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Wild Cantor attractors exist

By H. BruiN, G. KELLER, T. NOWICKI, S. VAN STRIEN*

Abstract: In this paper we shall show that there exists a polynomial unimodal
map f:[0,1] — [0,1] with so-called Fibonacci dynamics

e which is non-renormalizable and in particular, for each z from a resid-
ual set, w(z) is equal to an interval; (here w(z) is defined to be the set of
accumulation points of the sequence z, f(z), f2(z),...);

e for which the closure of the forward orbit of the critical point ¢, i.e.,
w(c), is a Cantor set and

e for which w(z) = w(c) for Lebesgue almost all z.
So the topological and the metric attractor of such a map do not coincide.
This gives the answer to a question posed by Milnor [Mil] in dimension one.

Introduction

One of the central themes in the theory of dynamical systems is the con-
cept of attractors. However, there is no complete consensus about the ‘correct’
definition of this notion. In particular it is not clear whether an attractor
should attract a topologically big set or a set which is large in a metric sense.
So, if f:M — M is a dynamical system defined on a manifold M, then we
could define a closed forward invariant set X to be a topological respectively a
metric attractor if

(i) its basin

B(X)={z; w(z) C X}

contains a residual subset of an open subset of M, respectively B(X) has
positive Lebesgue measure;

(ii) there exists no closed forward invariant set X’ which is strictly included
in X for which B(X) and B(X') coincide up to a meager set respectively up
to a set of measure zero.

*T.N. was supported by the DFG, NWO, KBN 2 1090 01 91. Part of this work was done during
a stay of SvS at Stony Brook. SvS would like to thank M. Lyubich and F. Tangerman for some useful
discussions.
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Here w(x) is the set of limit points of f™(z) as n — co. Moreover, we say
that A is a residual (resp. meager) set if it is the countable intersection (union)
of open dense (closed nowhere dense) sets. We call a set X a wild attractor
if X is a metric attractor but not a topological attractor (for a discussion on
these definitions, see [Mil]).

If X is a periodic attractor, a hyperbolic attractor, a ‘Feigenbaum attrac-
tor’ (see for example [MS] and for the invertible case see [GST]), or one of the
known strange attractors, see [BC|, then X is both a metric and a topological
attractor. Of course, there are some pathological cases: for example the horse-
shoe of a C?! diffeomorphism can have positive Lebesgue measure and certainly
is no topological attractor, see [Bow]; so this is an example of a wild attractor.
There are some other — less exotic — examples. Indeed, as was shown in [Mi2],
the map C 5 z +— exp(z) is topologically transitive. Moreover, it was shown
in [L2] and [Re| that under under this map Lebesgue almost all points are at-
tracted to X where X is the orbit of 0. Hence X is a wild attractor. Another
example is given in [Kan], see also [AKYZ]: there exists a smooth topologically
transitive (non-invertible) map on the annulus S* x [0,1] such that the basin
of the boundary circles X = S x {0,1} has full Lebesgue measure. (In fact,
the basin of each circle intersects every open set in a set of positive area; this
is the reason the basins are called ‘intermingled’.)

In this paper we present a polynomial interval map which has a wild at-
tractor (a Cantor set) and such that the map is transitive on some interval.
(In the terminology of [GJ] the map is said to have an absorbing Cantor at-
tractor.) More precisely, in our case M = [0,1] and f is a smooth unimodal
interval map — this means f has one extremal point — and for simplicity we
shall also assume that f(0) = f(1) = 0. A prototype of such a map is

Fl@) = A[1— |20 — 1]

where A > 0 is chosen so that f maps the interval [0,1] inside itself and f
has the so-called Fibonacci-type dynamics. We shall define this in the next
section.

There are many publications in which it was conjectured that a smooth
map f:[0,1] — [0,1] cannot have a wild Cantor attractor. (We should note,
however, that in 1992 Misha Lyubich and Folkert Tangerman made computer
estimates suggesting that wild Cantor attractor do exist for Fibonacci maps
of the form z +— 2%+ ¢;.) Moreover, there are several results which prove that
these sets cannot exist in particular cases, see [GJ], [JS1], [Mar], [LM] and in
the general quadratic (i.e., £ = 2) case [L6]. We shall show that wild Cantor
attractors do exist when £ is a large real number.
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MAIN THEOREM. There exists £y < oo with the following property. Let
f:10,1] — [0,1] be a C? unimodal interval map with a critical point c of order
£ > Ly and with the Fibonacci combinatorics. Then X = w(c) is a wild Cantor
attractor for f.

In fact, X s a closed forward invariant minimal Cantor set with zero
Lebesgue measure, such that its basin B(X) is meagre but has positive Lebesgue
measure.

Here we say that c is a critical point of a C? map f if Df(c) = 0 and the
order of the critical point is said to be £ if there exists a C? diffeomorphism ¢
between two neighbourhoods of ¢ such that

fod(z)=f(c) — |z —c|*

for z close to c.

In [Str2] the previous theorem is used to show that there exists a topolog-
ically transitive polynomial map f:[0,1] — [0,1] which has two intermingled
Cantor attractors, thus showing that the phenomena from [Kan| also appear
in dimension one.

The Main Theorem gives examples of polynomial maps having a wild
attractor. These examples can, if required, also have additional periodic at-
tractors.

COROLLARY 1.  There exists a unimodal polynomial map with a wild
Cantor attractor X : the basin B(X) of X is a meagre set of positive Lebesgue
measure. Omne can choose this polynomial map so that it has in addition a
periodic attractor and so that B(X) is nowhere dense.

Proof of Corollary. First we remind the reader that any family of uni-
modal maps fy:[0,1] — [0,1] for which (z,A) — fx(z) is smooth and for
which A — fa(c) is onto (0, 1] is full. This means that within this family any
combinatorial type can be found.

