z) ¢ I, then by the induction assumption
Gry1(JI) is equal to some domain Iy, b < n, because then G, i(z) =
Gi*2(z). Property (4) holds immediately because 01, is mapped by G,
into @Iy. In order to show Property (5) holds, take z € K7\ K/T! and let
y = G’(z). Note that G/ | K’ is inside a component of dom(G,,) and that all
iterates f(K’),...,GI(K’) > y are outside I,,;1. Since G2 (z) = G, (y) we
get by induction that (5) holds for G, ;1 (using that it holds for G,, and y
instead of ).

The induced map G is defined as follows: for each n > 0, each component
of the domain J of G,, other than the central one [,,,; becomes a component
of the domain of G, and G|J = G,,|J.

For later use, we compute by induction that if x € I, \ I,,;1, and G(z) =
f#(z), then

s<to-(ko+1) - (kno+1) (knoy + 1), (4)

where to = min{i >0 ; f'(c) € Iy}



4 Distortion properties of the induced map

Suppose ¢ : T — o(T) is a C' map. Let us define

. . ¢'(x)
Dist(¢) := Dist(¢p, T') := sup log .
) 1) zyer @' (Y)

Let us say a diffeomorphism h : J — h(J) belongs to the distortion class F’
if it can be written as

QopsoQops 10---0Q 0y,

with ¢ < p, where Q(z) = |z|* and Dist(p;) < C forall 1 < j < gq.

Let us fix a large positive integer ng such that |I,| < e|l,_1]| for all n > ny,
and such that f|I,, can be written as z — o(|z|') with Dist(p) < 1/4. By
Lemma 1, it follows that for each n > ny, if J is a return domain to I,,, and
f%|J is the return, then f*|.J can be written as z — ¢(|z|') with Dist(¢) < 1/2
provided e is sufficiently small.

According to Mané [14], the map G, restricted to the set of points which
stay outside I, 1 is a hyperbolic (uniformly expanding) system. Thus, there
exists C; = Ci(f) > 0 and A = A(f) € (0,1) with the following property.
For any k € N

1. if z is a point such that G'(z) are defined and G*(z) & I,,,+1 for any

0<i<k—1, then

k\! 1 .
(@) 2 g

2. if J is an interval such that G*|J is defined, and G*(J) N I,,;; = { for
all0<i<k—1, then

Dist(G*|.J) < logC;.

We will use the notation a(y) =nify € I, \ Ih11-

Proposition 2. Let m > 1, and let G* : J — I, be an onto branch of G*.
There exists Cy = Cy(f) such that the following hold:

e Suppose that a(G'"™1J) > m. Let n > m and 1 < k < i be mazimal
such that

n=a(GF]) > a(GFLI) > - > a(GTHT) > m.
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Then Gt|J can be written as v o @ such that

Dist(y) < logCy and ¢ € fg(nfmﬂ).

o If a(G*1(J)) < m then G*|J can be written as 1 o @ such that

Dist(vp) < logCy and ¢ € F,.

Proof. Let r denote the maximum of a(G’(J)) for 0 < j <4 —1. Let
C = C(f) be a big constant. We shall prove by induction on r the following
stronger statement: G*|J can be written as ¢ o H o Q o ¢; with

Dist(vy) < logC, H € F},

(n—m)

+1 and Dist(¢q) < 1/2.

If 7 < ng, then the distortion of G|J is bounded by logCi(f) as we
remarked above. Hence the statement is true for C > (. So let us consider
the case r > ny.

For 0 < j <i—1, let 7; denote the domain of G which contains G7(J).
For simplicity of notation, write o; = «(G?(J)). By definition of n, we have
;g1 < o = n. Note that G7|J extends to a diffeomorphism onto 1, for
all1 < j<i.

Case 1. n < ng. Then a; < ng forall et —k < j < ¢—1, and
so Dist(G*|G**(J)) < logCy. If G(Tj_y_1) D I,_1, then Dist(G**|J) is
bounded by the Koebe principle, and thus we are done. If G(T; ;1) C I,
then T;_,_1 is a return domain to I,,. Since n > m > 1, this return domain
is well inside I,,, which implies that G*~*~!|.J has bounded distortion. Since
n < ny, the distortion of G|T;_;_; has bounded distortion as well, and so the
proposition is true for some universal constant C' (which depending on the a
priori real bounds).

