
LARGE DERIVATIVES, BACKWARD CONTRACTION AND

INVARIANT DENSITIES FOR INTERVAL MAPS

HENK BRUIN; JUAN RIVERA-LETELIER;
WEIXIAO SHEN; SEBASTIAN VAN STRIEN

Abstract. In this paper, we study the dynamics of a smooth multimodal
interval map f with non-flat critical points and all periodic points hyperbolic
repelling. Assuming that |Dfn(f(c))| → ∞ as n → ∞ holds for all critical
points c, we show that f satisfies the so-called backward contracting property
with an arbitrarily large constant, and that f has an invariant probability
µ which is absolutely continuous with respect to Lebesgue measure and the
density of µ belongs to Lp for all p < ℓmax/(ℓmax − 1), where ℓmax denotes the
maximal critical order of f . In the appendix, we prove that various growth
conditions on the derivatives along the critical orbits imply stronger backward
contraction.

1. Introduction

The concept of absolutely continuous invariant measures plays an important role
in studying the chaotic behavior of non-uniformly hyperbolic dynamical systems.
In the area of interval dynamics, various conditions have been shown to guaran-
tee the existence of an invariant probability which is absolutely continuous with
respect to Lebesgue measure (acip). In [M] it was shown that an acip exists
for an S-multimodal map (here and below, “S-” stands for negative Schwarzian
derivative) without periodic attractors or recurrent critical points. In [CE], it
was proved that an S-unimodal map f satisfying the following condition (the
Collet-Eckmann condition) has an acip:

(CE) lim inf
n→∞

log |Dfn(f(c))|

n
> 0,

where c denotes the critical point of f . In [NS2], the following summability
condition (the Nowicki-van Strien condition) was shown to imply the existence
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of an acip for an S-unimodal map:

(NS)
∞
∑

n=0

1

|Dfn(f(c))|1/ℓ
<∞,

where ℓ is the order of the critical point. Moreover, it was proved that the density
of the acip with respect to Lebesgue measure belongs to Lp for all p < ℓ/(ℓ− 1).
(Note that this regularity is the best possible since the density is never Lℓ/(ℓ−1).)
Later on, this result was extended to the multimodal setting in [BS].

Observe that the Collet-Eckmann condition requires that for every critical point
c, the derivatives |Dfn(f(c))| grow exponentially fast with n, which is more re-
strictive than the Nowicki-van Strien condition that still requires these derivatives
to grow at a sufficiently fast rate. In [BSS] it was shown that for S-unimodal
maps, these conditions are far too restrictive for the existence of an acip. In fact,
there exists a constant C > 0 depending on the critical order such that

lim inf
n→∞

|Dfn(f(c))| ≥ C

implies the existence of an acip. In this paper we shall extend this last result to
the multimodal setting.

Main Theorem. Let f : [0, 1] → [0, 1] be a C3 multimodal interval map with
non-flat critical points and with all periodic points hyperbolic repelling. Assume
that for each critical point c, we have

lim
n→∞

|Dfn(f(c))| = ∞,

then f has an acip µ whose density with respect to Lebesgue measure belongs to
Lp for all 1 ≤ p < ℓmax/(ℓmax − 1), where ℓmax is the maximum of the orders of
the critical points.

Observe that the hypothesis of this result rules out maps for which a critical point
is mapped to another critical point under forward iteration.

Here, as usual, by saying that f is of class C3 with non-flat critical points, we
mean that f is C1 everywhere and satisfies the following:

• f is C3 outside Crit(f) = {x ∈ [0, 1] : Df(x) = 0};
• for each c ∈ Crit(f), there exists a number ℓc > 1 (called the order of c)

and C3 diffeomorphisms φ, ψ of R with φ(c) = ψ(f(c)) = 0 such that

|ψ ◦ f(x)| = |φ(x)|ℓc

holds in a neighborhood of c.

We shall use A to denote the class of all C3 interval maps with non-flat critical
points and with all periodic points hyperbolic repelling.

In order to state a more precise version of our main theorem, we need to introduce
more notation. For a fixed positive integer N and a positive number ℓmax > 1,
denote by A(N, ℓmax) the collection of all maps f ∈ A having exactly N critical
points, and for which the maximum of the orders of the critical points is ℓmax. For
K > 0 denote by A(N, ℓmax, K) the class of all maps f ∈ A(N, ℓmax) for which
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the following holds:

(∗)

There exists a neighborhood V of Crit(f) such that if
fn(c) ∈ V for some critical point c ∈ Crit(f), then

|Dfn(f(c))| > K.

We shall actually prove the following Main Theorem’, from which we easily deduce
the Main Theorem.

Main Theorem’. Given a positive integer N , real numbers ℓmax > 1 and
p ∈ [1, ℓmax/(ℓmax − 1)), there exists a constant K = K(N, ℓmax, p) such that if
f ∈ A(N, ℓmax, K), then f has an acip µ whose density with respect to Lebesgue
measure belongs to the space Lp.

In fact, in the Main Theorem’ we show that, if we denote the Lebesgue mea-
sure by m, then each accumulation point in the weak∗ topology of the sequence
( 1

n

∑n−1
i=0 f

i
∗m)n≥0 is an acip with an Lp density. Thus the Main Theorem is a direct

consequence of the Main Theorem’. Notice however that, although having suffi-
ciently large derivatives at each critical value is enough to get an acip, the state-
ment in the Main Theorem about the density being in Lp for all p < ℓmax/(ℓmax−1)
requires the derivatives at each critical value to grow to infinity.

The result of the density is new even in the unimodal setting. We note that the
proof in this paper is quite different from and significantly simpler than that of
[BSS]. In fact, the proof follows much closer the proof in [NS2] but is simpler;
the main reason for this is that we use here the notion of nice intervals which
significantly simplifies the proof of formula (7) compared to the corresponding
inductive statement in [NS2].

It is probably difficult to improve these results. It is not possible to give a
topological condition equivalent to the existence of an acip since the last property
is not a topological invariant, not even a quasisymmetric invariant, see [B1].
Moreover, although no invariant density needs to exist if (∗) is satisfied with a
small constant K [BKNS], lim infn→∞ |Dfn(f(c))| = 0 does not rule out the
existence of an acip [B2].

Condition (∗) is almost a C1 invariant in the unimodal case, i.e., if two unimodal
maps f, g ∈ A are C1 conjugate, and f satisfies (∗) for K = K0, then g satisfies
(∗) for all K < K0. However, for multimodal maps, this is not the case. In fact,
let K(c, c′) be the infimum of the set of all numbers α for which there exists a
sequence nk → ∞ with

fnk(c) → c′, and |Dfnk(f(c))| → α,

and let

K(f) = inf
c,c′∈Crit(f)

K(c, c′).

Then (∗) requires that K(f) ≥ K. Note that the number K(c, c) is C1 invariant
for any c ∈ Crit(f), while K(c, c′), c 6= c′, is not.

Acknowledgments. We like to thank the referee for some useful comments.
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2. Ideas and organisation of the proof

To prove the existence of an absolutely continuous invariant measure one has
somehow to control the density of (fn)∗m for n large. One approach is by means
of the Perron-Frobenius operator acting on densities. Here, as in [NS2], we
estimate the measure (fn)∗m more directly by bounding the Lebesgue measure
of f−n(A) for small Borel sets A. The proof of the Main Theorem can be divided
into two steps.