Clearly, the family A(z) — A [1 — |2z — 1|13] satisfies this fullness assump-
tion. Hence there exists a polynomial map of this form (with £ > £; and even)
which has the Fibonacci dynamics. So X = w(c) with ¢ = 1/2 is a wild Cantor
attractor. In this particular case, the map will have no periodic attractors.
Indeed, since this map has negative Schwarzian derivative, each periodic at-
tractor has in its basin a critical point or a boundary point of [0,1]. Because
the critical point is contained in a minimal Cantor set, it follows that this map
has no periodic attractors. Since f has no wandering intervals, it follows that
B(X) is dense in this case, see Theorem AB in Chapter IV of [MS]. Moreover,
see the proof of Theorem 5.2 below, the set B(X) has full Lebesgue measure
in this case.
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To construct a similar polynomial map for which B(X) is nowhere dense,
notice that one can take a full family of unimodal polynomials fy:[0,1] — [0, 1]
as above such that the orienatation reversing fixed point of f) is always at-
tracting and which has a critical point of even order > ¢3. By the Main The-
orem, the Fibonacci map within this family will have a wild Cantor attractor
X = w(c). By Theorem AB of Chapter IV of [MS], the union of the basin of
this attracting fixed point and the basins of other periodic attractors of this
map forms an open and dense set. B(X) is contained in the complement of
these basins and therefore nowhere dense in this case. O

It is easy to show that our methods also give examples of multimodal
smooth interval maps for which each critical point is quadratic and which have
wild Cantor attractors: simply choose the map so that the return map near
some critical point is a unimodal map of Fibonacci-type while the orbit of
this critical point contains at least ¢ other critical points. However, it is not
clear whether wild Cantor attractors also appear generically in one-parameter
families:

Question. Does the space of smooth maps f:[0,1] — [0,1] with a wild
Cantor attractor form a codimension-one subset of the space of all smooth
interval maps?

Of course, it follows from the Main Theorem that on each manifold of ar-
bitrary dimension there exists a smooth mapping with a wild Cantor attractor.

Question. Does there exist a Hénon map with a wild Cantor attractor?

(Compare [GST].)

In the complex case there are related results, see [SN]:

THEOREM. For each sufficiently large even integer £ there exists c; € R
such that the map f(z) = 2* + c1 has the following properties:
(1) the set w(0) is a Cantor set with zero Lebesque measure;
(2) the set of points z € C for which w(z) is contained in w(0) has positive
Lebesgue measure;
(3) the set of points whose forward iterates remain bounded has no interior.

In particular, the Julia set of z — 2z + ¢; has positive Lebesgue measure.
This map has the Fibonacci dynamics (to be defined in the next section).

1. Some comments on the Main Theorem and its proof

In fact, the attractor X from the Main Theorem is equal to w(c) and this set
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has zero Lebesgue measure, see [Mar| and also [MS]. If the map f from the
Main Theorem is a unimodal polynomial with a unique critical point in C
(or if has negative Schwarzian derivative and f has no attracting fixed points)
then B(X) has full Lebesgue measure and its complement is a residual set. We
should remark that a smooth map as above may have one or more periodic
attractors, but that even then the attractor X has a basin which attracts a set
of positive Lebesgue measure (and the critical point is density point of B(X)).
This is not completely surprising because w(c) is not accumulated by periodic
attractors, see [MMS] and also [MS][Chapter IV].

In the theory of unimodal interval maps with negative Schwarzian deriva-
tive of f, i.e., with

D? 3D?
Sj) . D@ 3D@)
Df(z) 2 Df(x)
and for which the order of the critical point is finite, one has a well-known

classification, see [Gu], [BL], [Ke] and also [MS].

e f has a stable periodic orbit O which is both a topological and metric
attractor;

e f is infinitely renormalizable, i.e., there exists a nested sequence of in-
tervals I,, 3 ¢ shrinking to ¢ and a sequence of integers ¢(n) — oo such
that I,,..., f4™~1(I,) are disjoint and f2™(I,,) C I,,. In this case w(c)
is a Cantor set of zero Lebesgue measure which is both a topological and
metric attractor;

e f is not infinitely renormalizable. In this case there exists a cycle of
intervals Z (a finite union of intervals) such that B(Z) is dense and has
full Lebesgue measure. The set Z is a topological attractor, but not
necessarily a metric attractor: in principle, there could be a Cantor set

X C Z such that B(X) has full Lebesgue measure (but is not dense).

From our theorem it follows that the possibility mentioned in the last case
really does occur if £ is large. In the quadratic case, i.e. £ = 2, the results of
[L6] imply that Z is a metric attractor as well.

Any map with a wild Cantor attractor has no absolutely continuous invari-
ant probability measure, because Lebesgue almost all points wander densely on
the support of the measure by the Birkhoff Ergodic Theorem. If the Schwarzian
derivative of f is negative and £ = 2 then it is shown in [LM] that f has
an absolutely continuous invariant probability measure by showing that the
summability condition from [NS] is satisfied. In particular, f has no absorbing
Cantor set in this case. The methods of proof in [LM] are a mixture of real
tools and tools from the theory of complex analysis and hyperbolic geometry.
This result was generalized in [KN]: in that paper it was shown that the same
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results hold for 1 < £ < 2 + € provided € > 0 is small. The tools in [KN] are
entirely based on real estimates, and also no use is made of [NS] (because the
summability condition fails if £ > 2).

As mentioned, our result implies that f has no absolutely continuous
invariant probability measure for £ large. In fact, as Henk Bruin has shown in
[Br], this already follows from Proposition 3.12.

We expect that the methods of this paper can be extended to show that
for Fibonacci maps of ‘bounded type’ (a notion which we shall discuss in the
section about the combinatorial properties of Fibonacci maps) with a rather
flat critical point, the same result holds.