Case 2. n > ng. Then similarly as above, we can show that G*=*|J can
be written as @9 o hy, with Dist(ys) < 1/2 and h; € .7:11/2. If £k = 0, then the
proposition follows. Assume k > 1. Let J' = G,,_1(G**(J)), and let s € N
be such that G = G, = G5_, on G**(J). Since a;_p41 < qi_y, it follows
from our construction that G/(J') NI, = () for all 0 < j < s. The same is
true for s < j < s —1+k — 1 by definition of n. Thus

s—1+k—1

max a(GI(J)<n—-1<r—1.
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Applying the induction hypothesis to the map G¥ 1 o G*1J' = GF1o
G~1]J', we see that the map can be written as ¢ o ho Q o ¢ with Dist(s) <
C, and Dist(y) < 1/2, and h € Fy,, . ;. The map G,.|G"*(J) is a
restriction of the first return map to /,,_;, which is of the form 3 o ) with
Dist(p3) < 1/2. Therefore

G'J = G T 0 Guot|GTR(T) 0o G
= YohoQo(pops)oQowpsoh.

Note that Dist(p o ¢3) < 1, and the induction step is completed. 0

We will need another proposition to treat the case m = 0. By taking C
larger if necessary, we prove:

Proposition 3. Consider any branch G|.J. Let n = max’_y a(G?J). Then
GY|J can be written 1 o H with

Dist(vy)) < logCy and H € F,,.

Proof. First note that if G(J) C I, then the assertion follows immediately
from the previous proposition. So we shall assume G*(J) = I,. Let us prove
by induction that G*|.J can be written as ¢ o H o Q o ¢, where 1 is an iterate
of G|(Iy\ Iny11), and H € F} |, and Dist(y) < 1/2.

If n < ng, then the claim is clearly true. Assume n > ng. Let 0 < p < i
be the largest such that o, = n. Using similar argument as in the proof
of the previous proposition, the map GP|J can be written as g o h, where
Dist(po) < 1/2, and h € F./*. Note that o(GP~1J) < «(GPJ) by the
maximality of a(GPJ). Let s be the positive integer such that

GIGPT = Go,|GPT = G5, _,|G?J,

and let J' = Go,—1(G?J). It follows from the construction of G and the
maximality of o, that a(G’(J')) <n—1forall0 < j < s—2+(i—p). By the
induction hypothesis, we can decompose the map G*=P~1|.J' as 1,0 Hj0Qop,
such that 1), is an iterate of G|Iy\ I,,41, and H; € F, ,. The map G, 1|GPJ
is a restriction of the first return map to I,,_;, and thus it can be written as
¢ o () with Dist(¢) < 1/2. Combining all these facts, we decompose

Gi\J =1 o {H10[Q o (p10¢g)]}oh,
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as required. This completes the proof of the induction step. O

We are going to use the following lemma many times.

Lemma 2. If h : J — I is a diffeomorphism in .7-"]}, and A C J is a
measurable set, then

1 Leb(h(A)) _ Leb(A) ep(Leb(h(A)))wp

(beyr I — |J[ — 1] '

(5)

Proof. First we note that for any interval 7 C R\ {0} and any measurable
set A C T, we have

Leb(A) < (Leb(Q(A)))wz
T T R
To see this, note that for a fixed Leb(Q(A)), the left hand side takes its
maximum in the case that A is an interval adjacent to the endpoint of 0T
which is closer to 0.

It suffices to prove the two inequalities in case p = 1. So let us consider
the case h = Q o ¢ with Dist(p) < 1. For any A C J, we have

Leb(A) eLeb((p(A)) e(Leb(h(A)) ) 1/¢
I T e T [A)]

This proves the second inequality of (5). On the other hand,
Leb(p(4)) _ |  Leb(p(J\ 4))

(D) |o(J)]
B (Leb(h(J) \ h(A)))1/e
B [h()]
=1- (1 _ LebTZ(A)))I/E
1 Leb(h(A))
= ZT?
and thus
Leb(A) S lLeb(go(A)) S iLeb(h(A))
Il e o)l Tet ]
proving the first inequality. O
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5 Outermost branches

Within [,,, there are two special branches which have common endpoints with
I,,. These branches always mapped onto Iy by the map G, and need special
care in our argument. In this section, we shall prove that these branches can
not be too small.

