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Abstract
We study the expansion of derivatives along orbits of real and com-
plex one-dimensional maps f, whose Julia set J; attracts a finite set
Crit of non-flat critical points. Assuming that for each ¢ € Crit, ei-
ther |Df"(f(c))| — oo (if f is real) or b, - |[Df"(f(c))| — oo for some
summable sequence {b,} (if f is complex; this is equivalent to summa-
bility of |Df"(f(c))|*), we show that for every z € J; \ U; f*(Crit),
there exist £(z) < max.£(c) and K'(z) > 0 such that
s—1
IDf"(@)|“®) > K'(x) [ Dni-niya (cit1)
i=0
for infinitely many n. Here 0 = ns; < ... < n1 < ng = n are so-called
critical times, ¢; is a point in Crit (or a repelling periodic point in the
boundary of the immediate basin of a hyperbolic periodic attractor),
which shadows orb(z) for n; — n;11 iterates, and

Dife) = 4 T A K- |ka(.f(cz))|) if f is real,
el = A Kby - |ka(f(0z))|) if f is complex,

max

*The original paper used an incorrect version of the Koebe Lemma cited from [21] as
was pointed out by the referee and Genadi Levin in the autumn of 2001. The corrected
version of November 2001 only uses the classical Koebe Lemma. Apparently, all results in
Feliks Przytycki’s paper [21] go through using the classical Koebe Lemma instead of his
Lemma 1.2.



for uniform constants K > 0 and A > 1. If all ¢ € Crit have the same
critical order, then K'(z) is uniformly bounded away from 0. Several
corollaries are derived. In the complex case, either Jy = Cor J ¢ has
zero Lebesgue measure. Also (assuming all critical points have the
same order) there exist k > 0 such that if n is the smallest integer
such that = enters a certain critical neighbourhood, then |D f"(z)| > &.

1 Introduction and Statement of Results

The behaviour of (real and complex) one-dimensional systems depends es-
sentially on the behaviour of their critical points. Derivatives along orbits
tend to grow at least as fast as the derivatives along the critical orbits, and so
the growth along critical orbits plays a central role in the question whether
invariant densities exist. This goes back to Collet and Eckmann’s result [6]
on non-flat S-unimodal maps f: if there exist C' > 0 and A > 1 such that

IDf"(f(c))| > CA™ for all n > 0, (CE)
where c is the critical point, and
|IDf"(f(x))| > CA™ where n is minimal such that f"(z) = ¢, (BCE)

then f admits an invariant probability measure (acip) that is absolutely
continuous with respect to Lebesgue. In the S-unimodal case, Nowicki [16]
showed that the Collet-Eckmann condition (CE) implies the backward Collet-
Eckmann condition (BCE), thus eliminating the need of (BCE), and in [17]
it was shown that (CE) and (BCE) are equivalent.

In the (multimodal) real and complex case it is convenient to define

7, = {z € I fr(z) / attracting periodic orbit} if f is real,
771 the Julia set if f is complex.

The set of critical points ¢ such that orb(c) intersects J; will be denoted by
Crit. We say that f is a Collet-Eckmann map if there exist C > 0 and A > 1
such that

IDf™(f(c))| > CA" for all ¢ € Crit and n > 0. (CE)
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Here, and throughout the paper, in the complex case D f" is the derivative
in terms of the spherical metric on C. The (BCE) condition is extended
similarly. Some authors allow some critical points in Crit to be mapped onto
other critical points. It is not too hard to extend our results to that setting.
In the setting of rational maps, Przytycki [21] showed that (CE) together with
some technical assumptions imply the existence of an acip (with respect to
a non-atomic conformal measure on the Julia set).

Our main aim in this paper is to deal with weaker growth rates, similar
to what was done in Nowicki & van Strien [18], who showed that for S-
unimodal maps, summability of |Df™(f(c))|~'/¢ (where ¢ is the order of the
critical point ¢) guarantees the existence of an acip. In [5] we extended this
to the multimodal case:

Theorem 1.1 Let f be a real multimodal map such that Sf < 0 and all
critical points have the same finite order £. If ¥, |Df™(f(c))|~/¢ < oo for
each critical point c, then f admits an acip.

It is the aim of this paper, using the ideas of [18], to estimate derivatives
along arbitrary orbits, and give alternative approaches to (and in some cases
improvements of) results by Graczyk & Smirnov [9] and Przytycki [21]. We
assume that

IDf"(f(c))] — o0 if f is real with Sf <0,
S D (f(c))| ™t < oo if f is rational on C.

Except for finiteness, there are no restrictions on the number of critical points
and their orders. The complex assumption is the same as used in [9] or in
[21, Theorem B].

We will show that orb(z) can be decomposed into pieces in which it loosely
shadows a critical orbit orb(c;), and that the derivatives grow accordingly:
There exists K'(x) > 0 and ¢(x) < max,£(c) such that

s—1

D ()| > K'(x) - T] (K - DA (F(e)))

i=0
for infinitely many n, and critical times 0 = n; < ... < n; < ng = n, (defined
in later sections). Here K; > K (if f is real) and K; > K - b,,_,,._, (if f is
complex), and K > 0 is a uniform constant. See Theorem 1.2 for the precise
statement.



The second purpose of this paper is to strengthen the results in [4]. In
that paper we established the existence of an acip p for real multimodal
maps under certain summability conditions and we derived strong statistical
properties concerning the mixing rate of y. However, we assumed a prop-
erty, called bounded backward contraction (BBC), which states that |D f"(z)|
is uniformly bounded away from 0 whenever z first enters a critical neigh-
bourhood. Theorem 1.3 below shows that (BBC) holds automatically, both
in the real and complex case, provided all critical points have the same or-
der. Examples in Section 6 show that this assumption is essential, and that
without it also (CE) no longer implies (BCE).

1.1 Definitions and statements of results

In the remainder of this section we give the precise statements of the results
and relate them to known results. Let I denote the interval or circle and C
the Riemann sphere with spherical metric. Because Crit is the set of critical
points ¢ such that orb(c) intersects Jf, the assumptions (2) and (3) below
exclude the existence of parabolic points. In particular, all critical points
which are not in Crit are contained in immediate basins of hyperbolic periodic
orbits. We assume that Crit # (J, thus excluding circle diffeomorphisms, as
well as maps where J; is hyperbolic. These maps are completely understood
as far as the results presented here are concerned. Each ¢; € Crit has critical
order 4; < 0o and we write £y, = max{/;;¢; € Crit}. Let

N(Crit) = UB(ci,el/z"), (1)

where B(z,0) denotes the open ball of radius 6. We shall consider expansion
properties of the following two types of maps:

(i) smooth real one-dimensional maps f:I — I with non-flat critical
points, such that the Schwarzian derivative Sf < 0, such that 0l contains
no parabolic points of period < 2, and such that

|IDf"(f(c))| — oo as n — oo for each ¢ € Crit. (2)

(ii) rational maps f: C — C such that there exists a sequence b, > 0 such
that
exp()_bn) <2 and b, - |Df"(f(c))| = oo (3)

n>0



for each ¢ € Crit. The b,’s feature in the notion of shrinking neighbour-
hoods from [21]. Condition (3) is equivalent to "~ 1/|Df™(f(c))| < oo, see
Lemma 2.7. -

Given a point z, define for the moment /(z) to be the maximal order of
all critical points on which z accumulates (if it does not accumulate on any
critical points define ¢(x) = 1). A sharper definition of ¢(x) will be given in
formulas (8) and (38).

Theorem 1.2 Assume that (2) or (3) holds. Then there exist A > 1 and
K > 0 such that for each x € J; such that f*(z) ¢ Crit for all k > 0, there
exists K'(x) > 0 and arbitrarily large times n such that

s—1

[Df"(2)|“®) > K'(2) T[] Dngnips (ci1), (4)

1=0

where

(5)

max

MK by - [DFF(f(e)l) if f is comples,

and 0 =ng < ... <mng:=mn are critical times (defined in later sections), and
¢; are critical points in Crit (or repelling periodic points in the boundary of
the immediate basin of a hyperbolic periodic attractor). In particular, there
exists a sequence of integers n so that |Df™(x)| — oc.

Usually, the ¢; in this theorem are critical points that shadow the orbit of z

for the iterates n; to n;_1. Only when the shadowing critical point belongs to

the (immediate) basin of a periodic attractor, we can relace ¢; by a hyperbolic

periodic boundary point of this basin, and use its expansion in the estimates.
This allows the following immediate corollary for periodic points:

Corollary 1.1 The Collet-Eckmann condition (CE) implies uniform hyper-
bolicity on periodic points.

In the complex setting, this has been shown in [8]. If Crit consists of only one
point, then (CE) is equivalent to uniform hyperbolicity on periodic points,
see [17] and [8].



It is known (adapt the example in [23, Section 5] and see also [22]) that
uniform hyperbolicity on periodic points does not imply (CE). Recall the
growth condition on Crit immediately rules out the existence of parabolic
points. It is also known that maps as above do not have Cremer points,
Siegel disks and Herman rings, see [9] and [24].

The number K'(z) expresses the small derivatives of close visits of orb(z)
to critical points ¢, with order ¢, > £(z). On the set {z;¢(x) = lpax}, K'(2)
is uniformly bounded away from 0. Furthermore, (4) holds for the critical
times, which includes any n such that f"(x) € Crit. Therefore we have

Corollary 1.2 If n is minimal such that f*(z) = ¢; € Crit and £; = lax,
then |Df™(z)|"®) > K - [1525 Dp;—nsss (¢it1). In particular, (CE) implies
(BCE) for all ¢; with £; = lpax.

As mentioned before, the statement that (CE) implies (BCE) was shown in
the unimodal case by Nowicki [16]. Graczyk & Smirnov [8, Theorem 1 (i)]
proved it for rational maps on the Riemann sphere. The corollary does not
hold for critical points ¢; with ¢; < £nax, as we demonstrate in Section 6.

In the next theorem we prove (BBC). This property was used as assump-
tion in [4].