Let us now give an outline of the proof that w(z) is equal to the Cantor
set w(c) for Lebesgue almost all z.

e First we will show that there exists a nested sequence of intervals (u,,, iy,)
containing ¢ and that the size of the annulus A4,, = (up, Un) \ (Unt1, Gnt1)
is very small compared to the size of (up41,Uns1) if the order £ of the
critical point is large.

e Next we let In,fn be the components of A,, and show that some iterate
f57 of f maps I,, diffeomorphically inside Uk>n—2(Ix U fk) and that this
map is not ‘too’ non-linear. Because of the above this implies that ‘most’
points are mapped closer to ¢ by this iterate.

e Finally, we combine the first two arguments and a kind of random walk
argument to show that typical points are in the basin of w(c). The idea
of using a random walk argument based on Markovian methods had been
around for several years. It was succesfully applied in [KN].

2. Combinatorial properties of the Fibonacci map

In this section we shall define and state some properties of the Fibonacci
map. It is well-known that maps with these properties exist, see [HK]| or [LM].
In the companion paper [SN] we shall construct such a map ‘by hand’. Let
f:[0,1] — [0, 1] be a unimodal map with f(0) = f(1) = 0. For each = # c¢ there
exists a ‘symmetric’ point £ # z with f(Z) = f(z). For ¢ > 0 and z € [0, 1], let
z; = fi(z) and choose z_; € f~*(z) so that the interval connecting this point
to ¢ contains no other points in the set f~*(z). Note that if ¢ is not a periodic
point there are always precisely two such points ¢_; (which are symmetric with
respect to each other). Let Sy = 1 and define S; inductively by

S; = min{k > S;_1; c_r € (c—s, ,,¢-5, ,)}-

f is called a Fibonacci map if the sequence S; coincides with the Fibonacci num-
bers: Sp =1, S; =2 and Si41 = Sk + Sk_1, l.e., the sequence 1,2,3,5,8,....
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Let us denote by z the nearest point to ¢ in the set f%(c). It should
be clear from the context whether z; is to the left or right of ¢. Moreover, for
z € [0,1] let us write

2! = f(z)

(usually, z will be close to ¢ and so zf close to ¢/ = f(c)).

PROPOSITION 2.1. A Fibonacci map f:[0,1] — [0,1] satisfies the follow-
ing properties.
(1) f is non-renormalizable;
(2) cs, and cs, ., are on opposite sides of c.
(3) cs, € (cs,_1,¢s,_,) and ¢; & (cs,_,,€s,_,) for each 0 < i < S,,.
(4) c_s, € (c_s, 4,¢-5, ,) and c_; ¢ (c_s, ,,¢_s, ,) for each 0 <7 < Sp.
(5) If T is the mazimal interval adjacent to ¢ such that fél‘ 18 monotone,

then f5(T) = (cs,,cs,_,)-
(6) If Ty > cf is the largest interval on which fﬁi_l is monotone, then

T, = (z]{_la ti)

where t£ > cf and {5 1(Ty) = (cs,_,,cs,_,) (note that t£ is not the f-image
of some point ty, so this notation is just to suggest that t{ is close to cf).
(7) Tk,..., 5% Y(Tx) has intersection multiplicity 3 (this means that each

point of [0,1] is contained in at most 3 of these intervals).

Proof. The proof of these results can be found in [KN] and [LM]. In order
to be complete we give the proof here also.

(1) Suppose f is renormalizable. Then there exists an interval J C [0, 1]
containing ¢ such that ¢ € fN(J) C J for some integer N. Then for every
sufficiently small neighbourhood U of ¢, f™(U) 5 ¢ implies that n is a multiple
of N. In particular, the numbers S should be multiples of N for k sufficiently
large. For the Fibonacci sequence, this is clearly not the case for any N € N.

(2) By definition of z;, T = (2x,¢) is a maximal interval on which fSk+1
is monotone. Hence fS++1(T) = fS-1 o fS% (2, ¢) = (dg_1, dr11) contains c.

(3) These properties give an equivalent characterization of a Fibonacci
map as shown in [LM]. Let us prove these properties follow from our definition:
We claim that

dy € (Zk_l,Zk_Q).

Let T = (2, c) be as above. T' 3 z;,1. By construction f% (zp41) = z_1. In
fact, zx41 is the pull-back of z;_; along the branch fﬁf So zp_1 € fSk (2, ¢) =
(c,dg). Now suppose that also zx 9 € (¢,dg). Then we can pullback z;_5 along
the branch f“;", obtaining a point in f~%+275(¢) N T. This contradicts the
definition of Sy11 and zgy1. Hence di, € (21, 2x—2)-

(4) Follows immediately from the construction of the points z.
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(5) See the proof of (2).

(6) We have of course that T,f_l D ka . Because T,f_l is a maximal interval
of monotonicity, fSk-171 Tff = (cq,cp) for some a,b < Sip_1. From the

k—1

proof of property (3) it follows that cq,cp ¢ (z3,%3). Hence fSk_l*l(T,f_l) D
(23,¢) O dy_1. Because (z3,c) is a maximal interval of monotonicity of fSk-2,
fSe1 YT = (23, ¢), and f5eY(TY) = f54-2((23,¢)) = (dp—s, d—2).

(7) In Lemma 4.3 in [LM] the upper bound for the intersection multiplicity
is given as 8. One can prove that the intersection multiplicity is in fact 3. (In
fact, any upperbound would be fine for the argument.) O

From the fact that c_; exists it follows that f has an orientation reversing
fixed point g. Let us define inductively a sequence of points u,, as follows. Let
ug = q and let us define u, 1 to be the nearest point to ¢ with

Up4+1 € f_Sn(un)

so that u,1 is on the same side of c as cg,,,. In particular, uy = ip = ¢.
Moreover, let igy1 be the point in {ugy1,Ur+1} which is on the same side of
¢ as ug. These points were also used in [KN]. In fact, Martens in his thesis
[Mar| and Yoccoz in his work on local connectivity of the Mandelbrot set used
the same points.