Step 1: Show that if limn→∞ |Dfn(f(c))| → ∞ for each critical point c, then
f satisfies the backward contracting property BC(r), with an arbitrarily large
constant r. This property says that for ǫ sufficiently small, if for some c, c′ ∈
Crit(f) the pullback W of an rǫ-neighborhood of f(c) is ǫ-close to f(c′), then
|W | < ǫ, see Definition 1 below. A more precise version of this step is stated in
Theorem 1.

Step 2: Show that if f satisfies the backward contracting property with an ar-
bitrarily large constant, then for each κ ∈ (0, 1) there exists M so that for each
Borel set A, we have the key inequality,

(1) |f−n(A)| ≤M |f(A)|κ/ℓmax.

Here |A| denotes the Lebesgue measure of A. A more precise version of this step
is stated in Theorem 2.

Step 1 is fairly easy, and relies on controlling repeated pullbacks using the growth
assumption on the derivative and the one-sided Koebe Principle, see part (ii) of
Proposition 1. This is done in the first part of Section 3. In these pullbacks we
are only guaranteed Koebe space on one side, and therefore we cannot apply the
usual Koebe Principle. We should emphasise that there is no analogue of the
one-sided Koebe Principle in the complex case, and this is one reason why there
is no analogue of our theorem for non-real holomorphic maps.

Step 2 is more involved. The backward contracting property only gives informa-
tion on individual components J of preimages f−n(A) when A and J are intervals
near critical values of f . To extend this to information on the entire set f−n(A)
(for arbitrary Borel sets A) we consider first return maps to so-called nice in-
tervals (the real analogue of Yoccoz puzzle pieces). To do this, we establish in
Subsection 3.2 some implications of the backward contracting property:
(i) There are nice intervals of essentially any given size, see Proposition 3.
(ii) Return maps to nice intervals are λ-nice: the first return domains to nice
intervals are very deep inside, see Lemma 3.
(iii) A nested sequence of pullbacks of a nice interval (called ‘children’, i.e., in-
tervals which contain a critical point and which are unicritical pullbacks of the
original interval) shrinks exponentially fast, see Lemma 4.

Using this information and the one-sided Koebe Principle, we prove in Section 4
the inductive inequality (7) which fairly easily implies the key inequality (1) for
any interval A near a critical point. For more general sets A we cannot imme-
diately use information about first return maps. Therefore in Section 5 we first
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assume that A is a Borel set which is contained in some nice neighborhood V of
the critical set. If we subdivide A into subpieces and then compare the pullback
of A with those of certain intervals, we get an estimate which depends on the
order of some pullback, see inequality (14). On the other hand, for pullbacks of
arbitrarily high order we get an exponential estimate. Summing over all combi-
natorial possibilities we get (1) for any set A ⊂ V in Lemma 9. For arbitrary sets
A we then finally use hyperbolicity of the dynamics away from the critical points
(i.e., Mañé’s Theorem).

One of the main innovations compared to the proof given in [NS2] is to use
first return maps to well-chosen nice intervals and nested chains of children, see
Subsection 3.2.

We will now give a more precise description of the proof of the Main Theo-
rem’, which implies the Main Theorem as was described above. We shall use the
following terminology, which was first introduced in [R]. For any c ∈ Crit(f)

and δ > 0, let B̂δ(c) be the component of f−1(Bδ(f(c))) which contains c. Let
CV = CV (f) = f(Crit(f)) be the set of critical values of f .

Definition 1. For a constant r > 1, that will be usually large, we say that f
satisfies the backward contracting property with constant r (BC(r) in short) if the
following holds: there exists ε0 > 0 such that for each ε < ε0, each s ≥ 1 and
each component W of f−s(B̂rε(c)) for some c ∈ Crit(f),

(2) dist(W,CV ) < ε implies |W | < ε.

We say that f satisfies BC(∞) if it satisfies BC(r) for all r > 1.

Clearly, for any r > 1, property BC(r) implies that f has no critical relation,
i.e., no critical point is mapped into the critical set under forward iteration.

The Main Theorem’ follows easily from the following two theorems.

Theorem 1. For real numbers ℓmax > 1 and r > 1, there exists K = K(r, ℓmax)
such that if f is a map in the class A(N, ℓmax, K) for some N ≥ 1, then it satisfies
property BC(r).

We shall provide two proofs of this theorem. The first one is given in Section 3
as a consequence of Lemma 2 and Proposition 2. The second one is given in the
appendix, see Theorem 3. The reason that K depends only on f throughℓmax, is
that all constants related to f (such as those related to non-flatness) vanish when
looking at sufficiently small scales.

In the appendix we state and prove a result which is somewhat related to the
proof of Theorem 1. It shows that various growth conditions of the derivatives
along the critical orbits imply stronger backward contraction.

Theorem 2. For any positive integer N , real numbers ℓmax > 1 and κ ∈ (0, 1),
there exists r = r(N, ℓmax, κ) such that if f ∈ A(N, ℓmax) satisfies the BC(r)
property then there exists a constant M such that for every Borel set A we have

(3) |f−n(A)| ≤M |f(A)|κ/ℓmax.
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The proof of Theorem 2 is given in Sections 4 and 5.

We will now explain how to obtain the Main Theorem’ from Theorems 1 and 2.
We use the argument given above Theorem A in [NS2], see also [MS, p. 378].
Let N be a positive integer, ℓmax > 1 and p ∈ [1, ℓmax

ℓmax−1
) be given. Then choose

κ ∈ (0, 1) sufficiently close to 1 so that 1 − κ
ℓmax

< 1/p, let r = r(N, ℓmax, κ)

be given by Theorem 2, and let K = K(r, ℓmax) be given by Theorem 1. Given
f ∈ A(N, ℓmax, K), let C > 0 be such that for every measurable set A we have

|f(A)| ≤ C|A|, and put M ′ = MC
κ

ℓmax . It follows from the inequality (1) that, if
we denote Lebesgue measure by m, then for each n ≥ 1 the measure

µn =
1

n

n−1
∑

i=0

(f i)∗m

is such that for every measurable set A we have µn(A) ≤ M ′|A|
κ

ℓmax . Fix an
accumulation point µ in the weak∗ topology of the sequence (µn)n≥1. Then µ

is f -invariant and for every measurable set A we have µ(A) ≤ M ′|A|
κ

ℓmax . In
particular µ is absolutely continuous with respect to the Lebesgue measure; we
denote by ρ its density. For each k ≥ 0 put Dk = {ρp ≥ k} and observe that

∫

ρpdx ≤
∑

k≥0

(k + 1)|Dk \Dk+1| =
∑

k≥0

|Dk|.

For each k ≥ 1 we have

k
1
p |Dk| ≤ µ(Dk) ≤M ′|Dk|

κ
ℓmax ,

and |Dk| ≤ (M ′k−
1
p )(1− κ

ℓmax
)−1

. By the choice of κ we have 1
p
(1 − κ

ℓmax
)−1 > 1, so

∑

k≥0 |Dk| <∞. This shows that ρ ∈ Lp.

Remark. If f is unimodal, then the acip is ergodic and unique. A general multi-
modal interval map may have more than one acip. For a map satisfying BC(r) for
a large r, the estimate provided by Theorem 2 rules out the existence of Cantor
attractors. Thus any compact forward invariant set of positive measure contains
a cycle of periodic intervals [SV], each supporting an acip.