Proposition 4. There exist a constant p1 = p1(£) > 0 and a constant C3 =
C3(f) > 0, such that if J,, is one of the two outermost branches of G in I,
then

Proof. Let 6, := |J,|/|I,| and J,_; the outer-most branch of I,,_; \ I,, for
which J,_1 D Gu_1(J,). Write Gn_1|I, = f. Since this is a first return,
one has Dist(f"~!|f(I,)) < 1 for all n sufficiently big.

Case 1. Gp_1(c) ¢ J,_1. Then by the distortion bound for f~!|f(I,),

fla) = F _ , [f(a) = F(B)]
£ () = f(o)] £ (b) = f(c)]

where a and b are the end points of J,, with b between a and c. Hence, using
that ¢ is a critical point of order /,

Z 1+ Cénfla

la—c| 1/¢ Con 1
> (14 C6, )Yt > 14 2221
b 21T 0021+ =
Hence
Jol  1la—b0 _ 1 1
L= > (1———n ) > T8y /L.
g L]~ 2la—c = 2 1+Co, 1 /t) = 1/

By induction, |J,,|/|I,| > pt/Cs for p; = p1(£) < 1/L.
Case 2. G, 1(c) € J, 1. Note that Gn,l(jn,l) = I and that G2 _,J,
intersects an outermost branch jo of Iy. Let p > 0 be minimal so that
GP™2(c) ¢ Jo. Then |Jo|/|G"2I,| is bounded from below (by a bound which
depends only on f), and since G**2(.J,) = Jo, and f|(Ip \ I1) is hyperbolic
this implies

G Tl /|G 1| > C > 0.
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According to the distortion control on Gn,l\jn,l given by Proposition 3, this
implies

|Gn_1Jn‘/|Gn_1In‘ > Cpn > 0.

Since 1, is a first return domain of GG,,_;, by Lemma 1, this implies
| Jnl/In| 2 p1/Cs,

6 Improved decay for deep returns

Let 2 and m be so that G™(z) is well-defined and G?,(z) ¢ I,,41 for 0 < i < m.
Let T; = T;(z) be the component of dom(G,,) which contains G? (z). Define

a(y) = jify € [;\ 111 and s(y) = s if G(y) = f*(y) = Gaw)(y)- Let t, be
the return time of ¢ to I,, under f. Define

A={0<i<m-2 ; a(fi) > a(T)},

N = Z [a(Ti41) — (T;) + 1] and r = #A.
ieA
Moreover, define

T,={yeT, ; G;(y)eTiforalligm—l}.

If o : T — (T) is a homeomorphism and J C T is a subinterval of T', we
denote the components of 7'\ J by L and R, and write

|- ]J]
Cr(T,J) = ++——
L] - |R|
for the cross-ratio of J in T.
Lemma 3. Assume that a(T}) > ng for alli =0, ..., m—2, then fore, < e'/*

o Cr(Ty, Ty) <&l ifr>1;

e for each interval J C G(Ty-1) with J > G (x), and J' = {y €
T3 ; Gr(y) € J} we have

Cr(Ty, J') < el - Cr(Gp(Th-1), J)
(even if r =0).
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Proof of Lemma 3. For 0 < 7 < m — 2, write
Cr(loy), GLT}) CT(T;-,Gg;T(;)
Cr(G,Tj, Gi*'Ty)
Cr(lymy,,), GJ+1T’)

IA AN A

Here the first and third inequality hold by inclusion of intervals, and the
second inequality because f has negative Schwarzian derivative. Note that
GnT; D Iaery). If j € A then one gets improved inequalities: if

GTD]()lDI(

]+1) 1)

then in the third inequality one gets an additional factor 5[ i) a(Tj)H],

while if G, T; = Iyay) O la(r;,,) then in the first inequality one gets an
factor £; (because then G, is a first return and so a composition of ¢ and a
map which extends diffeomorphically to I4(r;)-1) and in the third we get an
additional factor

6[IOZ(TJ'Jrl)—Oé(Tj)]_

To prove the second assertion of the lemma one proceeds in the same way.
Note that all this holds, provided a(Tj) > ng for each j € A where ny is
chosen so that |I,11]/|I,| < € for n > ny. O

Let k, be as in Section 3.