Theorem 1.3 (The BBC property) Assume that (2) or (3) holds and assume
that all critical points of f have the same order. Then there exist k > 0 so
that for any € > 0 and any x € J; and n = min{k > 0; f¥(z) € N.(Crit)}
one has

|Df*(z)| > k. (6)
More precisely, there exist uniform constants A\ > 1 and K, K' > 0 such that
s—1
|Dfn(l-)|£(1') 2 KI . H Dnian_l (Ci—|—1),
i=0

where Dy(c;) is defined in equation (5).

The assumption that all critical points have the same order is essential; coun-
terexamples are given in Section 6.

A well-known result that goes back to [15] and [11] is that if f is a C*
multimodal map and o > 0, there exists C' > 0 and A > 1 such that if
dist(orb(z), Crit U {non-repelling periodic orbits}) > o, then

IDf"(z)| > CA"™ for all n > 0. (7)
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This determines the hyperbolic subsets of I. In the complex case, Mané [12]
proved a similar result, using the assumption that = does not belong to the
omega-limit set of a recurrent critical point. The complex analog of (7) was
called R-ezpansion and used as assumption in [8, Theorem 2.

Corollary 1.3 Let f satisfy (2) or (8). There exists C > 0 such that for
every o > 0 there exists A > 1 such that: if x € J;, then dist(orb(z), Crit) >
o implies |Df™(z)| > Cotm>=IX" for all n.

In Section 5 we combine the techniques of Theorem 1.2 with a random walk
argument and prove that Lebesgue-a.e. point reaches “large scale univa-
lently”. This results in

Theorem 1.4 If f satisfies (3), then either J = C or the Lebesgue measure
of J is 0.

This result was also shown (mutually independently) in [24].

2 Notation and Preliminaries

If a map (real or complex) f has a critical point ¢, then its order ¢ is the
number such that (¢/M)|x —c|*! < |Df(z)| < M|z —c[*!, for all x and a
uniform constant M > 1. In particular, we assume that in the real case, the
critical order of a critical point is the same on either side of c. Integration
gives (1/M)|z — c[* < |f(c) — f(z)| £ M|z — c|®. These properties, plus the
fact that ¢ < oo, will be referred to as non-flatness.

Denote by v(o) the minimal integer n so that |f"(c) — ¢'| < o for some
critical points ¢,¢’ € Crit. Since no critical point is mapped to another
critical point, v(o) — o0 as o — 0.

Throughout the paper we shall need several Koebe-like estimates:

Lemma 2.1 (Koebe Lemma in the real case) Let g:(a,b) — R be a diffeo-
morphism and Sg < 0. For each 7 € (0,1) there exists KL(T) such that if
z,y € (a,b) is so that both sides of g((a,b)\ (z,y)) have size > 7|g(b) — g(a)|
then |Dg(z)|/|Dg(y)| < KL(7).



Lemma 2.2 (One-sided Koebe Lemma in the real case) Let g: (a,b) — R be
a diffeomorphism and Sg < 0. For each T € (0,1) there exists KL(T) such
that if x € (a,b) is so that |g(z) — g(a)| < 7]g(b) — g(a)| then |Dg(z)| >
KL(r) - |Dg(a)].

Lemma 2.3 (Ezpansion of Cross-Ratios) Let g: (a,b) — R be a diffeomor-
phism and Sg < 0. Let j C t be subintervals of (a,b) and let I,r be the
components of t \ . Then

o)l - l9Gi)I o [t ]
OIRrGISRIRG)

In the limit j — x this yields ¢'(x) > % NGIELU]Y

In the complex case we shall need,

Lemma 2.4 (Koebe Distortion Lemma in the complex case) Assume that D
is the unit disc in C and g: D — C is univalent, then for each z € D,

1 lel _lg@_ 1+
A1) = g )] = W= 2

and ,
1= le| _ @) _ 1+

)
1+ 12| = Jglz) —g(0)] ~ 1= 2]

The proofs of Lemmas 2.1-2.3 can be found in [14]. Lemma 2.4 can be found
in [19]: the first statement is formula (15) of Theorem 1.3, page 9, and
the second follows by substituting the Koebe transform h(z) = (g({£52) —
g(w))/(1 — |w[?)¢'(w) in formula (14) and then taking z = —w, cf. Exercise

3 on page 13 in [19].

In order to deal with large disks, we need in fact a version of Lemma 2.4
applied to the Riemann surface C. Let d be spherical metric on C. (The
results holds for any conformal metric, but we will use it for spherical metric
only.) As usual define B(z,r) = {z; d(2,2) < r}. For an analytic map
f:C — C, let Df(z) be the derivative map with respect to the metric d.
Using this notation, the previous lemma implies the following
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Lemma 2.5 (Koebe Distortion Lemma on the Riemann sphere) Let d be
the spherical metric on C and let ry < diam(((f). Then there exists a con-
stant KL > 0 such that for each r < ry, each xy € C, each univalent map
g: B(zo,7) = C and each z € B(x,7),

1 —d(z,20)/r _ |Dg(2)] KL
KL = |Dg(zo)| = (1 —d(z,20)/r)*

and

1 —d(z,20)/r < d(z,z9) - |Dg(z)| < KL
KL = d(g(2),9(x0)) — 1—d(z,z0)/r

An interval U C I is called wandering if f*|U is monotone for all n > 0
and U is not attracted to a periodic orbit. It is well-known that C? maps do
not have wandering intervals, see [14]. This fact is equivalent to the following
statement.

Lemma 2.6 For any ¢ > 0 there exist 6 > 0 such that if U is a ball of dia-
meter > € which is not attracted to a periodic orbit, then f™(U) has diameter
> 6 for allm > 0.

For rational maps on C and open sets U, this lemma is a simple consequence
of compactness and Montel’s Theorem, provided U intersects the Julia set.
Let us finish this section by showing

Lemma 2.7 There ezists a summable non-negative sequence (b,) such that
bu|Df™(f(c))| — oo if and only if 3, |Df™(f(c))|™" < oc.

Proof: For the if-direction, choose m,, ms, ...sothat 3,5, 1/|Df"(f(c))| <
1/k3. Then take d, = 1 for n < m; and d, = k for n = my,...,mp1 —
Land k = 1,2,... Then Sz do/[DF*(f(©)] < Tnen, 1/IDL(F(O)] +
Si>1 k/k? < oo and so b, = € d,/|Df"(f(c))| satisfies the required prop-
erties for some small ¢ > 0. Conversely, b, - [Df"(f(c))| — oo implies
IDf(f(c))|™* < b, for n sufficiently large. O



3 The Real Case

Throughout this section we shall assume that f: I — I is a interval or circle
map satisfying (2). We write |x —y| for the Euclidean distance between x and
y; in case of sets, we prefer to use dist(X,Y) = inf{|z —y|;z € X, y € Y}.
As before, let Crit be the set of critical points of f which are not in the
basin of periodic attractors (because of the growth assumption f does not
parabolic periodic points). For the moment fix an integer n, choose o > 0
and take a point = € J, such that f*(z) ¢ Crit for all K < n. Let T),(z) 2
be the maximal interval such that f"|7,(z) is a diffecomorphism; usually we
shall simply write 7;,. Let

ro(z) = dist(0f"(T5), f*(z)).

We say that n is o-big time if r,(z) > o. Furthermore, n (or f™(z)) is of
type

(AP) (almost pre-critical) if 7, (x) > dist(f"(x), Crit),
(NAP) (not almost pre-critical)  if r,(x) < dist(f™(z), Crit).
If n is a o-big time, we still distinguish between type (AP) and (NAP). Types
(NAP) and (AP) represent the “sliding” and “transfer” case in [18], while
o-big refers to the “regular” case. We call n critical if f™(7,,) contains a
critical point. Note that if n is of type (AP), it has to be critical.

Now let 0 = ny, < ng_1 < ... < ng = n be the critical times before
time ng = n defined as follows (we do not need to assume that n itself is a
critical time, but in any case define ¢y to be the (a) nearest critical point to
xo := f™(x)): Since T,, is the maximal neighbourhood of x on which f™ is
diffeomorphic, there exist critical points ¢, ¢] and integers ni,n} > 0 such
that f*(T,) = (f* ™ (c1), f*"™(c})) and such that |f* " (c;) — f*(x)| <
|f*™(c)) — f™(x)|. We should emphasize that it is possible that ¢, is a
critical point in the basin of a periodic attractor (and so not in Crit), but
then f"(7,,) contains a boundary point of the immediate basin of this periodic
attractor, and then we take for ¢; this point (which is hyperbolic); in this
case either ¢; is periodic or its f-image is periodic. The same modification
for the choice of ¢; applies throughout the construction.

Next, for T,,, (z), the maximal neighbourhood of z on which f™ is diffeo-
morphic, we take the corresponding critical points ¢y, ¢, € Crit and integers
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Figure 1: Critical times before n.

ng,mb > 0, such that |f™~"2(cy) — f™(x)| < |f™7"2(ch) — f™(x)], etc. See
Figure 1. We shall write z; = f"(z) for i = 0,...,s and denote the order
of the critical point ¢; by ¢;. (We write zo for f™(z) since we will always
‘pull-back’.)

3.1 A proposition giving lower bounds for expansion
of derivatives

Let us first properly define the exponent £(z). Let Crit'(z) be the set of
critical points ¢ € Crit such that there are infinitely many (AP) times n such
that dist(f"(z), Crit) = |f"(x) — ¢|. So for other critical points there is a
bounded number of such events, and so for later use, we define 7(z) < oo
so that n < 7(x) whenever n is a (AP) time with dist(f"(z), Crit'(z)) >
dist(f™(z), Crit). In Assertion 3 of Proposition 3.1 below, we will show that
Crit'(z) # (0 or there are infinitely many oy-big times n for some oy.
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Now set

_ | max{¥l;;c; € Crit'(x)} if Crit'(z) # 0,
t=1L(z)= { 1 if Crit'(z) = 0. (8)

This choice of £ enables the strongest asymptotic results; by choosing £ = 1.«
on the other hand may give weaker asymptotic estimates, but allows for a
z-independent choice of K’ in Theorem 1.2.

For 0 < 4,75 < s define

A = |z — frmi ()Y z; is (AP),
) ‘Z'z o fni—m+1 (Ci+1)|e_1‘fni_m+l(Cz‘+1) _ Ci|1—£,- z; is (NAP),
and
o[ el 5y (AP),
! ;= frmmt (cip) [ - oy — 'Y z; is (NAP).