Notation. Unless otherwise stated, X = [0, 1] and f : X → X is a map in the
class A. We will assume, without loss of generality, that f(∂X) ⊂ ∂X and that
Df(x) 6= 0 for x ∈ ∂X.

If J is an interval and λ > 0, we use λJ to denote the concentric open interval
which has length λ|J |. We say that J is λ-well inside another interval I or that
I contains the λ-scaled neighborhood of J , if I ⊃ (1 + 2λ)J .

3. Real bounds

We shall use the following result throughout our analysis.

Proposition 1. For any f ∈ A, there exists η(f) > 0 such that the following
holds. Let s ≥ 1 be an integer and let T = (a, b) be an interval. Assume that
f s|T is a diffeomorphism onto its image and that |f s(T )| < η(f). Then
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(i) (the Minimum Principle) for every x ∈ T ,

|Df s(x)| ≥ 0.9 min (|Df s(a)|, |Df s(b)|) ;

(ii) (the one-sided Koebe Principle) Let x ∈ T be such that |f s(a) − f s(x)| ≥
τ |f s(x) − f s(b)|. Then

|Df s(x)| ≥ 0.9
(

τ

1 + τ

)2

|Df s(b)|;

(iii) (the Koebe Principle) If J is a subinterval of T such that f s(J) is τ -well
inside f s(T ), then for any x, y ∈ J ,

0.9
(

τ

1 + τ

)2

≤
|Df s(x)|

|Df s(y)|
≤

1

0.9

(

1 + τ

τ

)2

;

(iv) (the Macroscopic Koebe Principle) If J is a subinterval of T such that
f s(J) is τ -well inside f s(T ), then J is τ ′-well inside T , where τ ′ =
0.9τ 2/(1 + 2τ).

Proof. If f has negative Schwarzian derivative, then so does f s|T . In this case, it
is well-known that the statements hold with 0.9 being replaced by 1 (and without
the assumption that f s(T ) has a small length), see for example [MS]. For the
general case, we first note that |f s(T )| small implies that |T | is small as well since
f has no wandering interval, see [MS]. Then we apply a theorem of Graczyk and
Sands [GS] which states that any f ∈ A is real-analytically conjugate to a map
with negative Schwarzian derivative. �

An alternative proof. Let us say that a diffeomorphism ϕ between intervals is
almost linear if for any x, y in its domain, we have |Dϕ(x)| ≥ 0.9|Dϕ(y)|. It
suffices to prove that there exists 0 ≤ s0 < s such that

• f s−s0 : f s0(T ) → f s(T ) is almost linear;
• either s0 = 0 or f s0 : T → f s0(T ) has negative Schwarzian.

By the third statement of Theorem C in [SV], there exists a neighborhood U of
Crit(f) such that for any x ∈ X and n ≥ 0 with fn(x) ∈ U , we have Sfn+1(x) < 0,
where Sφ denotes the Schwarzian derivative of φ. Let V ⋐ U be a smaller
neighborhood of Crit(f). Provided that |f s(T )| is small enough, maxs

i=0 |f
i(T )| <

d(∂U, ∂V ), so that for each i ∈ {0, 1, . . . , s}, either f i(T ) ⊂ U or f i(T ) ∩ V = ∅.
Let s0 ∈ [0, s) be minimal such that f i(T ) ∩ V = ∅ for all s0 ≤ i < s. Then
either s0 = 0 or f s0−1(T ) ⊂ U so that f s0 : T → f s0(T ) has negative Schwarzian
derivative. Moreover, by Mañé’s theorem, f is uniformly expanding outside V .
Thus provided that |f s(T )| is small enough, f s−s0 : f s0(T ) → f s(T ) is almost
linear. �

3.1. Backward contraction. A sequence of open intervals {Gj}
s
j=0 is called a

chain if for each 0 ≤ j < s, Gj is a component of f−1(Gj+1). The order of the
chain is defined to be the number of j’s with 0 ≤ j < s and such that Gj contains
a critical point.
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For each critical point c and ε > 0, let B̂ε(c) be the connected component of
f−1((f(c) − ε, f(c) + ε)) containing c. Moreover, let

B̂ε =
⋃

c∈Crit(f)

B̂ε(c).

Note that provided that ε is small enough,

B̂rε(c) ≈ r1/ℓcB̂ε(c).

Lemma 1. For any ρ > 0 and ℓmax > 1, there exists K > 1, and for each
f ∈

⋃∞
N=1 A(N, ℓmax, K) there exists ε0 > 0 with the following property. Let

c, c′ ∈ Crit(f) and ε ∈ (0, ε0). If f s(c) ∈ B̂ε(c
′) for some s ≥ 1, and if J is the

component of f−s(B̂ε(c
′)) containing c, then

J ⊂ B̂ρε(c).

Proof. We may assume that ρ ∈ (0, 1). Put r = 2ℓc′ and consider the chains

{Gj}
s
j=0 and {Hj}

s
j=0 with Gs = B̂rε(c

′) ⊃ Hs = B̂ε(c
′) and G0 ⊃ H0 = J . Let

s1 < s be maximal such that Gs1 contains a critical point c1. Let H ′
s1+1 be the

convex hull of Hs1+1 ∪ {f(c1)}, and observe that H ′
s1+1 ⊂ Gs1+1.

Claim. Provided that ε is small enough and that K is large enough, we have

(4) Hs1 ⊂ B̂ρε(c1).

In fact, since
f s−s1−1 : Gs1+1 → Gs

is a diffeomorphism with |Gs| small, it follows from the one-sided Koebe Principle
(Proposition 1 (ii)), applied to each of the connected components ofGs1+1\{f(c1)}
intersecting H ′

s1+1, that for each x ∈ H ′
s1+1, we have

(5) |Df s−s1−1(x)| ≥ C|Df s−s1−1(f(c1))|,

where C > 0 is a universal constant. Provided that ε is small enough, we have

|Df s−s1(f(c1))| ≥ K

by the hypothesis. Moreover, by non-flatness of the critical points there is a
constant C1 > 0 such that

|Df(f s−s1(c1))| ≤ C1
|fGs|

|Gs|
.

Thus

|Df s−s1−1(f(c1))| =
|Df s−s1(f(c1))|

|Df(f s−s1(c1))|
≥ KC−1

1

|Gs|

|fGs|
.

This, equation (5) and the mean value theorem imply

|Gs|

|H ′
s1+1|

≥ CC−1
1 K

|Gs|

|fGs|
,

which implies that
|H ′

s1+1| ≤ ρε

provided that K is sufficiently large. The claim follows.
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If s1 = 0 then the proof of the lemma is completed. For the general case, the
lemma follows by an easy induction on s. �

Let us say that f satisfies property BC∗(r) if the following holds: for any ε > 0

small enough, c, c′ ∈ Crit(f), and s ≥ 1, if f s(c) ∈ B̂rε(c
′) and J is the component

of f−s(B̂rε(c
′)) which contains c, then J ⊂ B̂ε(c). (So the difference with property

BC(r) is that in equation (2), the assumption dist(W,CV ) < ε is replaced by
W ∩ CV 6= ∅.)

The above lemma can be reformulated as

Proposition 2. For any ℓmax > 1 and r > 1 there exists K ≥ 1 such that each
f ∈

⋃∞
N=1 A(N, ℓmax, K) satisfies property BC∗(r).