Corollary 3. There ezists Cy = Cy(f) > 1 and g5 < si/z with the following
property.
(1) If a(G%(I,19)) > ng for all 0 < i < ky,, then

|In+1|

(2) If (G (I10)) < mg for some 1 < i < k,, then

‘I'ﬂ+2| S C n no

‘In+1|
Proof. (1) Let z = G,(c) and m = k, — 1, and let T;, A, N be defined as
above. Write n' = a(G5~1(c)). Note that a(G,(c)) = n. Then

Y la(Ti) — (T =o' —n.
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Thus

N—r= Z[Oé(TiH) —o(T)]

1EA

=n'—n+ Z[Q(Tz) = o(Ti41)]
igA

>n' —n+m-—r,
which implies
N>n'—n+m. (6)
Let J = GFn(I,2). Then
Cr(Gn(Tpm-1),J) < Cr(Iy, I11) < 3e7T7.
Applying the last part of the previous lemma, we obtain
Cr(Ty, Gp(Inya)) < 3elNelt1= < 3gmH! = 3gkn,

which implies this corollary.
~ (2) Let p < kj, be the largest integer for which a(G?(I,42)) < ng. Let
A={p<i<k,—-2:ie€A},andlet N =73, 5[(Tis1) — a(T;) +1]. Then

we can show similarly

and
CT(TvaZ(In+2)) < 5?707'([”’7 In+1) < 5?7%;

which implies the statement. O

7 Improved decay in general

Let I,;; = K" > K' D .- D K" = I,.5 be the domains of GJ as in
Section 3.

15



Lemma 4. Assume
Kis Kitl — Kit2 — ... — Ki+tm 5 fritm+l
Then there exists Cs = Cs(f) > 0 and py = p2(¢) € (0,1) such that (provided
n is sufficiently large)
K|
K|

< (1—p5/Cs)™. (7)

Proof of Lemma 4. By construction, G**' K" contains the outermost do-
main of some interval [, with j < n, while G"*'K**! C I; is not contained
in that outermost domain. By Proposition 4, this outermost domain is at
least ol /Cs(> ptt/Cs) times as long as |I;|. By Propositions 2 and 3, the map
GG, K= G!|G,K" can be written as ¢ o H with

Dist(¢) < logCs and H € F,,.
By the left inequality of (5), this implies that

|G (K \ K™
|G K|

> p"/C,

for some p = p(¢) € (0,1). Since G,|K" is a restriction of the first return
map to I,, it follows that
‘Ki+1|
K|

<1-p"/C.

logm

for n large. Hence, at least provided is not too large, i.e., bounded
by a universal constant, (7) holds (taking p, > 0 small). So we need to

consider the case that ‘2™ is large. Then K*! = ... = K"m GiP2KH g
contained in an outermost domain, and so one of the endpoints of G:3 K
is a boundary point of ;. Using that K*! = ... = K™
Gi3 it
| n _ | S CAm’
|Jol

where Jj is the outermost branch of Iy, C = C(f), and A € (0,1) comes from
the beginning of Section 4. The distortion control given by Proposition 3
gives
|Gi+1Ki+1 |
ey

£2n

< ONME"

16



where T;,; is the domain of G? containing G K®!. Since |GLFY(K*\
K™Y > p|Ti44/C, it follows
| fol Kitl | /\m/e%

. — < C
GRHK

Using the distortion control given by Proposition 2 or 3, and equation (5),

we obtain )
|G (K™

|G (K7))|
Pulling back by the first return map G,|K*, we obtain

‘I|(Z+|1| < Ce"/e)\m/e4n+l/p?/£2n+l
Ky —

3

which clearly implies (7) when %™ > 4log ¢ and py < £ O

Lemma 5. Let A € (0,1) be as in the beginning of Section 4. Let m be so
that I,,1 = K°=--- = K™ # K™ > I,.5. Assume m > 1. Then