Proposition 3.1 Given f such that (2) holds, there exist oy > 0, €y > 0,
K > 0 and a function E:N — R with E(k) — oo as k — oo, such that
for each x € J; and n € N for which z, ..., f" *(z) ¢ Crit the following
properties hold.

1. Let 0 = ng < ... < ny be the critical times before time ng = n. Let
¢ ={(x) and ¢;, A;, B; be as above. Then for any 0 < i< j <s,

%Jl—[ (Kk . ‘Dfnk—nk+1(f(ck+l))‘) , 9)

J k=i

[Df™m ()] >

where Ko = K and for eachk=1,...,s—1,

Ky > ny is of type (AP),

K otherwise.

{ K - [dist(f™(x), Crit)|%* if both £y > £ and

By definition of Crit' (z) the former can happen only finitely (uniformly
in n) often: it can only happen when ny < 7(x).
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2. If niy1 > 7(x) then one of the following holds
K- [Df 4 (f ()| = 2, (10)
K2 - |D 71 (f(ep))| - D742 (f(ciga))| > 4 (11)

or (for any j > i)

[Df™ " (z;)|* > E(n; —ny) - (12)

S|

3. There exist arbitrarily large times n for which either f™(x) is in case
(AP) or r,(x) > 0g (son is a 0g-big time).

4. If ro(2) > 00, then Ay > o . If f*(x) is in case (AP) and moreover
the critical point nearest to f™(x) has order {(x) = £ then Ay = 1.

5. Ife € (0,¢0) andn > 0 is such that f"(z) € N(Crit), but for no critical
time k < n, f¥(x) € N.(Crit), then f"(x) is in case (AP).

In the remainder of this subsection we shall prove Proposition 3.1, using
a few lemmas.

Lemma 3.1 (Transfer Ezpansion) There exists a universal constant K > 0

such that
D @) L A

[Dfro=mi(fe)] =7 By

(13)

where
A, = g — f0 " (cy) [ F0 xg in case (AP),
|x0 o fno—m (cl)|é—1‘fno—n1 (Cl) _ CO|1—Z0 otherwise,
and
B — |z — 1|8 x1 in case (AP),
' lzy — M2 () [f7t - |z — e |'8 otherwise.

Here, as before, /; is the order of the critical point ¢;. In order to prove
Lemma 3.1 we shall need the following
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Lemma 3.2 There is a Koebe constant KL such that
IDff ™ (f(21))| = KL - [Df™™ 7 (f(cr)) (14)

S (@) — 0™ (e)]
|f(~1'1) —f(01)| '

[Zo — fM7™ (c1)]

min {|z; — fr1"2(cy)|, |21 — ¢1[}

[Dfre™ N (f(x1))] > KL - (15)

and

(D" ()] = (1/2) - (16)
Proof of Lemma 3.2: Since 2, = f"(x) is nearer to f® ™ (c;) than to the
other boundary point of f"(T,), the one-sided Koebe lemma implies (14)
and (15). Moreover, write (f™7"2(cy), f**~"2(ch)) = f™(Ty,) > c1. Choose
either ¢ C (¢, f™ ™ (cy)) or t C (c1, f™ "™(c,)) maximal so that fmo ™|t is
a diffecomorphism and so that z; € t. Let [,r be the components of ¢ \ {z}.
Note that if z; and f™"2(¢y) lie on the same side of ¢; then we take the
former, and otherwise the second. In both cases we have min(|l],|r]) <
min{ |z, — 1], |e1 — f"7"2(c2)|} because by construction f™7"2(cy) lies nearer
to x; than ™™ (c}) and in the second case ¢, lies between z; and ™ "2(c,).
Now we use Lemma 2.3 to derive the following inequality

e @ [ ()t
| fromm(#)] 1] - |
Since at least one of the two intervals f"~"1(l), f"~"(r) has length >

|fmo~m1(¢)|/2 and since [¢t| > [I|,|r], one has that this last expression is at
least

[Df " (21)] 2

> (1/2)-min [/ O 0}

Because f™ ™ (¢y) is the end-point of f™(7,) nearest to zo, and the above
estimate, this gives (16). O

Proof of Lemma 3.1: The proof follows from some simple algebra, from the
non-flatness at critical points and inequalities (14)-(16). Indeed, distinguish
two cases:

(AP) case. Let us first assume that zo = f"(x) is in case (AP). In this
case, we first use the chain rule and (14) to get that |D ™™ (z,)[¢ is at least

KL-[Df(wy)[* [Dfremm = (f(@0))|7" - [DFr™™ 7 (f(er))]-
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Now using non-flatness and applying (15) to the last but one factor, this is
at least

- ™ (a) — o

[fer) = flz)|?

Since we are in case (AP), this is at least

Ky - |z — ci DT (f ()

Ky |[frm™(er) = @ [f 7™M (e1) — o7
— 20! |21 — e[| fer) = flza) |

[ DM (f(en))]
and by non-flatness this gives

D@ ) — gl
Dfo () - et

which is valid if z; is in case (AP) or in (NAP). If z; is in case (NAP), i.e. z;
is closer to f™~"(¢y) than to ¢;, then we can sharpen the above inequality:
(16) can be written as

, (17)

fno—n1 (Cl) _ xo‘é—éo . |fn0—n1 (cl) _ x0|£0—1
|1 — [ (c) [

Do () 2 (1/2)

Hence, if z; is in case (NAP),
[Df"=™ (@) [ = | D (20) | (DT @) (DS (@)

can be estimated by using the previous inequality in the first factor, using
(14) in the second factor, and by using that |Df(f™ " (¢1))| & | f™ ™ (¢1) —
colfot < 2001 fromi(e)) — pglo~t (because of the assumption on ). This
gives

|D fro=m(g)|* S K. | from™ (¢q) — zo|H0
|Dfno—n1 (f(cl))‘ - ‘351 — fn1—n2 (02)‘€—1|x1 _ Cl|1—f1
(NAP) case. Let us now assume that zop = f™(x) is in case (NAP).

In this case we first use the chain rule, non-flatness, and (14) to get that
|D fro=m1(z1)|¢ is at least a universal constant times

(18)

|ml _ Cl|ﬁ1*1

[fro=m(cr) — ol

[Dfre™ (@) |71 DT (f (en))] -
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Applying (16) to the first factor gives that this is at least a universal constant
times

( |z — fro ™ (cy)] )‘31 1z, — C1|e171

min{[z; — fr1=m2(cy)], [z — 1|} ) [from(er) — col=T

(D™ (f(en))]-

That is,
|Dfno—n1 (xl)‘é - K.
[Dfro=m(f(er))] —

20 = 707 )| M o) = o]

. 19
[min (Jz — fri=m2(co)|, o1 — ea|)] 7 an — e[ 1
If z; is as in case (AP) then this becomes
D@l |l = e ) — el
> K- (20)
[Dfro=m(f(e))| — |71 — e ’
whereas if z; is as in case (NAP) then this becomes
(2 xo — [T (er) | - ST (er) — ol T
DFm ) L= ) ) —al
[Dfro=m(f(er))] — e e (O e
This completes the proof of the lemma 3.1. |

Proof of Assertion 1 of Proposition 3.1: The proof of this part is for-
mal, and is the same for the real and the complex case. For D f™ "2(x)
the analogous statement to (13) holds, replacing xg,co,c1,n9 — n1,21 by
xq,C1,Co, N1 — Mg, To. Let us now analyse what we can say about

Ao Ay

[Df™=™ (z2)| = [Df"7™ (21)] - [DF™ 7™ (22)| = K
B, B,

by considering the term A;/B;. We distinguish several cases.

If 1 in case (AP) and ¢ > /1, then

A n1—ns _ 27£1
By |21 — 1|0
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Also,
x1 in case (AP) and ¢ < ¢ implies
é _ |f’n1—n2 (02) _ xl‘IZ—el

B1 - ‘ml_cl|ﬁf€1

> [dist (z;, Crit)]4 . (23)

Moreover,
x1 in case (NAP) implies

Ay - 2 (eg) |51 - | fm2 () — et H

— > 94, 24

BT @l Jm—al 2 24

Because of these inequalities and similar ones for Ay /By, for k =2,...,s—1,
. . Vi AZ jil

Df ()l > 2 T K- [DF 0 (f (o) (25)
J k=i

where K := K - Ay/By are bounded below in the way described in the
statement of Assertion 1 of the proposition. (So for all but a finite number,
K > K2'7%is uniformly bounded away from 0.) Note that we have not used
the assumption about the growth rate of derivatives or any assumption on x
to obtain this inequality. O

Proof of Assertion 2 of Proposition 3.1: We need so show that (10),
(11) or (12) holds. Take p > 0 so small that K - [Df*(f(c))| > 2 for each
k > v(p) and each ¢ € Crit. Assume that the first alternative (10) fails,
ie., assume K - |Dfm ™+1(f(¢iy1))| < 2. Then n; — nipy < v(p). Hence
le; — [ ™+ (¢;11)| > p and so either |z; — f™ "+ (¢;41)| > p/2 or |z, — ;| >
p/2.

If |xz - fni_nH_l (Ci+1)| 2 p/2’ then’ for any .7 > ia fni_nj (Tni—nj (xj))
contains a p/2-neighbourhood of z;. Let ¢ denote the neighbourhood of z;
for which f™~"i(t) is equal to a p/4-neighbourhood of x;. Then using the
Koebe Lemma 2.1,

(p/4) oA

|Df™ ™ (x)| > KL —~—— > KL

diam(t)¢ — " diam(¢)¢” (26)

Let ty be the components of ¢ \ {z;}. Since there is absolute Koebe space
of order p/4 around f™~"(t), the quotient |t,|/t_| is universally bounded
from below and above. Because t is contained in (c;, f™ "+ (cj11)),

diam(t) < C - min(|z; — ¢;|, [z; — f¥7 " (¢j41))),

17



for a universal constant C. Hence, since ¢; > 1, the right hand side of (26) is
much larger than A;/B; when ¢ is small. Since f has no wandering intervals, ¢
is small when n;—n; is large. It follows that there exists a function E,: N — R
with limy_,, E/,(k) = oo such that

. L S A;
@i — f 7 (cip1)| > p/2 implies |Df"7" (25) [ > B o (ni — ”j)g (27)
J

and so (12) holds.