Property BC∗(r) is closely related toBC(r). Clearly the latter implies the former.
The other direction is shown in the following proposition.

Lemma 2. For any f ∈ A, BC∗(8ℓmaxr) implies BC(r), where ℓmax is the maxi-
mum of the order of the critical points of f .

Proof. Let ε > 0 be a small constant. Then for all c ∈ Crit(f), B̂8ℓmaxrε(c)

contains the 3-scaled neighborhood of B̂rε(c).

Let c, c′ ∈ Crit(f) and x ∈ B̂ε(c). Let s ≥ 1 be such that f s(x) ∈ B̂rε(c
′) and let

Jk be the component of f−(s−k)(B̂rε(c
′)) which contains fk(x). We want to show

that |J1| < ε.

Let us prove this by induction on s. For s = 1 the statement is trivially true.
Fix s0 and assume that the statement holds if s < s0. To prove the statement
for s = s0, consider the chain {Gj}

s
j=0 with Gs = B̂8ℓmaxrε(c

′) and G0 ∋ x. We
distinguish two cases:

Case 1. There exists 0 ≤ s1 < s such that Gs1 contains a critical point c1. By

the definition of the BC∗ property, it follows that Gs1 ⊂ B̂ε(c1). If s1 = 0, then

c1 = c and J0 ⊂ G0 ⊂ B̂ε(c). Otherwise, the statement follows by the induction
hypothesis.

Case 2. For any 0 ≤ k < s, Gk contains no critical point. Then f s−1 : G1 → Gs is
a diffeomorphism. By the Macroscopic Koebe Principle (Proposition 1 (iii)), we
obtain that G1 contains the 1-scaled neighborhood of J1. Since c 6∈ G0, f(c) 6∈ G1

and f(x) ∈ Bε(f(c)), it follows that |J1| < ε. �

Proof of Theorem 1. Combine Lemma 2 and Proposition 2. �

3.2. Nice sets. An open set V ⊂ [0, 1] is called nice if for each x ∈ ∂V and for
any k ≥ 1, fk(x) 6∈ V .

Proposition 3. For any f ∈ A satisfying BC(2) and any ε > 0 sufficiently
small, the following holds: for each c ∈ Crit(f), there exists an open interval Vc
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such that
⋃

c∈Crit(f) Vc is nice and such that

B̂ε(c) ⊂ Vc ⊂ B̂2ε(c).

Proof. The proof follows from the following argument due to Rivera-Letelier, see
Lemma 6.2 in [R]. For ε > 0 small, define the open set V n =

⋃n
i=0 f

−i(B̂ε).
Clearly V∞ is nice. Take V n

c to be the connected component of V n which con-

tains c, and let Vc = V∞
c . It remains to show that V n

c ⊂ B̂2ε(c) for each n. We
do this by induction. For n = 0 this holds by definition, so assume it holds for n.
Consider Z = f(V n+1

c ) \B(f(c), ε). For z ∈ Z, there exists m(z) ∈ {0, 1, . . . , n}

and c0(z) ∈ Crit(f) so that fm(z)(z) ∈ B̂ε(c0(z)). Now choose z0 ∈ Z so that
m0 = m(z0) is minimal among m(z) for points z ∈ Z and let ĉ0 = c0(z). Since

fm0(z0) ∈ B̂ε(ĉ0), and since fm0(Z) ⊂ V n−m0
ĉ0

⊂ V n
ĉ0 , the induction hypothesis

implies

fm0(Z) ⊂ B̂2ε(ĉ0).

Since f satisfies BC(2) and Z has distance ε to f(c), it follows that |f(Z)| < ε

and Z ⊂ B̂2ε(c). This completes the induction step. �

For λ > 0 we say that a nice open set V is λ-nice if for each return domain J of
V , we have (1 + 2λ)J ⊂ V .

A nice open set V ⊃ Crit(f) will be called a puzzle neighborhood of Crit(f) if
each component of V contains exactly one critical point of f .

Lemma 3. For any λ > 0 and real number ℓmax > 1, there exists r > 1 such
that for any N and any f ∈ A(N, ℓmax) which satisfies BC(r) the following holds.
There exists ε0 > 0 such that for any ε ∈ (0, ε0) there exists a puzzle neighborhood
V =

⋃

c Vc with the following properties:

• V is λ-nice;
• for each c ∈ Crit(f) we have

B̂ε(c) ⊂ Vc ⊂ B̂2ε(c).

Proof. Let r ≥ 2 and let W be a puzzle neighborhood of Crit(f) such that

B̂rε/2(c) ⊂ Wc ⊂ B̂rε(c),

given by Proposition 3.

For each c ∈ Crit(f), let Vc be the union of B̂ε(c) and the return domains of W

which intersect the boundary of B̂ε(c). Clearly, V =
⋃

c Vc is a puzzle neighbor-
hood of Crit(f) and moreover, for each x ∈ ∂V and k ≥ 1, fk(x) 6∈W . Provided
r is large enough, each component of V is deep inside a component of W . It
follows that each return domain of V is deep inside V , see for example Theorem
B(2) in [SV]. �
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If I is an interval which contains a critical point and J (with J ∩ Crit 6= ∅) is
a unicritical pull back of I then we say that J is a child of I. So there exists
c ∈ Crit(f), s ≥ 1 (called the transition time from J to I) and an interval J̃ ∋ f(c)
such that

• f s−1 maps J̃ diffeomorphically onto I;
• J is the component of f−1(J̃) which contains c.

We shall use the following lemma in the next section:

Lemma 4. Let c, c′ ∈ Crit(f), let I ∋ c be a λ-nice interval with |I| small and
let

J1 ) J2 ) · · · ) Jm

be children of I which contain c′. Then

|f(Ji)| ≤ ρi−1|f(J1)|

holds for all i, where ρ = ρ(λ) > 0 is such that ρ→ 0 as λ→ ∞.

Proof. By definition, for each i ≥ 1, there exists a positive integer si and an
interval Ti ⊃ f(Ji) such that f si−1 maps Ti diffeomorphically onto I and Ji is the
component of f−1(Ti) containing c′. Note that f si(Ti+1) is contained in a return
domain of I, hence λ-well inside I. By the Koebe Principle, it follows that each
Ti+1 is λ1-well inside Ti, where λ1 → ∞ as λ→ ∞. The conclusion follows. �

4. Pull back of intervals

The goal of this section is to prove the following proposition, which is as The-
orem 2, but in the special case when the set A is an interval contained in a
small neighborhood of the set of critical points. We will complete the proof of
Theorem 2 in the next section.

Proposition 4. For κ ∈ (0, 1), N ∈ N and ℓmax > 1, there exists r > 1 such that
if f ∈ A(N, ℓmax) satisfies BC(r), then there exists a neighborhood U of Crit(f)
such that for any interval A ⊂ U and any n ≥ 0, the following holds:

(6) |f−n(A)| ≤M |f(A)|κ/ℓmax,

where M is a constant depending on f .

We start with the following easy general lemma.