Furthermore, let

Yn = fsn(csn+2) ) y£ = f(yn)

=f t f =f t f t =f t =f
Zp—2 un—lcSn Zn—1 7]: u'rfb cSn+1 Zg €1 t£ tn—l
CSp_3 Un—3CS, 14 (& CSpts Un—1 Yn—-1 Zp-—2 CS,._1 2n—-3CS,_»x

Figure 2.1: Points and their images under fS»171,

PROPOSITION 2.2. A Fibonacci map f:[0,1] — [0,1] satisfies the follow-

ing properties.

(1) fSn (un-l-l) = U, and fsn (un) = Up—2;,

(2) in particular, f5* maps (Giyy1,un) diffeomorphically onto (i, u,_s)
(note that this last interval contains c);

(3) the points u,];, cén, c£n+sn+2, y,f and z}: are ordered as in the picture
below (we state the ordering near ¢/ rather than near c so that we do not need
to be careful about on which side of c these points lie).
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Proof of Proposition 2.2. The proof of these statements can be found in
[KN], but we shall include the proof here for completeness.

(1) £5"(tp41) = uy, by definition, and by using the definition twice £ (u,,)
fEm2 0 f5n1(uy) = f5 2 (up_1) = tn_a.

(2) Follows immediately from (1) and the relative positions of points dis-
cussed in (3).

(3) Let us restrict ourselves to the relative positions of the points in the
upper part of the picture. The images under 5= 1 are easily checked. The po-
sitions of z,{ and ti follow immediately from their definitions. The position of d,{
is shown in the proof of property (3) in the previous proposition. Let us prove
that yf € (Zi—lﬁdn-l-l)' d£+2 € (z,{,z£+1), soyl € fS"((z,{,z£+1 ) = (zgfl,cf).
Futhermore £ (yf) = d] 13 € (5], 5011) C (¢f, ] 5) = 157((s] 4y, ).

So yf € (zi_l,zg). By the same argument y£_1 € (25_2,25_1). So actu-

ally f5=1(yf) = d£+3 € (z£+1>z£+2) C (yr{—l’cf) = fs"_l((d£+1az£—1))a and
y) € (z£—1>d£+1)-

Finally, we come to the relative position of uf. We prove by induction
that uf € (y%,de_l), or equivalently i, € (Yn,dni1) Or @p € (Yn,dny1). For
n = 1 this is true, since u; = § € (c7,¢3) = (y1,d2), as one can check by
hand. Now for the induction step, assume that @, € (yn,dn+1) C (Yn, dn+3)-
By definition we obtain u,,; by pulling back u, along the branch f‘zz‘?’_hc).
Because (Yn+1,dnt2) C (2n-1,¢), [ (Ynt1) = dnys and 5 (dny2) = yn, it
follows that f‘zzi" (Yn,dn+3) = (Yn+1,dn+1) O Upt1. This concludes the

_1,6)

proof. O O
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7 b T 1t
Zn—2 Cs 505’,145 tf

Un—3

~ cs, s

Figure 2.2.

If f has no wandering intervals (and this is the case under the present
assumptions, see [MS][Chapter IV]), then w(c) is a minimal Cantor set.
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3. The estimates

fof

In this section we shall estimate the rate of approach of the sequences u£, Cs, s Zi;
to ¢f. The basic tool is that of the distortion of cross-ratios.

Remark 3.1. Since f is non-flat at £ = ¢ we can assume (by applying a
suitable C? coordinate change) that f is of the form

f@)=f(e) = |z —¢ff

near £ = c¢. This will simplify some of the estimates somewhat.

Hence
HORF G
|z — |

|1Z—1

where M (z) is a continuous function which is equal to |z — ¢ near T = c.

Moreover,
Df(a) _
£f (@) = fo)l/|z — ¢

near z = c¢. We shall use these facts repeatedly.

1

3a. The cross-ratio and the Koebe Principle when Sf < 0

Let j C t be intervals and let [, be the components of ¢\ j. Then the
cross-ratio of this pair of intervals is defined as
o [t ]
C(t,j) == -
’ 1] 7|
Let f be a smooth function mapping ¢,1, 5,7 onto T, L, J, R diffeomorphically.

Define
_ AT e e, J)

PULD =T HiR ~ 0@
It is well known that if Sf = f"/f' — 3(f"/f")?/2 < 0 then B(f,t,5) > 1.
Moreover, if Sf < 0 then Sf™ < 0 for each n € N. Most inequalities in this
paper are based on versions of this cross-ratio inequality. For example, let
Sf < 0 and t be an interval so that f|t is a diffeomorphism. If j C ¢ is reduced
to a point = then, using the notation from above,
[Df(=)|
L{/[Y
Similarly, if [ is reduced to the point y then
IO < i/
|J1/13]

Moreover, we shall use the well-known Koebe Principle. Let us say that

2 |rl/I¢]-

an interval T' contains a 7-scaled neighbourhood of an interval J C T if each
component of T\ J has at least size 7|J|.
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PROPOSITION 3.2. [Koebe Principle if Sf < 0] Let f be a C® map with
Sf < 0. Then for any intervals j C t and any n for which f"|t is a diffeo-
morphism one has the following. If f™(t) contains a T-scaled neighbourhood of

f7(j) then

(3.1)

o =[]

for each x,y € j.

3b. The Koebe Principle in the C? case

Now we shall derive some results which we will only need if f does not sat-
isfy the negative Schwarzian derivative condition, because otherwise the results
of the previous subsection are sufficient for the rest of the paper. Therefore,
the reader might want to skip this subsection at first and continue with section
3c.

Firstly we shall need that the cross-ratio cannot be decreased too much
by a C? map f with non-flat critical points.