So we may assume that |¢; — x;| > p/2 and |f™ "+ (c41) — 2] < p/2.
Therefore there exists p' = p'(p) such that |z;41 — c;ip1| < p' and p' — 0 as
p— 0.

Let us first consider the case that |f™+17"+2(¢; 0) — xi41| > p' (so in
particular ;41 is in case (AP)). Then we can repeat the previous argument

(replacing p/2 by p') and obtain that |D fm+1=" (z;)|* > El) (n; 1 — nj)A—é?l,

for some appropriate function E?. Since x;;; is in case (AP), we find by (22)
and Lemma 3.1 that |Df™ "+ (z,,1)|* > KA;/B;i;1 > K because we have
assumed that n;,1 > 7(z) and so £;;1 < ¢. Combined, this gives

|17 (¢;h0) — g1 | > p' implies

s A
|Dfn' J(.’Cj)|e > K- EIIJI' (nz — ’I"LJ)E (28)
J

and so again (12) holds.

The final case is when |f™+17"+2(¢; ) — ;41| < p', which implies that
| frati—mitz (e 0) — ¢i11| < 2p. Therefore n; 1 — nie > v(2p'), and if p is
sufficiently small

4
[ D"+ (feivn))| > ﬁ|Df7”_""+1(Jt(cz'+1))|_1

This gives (11), and completes the proof of Assertion 1 of Proposition 3.1. O
Proof of Assertions 3-5 of Proposition 3.1: Let us first prove Assertion
3. Take og > 0 so that for each critical point ¢ ¢ Crit, dist(w(c), J(f)) > oo.
Moreover, let 0 < 0y < 0(, < 1 be so that

inf{|Df"(f(c))|;n > 1,c € Crit} - o4 > Koy, (29)
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and so that n;_1 — n; > v(oh"/**) implies that |Dfr-1-mi(f(c;))| > K4bmox,
Here K = KL - M is a common Koebe/non-flatness constant from the two
inequalities below.

Assume by contradiction that Assertion 3 does not hold, and that there
exists IV such that for arbitrarily large ny = n and all critical times n; > N,
before ng, both 7,,; < 09 and n; is of type (NAP). Let us first show that this
implies that |z; — ¢;| > of whenever n; > Ny and 7 > 0. Indeed, assume by
contradiction that |x; —¢;| < op. We apply the One-sided Koebe Lemma 2.2
to the appropriate branch of f~("-1=%~1) that maps a maximal neighbour-
hood of z;_; diffeomorphically onto a neighbourhood of f(x;). Using the
non-flatness of f at x; and since n;_; is of type (NAP), we get

0o

| D fri-r=mi=t (f(e)’

0p" < M d(f(ci), f(a) < K - (30)
contradicting (29).

Now take a large integer n = ng and critical times n;, < n;, before ny
so that nj, — nj, is large. Let 0,,; be the maximum of the distances between
the points f"(z) = x;, f% "+ (c;4+1) and ¢;. By the One-sided Koebe
Lemma 2.2, there exists a universal constant K L such that

1 “ i1 — M ()]
—|z; — " < KL - 31
TR D (e oy
and this can be bounded from above by
KL |[@im = [ ()| () — ¢t
| D fri-v=mi=t(f (i) [Df(frimr=mi(c;))|
- KIL- i1 — f""’ﬁ”"(cz’)l' |_fn""17ni (ci) = cioa|fi1 !
| D fri=i=mi((f (ci)|
Hence, for any 0 < i < sand K = KL - M,
o i1 (e L e, — fRi-1— 06 (6 ) [l
7 — | < S ()l -Jeis = f (<)l (32)

| Dfri-imi(f(e))l/ K

Next assume that oo and hence o/, is so small that n;_; —n; > v(o}"/™=)
implies that the denominator |D f%-1""(f(¢;))|/K > 4%=a=. Then, provided
lz; — ¢;|% < of), and since z; is in case (NAP), (32) gives

Oy < 2d(24,¢5) < Ny - ol /b (33)
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where \; < 1/2 and \; < &(n; —n;_1) is a function which tends to zero when
ni_1 — n; tends to infinity. If on the other hand |z; — ¢;|% > o}, then since
no critical time n;, Ny < n; < ng is ogp-large, we get |z;_1 — f"17"(¢;)| =
Tnyy < 0. S0 (32) would give |Df™-1="(f(c;))|- M -0} < KL -0y - 017",
contradicting (29). So (33) holds in all cases and therefore

J2 0, /¢
Tn(jr) < ( H Aj) 'On](%mh'
J=n+1

But since we may assume that o0y,;,) is some given positive number (with
n(j2) > Ny), we get a contradiction by choosing n(j;) — n(j2) arbitrarily
large.

The same argument also proves Assertion 5. Indeed assume that n = ng
is the smallest time with f™(z) € N(Crit) and assume by contradiction that
zo = f™(z) is in case (NAP). Inequality (32) implies that

[Dfre™ (f(c1))]

A < g = o ) feo = 0 ()

|$1 _CI|E1 .

and since xg is assumed to be in case (NAP) this is at most
2£0_1‘.’E0 - C()|£0.

Either |z, —c;[% < o, and then (provided o}, is small) |z, — ;% < |z — o,
contradicting that zy is the first entry in N (Crit). Or |z; — ¢1|% > o}, but
then |z —co| > 0p; s0 if we fix € < o§™>, then z, does not belong to N,(Crit).

Assertion 4 of Proposition 3.1 follows from the formulas for A. O

3.2 The proofs of Theorems 1.2, 1.3 and Corollary 1.3
in the real case

Before proving Theorem 1.2, let us make a remark on the role of the A in
formula (5). It is this part that assures that limsup, Df"(x) = oo for all
x € J; that are not (pre)critical. The difficulty in proving it is not in very
close visits of z to Crit, because then the corresponding factor Kj-|D f™ k1|
(from Proposition 3.1) is large, but rather in visits that are intermediately
close. In this case, the time ny — ng, 1 in the factors Ky - | D f™ "+1| may be
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too small to guarantee expansion. To remedy this, we need to string several
intermediate visits together with a single distortion constant. Assertion 2 in
Proposition 3.1 is essential here.

Proof of Theorem 1.2 in the real case: Let us first show that there
are arbitrarily large n = ngy such that the corresponding Ay is uniformly
bounded away from 0. By Assertion 3 of Proposition 3.1, there are infinitely
many times n which are of case (AP) or for which f™(7,) contains a og-
neighbourhood of f™(z). If the latter holds, taking ny = n arbitrarily large,
Assertion 4 of Proposition 3.1 gives that Ay > o¢™>~ > 0 independently of
n. If the former holds, then ¢ = £(x) is defined to be the largest order of a
critical point which which is involved with infinitely many critical times of
type (AP). So we can take ng arbitrarily large such that ¢, = £. This implies
again by Assertion 4 of Proposition 3.1 that Ay = 1.

So assume that n = nyq is picked as above. In order to prove Theorem 1.2
we shall use (9) in a suitable way. The reason this can be done is because
according to (22)-(25) (from the first part of the proof of Proposition 3.1),
A; > Bj unless ¢; > ¢ and z; is case (AP). So if n; > 7(x) then in view of the
definitions of Crit'(z) and ¢(z) above the statement of Proposition 3.1, we
always have A; > B;. Moreover, in Assertion 1 of Proposition 3.1, K; > K
whenever n; > 7(z). If n; is of type (AP) and n; < 7(z), then we have to
include a factor dist(f™ (), Crit)%~* to estimate the factor 4;/B;, but this
happens only finitely often. These factors are include in the factor K'(z).

The term B in (9) is treated as follows: since ng is of type (AP) by
“default”, we have in the worst case that B, = |z — ¢,|*%. This constitutes
a single large denominator (if ¢; > ¢), which is represented in the first factor
K'(z).

Let us now regroup the critical times n; as suggested by Assertion 2 of
Proposition 3.1. First we define A > 1 as follows. Take Nj such that E(k) > 2
for each £ > Ny. Here E is the function from Proposition 3.1 (which does
not depend on z). So A := 2'/M > 1 does not depend on z. Next define

1 if K -|Dfm™(f(c1))] = 2,
2 if K2 |Dfre=m(f(c1))l

D (fe2)] = 4,
min{j;ng —n; > Ny} otherwise.
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By Assertion 2 of Proposition 3.1 and the choice of Ny, we have k£ < Ny and
| D o™ (a)[“7) > 240/ By

and by Assertion 1 of Proposition 3.1,

B A k—1
|Dfn° nk(xk)|ﬁ(w) > gz H K - Dnrni+1(ci+1)'
=0

Now we need the following Claim: Assume that € € (0,1), ay,...,ar > €
and A > max{2, 1%, a;}. Then A > [I¥ max{2'/* e*a;/2}.

Proof of the Claim: We may assume that a; > ... > a; and that j < k
is maximal so that €*a;/2 > 2'/k. If there is no such j then the maximum
above is always equal to 2'/% and the required inequality reduces to A > 2.
Otherwise we have A > ay---ax > ar---a; - €9 > (a1 /2) - (¥a;/2) -
2(k=0)/k = T1¥_ max(2'/*, ¢ka;/2) (where the last equality holds by the choice
of j), completing the proof of the claim.