Lemma 5. Let f be a C3 multimodal map with non-flat critical points. Then there
is ε0 > 0 such that for every ε ∈ (0, ε0), every r > 1, every critical point c of f ,

and every pair of intervals A and I such that A ⊂ I ⊂ B̂2ε(c) and A 6⊂ B̂ε/r(c),
we have

|f(I)|

|I|

|A|

|f(A)|
≤ 4r1−1/ℓc .
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Proof. By definition of multimodal maps with non-flat critical points, there are
diffeomorphisms ψ and φ of class C3 such that φ(c) = ψ(f(c)) = 0 and such that
g = ψ ◦ f ◦ φ−1 is of the form g(x) = ±|x|ℓc near 0. It is thus enough to prove
the lemma with f replaced by g and with 4r1−1/ℓc replaced by 22−1/ℓcr1−1/ℓc . To
prove this, just observe that if J is an interval and a is a point in J which is
farthest from 0, then we have |f(J)|/|J | ≥ 1

2
|a|ℓc−1 and, if in addition 0 ∈ J , then

we have |f(J)|/|J | ≤ |a|ℓc−1. �

Let r be a large constant, and assume that f satisfies BC(r). By Lemma 3, there
exist λ = λ(r, ℓmax) and ε0 = ε0(f) > 0 small such that for any ε < ε0 there

exists a λ-nice puzzle neighborhood of Crit(f) which lies in-between B̂ε and B̂2ε.
Moreover, λ→ ∞ as r → ∞.

For each n ≥ 0 and δ > 0, define

Ln(δ) = sup{|f−m(A)| : 0 ≤ m ≤ n,A ⊂ B̂ε0/r is an interval, |f(A)| ≤ δ}.

Lemma 6. Let I be a λ-nice interval such that B̂ε(c) ⊂ I ⊂ B̂2ε(c), where
c ∈ Crit(f) and ε < ε0, and let A be an interval such that

A ⊂ B̂ε/2(c) and A 6⊂ B̂ε/r(c).

Then for all n ≥ 1,

(7) |f−n(A)| ≤ C
|A|

|I|
|f−n(I)| + 2N

∞
∑

i=1

Ln−1(ρ
i|f(A)|),

where N = #Crit(f), the constant C > 0 only depends on ℓmax, and the constant
ρ ∈ (0, 1) depends only on r and ℓmax, and for a fixed ℓmax we have ρ → 0 as
r → ∞.

Proof. Let J0 be the collection of all components J of f−n(I) such that fn : J → I
is a diffeomorphism, and let J1 be the collection of all other components of f−n(I).
The collection J0 contributes to the first part of inequality (7) (it is the easy part
of the argument), while J1 contributes to the second part.

As A ⊂ B̂ε/2(c) is well inside I, it follows by the Koebe Principle that there is a
constant C > 0 only depending on ℓmax, such that for all J ∈ J0 we have

(8)
|f−n(A) ∩ J |

|J |
≤ C

|A|

|I|
.

For each J ∈ J1, there exist n1 = n1(J) ∈ {0, 1, . . . , n − 1} and an interval
J ′ ⊃ fn−n1(J) such that J ′ has a common endpoint with fn−n1(J) and such that
J ′ is a child of I.

Claim. There exists a constant C > 0 depending only on ℓmax such that for any
J ∈ J1, and each component A′ of f−n1(A) ∩ J ′, we have

(9) |f(A′)| ≤ Cr1−1/ℓc
|f(J ′)|

|f(I)|
|f(A)|.
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In fact, by definition of a child, there exists J̃ ′ ⊃ f(J ′) such that fn1−1 maps
J̃ ′ diffeomorphically onto I. By the one-sided Koebe Principle, there exists a
constant C such that

|f(A′)|

|f(J ′)|
≤ C

|A|

|fn1(J ′)|
.

Since A ⊂ I ⊂ B̂2ε(c) and A 6⊂ B̂ε/r(c), we have

|f(I)|

|I|

|A|

|f(A)|
≤ 4r1−1/ℓc .

Since A ⊂ B̂ε/2(c), I ⊃ B̂ε(c) and since fn1(J ′) contains a component of I \ A,
|fn1(J ′)|/|I| is bounded away from zero. Inequality (9) follows by redefining the
constant C.

For any child P of I, let s(P ) be the transition time from P to I and let J1(P )
be the collection of all elements J ∈ J1 with J ′ = P . Clearly,

∑

J∈J1(P )

|f−n(A) ∩ J | = |f−(n−s(P ))(f−s(P )(A) ∩ P )|.

Since f−s(P )(A) ∩ P has at most two components, applying (9) we obtain that

(10)
∑

J∈J1(P )

|f−n(A) ∩ J | ≤ 2Ln−1

(

Cr1−1/ℓc
|f(P )|

|f(I)|
|f(A)|

)

.

For each c′ ∈ Crit(f), let
P1(c

′) ) P2(c
′) ) · · ·

be all the children of I which contain c′. By the BC(r) property,

|f(P1(c
′))| ≤ 2ε/r.

By Lemma 4,
|f(Pi(c

′))| ⊂ ρi−1
1 |f(P1(c

′))|,

where ρ1 is a constant depending on λ, and ρ1 → 0 as λ→ ∞. So

f(Pi(c
′)) ⊂ B2ρi−1

1 ε/r(f(c′)).

Note that since r is large

ρ := max(ρ1, 2Cr
−1/ℓmax)

is close to zero. By (10),
∑

J∈J1(Pi(c′))

|f−n(A) ∩ J | ≤ 2Ln−1(ρ
i|f(A)|).

Thus
∑

J∈J1

|f−n(A) ∩ J | =
∑

c′

∞
∑

i=1

∑

J∈J1(Pi(c′))

|f−n(A) ∩ J |

≤ 2N
∞
∑

i=1

Ln−1(ρ
i|f(A)|).

Combining this with (8), we obtain inequality (7). �
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Proof of Proposition 4. Fix κ ∈ (0, 1) and write α = κ/ℓmax. Let M = (r/ε0)
α.

Recall that the constant C > 0 given by Lemma 6 does not depend on r. We can
thus assume that r is so large that

4Cr(κ−1)/ℓmax ≤
1

2
.

We shall prove by induction on n that the following inequality (11) holds:

(11) Ln(δ) ≤ Mδα.

The case n = 0 is trivial. So assume that the inequality holds for all n < n0

and we will prove it for n = n0. To do this, we shall prove by induction on
m ≥ 0 that the inequality holds for every δ ∈ [ ε0

2m+1 ,
ε0

2m ]. The choice of M clearly
guaranteed that this holds for m = 0. Assuming that it holds for all m less than
some positive integer m0, let us prove it for m = m0.

We need to prove that for each open interval A ⊂ B̂ε0/r such that ε0/2
m0+1 ≤

|f(A)| ≤ ε0/2
m0 we have

(12) |f−n(A)| ≤M |f(A)|α.

Let ε ∈ (0, ε0) be minimal such that A ⊂ B̂ε/r(c) for some c ∈ Crit(f). Let I ∋ c
be a λ-nice interval such that

B̂ε ⊂ I ⊂ B̂2ε.

Then by Lemma 6, we have

|f−n(A)| ≤ C
|A|

|I|
|f−n(I)| + 2N

∑

i≥1

Ln−1(ρ
i|f(A)|).

The second term in the right hand side is bounded from above by

2NM
∑

i≥1

(

ρi|f(A)|
)α

= 2NM |f(A)|α
ρα

1 − ρα
≤ |f(A)|αM/2,

provided that ρ is small enough. If I ⊂ B̂ε0/r, then by the induction hypothesis
on m, and using the fact that

|f(I)| ≥ r|f(A)| ≥ ε0/2
m0 ,

we have

|f−n(I)| ≤M |f(I)|α.