L1 ot
Errll < CgA™
|In| e 6 7

where Cg = Cg(f) is a constant.
Proof of Lemma 5. Note that G,|I,,4; is a first return map to I,,, and

so there exists a neighbourhood T 3 f(c) such that f»~': T — I, ; is a
diffeomorphism and f!(T) C I,,. Therefore

|In+1| < <|G'nln+1‘>1/Z
‘In‘ N ‘In—1|

If m > 1, then G,([,41) is contained in an outermost branch J, in I,,.
Similarly as before

I n I,
|G7l TL+1| < C)\m/f and so | +1‘

S CAm/[rH»l.
[/l ||

17



Lemma 6. There exists €(£) so that if |I,11| < e|l,| for all n sufficiently
large, then for all n sufficiently large,

|In+1| (kn + 1)4

Proof of Lemma 6. Consider (G c) for 1 < i < k,. If all these are larger
than ngy then by Corollary 3

1
(kp +1)%

I
‘ n+2‘ §C4612€n <

‘In+1‘

So assume that there exists 1 < 7 < k,, such that a(G%c) < ng. Then at least
we have

ITL n—m
Inial _ ¢ (nno)/t
|In+1|

?

by the second statement of Corollary 3. This implies the lemma, unless
k, > 82_(”_”(’)/(4@/04. Let m as before be so that I,,,; = K'=K! =... =
K™ # K™ 5 I,.,. Then respectively by the previous lemma and by
Lemma 4,

In m/em 1 In 70 n—Mm
‘|I+‘1| < OX™ and :I if} S(l—pZ/Cs)k .

Case 1. m < ky,/2. According to the second inequality, we have

12| kn /2 1
< (1—=p0/Cs)"™* < —_—,
|In—|—1| —( p2/ 5) = (k_n+1)4

provided we choose £(f) so small that for &, from Corollary 3, g5 < p3°
and we take n sufficiently large. Here we have used the assumption that
k, > 62—("—"0)/(45)/04_

Case 2. m > k, /2. Then by the first inequality,

I, n
CT(In,In-i—l) - | |I+‘1| < )\kn/% +1'

By Lemma 1, there is an interval T > f(c) such that f~(T) C I,;; and such
that fin+1=1: T — I, is a diffeomorphism, where t,_; is the first return time

18



of ¢ to I,41. Since also f'+1(I,,5) C I,,,1, we obtain

CT(Ta f(In+2)) S Cr(ftn+1_1(T)7 ftn+1 (ITH-Z))
S CT(In, In+1)
s \en/207,

Since f™YT) C 41, f(Iny1) contains a component of T\ f(Z,42). Thus

|f(In+2)| S CT‘(T,f(LH_Q)) S C/\kn/2

|f (In+1)]

Finally, the non-flatness of the critical point gives

|]n+2‘ < C)\lcn/ZZn+2 < 1
|In+1‘ - - (kn + 1)4’

£n+1

provided that e, < £7* and n is sufficiently large. O

8 The measure for the induced map

In this section we prove the existence of an acip for the induced map G.
Proof of Proposition 1. We will use the result by Straube [24] claiming
that G has an acip if (and only if) there exists some n € (0,1) and 6 > 0 such
that for every measurable set A of measure Leb(A4) < & holds Leb(G™*(A)) <
nlLo|.

The assumptions give that there exists a constant B with the following
property: If J is any branch of G* and G*(J) = I,,, then

Leb({z € J;G*(2) € Inym}) ntm|
<B . 8
7 A ®

This includes trivially the branch of G°, that is the identity. Note that B is
a distortion constant, and B < 2 for ¢ & 0 and n > ng. So we can assume
that By/e/(1 —/e) < 1/3. Moreover, |I,| <™ ™|I,,| for all n > m > ny.

Lemma 7. If J is a branch of G such that G*~Y(J) = I, 11, then

1
Leb({z € J; a(Gk(x)) >n+1}) < 6|J\, 9)
provided n > ny.
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Proof. Let I,., = K°> K! > --- > K* =I5 be as in Section 3. For
each 0 < i < k, — 1 with K* # K'*!, there can be at most two branches of
G, symmetric w.r.t. the critical point, which map onto I, ;. We claim that
each of these branches P lies deep inside K* (if they exist). To see this, let
s € N be such that G|P = f¢|P. Then by our construction, f*! maps an
interval T > f(c) onto some interval I; with j < n, and f~*(T) = K;. Since
I Y f(P)) = L4 lies deep inside I;, it follows from the Koebe principle
that f(P) lies deep inside T. The claim follows from the non-flatness of the
critical point.