Now let A = |Dfro=m(g,;)[4) . ﬁ—’g. By (24), (25) and the choice of k
we have that A > 2 and also that A > [[*= a; where q; = min{ K, 2! 4=} .
|D fmi~"i+1(¢;41)|. Applying the claim gives

no—mn T A A s %
| D fro=me (g,)|4®) = AFZ > FZ E[O max (A, K - Do, n.,(ci1))

where K = min{K, 2" ®} . ¢/2 is a new universal constant and \ is as
above. Repeat this construction for a new k' > k, etc., as long as ng1 > 7(x).
Since 7(x) is bounded, we exhaust all but a finite number of critical times.
Combining all this, we obtain

IDf" ()| > K'(z) - 22 [ max (X, K - Dpn,. (cis1)) -

where the K'(z) takes care of the estimates before time 7(z). Rename K
back to K and Theorem 1.2 is proved. O

Proof of Theorem 1.3 in the real case: From Assertion 4. of Proposi-
tion 3.1 and the definition of n, it follows that f"(z) is in case (AP). From
Assertion 3 of Proposition 3.1 and the assumption that all critical points have
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the same order, it follows that Ay = 1. Moreover, B; is bounded from above.
Hence (6) follows from Assertion 1 of Proposition 3.1. Since by assumption
all critical points have the same order, K; > K for all £ and so Theorem 1.3
follows. o

Proof of Corollary 1.3: From Proposition 3.1, with £ = /.., we get

AO s—1
B. H K- an*"k+1(ck+1)'

S =0

| Df" ()] >

Using (10)-(12) and the argument in the proof of Theorem 1.2, we obtain

A
[Df"(z)|= > C - go A% (34)

where C' is a constant that is only needed if n < mg with mg as in the
proof of Theorem 1.2. Due to Lemma 2.6, there exists § = d(o) such that
|f™(T)| > ¢ for all n. It follows that there exists L = L(co) such that two
subsequent critical times are no more than L apart.

We have B, = |z — c,|=—% < 1 and, assuming the worst case that n
is (NAP), Ag > |zo — f0 ™ (c;)|%m==—1. Since f™"(c;) is the end-point
of f™(T,) closest to zj, we can use the One-sided Koebe Lemma and non-
flatness to obtain

2o — [ " (e)| = %|Df"°ml(f(01))| | f(z1) = fe)]
= KLl. M|Df”°_m_1(f(01))| o —eal® (35)
2 C'0 o.fmax,

for some Cy > 0 independent of z. Using this estimate, inequality (34)
becomes

|Dfn(l‘)| Z Co_émax—l)\s/ﬁmax 2 Co_émax—l)\n/LZmax

for the appropriate C' = C(Cp). This proves the corollary.
Note that if f satisfies (CE), then it is not hard to prove that A can be
chosen independently from o. O
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4 The Complex Case

In this section we assume that f: C — C is a rational map. Let d be spherical
metric on C, so Lemma 2.5 holds. Also assume that there exists a sequence
b, > 0 such that

exp(D_b,) <2 and b, - |Df*(f(c))] = oo (36)

n>0

for each ¢ € Crit. The reason that we need a stronger assumption than the
corresponding assumption (2) in the real case is that the One-sided Koebe
Lemma 2.2 does not hold in the complex case.

Let again N (Crit) be defined as in (1). Take a point x such that f*(z) ¢
Crit for all £ > 0, fix a large integer n, write no = n and let zy = f"(z). Our
aim is to estimate D f"(x) or at least D f™(z) for some large m < n. To do
this, we replace the maximal intervals of monotonicity 7,,(x) and f"(T,(z))
from the previous section by suitable disks (shrinking neighbourhoods in
the terminology of [21]) using the sequence b, from (36). For m < n, let
Sm > 0 be maximal so that the inverse branch of f~(*=™ from B(z, s,)
to a neighbourhood of f™(z) is univalent. Maximality of s,, means that for
some k =1,2,...,n —m the component W, of f~%(B(zy, s,,)) containing
™ *(z) contains a critical point ¢ in its boundary, and s, = d(zg, f*(c)). Of
course,

Sp > Sp_1 > ... > Sp-

Let 7y < g1 < ... < 7y := n be the collection of integers 71; € {0,...,n} for
which s, < s7,41 when j > 0 and define 74, = 0. The set W, 41 contains
a critical value of f in its interior, whereas f(W5,) C Wy, 41 contains this
critical value only in its boundary.

Consider all the integers n; <n, j =1,...,¢,7+ 1, as above such that

Siii_q

oz e (b)) (37)
Let n; < n be the smallest such integer f; (i.e. with the largest index j)
and define r,, = s,,. By construction f® ™ maps a neighbourhood W of
f™(x) univalently onto B,, := B(xg,7y,). Moreover, W contains a critical
point ¢; in its boundary, and f(W) is contained in a set W' which is mapped
univalently by " "1~! onto the disc B(zg,exp(bp_n,) * Tny)- Note that it is
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W
W, 3 Bl’lan Fae)

Figure 2: Shrinking neighbourhoods and their pre-images.

possible that c¢; is a critical point which is not in Crit, i.e., is in the imme-
diate basin of a hyperbolic periodic attractor. Since x € J(f), in that case
W intersects the boundary of this immediate basin and so we can replace ¢;
by a repelling periodic point in this boundary. One can choose this repelling
periodic point so that its period is comparable to the period of the periodic
attractor, i.e. at most some number C(f) times the period of the attractor
(one can choose C so that it does not depend on z.) Throughout the remain-
der of the construction below we will use the same modification, if required.
If ¢y is a critical point, then let /; be its order and if it is a repelling periodic
orbit, let ¢; = 1.

Claim 1: sy > s,,/2 = 7,,/2 and the branch of f~" mapping B(xg, rn,)
to a neighbourhood of z is univalent on B(xg, rp,/2).

Indeed, by minimality of n; = f; one has sz, /ss;,, < exp(bp—s,,,), for
all i > j. But since sy = sz,,,, this implies that s,,/s0 = sz, /83,,, <
exp(Xb;) < 2. So sp > S, /2 = 15,/2 and since by definition f~™ is univalent
on B(xzg, sg) the claim follows.

We say that n; is a critical time before time n = ng. Now let 0 = n,; <
ns—1 < ...<ny <ng=n where for j = 0,...,s the integer n; is the critical
time before n;_;. For each z; := f" (), let B,, = B(x;,Ty,;) be the disc
defined above. By construction we have the following properties:

1. f% ™+ maps a neighbourhood W,  , of fm+!(z) univalently onto

j+1
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fnz -n;

Figure 3: Construction of critical times and the discs By, = B(x;,7y;)-

B, = B(f"i(x),rnj);

2. Whp,,, contains a critical point c¢;y; in its boundary. As mentioned
above, we can assume that c;;; either belongs Crit or can be replaced
by a repelling periodic point in the boundary of the immediate basin

of a hyperbolic periodic attractor).

3. f(Wy,,,) is contained in a set W' which is mapped univalently by

fnjanl,l onto the disc B(fnj (x), exp(bnj—nj+1) 'Tnj)Q

Note that there are some differences with the real case: B, , need not be con-
tained in W,,,, C f~("="+1)(B, ), whereas in the real case "+ (T,,,,) C
frit1(Ty;). Moreover, B, need not contain a critical point, whereas in the
real case f"(1y;) always contains a critical point (except possibly for ng).
However, neither of these special properties which only hold in the real case,
play an essential role in the proofs as we will show below. The only crucial dif-
ference is that (in the complex case), the critical times ny, < n,_; < ... < mny
are only defined once the integer ny = n is given.

We say that n; is of type

(AP) (almost pre-critical) if 7, (v) > dist(z;, Crit),
(NAP) (not almost pre-critical) if r,;(x) < dist(z;, Crit).

Types (NAP) and (AP) represent the “sliding” and “transfer” case in [18].
Let Crit'(z) be the set of critical points for which there are infinitely many
integers n; of type (AP), and let 7(z) < oo be so that n < 7(z) whenever n is
a (AP) time corresponding to a critical point not in Crit’(x). In Assertion 3 of
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Proposition 4.1 below, we shall show that there exists oy > 0 independently
of z such that Crit'(z) # () or there are infinitely many oo-big times n. Let

. | max{¥;;¢; € Crit'(z)} if Crit'(z) # 0,
£=tz) = { 1 if Crit! () = 0. (38)
Lemma 4.1 (Transfer Ezpansion in the Complex Case)
| D fro™ (21) | Ay
> K -byyny = 39
Do (flen))] = B, (39)

where ¢; and x1 are above and Ay, By are as in Lemma 3.1 (and |a — b| is
taken to be the spherical distance between a and b).

Proof: The proof of Lemma 4.1 goes exactly as that of Lemma 3.1. Note
that we only need to prove the analogue of Lemma 3.2, since this is the only
part of proof of Lemma 3.1 which is not ‘algebraic’. So we merely need to
prove the analogues of inequalities (14)-(16). Let us first consider (14). Let
g be the inverse branch of f~™~1: f(W, ) — B,,. Because of properties
1-3 just above this lemma, we can apply the lower bound in the first part of
Lemma 2.5 and obtain

[Dg (o) < KL
[Dg(fro=1(e1))| ~ bng—ni

This gives that the constant KL in (14) should be replaced by by,—n, - KL.

Next we show that the constant KL in (15) is still universal (so it does
not depend on ny and n;). Indeed, let B], be the disc centered at z, with
half the radius of that of B,, and g the inverse branch from above. By the
second statement in Lemma 2.5,

(40)

diam(g(B;,))
r/2 ’

where K is universal, and 7 is the radius of B,,. Moreover, the boundary
of g(B,,) lies between two discs of comparable radii. Since g(B,,) contains
f(c1) in its boundary, since g(B,, ) C g(B,,), and since r = d(zo, f*~™ (c1)),
it follows that diam(g(B},)) < C - d(f(x1), f(c1)) for a universal constant C,
and therefore that

|Dg(o)| < K -

d(f(xl)af(cl))
d(xo, fro=™ (1))

[Dg(zo)| < K -
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It follows that (15) also holds in the complex case for a universal Koebe
constant KL.

Let us now prove the analogue (16). Let ¢ be the inverse branch of
from: Wy, — By, and B, be the disc from above. Note that W, contains
c; in its boundary. Again we have by Lemma 2.5,

diam(3(B,,))

/2 (41)

By Claim 1, f"7"2(c,) is outside B;, . This implies that f™17"2(c;) is outside
§(B,,). But this, (41) and the definition of » imply that

d(wy, [ (c2))
d(zo, fro="1(c1))

Again using that §(B, ) is almost round and contained in the set §(B,,) =
W,, which contains ¢ in its boundary also

[Dg(0)| < K -

d(.Tl, Cl)
(o, fro™ (1))’

Combined with Dg(xo) = [D "™ (21)]~" this shows that (16) holds with 3
replaced by some universal constant. From these three estimates Lemma 4.1
follows. Note that only in one of the ¢ factors of |Df™ "1 (x;)|® one uses
(14), and so the spoiling constant b,,_,, appears only once. O

Do) < K -~

Proposition 4.1 Given f such that (3) holds, there exist op > 0, €y > 0,
K > 0 and a function E:N — R with E(k) — 0o as k — oo such that
for each x € Jp and n € N, for which z,..., f* Y(x) ¢ Crit the following
properties hold.