The same estimate holds in the case I ⊃ B̂ε0/r by the choice of M since |f−n(I)| ≤
1. Thus

|f−n(A)| ≤ CM
|A|

|I|
|f(I)|α +

M

2
|f(A)|α.

Since
|A|

|I|
≤

|f(A)|

|f(I)|
· 4r1−1/ℓc ≤

|f(A)|α

|f(I)|α
· 4rα−1/ℓc ,
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and rα−1/ℓc ≤ r(κ−1)/ℓmax , it follows that

|f−n(A)| ≤M
(

4Cr(κ−1)/ℓmax +
1

2

)

|f(A)|α ≤ M |f(A)|α.

This completes the induction step on m, hence the induction step in (11) and the
proposition. �

5. Invariant measure and the density

In this section we prove Theorem 2. Using Mañé’s theorem we reduce to the
case when the set A is contained in a small neighborhood of the set of critical
points. This case, which is stated as Lemma 9 below, is obtained from the case
of intervals (Proposition 4), using the Minimum Principle (Proposition 1 (i)) to
relate the size of the preimage of a general set to the size of preimages of intervals
“at the end of branches”, see Lemma 7 below. This corresponds to the “sliding
argument” used in [NS2], see also [MS].

So let f be a multimodal interval map as in the proposition. Take κ1 ∈ (κ, 1).
Assume that f satisfies BC(r) for a large r. Then by Proposition 4, there exists

ε0 > 0 (small) such that for any interval Q ⊂ B̂ε0 and any n ≥ 0,

(13) |f−n(Q)| ≤M0|f(Q)|κ1/ℓmax ,

where M0 > 0 is a constant.

We say that a sequence of open intervals {Gi}
s
i=0 is a quasi-chain if for each

0 ≤ i < s, Gi contains a component of f−1(Gi+1). The order of the quasi-chain
is defined to be the number of i ∈ {0, 1, . . . , s−1} such that Gi contains a critical
point. We say that such a quasi-chain is λ-admissible if for each 0 ≤ i ≤ s,
either Gi ∩ Crit(f) = ∅, or Gi is λ-nice.

By the argument in Sect. 2, choosing ε0 smaller if necessary, we may assume that
for each j ≥ 0, there exists a λ-nice interval Vj,c with the following property:

B̂ε0/2j+1(c) ⊂ Vj,c ⊂ B̂ε0/2j (c),

where λ → ∞ as r → ∞. For each interval G̃ which contains a critical point c
and with G̃ ⊂ V0,c, let j be maximal such that G̃ ⊂ Vj,c. We call that Vj,c is the

enlargement of G̃. Clearly, the enlargement of any critical interval is uniformly
comparable to itself in size.

Let V =
⋃

c∈Crit(f) V0,c. Fix a positive integer n throughout the rest of this section.
For each component J of f−n(V ), we define a λ-admissible quasi-chain {Gi}

n
i=0

as follows:

• Gn = V ;
• Assume that Gi+1 ⊃ f i+1(J) is defined, and let G̃i be the component of
f−1(Gi+1) which contains f i(J). Then

– if G̃i is not critical, then Gi := G̃i;
– if G̃i is critical, then Gi is the enlargement of G̃i defined as above.
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Let Jm be the collection of all components of f−n(V ) such that the order of the
corresponding quasi-chain {Gi}

n
i=0 is equal to m. Each J ∈ Jm is associated with

a sequence of positive integers k1, k2, . . . , km and critical points c0, c1, . . . , cm as
follows.

• s0 = s > s1 > . . . > sm ≥ 0 are all the integers such that Gsj
is critical,

and cj is the critical point contained in Gsj
;

• G̃sj
is the kj-th child of Gsj−1

which contains cj .

For any c = c0c1 . . . cm ∈ Crit(f)m+1 and k = k1k2 . . . km ∈ Zm
+ , we use J k

c

to denote the collection of all components J of f−n(V ) with the parameters c

and k. Note that for each J, J ′ ∈ J k

c
and {Gi}

n
i=0, {G

′
i}

n
i=0 the corresponding

quasi-chains and for all 0 ≤ j ≤ m, we have sj = s′j and Gsj
= G′

sj
. Define

Hk

c
= Gsm,

and

CV k

c
= {f s0−sj(cj) : 0 ≤ j ≤ m},

which has at most m + 1 elements. Notice that for each J ∈ J k

c
, the critical

values of fn|J are contained in CV k

c
.

Lemma 7. For any c,k, and any Borel set A ⊂ V , the following holds:

(14)
∑

J∈J k
c

|f−n(A) ∩ J | ≤ 3M0(m+ 2)|f(A)|κ1/ℓmax ,

where M0 is as in (13).

Proof. Let us label the set CV k

c
as v1 < v2 < . . . < vm′+1, for some 0 ≤ m′ ≤ m,

and let v0 and vm′+2 be the left and right endpoints of Vc0. These points divide
Vc0 into subintervals Qk = (vk, vk+1), 0 ≤ k ≤ m′+1. Let Ak = A∩Qk. It suffices
to prove that for each k, the following holds:

(15)
∑

J∈J k
c

|f−n(Ak) ∩ J | ≤ 2M0ρ
κ1/ℓmax

where ρ = |f(A)|. If |f(Qk)| ≤ ρ, then by Proposition 4,

∑

J∈J k
c

|f−n(Ak) ∩ J | ≤ |f−nQk| ≤M0ρ
κ1/ℓmax .

So assume that |f(Qk)| > ρ. To show inequality (15), choose ak, bk ∈ Qk such
that

Lk = (vk, ak), and Rk = (bk, vk+1)

satisfies

|f(Lk)| = |f(Rk)| = |f(Ak)|.
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For each J ∈ J k

c
and each component J ′ of f−nQk ∩ J , fn+1 : J ′ → f(Qk) is a

diffeomorphism. By the Minimum Principle it follows that

|(fn|J ′)−1(Ak)| = |(fn+1|J ′)−1(f(Ak))|

≤ 0.9−1
(

|(fn+1|J ′)−1(f(Lk))| + |(fn+1|J ′)−1(f(Rk))|
)

= 0.9−1
(

|f−n(Lk) ∩ J
′| + |f−n(Rk) ∩ J

′|
)

.

Thus,
∑

J∈J k
c

|f−n(Ak) ∩ J | ≤ 0.9−1
∑

J∈J k
c

(

|f−n(Lk) ∩ J | + |f−n(Rk) ∩ J |
)

≤ 0.9−1
(

|f−n(Lk)| + |f−n(Rk)|
)

≤ 3M0ρ
κ1/ℓmax ,

where in the last step we used (13). This proves (15), and hence completes the
proof of the lemma. �

Applied to the case c = {c}, c ∈ Crit(f), the lemma gives

(16)
∑

J∈J0

|f−n(A) ∩ J | ≤ 6NM0|f(A)|κ1/ℓmax .

Lemma 8. There is σ > 0 depending only on r, such that σ → 0 as r → ∞, and
such that for each c = c0c1 . . . cm and k = k1 . . . km the following hold:

(i)
⋃

J∈J k
c

J ⊂ f−(n−sm)(Hk

c
),

(ii)

|f(Hk

c
)| ≤ σk1+k2+...+km|f(V )|,

(iii) if we put σ1 = σκ1/ℓmax, then
∑

J∈J k
c

|J | ≤M1σ
k1+k2+...+km

1 ,

where M1 = M0|f(V )|κ1/ℓmax, and M0 is as in (13).