Let Up,1 be the union of those domains of G inside I, ;1 \ I,,42 which are
mapped onto 1,1 by G. Then it follows from the Koebe principle

1
Leb({z € J: GF 1(2) € Upyi}) < 1—0|J|

It remains to consider branches of .J' of G¥|J for which G*(J') = I, with
n' < n. But using the remark before this lemma, we obtain an estimate for
this part also, and thus we conclude the proof. O

Write y,, » = Leb({z € Iy; a(G*(z)) = n}). Take Cy > 6B/|I,,|. We will
show by induction that y,; < Co\/|17 for all n,k > 0. For k = 0, this is
obvious, and the choice of Cj assures that v, ; < Com for all n < nyg.

Now for the inductive step, assume that y, 1 < C’Om for all n. Pick
n such that (9) holds (i.e., n > ng+ 1), and write yﬁ’k for the measure of the
set x such that a(G*~'z) = n' and o(G*z) = n.

Then by equations (8), (9) and induction,

Ynk = Z yz:k—1 + Z yZ:k_l + Ynp—1 + Z yz:k—1

n'<ng no<n’<n n'>n
I, y C
< B- |+ZCOB| | L] + 0\/\1 [+ Cov/Iwl
|In n'<n ‘I| n'>n
<

1 o1 .
Co/IT,] (g + 3BT+ S (Ve )
n'<n n'>n
1 1 1 1
< (6+§+6+§)CO ‘I |—Co\/ |In‘

If an acip v exists, then it can be written as v(A) = limp 00 = > 7§ ' Leb(G*A).
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Therefore,

v(I,) < Cov/| L. (10)

Take n € (0,1). Fix ny such that Y - 9, < n/2 for all k > 0. We
need to show that we can choose § > 0 so that if A C [ is a set of measure
Leb(A) < 4, then Leb(G %(A)) < n for all k > 0. By the choice of ni, it
suffices to show that Leb(G *(A)) < n/2, k > 0, for any A C Iy \ I,.

Assume that A C I, \ I, for some n < n;. Proposition 2 shows that
any onto branch G* : J — I,, can be written as 1) o ¢ with

Dist(¢) < logCy and ¢ € f?}(m_nﬂ),

where 4 .
m=a(G'J) > a(G*) > - > a(GF L) >n

for some ¢ < k. Clearly 7 > k£ — m +n — 1. For such a branch we have

|A| )1/43(m—n+1)

Leb(G*ANJ) < OQB(m

[ 7]-

For fixed m, the total measure of the set of points arriving to I, in this
fashion is bounded by ZZ kemin_1 Ymi < (m—n+1)-Cy-+/|I,|. Summing
over all branches J (including the ones that do have extensions and hence
distortion bounded by C}), and all m > n, we find

A A (m—n+1)

Leb(G™4) < C) ||1 || S (m—n+ 1)00\/\Im|02B(H)1/£3 ™
m>n n

Thus Leb(G*A) < n/2n, for any integer k and any A C I, \ I,,;1, n < ny,

with |A| < 6, provided ¢ is sufficiently small. It follows that if A C I\ I,

has sufficiently small measure, then Leb(G*A) < nyn/(2n,) = n/2. This

concludes the verification of Straube’s condition. 0

9 Summability

We finish by proving Theorem 3. This theorem follows immediately from the
next lemma.
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Lemma 8. The partial sum 3, ;. \r..,5v(J;) is ezponentially small in
n.