1. Let 0 = ng, < ... < ng be the critical times before time ng = n. Let
¢ = £(x) and ¢; be as above and let A;, B; be as in Proposition 3.1.
Then for any 0 <i < j <s,

A -
|Dfnrnj (l'j)‘e > H (Kk : bnk—nk+1 : |Dfnk nk+1(f(ck+1))‘) ?

Bj k=i
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where Ko = K and for each k=1,...,s—1,

Ky > ny, is of type (AP),

K - [dist(f™ (x), Crit)]%*=¢ if both £y > ¢ and
K otherwise.

By definition of Crit'(z) the former happens only finitely (uniformly in
n) often: it can only happen when ny < 7(x).

2. If niy1 > 7(z) then one of the following holds
K- bnrﬂiﬂ ) |Dfnrm+1 (f(cZ+1))| > 2, (42)

K- bm—ni+1 ’ |Dfni_ni+1 (.f(C’H-l))‘ (43)
K- bm+1—m+2 ' |Dfni+1_ni+2 (f(01+2))| > 4,

or (for any j > i)

(D™ (2)) ] > E(ng = ny) - (44)

S|

3. There exist arbitrarily large times n = ng that are of type (AP) or for
which the radius T, > 0o (S0 1 is a 0g-big time).

4. If f(Wy) contains a og-neighbourhood of f™(z) = xo, then Ay > og .
If f*(z) is in case (AP) and moreover the critical point nearest to f™(x)
has order £(x) = £, then Ay = 1.

5. If e € (0,¢0) and n > 0 is the smallest time so that f™(x) € N(Crit),
then f™(x) is in case (AP).

Proof of Assertion 1-2 of Proposition 4.1: The proof of Assertion
1 of this proposition is identical to the proof of Proposition 3.1. Let us
now prove Assertion 2. The main difference with the real case is that
now B, does not necessarily contain W,,. Choose p > 0 so that K - b -
IDf*(f(c))] > 2 for all k& > v(p) and ¢ € Crit. (We may assume that
K € (0,1).) Assume that Kby, n,,,-|Df" ™+ (f(c))| < 2. Then n;—n;41 <
v(p) and so d(c;, fr ™+ (c;41)) > p. Hence either d(z;, " "+ (¢;11)) >
p/2 or d(z;,¢;) > p/2. If d(z;, f ™+ (ciy1)) > p/2, then by Claim 1,
[ (Wh;—n,;(7;)) contains a p/4-neighbourhood of z; for all j > . Hence,
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if we denote by V' the neighbourhood of z; for which f"" (V) is the p/16-
neighbourhood of x;, then by Koebe D f™~™ has universally bounded dis-
tortion on V' and so

£ A
|Df”i_”f(xj)|£2KL-m>KL’ d

Gam(V) = 5 Gamy W)

Since again by the Koebe Lemma 2.5, the diameter of V' is at most some

universal constant times d(z;, f "+!(c;;1)) and since V' does not contain

¢j, and since ¢; > 1, the right hand side of (45) is much larger than A;/B;

when the diameter of V' is small. Since 2 € J;, and f™ " |V is univalent, the

set V' has small diameter when n; — n; is large. It follows that there exists a

function E:N — R with limy_, £, (k) = oo such that

s . . . Y Az

d(z;, f* " (ci1)) 2 p/2 fmplies [D " (25) [ 2> Eppa(ni — 1) 5. (46)
J

The remainder of the proof goes verbatim as in the real case, except of

course that we need to add the terms by, ,. This proves Assertion 2 of

Proposition 4.1. O

Proof of Assertions 3-5 of Proposition 4.1: The proof of Assertion 3 is
only slightly different from the real case. In the first formula (29) we need
to add the factor b,. To prove the analogue of (30), instead of the One-sided
Koebe Lemma, we apply the second statement of the Koebe Lemma 2.5 to
the branch of f~("-1=%~1 that maps a (1-+bp,_,_,,)-scaled neighbourhood of
B,,, , univalently onto a neighbourhood of f(W,,). We get (for K = KL-M)

i

00

by - [ Dfrmm L (f ()]

again contradicting (29). Next, instead of inequality (31) we get

oy < M d(f(ci), f(z:) < K - (47)

K d(z; 1, fM17" ()
bngy—ni |Dfrim7m 1 (f (c)]
Indeed, consider inverse branch g of f"-1="~! mapping z; to f(z;). This

branch is univalent on a (1 + b,,_, ,,)-scaled neighbourhood of the ball cen-
tered at z; with z := f%-1"""1(f(¢;)) on its boundary. Hence, by the second

d(zi, c;)" <

30



statement of the Koebe Lemma 2.5,

B 1 bay_s—n;  d(g(zi1),9(2))
PO = Dpemg@n 2 s s
bnl_lfni . d(.’L‘i,CZ')

3 d(wi1, fri-1=mi(c;))

Therefore equation (32) becomes

d(@i—1, [ () - d(f " (), cimn) 5
bn;_y—n; - |Dfmmi(f ()] .

Because we have assumed (3), we obtain (33) exactly as before and the
remainder of the proof of Assertion 2 still holds verbatim. The proof of
Assertion 4 of Proposition 4.1 is trivial (as before). For the proof of Assertion
5, we use (48) instead of (32) and the rest goes through word for word. O

Proof of Theorems 1.2 and 1.3 in the complex case: The proofs of
these propositions and lemma go exactly as in the real case, except that one
has to use Proposition 4.1. O

Proof of Corollary 1.3 in the complex case: This is basically the same
as in the real case, except that we cannot use the One-sided Koebe Lemma as
in (35). Instead, f(WW,,) is contained in a disk W’ that is mapped univalently
onto B(xg, 7y, - €xp(bny_n,)). It follows again from the second statement in
Lemma 2.5 that

2o = [T ()] 2 P, DT (f ()] - d(f (1), flen)

KL
bny—n o
> ﬁ DoY) - d(@, )
> O Jémax,
for some Cj > 0. This gives the missing estimate. 0

5 Lebesgue measure of Julia sets

In this section we prove that if f satisfies (3), then the Julia set J; has either
Lebesgue measure m(J;) = 0 or J is the Riemann sphere. The real analogue
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is that for m-a.e. point z, w(x) is either a cycles of intervals, or a periodic
orbit, see Corollary 5.2. We will concentrate on the complex setting, since
there the result is most interesting, and occasionally point out the differences
in the arguments for the real setting.

The main tool to prove this is a random walk argument, but before ex-
plaining this, and stating the precise result, let us give some preliminary
lemmas. The first is easy and in fact well-known; we include it for complete-
ness.

Lemma 5.1 Let J' = {z € Js;orb(z) N Crit # 0}. Then m(J;\ J') = 0.

Proof: Let X be the set of points  in J; such that dist(orb(z), Crit) >
1/k. By Proposition 4.1, x € X has infinitely many times that are either
oo-big or of type (AP). But as x € Xj, the (AP) times are also (1/k)-
big. Take o = min{oy,1/k}. Therefore each z € X has arbitrarily small
neighbourhoods U and n € N such that f” maps U onto B(f"(z),c/2) with
distortion depending only on ¢. A definite proportion of B(f"(z),0/2) is
mapped into a 1/k-neighbourhood of Crit and is therefore disjoint from Xj.
It follows that X} cannot have any density points. Since J' = J; \ (UpXy),
the lemma follows. a

Hence, the orbit of Lebesgue almost every x € J; accumulates on Crit.
The next lemma shows that, if z is close to Crit, then for the first “closer”
approach f™(zx) to Crit, there is a neighbourhood U > z which maps uni-
valently to a neighbourhood, whose diameter is “larger” than the original
distant dist(Crit,x). Here “closer” and “larger” are meant in a sense that
takes the critical orders into account. Recall that in the real case, the Julia
set, is defined to be set of points that do not converge to a stable or neutral
periodic orbit. Recall also that N.(c) = B(c; e/49) and N, = U,eCrit Ne(c).

Lemma 5.2 Suppose f is a rational map satisfying (3), resp. (2). Then for
all R > 1 there exists § such that for all x ¢ Crit the following properties
hold: Write 6(z) = min{é, d(x, cy)*®)}, where ¢, is the critical point closest
to x. If

m :=m(z) := min{i > 0; f’(z) € Nyz} < oo, (49)

then there exist a neighbourhood U > x such that

1. fm:U — f™U) is univalent resp. diffeomorphic;
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2. diam(U) < 1d(co, z);

1

2

3. f™(U) = B(c, R6(z)4c0)/¥e1) where ¢, is the critical point closest to
fm(z).

We give the proof for the complex version; the real version is analogous.

Proof of Lemma 5.2: Fix R > 1. Let K be the constant from (48). By
(3), there exists iy such that b;|Df*(f(c))|/K > R?*= for all ¢ € Crit and
i > ip. Take & so small that d(c, fi(c)) > R?6'/%¢) for all 0 < 4 < 4y and
¢, c € Crit.

Next, let z be arbitrary, and assume that m in (49) is finite. By Assertion
4 of Proposition 4.1, m is critical of type (AP). Let m' be the last critical
time of x before m. By construction

|lf™(x) — 61‘2(01) <z — CO‘Z(C()) < ‘fm’ (z) — c,|z(c,),

where ¢;, ¢ and ¢ are the critical points closest to f™(x), f™ (x) resp. .
By (48) and the fact that m is of type (AP) we have

) et b DI )
< (@) — el e — ()| et
< e — ().