Proof. The first item is clear. The second follows from Lemma 4, and |G̃si
| ≍

|Gsi
|. For the third item, notice that by item (i), the left hand side of the

inequality does not exceed |f−(n−sm)(Hk

c
)|. So the inequality follows from the

item (ii) of this lemma by (13). �

Lemma 9. Provided that r is large enough, the following holds: for any Borel
set A ⊂ V and any n ≥ 1,

|f−n(A)| ≤M |f(A)|κ/ℓmax,

where M is a constant.
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Proof. Pick D0 to be the maximal integer such that

(17) 6(1 +N)D0+1D0 ≤

(

1

ρ

)(κ1−κ)/ℓmax

,

where ρ = |f(A)| and N = #Crit(f). For any m ≥ 1 and D ≥ 1, let

Jm(D) = {J ∈ Jm : k1(J) + k2(J) + . . .+ km(J) = D},

J (D) =
∞
⋃

m=1

Jm(D).

For each 1 ≤ m ≤ D, the number of tuples k = k1k2 . . . km satisfying

k1 + k2 + . . .+ km = D

is given by the binomial coefficient Cm−1
D−1 :=

(

D−1
m−1

)

. Associated to such a k =

k1k2 . . . km, there could be at most Nm+1 corresponding choices of c = c0c1 . . . cm.
From this and Lemma 8 it follows that

∑

J∈J (D)

|J | ≤
D
∑

m=1

∑

J∈Jm(D)

|J | ≤M1

D
∑

m=1

Nm+1Cm−1
D−1σ

D
1 ≤ M1Nσ

D
2 ,

where σ2 = (N + 1)σ1 and M1 is as in Lemma 8. Thus
∞
∑

D=D0+1

∑

J∈J (D)

|f−n(A) ∩ J | ≤
∞
∑

D=D0+1

∑

J∈J (D)

|J | ≤M1
Nσ2

1 − σ2
σD0

2 .

Provided that r is large enough, σ2 is close to 0 so that

σD̂
2 ≤ [6(1 +N)D̂+2(D̂ + 1)]−τ

for any D̂ ≥ 1 and where τ is so that τ(κ1 − κ) = κ. This and (17) imply

σD0+1
2 ≤ ρτ(κ1−κ)/ℓmax = ρκ/ℓmax.

Since ρ = |f(A)| we get therefore
∞
∑

D=D0+1

∑

J∈J (D)

|f−n(A) ∩ J | ≤M2|f(A)|κ/ℓmax,

where M2 is a constant.

On the other hand, by (14), we have

D0
∑

D=1

∑

J∈J (D)

|f−n(A) ∩ J | ≤
D0
∑

m=1

∑

J∈Jm

|f−n(A) ∩ J |

≤
D0
∑

m=1

Cm−1
D0−1N

m+13M0(m+ 2)|f(A)|κ1/ℓmax

≤ 6M0(1 +N)D0+1D0|f(A)|κ1/ℓmax

≤ M0|f(A)|κ/ℓmax,

where in the last inequality we used (17) again. Combining with (16), these
estimates imply the lemma. �
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Proof of Theorem 2. Fix κ ∈ (0, 1). Assume that f satisfies BC(r) for a large r.
We want to show that there exists M > 0 such that inequality (1) holds for any
Borel set A and any n ≥ 0.

By Lemma 9, there exists a neighborhood V of Crit(f) such that the inequality
holds when A ⊂ V .

The general case follows by Mãné’s theorem, which asserts that f |(X \ V ) is
uniformly expanding, i.e., there exists C > 0 and γ ∈ (0, 1) such that for any
x ∈ X and k ≥ 1, if x, f(x), . . . , fk−1(x) 6∈ V then |Dfk(x)| ≥ Cγ−k. It follows
that for any Borel set A and m ≥ 1,

Am := {x ∈ X : x, f(x), . . . , fm−1(x) 6∈ V, fm(x) ∈ A}

has length C1γ
m
1 |A|, where C1 > 0 and γ1 ∈ (0, 1) are constants.

Set Qn = An and for 0 ≤ m < n, set

Qm := {x : fm(x) ∈ V and fm+1(x) ∈ An−m−1}.

Clearly,

f−n(A) =
n
⋃

m=0

Qm.

By the argument in the previous paragraph,

|Qn| = |An| ≤ C1γ
n
1 |A|,

and for 0 ≤ m < n, since fm(Qm) ⊂ V ∩ f−1(An−m−1), we have

|Qm| ≤ |f−m(fm(Qm))| ≤ |f−m(V ∩ f−1(An−m−1))|

≤M |An−m−1|
α ≤M ′γn−m

2 |A|α,

where the third inequality follows by Lemma 9, and M ′ > 0 and γ2 ∈ (0, 1) are
constants. Inequality (1) follows by redefining M . �

Appendix: Growth of derivatives and backward contraction

Let f : X → X be a map in the class A, i.e., f is C3 with non-flat critical points
and all periodic points hyperbolic repelling. Let CV = CV (f) = f(Crit(f)).
Given δ′ > δ > 0 we will say that f is (δ, δ′)-backward contracting if for every crit-

ical point c of f , every n ≥ 1, and every connected component W of f−n(B̂δ′(c))
we have that

dist(W,CV ) < δ implies |W | < δ.

For a given constant r > 1, the map f satisfies the backward contracting property
with constant r, as defined in the introduction, if for every δ > 0 sufficiently
small the map f is (δ, δr)-backward contracting. Given δ0 > 0 and a function
r : (0, δ0) → (1,+∞), we will say that f is backward contracting with growth
function r, if for every δ ∈ (0, δ0) sufficiently small the map f is (δ, δr(δ))-
backward contracting.

The purpose of this appendix is to prove the following result.

Theorem 3. For f ∈ A, the following properties hold.
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1. For every r > 1 there is a constant K > 0 that depends only on ℓmax, such
that if f ∈

⋃

N A(N, ℓmax, K), then f satisfies the backward contracting
property with constant r.

2. If f satisfies the summability condition with exponent α > 0, then there
exists δ0 > 0, and a function r : (0, δ0) → (1,∞) such that for every
θ ∈ (0, 1) we have

∑

n≫1

r(θn)−α <∞,

and such that f is backward contracting with growth function r.
3. If f satisfies the Collet-Eckmann condition, then there are constants α ∈

(0, 1] and C > 0, such that f is backward contracting with growth func-
tion r(δ) = Cδ−α.

Parts 2 and 3 were proved for rational maps in [R, Theorem A].

For the proof of the theorem, let f ∈ A. Given v ∈ CV and c ∈ Crit let

0 ≤ k1(v, c) < k2(v, c) < · · ·

be all integers k ≥ 0 satisfying the following property: If r > 0 is the smallest
number so that the closure of B̂r(c) contains fk(v), then the pull-back of the

closure of B̂r(c) by fk to v is diffeomorphic. Observe that for certain v and c this
sequence might be finite or non-existent. We denote by ξi(v, c) the corresponding
preimage of c by fki(c,v). Notice that when ξi(v, c) is close to v, the integer ki(v, c)
is large.