PROPOSITION 3.3. Let f be a C? map with non-flat critical points. Then
there exists a function o(e) > 0 with o(e¢) — 0 as € — 0 such that for any
intervals j C t and any n for which f™|t is a diffeomorphism one has the
following. Let l,r be as above and let L, J, R, T be the tmages of 1, j,r,t under
f". Then

_ [T ]

B(f"t,j) = 1 > Ot
R I

where
Op = exp (0(6) : nz_: Ifi(t)l)
=0

and e = max™ | f(t)|. (If Sf <0 then B(f™,t,5) > 1.)
Proof. See Theorem IV.2.1 in [MS]. O

Secondly, we shall need the Koebe Principle.

PROPOSITION 3.4.  [Koebe Principle] Let f be a C? map with non-flat
critical points. Then there exists a function o(e) > 0 with o(e) — 0 as € — 0
such that for any intervals j C t and any n for which f™|t is a diffeomorphism
one has the following. If f™(t) contains a T-scaled neighbourhood of f™(j) then

[Df"(z)|

(3.2) m <O, [

1+T]2
T ?
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for each x,y € j where

n—exp< (€) - Z\f )

and € = max?_, |fi(t)].
Proof. See Theorem IV.3.1. in [MS]. O

We should remark that if we take ¢,, to be the maximal interval containing
c¢1 on which 9771 is a diffeomorphism, then from Proposition 2.1,

Sn—1

(3.3) Z|f )| < 3.

So this implies that we get a universal upper bound for O,, in the above esti-
mates. In fact, the next lemma will show that max LIfi(tn)] — 0 asn — .
This and the previous proposition implies that the numbers O,, from the above
results satisfy

(3.4) 0, — 1.

LEMMA 3.5. For each € > 0 there exists 6 > 0 such that if f"(I) is not
contained in an immediate basin of a periodic attractor and |f™(I)| < 6, then

max;Zg |fi(I)] < e.

Proof. We recall that, by the Contraction Principle, see [MS][IV.5.1] if I
is an interval with inf;>o [f*(I)| = 0 then either I is completely contained in
the basin of a periodic attractor or a wandering interval. Suppose by contra-
diction that there exists a sequence of intervals I; with |I;| > € and a sequence
n(i) with |f"9(I;)| — 0 where f(I;) is not completely contained in the im-
mediate basin of some periodic attractor. By taking subsequences, there exists
an interval I such that inf;>o|f!(I)] = 0 and such that I is not completely
contained in the basin of a periodic attractor. This is impossible because f
has no wandering intervals, see [MS][Chapter IV, Theorem A]. O

In fact, we shall also have to apply the Koebe Principle to iterates of f
which are large compositions of maps of the form f% and we have to find a
bound for the constant @ which then appears. In this case we do not have a
bound as in (3.3). However, we shall be able to bound the term O,, from the
Koebe Principle above in this situation by using the next proposition.

PROPOSITION 3.6. Let f be a C? map with non-flat critical points de-
fined on some compact interval. Then for each 7,5 > 0 there exist constants
8,7,5" > 0 such that the following holds. Let x be a recurrent point of f, let U
be an interval neighbourhood around x of size at most 6 and D C U be some
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union of disjoint open intervals I;. Let F' be a map defined on D = U;I; such
that for each interval I; there exists an integer j(i) and an interval T; D I;
such that

(1) F|I; = 19, F(I;)NI; # 0 implies that F(I;) D I;, F(T;) D T; and
F(I;) contains at least two of those intervals I;

(2) fIO(T;) contains a 7-scaled neighbourhood of each interval I, C fi(I;);

(8) for each interval I, C F(I;) one has |Ix| < (1 — %) - |F(L;)];

(4) Thls! 1Fm(T)| < 8.
Then for each n € N and each component J of the domain of F™ one has
F™J = f* for some s € N, there exists an interval T' O J for which F™(T")
contains a 7'-scaled neighbourhood of each element Iy, C F™(J) and for which

s—1

>l < s

m=0

Proof of Proposition3.6. The idea of the proof of this proposition is essen-
tially the same as in [Str]. The proof of this proposition can be substantially
simplified if f has negative Schwarzian derivative: in this case it is not neces-
sary to choose § small. (In fact we do not even need this proposition in that
case.) However, in the general case, f could for example have a periodic inter-
val (corresponding to basins of periodic attractors). This complicates matters
to some extend.

It is no restriction to assume that f is defined on an interval of size at
most one. Fix 7 and K. Since f is C? each periodic point p of f of sufficiently
large period k is repelling, see [MS][Theorem IV.B]. In particular, provided
6 > 0 is sufficiently small, each periodic point in the §-neighbourhood U of
the recurrent point z is repelling. For this reason we shall be able to apply
Lemma 3.5.

Let Z be the partition of the domain of F' of the intervals I; and define
inductively Zy = 7 and

T, =ToVF 1Tyv...v F- (=11,

Each element J of T, is mapped by F"~! diffeomorphically onto some interval
I}, and each of the intervals I; is contained in U. Because of property 1) there
exist integers 0 < § < s with F*|J = f* and F" 1|J = f*. Let us first show
that it is sufficient to prove that there exists a universal upperbound S’ < co
such that

(3.5) Z [f™(J)| < S' for each J € Z,.
m=0

To prove that this is sufficient, let T > J be an interval such that F ”*1|T
is a diffeomorphism and such that F" 1(T) is a 7-scaled neighbourhoods of
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FY(J) = f3(J) = I, € Zp. If (3.5) holds, then one has from Lemma 8.3 in
[Str] that there exists an interval T with J C T' C T' for which

(3.6) f3(T) is a 7/2-scaled neighbourhood of F"71(.J) = f(J)
and
(3.7) If™(T)] < K[f™(J)]

for all m = 0,1,...,5. Here K depends on f, 7 and 3% _, |f™(J)|. Next, by
property 4),

s—1
(3.8) Z |f™(T%)| is universally bounded

m=3§

where T}, D I is as above. Hence by the Koebe estimate (3.2) there exist
a universal number 7/ > 0 and an interval T,é with Ty D T,é D I which is
contained in a 7/2-scaled neighbourhood of Ij and such that F(T}) contains
a 7'-scaled neighbourhood of each interval I; which is contained in F(I}) =
F™(J). Therefore the interval T D T’ D J for which F"~}(T") = T} is so that
F™(T") contains a 7'-scaled neighbourhood of each interval I in F"(J) and
because of (3.7) and (3.8), we also have that

s—1
> 1T
m=0

is universally bounded. Thus we have shown that it is sufficient to prove (3.5).
In order to prove that (3.5) holds, we first claim that there exists k < 1
such that

(3.9) if J € 77 is contained in I; € Zj then |J| < |I;|.