Either m — m' > iy, and then we find
v = Jm D > Ry = 2],
orm—m' < i, and
ey — [ ()M > R,

In either case |c;— f™ ™ (/)| > R25(z)*“), and we can find neighbourhoods
T D U > z such that its univalent images f™(7") D f™(U) are round disks
with radii R26(x)/%) > R§(x)Y4). The distortion of f™ : U — f™(U)
depends only on R, and for R large, U is an almost round disk in 7'. Since
¢ ¢ T, diam(U) is small compared to d(z,c). The three statements follow
directly from this. O
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Suppose that m(Jg) > 0 and X C Jf is a totally invariant set which
supports an ergodic component mg of Lebesgue measure m. To be precise,
7HX) = X, mo(X) = 1 and m;(X) for all other ergodic components.
Assume further that x € J' is a density point of X. Then by applying
Lemma 5.2 repeatedly, one can show that at least one critical point in J; is
also a density point of X. (Furthermore, if any critical point ¢ belongs to
orb(y) for a set of points y € X of positive measure, then c is also a density
point of X.) This is in a nutshell the argument for the following proposition.

Proposition 5.1 Suppose f satisfies (2) or (8), then Lebesgue measure m
has at most # Crit ergodic components.

In the real case, finiteness of ergodic components was shown by Blokh &
Lyubich without any summability condition, see [1, 2, 13, 14]. The number
of ergodic components is sharp, also if #Crit > 1. More precisely, for every
modality there is a one-dimensional map with exactly #Crit Lebesgue ergodic
components.

In the complex case, the first proof was given by Przytycki, [21, Theorem
BJ, and his proof applies to a-conformal measures. Recall that a probability
measure m, is a-conformal if m,(f(U)) = [, |Df(x)|*dm, whenever U is
measurable and f : U — f(U) is one-to-one. By Sullivan’s result [26], J; al-
ways supports a a-conformal probability measure for some 0 < o < 2. Prado
[20] proved (not using summability) that a non-atomic a-conformal m,, is er-
godic for certain unicritical polynomials on the complex plane. Graczyk and
Smirnov [9, Theorem 2| show ergodicity provided the rational map satisfies
a slightly stronger summability condition. Whereas the non-ergodicity result
of [25] depends on the existence of Julia sets J # C with positive Lebesgue
measure, no non-ergodic a-conformal non-atomic measures are known.

Let us now start turn to the major result of this section.

Theorem 5.1 If f satisfies the expansion assumption (3) resp. (2), then
there exists e > 0 and K > 1 such that for m-a.e. x € Jy there exists t; — 00
and neighbourhoods U;(x) of x such that

f4 : Ui(z) = B(c, /49), (50)

is univalent, resp. diffeomorphic, and has distortion bounded by K. Here
c € Crit is the critical point closest to f(x).

34



Points z that have arbitrarily small neighbourhoods that map univalently
to large scale are sometimes called conical points. Hence Theorem 5.1 says
that m-a.e. point is conical.

Whereas Lemma 5.1 and Proposition 5.1 can be extended to non-atomic
a-conformal measures, we have met with serious difficulties extending The-
orem 5.1 in this way. One of the reasons is the estimate of the m,-measure
of disks D of radius p. Whereas m, (D) < Kyp® for some uniform constant
K, no uniform constant K; > 0 such that m, (D) > K;p® may be expected.
This uniform lower bound obviously exists for Lebesgue measure.

In [9, Theorem 2 and 3] a certain summability condition is used to show
that J; supports an a-conformal measure m,, and mqy-a.e. x € Jy is conical
(x even reaches large scale with, in a sense, positive frequency).

Proof of Theorem 5.1: Assume that m(J;) > 0. Lemma 5.2 shows that if
x is close to Crit, and f™(z) is even closer, then there exists a neighbourhood
U > z such that the majority of the points of U move further away from
Crit under m iterates. We will turn this phenomenon into a random walk
argument.

Let us first fix some constants and notation. Lemma 2.5 implies that if
V C U are topological disks, and g maps them univalently onto concentric
round disks of radii 1 < R, then g|V has distortion K(R) < (£)*. Take
R > 41 50 large that K(v/R) < 1.1 and let p = R™Y1° € (0,1/4). Let 6 be
as in Lemma 5.2 and define

Ni(c) := B(c; 649 p) and N; = U, cCritVi(o),

and also A; = N; \ N;;1. By convention set also N_; = C.

As before, let X be a totally invariant set supporting an ergodic com-
ponent. By Proposition 5.1, there are only finitely many disjoint sets X
of this type, X contains at least one critical point ¢ in its closure, and if
¢ € orb(y) for typical points in X, then ¢ is a density point of X. We can
assume that ¢ is so small that for each such critical point ¢ and each 7 > 0,

The collections annuli A; are considered as states of a random walk. We
write

x(z) =k if z € Ay.
If z € J'\ Crit, then

m(z) := min{i > 0; x(f'(z)) > x(z)} < c0.
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Take x € J' close to Crit, say © € Ag(c) with £ > 30 and let ¢, be the
critical point closest to f™® (z). By Lemma 5.2, there exist neighbourhoods
T(x) D U(z) D V(x) > x such that f™® maps T(z) univalently onto
Ni_30(¢m), U(x) univalently onto Ny _99(cm), and V (z) onto Ny_19(c). Since
f™@)|V(x) has distortion bounded by 1.1, we see that indeed most points
in U(z) move to a lower state than their original state. More precisely and
strongly:

Lemma 5.3 Suppose f satisfies (2) or (3). Let X support an ergodic com-
ponent of m as above. If f' maps neighbourhoods V. C U univalently onto
V(z) C U(x) for some x € X, then

1
B, (xo @+ | XAV ::______T/ m@)+ (y)d k3,30
(xof (XOWV) = X A1) Jey X W)dm < max{k—3, 30},
and
1
B, (yo ™+ | XAU ;:_______/ M@+ (y)dm < max{k—3,30}.
(xof ‘ ) m(X N 0) XnUXOf (y)dm < max{ ,30}

Proof of Lemma 5.3: This is a straightforward computation. The distor-
tion of f**™)|V depends only on R and hence is less than 1.1. First assume
that x(x) = k for £ > 30, so X almost completely fills the annuli A; for
1> k —10. Then

92 . m({y € X NV; @+ (y) € Ay_1044})
31— < m(XNV)

<

(1—php'",

NNV

A

where d = 2 = dim(C) and the factors % and % bound the distortion effects.
Thus

o 3 »
En(xo fMXnVv) < k+§(1—pd)2]p(y+lo)d

J=0
10
£ 20— 3G - 10
j=0

10
< k+ﬁwu—wrhr§a—p%<k—&

If k < 30, a similar proof shows that still E,,(y o f™®*|U) < 30.
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Note that the expectations E,(x o f™®%|U) are naturally lower than
En(x o f™@)+| V), because the annulus U \ V is mapped to lower states
k—11,k —12,...,k — 20. (Note that no distortion bound is necessary on

U\V.)
The proof for the real version of this lemma is the same, except that then
d =dim(R) = 1. O

If z € U(y) N X satisfies x(x) = k > 30, then f™®)(x) is likely to belong
to a lower state than z. At the same time, f™®)(z) may belong to some
U(y'), and then most likely to the part of U(y') that has an even lower
state after m(y') iterate. Basically, we would like to repeat the argument,
and consider the numbers x(z), x(f™® (z)), x(fm®+™¥)(z)),... as random
variables, which have bounded expectation.

However, a single point x can belong to different disks U(y); after all,
the disks U(y) form a cover of J; mod 0, not a partition. To make this
cover into a partition is an awkward task, because the partition is not likely
to have a Markov property. Therefore refining the partition according to
the successive iterates of the maps f™¥ will be extremely complicated. In
addition, an assignment that seems favourable at one iterate, may prove
unfavourable at the next.

We therefore follow another strategy: instead of assigning each x to a
unique disk U(y), we allow z to belong to U(y) for several points y, and
therefore to have several images under f™¥. Let us call this map ®; it
is multivalued, but all images ®(z) belong to orb(z). For the n-th iterate
of ®, we allow each of the image points in ®~!(z) to have several new
images. When computing the expectation of y o ®", we can minimize over
all z € ®"(x).

To make this precise, define

1. z€V(y)or
T(z) =n(x) =<m(y); 2. 2 €U(y) and U(y) D U(Y)
for all 3 such that x € V()

Note that the definition of 7(z) is such that if x and z’ belong to the same
V(z) for some z, then the points y for which the second rule holds are the
same for z and z’. Furthermore, the disks V' (y) and U(y) that appear in this
definition have the following nesting property:

37



Lemma 5.4 IfV(y)NV(y') #0, then U(y) CU(y') or U(y") C U(y).

Proof: By the choice of R, the distortion of f™®)|U(y) is small, and at the
same time V (y) is small compared to U(y) and the modulus of U(y) \ V(y)
is bounded away from 0. Let V(y) and V (y') intersect each other. If m(y) =
m(y'), then V(y) C V(y') and U(y) C U(y'), or vice versa. In this case there
is nothing to proof. Hence assume that m(y) < m(y’). fU(y') D V(y), then
™) (U(y")) 3 ¢ for some critical point, so f™¥)|U(y') cannot be univalent.
Therefore U(y') 7 V(y). This means that diam(U(y')) ~ diam(V (y)) <
diam(U(y)), and U(y’") C U(y). Note that this proves at the same time that
the transfer time of the larger set is smaller. O

Let ® be the multivalued function:

O(z) = {f'(z);t € 7(2)}-

Now for the second iterate, define

L. fYz) € V(y) or
7(z) = <{m(y) +t;t € 1i(z) and 2. fi(z) € U(y) and U(y) D U(y')( )
Y

for all 3 such that f'(z) € V

and ®*(z) = {f'(z);t € (z)}. Similarly, we define 7, and ®" for every
z € J and n € N.

If z € Uly), x(x) = k for some t = m(y) € 7(x), then by the proof of
Lemma 5.2, there is a neighbourhood T'(y) such that fY(U(y)) = N;(c) C
N; 10(c) = fYT(y)) for some i < k and ¢ the critical point closest to f*(y).
Also diam(U (y)) < sdist(y, Crit). Since p < 1/4, this implies that U(y) C
A1 UARU A, The size of T'(y) is not given, but the proof of Lemma 5.2
extends to show that there is a neighbourhood T(y) C T(y) such that T'(y) C
Apr1 U AU Ay and fYT(y)) = Ni-o(c).

If f*(z) € U(y'), then we can repeat the above construction and find that
U(y') c T(y') C f(T(y)). This implies that T(y) contains a neighbourhood
that maps univalently under f*™) onto f™¥)(T(y')). Therefore we can
use the expectation estimates of Lemma 5.3 for the branches of ®, as well,
and by induction, also for every branch of ®" for every n > 1.