Let η0 = η0(f) > 0 be sufficiently small. Then for any η ∈ (0, η0), we have

|B̂η(c)| ≈ 2
(

η

Ac

)1/ℓc

and for x ∈ B̂η0(c),

|Df(x)| ≈ Acℓc|x− c|ℓc−1,

where Ac = limy→c |f(y)− f(c)|/|x− c|ℓc. Here by writing C1 ≈ C2 we mean that
C2/2 ≤ C1 ≤ 2C2.

Lemma 10. There is a constant C > 0 only depending on ℓmax such that the
following property holds. For δ > 0 small put

ρ(δ) = min
{

C · A(δ),
η0

δ

}

,

where A(δ) is equal to

inf
dist(ξi(v,c),v)≥δ

fki(v,c)+1(v)∈Bη0 (CV )

(

dist(ξi(v, c), v)

δ
|Dfki(v,c)+1(v)|

)

.

Then for every c ∈ Crit, every n ≥ 0 and every z ∈ f−n(c) such that for every

i = 0, . . . , n− 1 we have f i(z) 6∈ Bδ(CV ), the pull-back of B̂δρ(δ)(c) to z by fn is
diffeomorphic and disjoint from CV .
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Proof. Consider a critical point c ∈ Crit, an integer n ≥ 0 and z ∈ f−n(c). Given

δ > 0 small and 0 < r ≤ η0/δ, put U0 = B̂δr(c) and consider the successive pull-
backs U0, U1, . . . , Un, such that Uk contains fn−k(z). Let us suppose that for some
k = 0, . . . , n the set Uk contains a critical value v ∈ CV , and let k be minimal
with this property. Note that the restriction of fk to Uk is a diffeomorphism onto
its image. Moreover, k = ki(v, c) for some i ≥ 1 and ξ = ξi(v, c) ∈ Uk is equal
to fn−k(z). Then for a constant C1 > 0 only depending on f , we have by the
One-sided Koebe Principle,

dist(ξ, v)

|B̂δr(c)|
≤

dist(ξ, v)

dist(c, fk(v))
≤

(

dist(ξ, v)

dist(c, fk(v))

)
ℓc−1

ℓc

|Dfk(v)|−
1
ℓcC(1

2
)

1
ℓc .

There is thus a constant C1 > 0 depending only on ℓc such that, if δ is such that
δr is sufficiently small, then

δr > C1dist(ξ, v)|Dfk+1(v)|.

By hypothesis dist(ξ, v) ≥ δ, so if we take the constant C in the definition of ρ

equal to C1, then we have B̂δρ(δ)(c) ⊂ U0 and for each k = 0, . . . , n the set Uk is
disjoint from CV . �

Lemma 11. There is a constant C0 that depends only on ℓmax such that the
following property holds. For δ > 0 put

r0(δ) =

= min







31−ℓmaxρ(δ), C0 inf
dist(ξi(v,c),v)<δ





(

δ

dist(ξi(v, c), v)

)ℓc−1

|Dfki(v,c)+1(v)|











.

If for every δ > 0 small we have r0(δ) ≥ 2, then f is backward contracting with
growth function r0.

Proof. We will choose the constant C0 > 0 below. Given c ∈ Crit and δ > 0 small,
consider successive pull-backs U0 = B̂δr0(δ)(c), U1, . . . Uk, such that Uk∩Bδ(CV ) 6=
∅. Since for every δ > 0 small we have r0(δ) ≥ 2, arguing by induction, it is enough
to consider the case when for every i = 0, . . . , k − 1 we have Ui ∩ Bδ(CV ) = ∅.

For each i = 0, . . . , k let U ′
i and U ′′

i be the corresponding pull-backs of B̂10ℓmax δr0(δ)(c)

and B̂31ℓmaxδr0(δ)(c) respectively, so that Ui ⊂ U ′
i ⊂ U ′′

i . Since by definition

31ℓmaxr0(δ) ≤ ρ(δ), the previous lemma implies that fk : U ′′
k → U ′′

0 is a dif-
feomorphism. Observe that U ′′

0 contains a 1-scaled neighborhood of U ′
0 and that

U ′
0 contains a 4-scaled neighborhood of U0. In particular, the Koebe Principle

implies that the distortion of fk on U ′
k is bounded by 5.

Case 1. U ′
k is disjoint from CV . Since U ′

0 contains a 4-scaled neighborhood
of U0, it follows from the Macroscopic Koebe Principle (Proposition 1 (iv)) that U ′

k

contains a 1-scaled neighborhood of Uk. Since Uk∩Bδ(CV ) 6= ∅ and U ′
k∩CV = ∅,

it follows that |Uk| < δ.
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Case 2. There is v ∈ U ′
k ∩ CV . Then there is i ≥ 1 such that k = ki(v, c) and

ξ = ξi(v, c) ∈ U ′
k is the unique k-th preimage of c in U ′

k. Then we must have that
ξ ∈ B(v, δ); otherwise Lemma 10 would imply that U ′′

k ∩ CV = ∅.

Suppose by contradiction that |U ′
k| ≥ δ. Then, if δ > 0 is such that δr0(δ) is

small, then we have

δ

|U0|
≤ 11

|U ′
k|

|U ′
0|

≤ 55
dist(ξ, v)

dist(c, fk(v))

≤ 55 · 5
1
ℓc

(

dist(ξ, v)

dist(c, fk(v))

)
ℓc−1

ℓc

|Dfk(v)|−
1
ℓc .

So, for a constant C2 > 0 depending only on ℓmax, we have

r0(δ) > C2

(

δ

dist(ξ, v)

)ℓc−1

|Dfk+1(v)|.

Since dist(ξ, v) < δ, letting C0 = C2 we obtain a contradiction. �

Proof of Theorem 3. Part 1 is a direct consequence of Lemmas 10 and 11.

2. Given θ ∈ (0, 1) we have
∑

n≫1

r(θn)−α ≤

≤ C ′
∑

i,v,c





∑

n≥0, θn<dist(ξi(v,c),v)

(

dist(ξi(v, c), v)

θn

)−α

|Dfki(v,c)+1(v)|−α +

+
∑

n≥0, θn>dist(ξi(v,c),v)

(

θn

dist(ξi(v, c), v)

)−α(ℓc−1)

|Dfki(v,c)+1(v)|−α



 ≤

≤ C ′′
∑

i,v,c

|Dfki(v,c)+1(v)|−α <∞.

3. Let C0 > 0 and λ > 1 be such that for every v ∈ CV we have |Dfk(v)| ≥ C0λ
k.

By [NS1, Theorem B] there are constants C1 > 0 and θ ∈ (0, 1) such that
dist(ξi(v, c), v) ≥ C1θ

ki(v,c). Therefore there is C2 > 0 and γ ∈ (0, 1) such that

|Dfki(c,v)+1(v)| ≥ C0λ
ki(v,c) ≥ C2(dist(ξi(v, c), v))

−γ.

Choose µ ∈ (0, 1) and note that, if dist(ξi(v,c),v)
δ

≤ δ−µ, we have

|Dfki(v,c)+1(v)| ≥ C2 dist(ξi(v, c), v)
−γ ≥ C2δ

−γ(1−µ).

Thus there is a constant C4 > 0 such that r0(δ) ≥ C4δ
−α, where α = min(µ, γ(1−

µ)). �
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