Proof of Lemma 8. Let I, ., = K° D --- D> K = I,,, be as in Section 3,
and let m > 0 be minimal such that K™ 2 K™*!. Let us first comment on
the induce times s;. If J; € K*\ K**!, then G|J; corresponds to at most
(i + 2) iterates of G, and thus s; < (i + 2)to(ko+ 1) - - - (kn—1 + 1) according
to (4). For J; C K™\ K™% we need a better estimate than (4). Note that
if m > 2, then G%/(J;) is contained in one of the outermost branches in Iy for
all 2 < p < m — 1, where iterates of G corresponds to f2, and thus we have
in this case that

By Lemma 6, we have
Vit (ko + D) (ky +1) - (kp 1 +1) < C|T |V < Ce™E (12)

A direct computation shows that mA™*" /R* < C = C()) for A € (0,1) and
all m,n > 0, provided R > ¢. So, by Lemma 5, we have

m| L2 < CmA ™2 LL|Y? < O L)V < O(Vel®)r.  (13)

Sum over outermost branches: Note that if J; is an outermost
branch in I, 41, then s; < 2ty(ko+1)--- (kn—1 + 1) +2m by (11). Using also
the obvious estimate v(J;) < v(I,41) < Cov/I,,41, we obtain

400(t0(]€0 + 1) Tt (kn,1 + ].) + m)\/ |In+1‘
O/ + (VEL)")

SZ’I/(JZ') S
<

according to (12) and (13). Since there are only two outermost branches,
the term over these branches is exponentially small in n (provided that ¢ is
sufficiently small).

Sum over all other branches: Note that if A is a subset of a com-
ponent of I,, ;1 \ 42, and the distance d(A, 0I,1) > 0 - diam(A), then the
Koebe distortion lemma gives that for every ¢ > 0 and every onto branch
G':J— I,,1, we have

Leb(G=(A) N J)

Leb(A)
7 < K(9)

|In+1‘ ’
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where K (6) = 2(1+ 6)?/6*. Hence

Leb(GT'A) < ) K(5)

GiJ=Ip+1
Leb

£ 3 KOG a0 ),

GiJDInt1 ntl

so that Leb(G"A)/Leb(G~I,,1) < K(§)Leb(A)/|I,,+1|]- In particular, this
implies that

Leb(A)

|In+1|

/]

v(A) < K((S)l/([nﬂ)%.

By Proposition 4, the length of each of the outermost branches is as least
pt/Cs, and thus for any other branch J; C I,11 \ Ipto,

d(J;, 0In41) > pt|Jj/Cs,

which implies

v(Jy) _ C vlus) <£ Co

‘J| n |In+1| :01 \/|In+1|.

Therefore the sum of Sjl/(Jj) over all branches other than the outermost ones
is bounded from above by the following

C Gy C Co 1T
Z sjlJ;| = \/m( Z + Z 8J|J]|)

|In+1 J;CKm™\Km+1l  J,CKmH+I\I, s

(note that K™ = I,,+1). Let us first estimate the first part of this sum. Using
(11), Corollary 3, Lemma 5 and (13), we obtain

1
= > sl <
p%n |In+1‘ chKm\Km+1

2 K™\ K™t

|
< =5 (tolko +1) -~ (kn1 + 1) +m)
g V]
2
< o (to(ko +1) - (k1 + 1) + m) /| Int
1

2 n+1
= (tolko + 1)+ (k1 + 1)) Creho ™ Hnm1CeAm/ 0"
1

2\ N
+ 20<\/gf),
P1
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is exponentially small provided that ¢ is sufficiently small.
For each domain J; C K*\ K*! with ¢ > m + 1, we have

5 < (i + 2tolko + 1)< (knos + 1) < O +2) ().

|In+1‘
Therefore,
1 1 kn—1
— > slhl=o—= 3 > sl
‘ n+1‘ J;CK™+N\I, 15 | n+1l j=m+1 J;CKH\Kit+1
kn—1
C < :
< == (i +2)|K"|
[ s [ z’:%;q
2 K
=C - || (1 +2) )
" izgm;_l |In+1‘

By Lemma 4 (applied repeatedly),

L] [K™] — Cs
which implies
LS ~
> (i+2) <Y (i 42) (1= p3/Cs) ™
1=m+1 + i>m
C C
< (m+2)—2 4 (=22
P2 P2
1
P2
Thus, using again Lemma 5,
1 1/ 1
= o sl < Ol [V (m 4+ 2) -
| n+1‘ J]‘CK"H'I\L,H_Q p2
81/4 n £n+1
< C(=5£1)"Co(m + 22X,
P2
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and so

1 1 €
|, /et n/4
P1" A/ | Lsi| JicKmZ;l\InH P1P2
which is again exponentially small in n provided that ¢ is sufficiently small.
This completes the proof. O
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