This holds since F(J) is equal to an interval I}, € Z; while properties 2) and
3) imply that there exists an interval J' with J C J' C I; for which F(J')
is contained inside a 7/2-scaled neighbourhood of F(J) = I} and for which a
definite proportion of F(J') is outside F/(J) = Ij,. Moreover, because of 4) and
the Koebe Principle there exists a universal constant Ky < oo such that
|DF ()]
S DR =

Combining this proves (3.9).

By using a ‘telescope argument’ we can improve this statement and show
by induction that there exists x < 1 such that for each n € N there exists
6 > 0 such that if |U| < é, J € Z,, and J is contained in I; € Zj then

(3.10) 1| < &"|I].
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For n = 0 there is nothing to prove. So assume the statement holds for n — 1
and consider J € Z,,. If F*|J = fJ and T D J so that f7|T is a diffeomorphism
and fJ(T) is a T-scaled neighbourhood of f/(I) = I}, € Ty then

i=0,...,j—

j—1
(3.11) DI <n-Sand  max 1If"(T)\ = o7 (T))),
i=0

where o(t) is a function so that o(t) — 0 if ¢ | 0. Here we have used respectively
property 4) and the previous Lemma 3.5. (We should note that f™(J) C U
and so |fi(J)| = |F™(J)| < (1+27)|U| < (1 + 27)é.) Hence, by the Koebe
Principle, there exists K; (which only depends on 7) such that for each n
[DE"()|

(312) DR () =
for all z,y € J provided ¢ is sufficiently small. (To get K; uniform we shrink
6 for increasing n; by (3.11) and (3.2) this avoids the constants in the Koebe
Principle to grow.) Now F"™ ! maps each element of Z,,_; diffeomorphically
onto some element of Zy and each element of Z,, onto an element of Z;. From
this, (3.12) and (3.9) it follows that each element J of 7, is a definite factor
smaller than the element I € Z,,_; containing J. This proves (3.10).

Now of course (3.10) does not suffice because § (and therefore the size of
U) depends on n. Therefore, let us fix ng so large that

14772

=

k™ > 4K5 where Ko = [

and write G = F™. If J is an element of Zj,, and G*(J) D J for some
0 <7<k then

(3.13) |DG(z)| > 2 for all z € J.

Indeed, we may assume that ¢ is minimal and then J,..., G(ifl)(J) are dis-
joint. If G* = f7 then this gives that J, ..., f7(J) have intersection multiplicity
bounded by ngy. (This means that each point is contained in at most ng of these
intervals.) Therefore, and since f/ maps some interval T D J onto a 7-scaled
neighbourhood of f7(.J), it follows from the Koebe Principle that

j—1 ;
(3.14)  |DGY(z)] > exp (_0(6) . Z |fZ(J)|) Ki2 ‘GL(;(N

=0
(3.15) > exp (—o(e) - no) KL2|G‘Z§]7)I > %K%ﬂ_no > 9

for each = € J provided |f7(J)| = |G(J) < |U| < § is sufficiently small. (This
last inequality implies that ¢ = max |f*(J)| is small when § is small.) Hence,
if some interval returns then its size has increased by a uniform factor; as we
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shall now show this implies the total length of the intervals remains bounded.
Indeed, consider again J € Zy,,. Then

(3.16) kf |GH(T)| < 2.

This is because G (J) N G*2(J) # ) with i; < i < k implies that G (J) C
G*(J). Moreover, if G11(J),G%(J) C G(J) and 41 < iy < i3 < k, then there
exists J' D G (which is an interval from a partition of the form Zp,, with

h € {0,1,...,k}) such that G2=%(J') = G%(J). Hence, by (3.13)
i Lo
G ()] < 5lG= ().

Using this it follows that the total length of the interval J,...,G*71(J) con-
tained in one interval G%(J) is at most Y ;527" = 2 times the length of
G (.J). This implies (3.16) since we have assumed that f lives on an interval
of length at most one. Now (3.16) gives that

j—1
DM < 2ng
m=0

where f7 = G*¥ = F¥™0_ From this (3.5) follows easily. O

3c. Two step bounds

For simplicity define
d, =cg,.

We shall use boldface letters to indicate the distance to the critical point (or
value), so
d, =|d, — ¢|, and df = |df — ¢/].

This notation will also be used for the points we defined before, namely ¢/ is the
critical point of the monotone branch of f°»~1 near ¢/ lying on the other side
of ¢/ than ¢ (and therefore than 2} as well). The critical value corresponding
to tf is cs, , = f5»71(tf). Define as before

Zn = c_g, and 2! = f(z,)

where z, could be either to the left or the right of ¢ depending on the context.
Moreover, remember that we defined

Yn = fsn (cSn+2) and Yn = f(yn)

in Proposition 2.2. In the next lemmas the constant O from Proposition 3.3
will be written as O, in order to indicate its dependence on S,,. Notice that
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O, — 1 as n — oo because of inequality (3.4). If Sf < 0 then we simply have
O, > 1.
LEMMA 3.7. (See [KN]) Let M. = df_,/df then ] > 3.85 and
In(d?_,/df) > 2.7
for sufficiently large n.