If, for each t € 7,_1(x), fi(z) ¢ U(y) for any y, then we simply put
Tp(x) = 7,_1 + 1. For example, this can happen if x belongs to X \ J', so
orb(z) does not accumulate on Crit.
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To complete the ingredients of the random walk, define x,(z) = min{x o
fH(z);t € 1(z)}. We claim:

For all n € N holds E,,(x,) < 30. (51)

Proof of the Claim: Clearly (51) is true for n = 0, because N3 is only a
small part of C and m(N;) — 0 exponentially fast.

Assume (51) holds for n — 1. For each z € C, let s(z) € 7,_1(z) be such
that x o f*©®(x) is minimal among all s € 7,_1(z). Let 3(z) = min{t;t €
7(f*@®(z))}, that is (by Lemma 5.4) 5(x) is the transfer time of the largest
disk V (y) or U(y) that contains f*®)(x). In particular, the definition of 7 is
such that if f*®*) € V(y) for some y, then (irrespective whether §(z) = m(y)
or not), §(z) = 5(«') for all points =’ such that f*) € V(y).

Obviously E,,(x») < [x o f*Tdm.

We divide C into Yy UY; U Y,, where the Y; are defined as follows:

o Yy = {z; f*@+5(=)(z) ¢ Nsy}. For instance, Y, contains points in X\ J'.
Clearly 7,(x) < 30 for all z € ;.

o Vi ={z ¢ Yy;5(z) =m(y) and f*(z) € U(y)\V(y) for some y}. There
is a countable set of points y such that Y7 = U,Y;, where Y;, =
{z ¢ Yo;3(z) = m(y) and f*(z) € U(y) \ V(y) for some y}. If f*@) e
U(y) \ V(y), then x(f*(z)) and x(y) differ by at most one, and at the
next step, z is mapped outside Ny, 10. Therefore the points in Y7,

satisfy x,(z) < max{x(f*(x)) —9,30}.

o V5 = {z ¢ Y;5(z) = m(y) and f*(x) € V(y)}. There is a countable
set of points y such that Y, = U,Y5,, where Y5, = {z ¢ Y;;3(x) =
m(y) and f*(z) € V(y)}. Due to Lemma 5.4, all the sets V(y) are
disjoint. Moreover, the remark below the definition of 7 implies that
5(x) is constant on each V;,. We can use Lemma 5.3 to compute the
expectations on the sets V (y).

Note that the sets Y}, Y7 and Y, are pairwise disjoint. Recall that E,, is the
expectation with respect to normalized Lebesgue measure on X. We obtain

Epn(Xn) m(Yp) B (xn|Y0) + m(Y1) Ep(Xn| Y1) + m(Y2) Ern(Xn|Y2)

<
< 30m(Yo) + >_m(Y1y) max{(Em(xn-1[Y1,) —9), 30}
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+ 2 m(Yay) max{(Em(xn-1/Y2y) — 3),30}

v
< max{E,(xn_1) — 3,30} < 30.

This shows that E,,(x,) < 30 for all n, proving the claim.

Since the property “x,(z) < 30 infinitely often” is invariant under f, we
get that for m-a.e. x € X, liminf, inf{x(f*(z));t € To(x)} < 30. This proves
Theorem 5.1 with € = §p30fmax, O

Theorem 1.4 is a direct consequence of Theorem 5.1.

Proof of Theorem 1.4: Suppose z is a density point of J; that satisfies
(50). Then there exists ¢ € J; such that f% maps U;(z) with bounded dis-
tortion onto B(c, €/49) for arbitrarily small neighbourhoods U;(z) and cor-
responding iterates ¢;. It follows that m(B(c, €//49) N J;) = m(B(c, €/49)).
Now J = C is immediate. a

Corollary 5.1 If f satisfies (8) and J; = C, then m 1is ergodic, conservative
and exact.

Proof: Suppose X is any forward invariant set of positive measure. As
in the previous corollary, there exists ¢ such that m(B(c, /) N X) =
m(B(c, ¢/49)), and therefore X has full measure in C. Hence m is ergodic
and conservative. Moreover, X N f(X) has positive measure. It follows that
m is exact as well, see e.g. [3, Proposition 2.1]. O

Theorem 5.1 has its real analog, and the proof is basically the same. This
allows the following result.

Corollary 5.2 If f satisfies (2) then for m-a.e. x € I, either w(x) is a cycle
of intervals or w(z) is a periodic orbit.

Hence, there are no solenoidal or wild attractors.

Proof:  Suppose that m(Jf) > 0, otherwise there is nothing to prove.
Since J; is closed and invariant, J; contains an (at least one-sided) interval
B(c, €'/49) for some ¢ € J;. Consequently, J; is the union of cycles of
intervals. Suppose there is an open interval U in any of these cycles (call this
cycle Jy), such that m({z € Jy;w(z) NU = P}) > 0. Then some interval of
the form B(c, €!/4)) contains a preimage V of U. This means m-a.e. = € Jy
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has arbitrarily small neighbourhoods U;(z) of which a definite proportion
belongs to U, f ™(U). Therefore {z € Jy;w(z) N U = (I} has no density
points, a contradiction. O

Corollary 5.3 If f satisfies (3) then either w(z) is an attracting periodic
orbit m-a.e., or w(xz) = C m-a.e.

Proof: Similar to the proof of Corollary 5.2 O

6 Some Counterexamples

In this section we will show that a multimodal Collet-Eckmann map need
not satisfy (BCE) or (BBC) if there are critical points with different orders.

Theorem 6.1 For each of the following three statements, there is a bimodal
Collet-Eckmann polynomual f satisfying it:

1. f fails both (BCE) and (BBC).
2. f fails (BCE), but satisfies (BBC).
3. f satisfies (BCE), but fails (BBC).

Proof: To prove the first statement, we construct a bimodal map satisfying
(CE) on both critical points, but for which one of them, ¢;, has a sequence
of preimages y; € f ™ (c;) such that

[Df" ()| < Cem™

for some C, > 0 and all 4 > 1. This shows that (BCE) and (BBC) fail.

Let f : [0,1] — [0, 1] be a bimodal map, say a fifth order polynomial, with
two critical points 0 < ¢; < ¢ < 1 such that the corresponding critical orders
¢, = 2 and ¢, = 4. Furthermore, suppose that f(0) =0, f(1) = f(¢;) = 1.
The map assumes a local minimum f(cy) > 0 at ¢y; its precise value will be
determined in the below construction.

Assume that f%(cy) stays out of a neighbourhood of the critical set for
1 <i < n, such that Df"*(f(cz)) ~ A"~ ! for some A > 1. For example, this
holds if ¢, spends most of the iterates i < n very close to the fixed point p €
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(¢1,¢2), and this fixed point has multiplier |Df(p)| = A. Next assume that
€ := |f™(c2) — c1] = A 7P" for some B € (3,1). Then Df"(f(cp)) = AP,
so the Collet-Eckmann condition is not violated here. In addition, assume
that f™ maps a neighbourhood of ¢, with one fold onto a neighbourhood of
c¢1. Then there is a point y, say y < ¢g, such that f"(y) = ¢; and

ly — co| = |f(y) — f(02)|1/4 ~ (e~ )(")1/4 ao )\ (HBn/4
(Notice that [y — co| > €if 8 > %) This gives
IDf"(y)] = A" - |y — caf® e AU/,

which is exponentially small if 5 > % The idea is now to construct a map f
exhibiting a cascade of the above events, so for which there exists a sequence
n,; such that

DI (f ()] % X and |7(ea) — a] o AP

for all 7, and such that f™ maps a neighbourhood of ¢, with one fold onto a
neighbourhood of ¢;. Then we get a sequence of points y; — ¢o such that

for « = (38 — 1)/4 > 0. There are no (combinatorial) restrictions to such a
cascade construction.

Let us now change the construction a little to prove the other two state-
ments. For the second statement, choose € := |f™(cy) —c1| & A7P" for 8 = %
The previous computations then give | D f™(y;)| ~ 1.

For the third statement we argue as follows: Instead of having f™ map
a neighbourhood of ¢, onto a neighbourhood of ¢y, let f"(cz) be very close
to ¢; such that co assumes a local minimum of |f"(z) — ¢;|. Therefore no
neighbourhood of ¢; on which f™ has only one fold contains ¢; in its f”-
image. This adjustment is compatible with long-branchedness of f,i.e. there
exists v > 0 such that for every ¢ and every maximal monotonicity interval
J of fsatisfies | f*(J)| > 7.

By use of a cascade of the above construction, we arrive at a map for
which there are sequences {n;} C N and {y;} C [0,1] such that y; — ¢y,
f"(y;) = ¢1 and |Df™(y;)| < Ce ™. Moreover, |f™(y;) —c1| < |f™(y;) — e
for all n < n;. It follows that (BBC) fails. To ensure that (BCE) holds, we
prove the following lemma.
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Lemma 6.1 Let f be a long-branched map with non-flat critical points and
Sf <0. Then (CE) implies (BCE).

Proof: Take any critical point ¢ and let U be a neighbourhood of ¢ such
that |U| < /2 and also |f(U")| < 7/2 for each component U’ of U\ {c}. Here
the  comes from the definition of long-branchedness. Let X = U, f"(U).
Obviously X is forward invariant.

By Proposition 3.1 applied to X, every critical point ¢ € X of maximal
critical order satisfies (BCE). Assume by contradiction that (BCE) fails in
¢; say there are sequences {n;} C N and {y;} C [0, 1] such that f™(y;) = c
and lim sup; -~ log | D ™ (y;)| < 0.

Recall that T,, is the maximal neighbourhood of y; on which f™ is dif-
feomorphic. By long-branchedness, n; is a y-big time of type (NAP). By the
Koebe Principle, there exist N such that ¢ € fV(U). Take x; € Ty, such that
f"(z;) € U and fN+%(x;) = ¢é. Then, due to the Koebe Lemma 2.1,

| DN (a)| < KL-sup{|Df"(2)];2 € U} - [Df" (y3)l.

This contradicts that (BCE) holds in é. O
This proves Theorem 6.1 O
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