Proof. Applying the cross-ratio inequalities we have

doyados _ WIITI o DI
ST RN
n dn— - dn
> 0, - y - 4
‘Zn - dn—|—2| |Ir|
where t, j,1, 7 are chosen as in the figure below.
] ] j ] r ]
17 S S
fsn/
Il L Il J Il R Il
c Yn d'n dn—4
Figure 3.1.

Using the non-flatness of ¢ and the previous inequality (and [t| > |r|) we
get

f
1(1_ d£ ) < dn—4_dn <Ondn_yn |erl_dn—|—2| 1

14 d£74 B dn—4 Yn d£+2
d d’
(3.17) < O, (—" - 1) : ( ntl 1)
dn+1 n+2

n—|—1 d7€+2

Here we have used 0 < £a*~! < (b —a®)/(b—a) < £b*71. Using (a—1)(b—1) <
(v/ab—1)? we can bound the last term in (3.17) from above and thus we obtain

2
f f
() <o (-
dn4 dn+2
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Hence
1= (M) < Oy M 45 — 1)

which yields the analogous inequality for Af, = liminf A\{, and thus A\, > 3.85
and lim infln(d£_4/d£) = 2In )/, > 2.7. One can obtain better estimates for
large £ using £(A — 1)/A <In M <£(X —1). O

LEMMA 3.8.  Let a € (2,%,), af = f(a), b = f5(a) and bF = f(b) =
f5(af). Then for n large enough

f f f 7
Df5(ah)] < 2 mn(Srty (S >(db;4) .

Proof. We use the cross-ratio for f5»—! with [ shrunk to a point | = {af}
and j = (af,cf) and r = (cf, tf).

S
l ] T
17 7 i i
| L
L J R
CI ) Ckn dn—él

Figure 3.2.

In the cross-ratio inequality we can use |r| < |I| + |j| + |r| and have

[DfS(af)| = |Df®)|IDfH(ad)
b/ d,—b d, 4—b

<

B O E af dn—4_dn
f _ _

_ (’)nb—z-d” bg'dn_4 b 1 d,—4
al  d, dyg ¢ dmg=dn D

1
< o P/ @]/b)nd] /b)) (d] )"
- el md]_,/dl) bl )

> 2. Here we have used

Ca df
which implies the statement as O, — 1 and In —2+*

n

Lemma 3.7 and the obvious inequalities 2% <In(z) < z — 1. O
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Remark 3.9. We shall use this lemma several times. In order to simplify
the notation let us introduce p}, := max{di/d,];_l ; n— Ny <k <n}, where
Ny < 10 may change from one lemma to another. Suppose that b in the

previous lemma satisfies d,,+; < b for some 7 < 6, then d,];/bf < (g£+z-)i,

d£—4/bf < (Q£+i)i+4 and

i

b/ . .
[Df5(ad)] < - (4+4) - In(e] o) i - In(ef 1) (eny) ©
where in fact ¢ could have been taken as 1nax{d£/d£Jrl sn—i—4 <k<n}
LEMMA 3.10. We have the following estimate
13
£

df,
DF(d, 1)) <160 - —2 (o], 1) - (of,5)
m—+1

Proof. We decompose D f5m (drfn—|—1) = DfSm—2(yf D fSm-1 (df,H_l) and
use the previous lemma and remark to both factors. First we put in the lemma

n=m-—2,a=Yn_1, b=cg,,, and i = 4 in the remark.

d’rfn 2 8
D=2 (yl, ) < =232 0% (0f10) - (0]40)7

m—1

Then we put n =m — 1, a = dpy1, b = ym—1 and as dp, € (Ym—1,Gm—1) We

have 7 = 1.
S Yf 1 2
[DFSm  (dms1)] < Z2=2 2510 (0f,) - (of)
dm+1

~jon

The result follows taking o/ depending on 9 consecutive k: m — 7 < k <
m+ 2. O

The next lemma prepares the last tool in this subsection. It describes the
estimation (both ways) of Df5=(cf).

LEMMA 3.11.  We have for large m

d/ 4 d/ 1
" (oh) 7 < [DFI() <20 (el ) - (o)
dm—|—1 m+2

Proof. We use the same trick as in Lemma 3.8.
df
[DfF ()] == D7)

For one side we use the cross-ratio for 52! on I = (21, ¢f), r = (¢f, tf).
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| l .I]. " |
7 i i
L J R
CI &m dm—‘l
Figure 3.3.

Then we obtain,

df dy,_s—d,d d;_4 d,, df
D fSm f>om_mgu_m:@mg<m _1) m_—m.

f (c ) - dm dm—4 Z7fn dm dm—4 fon
Using the inequality In(z) < z —1, z > 1, the last can be bounded from below

by

> Opln

d% dm—4 ern d'rfn—|—1

where we have used Lemma 3.3 to bound the second factor and have used that

d'fn—kl f< z,. For the other side we take [ = (zrf;,dfn+2), Jj= (dfn+2,cf) and
r=(c).

1
thos do oo ()] o

L
21, al ., cf
o \
L J R
: i m
Figure 3.4.

We obtain, using d;i1 < ym,

df d,, —y,,d,, z/, —d’
DfF ()] < Op g Ym I In i

do df,, 2,  ¥m

< 0, (flfn de - dm+1 dm
dm+2 dm dm+1
dfn 1
< Omf— 111(@%4-1)(@:;4-1) £
dm—|—2

And again pf could have been taken as max{di/d£+1 ;m—4<k<m}. O

3d. The 1-step bounds
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We can get a better upper estimate if we combine the previous calcula-
tions.

PROPOSITION 3.12.  For n and £ large enough the derivatives D f5(cf)
and the proportions di/d£+1 are bounded from above and separated from below
from 1 by constants independent of n and £.

Proof. Consider the following decomposition:

DfSn(c!y = DfSn-2(df_,)-DfSn-1(cf) = DfSv-2(d] | )\DfS2(d]_,)-Df52(cf).

By Lemma 3.10 used twice with m = n — 2 and m = n — 3 in the two first
factors and by Lemma 3.11 used for m = n — 2 in the third one we have

1341341
[

d/ d/_, df
|Df5n(cf)| S 1602 .92, 7 n—1 “n—2 l (4+4+1)( )(Qn)
d,_; d _9 d
= 51200 1n°(e]) - (ef) ¥
This and the other part of Lemma 3.11 gives

de 31
7 < -0°(ef) - (o),

dn—|—1

where again g depends on at most 10 consecutive quotients dj /d,c 41, with
n—10 < k < n. This gives an upper bound of the growth of ng = lim sup sz
lim sup df/dn_H
31
ol < 51200 - 1n°(eL) - (eL)7
(i.e. gg:o < 10?! for large £) and proves the upper bound part of the proposition.
For the lower part one can use the estimates from Lemma 3.7, because from

(3.17) and from In(d’_, /df) > 2/7 it follows that

I a7
d;] 21_i_lfe
dn+1 QOO_]'

O

PROPOSITION 3.13. There exists K > 0 independent of £ and n such that
for £ and n large enough

df/ul >1+ K.

Proof. Consider f5»-1 and its interval of monotonicity ¢ = (zr]:—lati—l)

around ¢f. Let [ = (zifl,ufl), j = (ul,cf) and r = (c f,t£ 1)- Denote by
T, L, J, R the images of t,1, j,r under f5»-1. Then
d} —uj > zﬁfl —uf, _ ﬂ LI |R] _ “£71 d£75 - d'fzfl

u, of T TINT T T e, dl

n
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df df 1— —2.7
05" (1— ;—l)zon#,

n
al_, ol

n—>5

and this is bounded away from 0 uniformly in n. O
The main result of this section is the finally the following theorem.

THEOREM 3.14.

d/ df u/
—;L , f" and f"
Uun dn—I—l un—I—l

are bounded and bounded away from ome for all £ and n large enough. In
particular, there are constants C1,Cy for which

g < |dn - un' |dn - dn+1| |un - un—I—l‘ < C?

b

7 fun—d ° |dn—| U —¢| £
Proof. Follows from the previous two results and the fact that f has a
critical point of order £ at c. O

Un Un+1 c Un 43 Un 42

dn dn—|—1 dn—|—3 dn+2

Figure 3.5: The points u, and d, are on the same side of c.

dn42 and d, are on opposite sides of ¢; zp_1 1s between d,, and u,.

4. The random walk argument

In this section we shall state and prove an abstract result about the evolution
of typical points under a (nearly) Markov map with a kind of random walk
structure. So let (X,F, m) be some space with probability measure m and
o-algebra F. Let A = {Ay:k = 0,1,2,...} denote a partition of X into F-
measurable sets, and let F: X — X be a F-measurable transformation. We
denote A, = /17—y F*A.

Observe that A is a Markov partition for F' if and only if FFH is an
element of A for each H € A1 and each k£ > 0. In order to make the follow-
ing proposition most widely applicable we shall not assume that F' is strictly
Markov but formulate instead some restrictions on iterates of the measure m.
Furthermore, even if F' is topologically Markov, the nonlinearity of its branches
still prevents F' to be also measure theoretically Markov. Therefore we do not
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use in our proof a Markov-like model but instead a more flexible martingale

construction. As a general reference to the theory of martingales we give [Sto].
Define ¢ : X — {0,1,2,...} by

p(r)=nifz € A,

and

Ap:=poF —p.

THEOREM 4.1. Assume there are 1o € N and M > 0 such that for any
H € Agy1, k >0, with oprg > 7o holds:

(4.1) /H(Acp —~1)oF*dm > 0 and

(4.2) /H(Ago)2 oF*dm < M -m(H) foralln>0.

Then there exists a set D € F with m(D) > 0 such that for each = € D
gt 227 21

and such that the trajectory z, Fx, F%x, ... visits each set Ay € A only finitely
often.

Proof. Fix s > ry and denote by p the normalized restriction of m to A;.
Let F, be the o-algebra generated by the partition A, ;. Then ¢ o F™ is
Fn-measurable, i.e.,
Eulpo F"Fn] = o F" .

Define a stopping time 7 : X — N U {oo} by

(z) = 00 if o(F™z) > rg for allm >0
T = min{n > 0:p(F"z) <79} otherwise,

and the random variables (Z,)n,>0 by

) e(F"x) if 7(z) >n

Then also the Z,, are F,-measurable. So for any z € X and n > 0 with
7(z) > n,

E;/.[Zn—}-l'-;rn](x) - Zn(w) -1

(4.3) — Bu(Ag—1) o F"F)(x)
1 n
- HE%le(m)-@/Hmso—noF dy

> 0,
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where we used (4.1) for the inequality. If 7(z) < n, then E,[Z,11|F,](z) —
Zn(z) = 0. Note that in both cases E,[Zp11|Fn](x) > Zn(x), ie. (Zn, Fn)n>o0

is a submartingale with respect to u. Now define
n
Wy =20+ Y (BulZ|Fr1] — Zk—1) and My, = Z, — W,
k=1
(this is, by the way, the Doob-decomposition of (Z,, F,)n>0). Then Wy =
Zp = s and My = 0 p-a.s., and (Mp, F,)n>0 is a martingale:
Mn—l—l - Mn = 4dn41 — Zn - Wn—l—l + Wn = 4dn41 — Eu[Zn—i-l'J:n]
and therefore
Eu[Mn+1"7:n] = Eu[Mnu:n] + Eu[Zn+1|'7:n] - Eu[Eu[Zn+1|‘7:n”'7:n] =My .
(Wh, Fa—1)n>1 is a predictable stochastic sequence with
Whi1 — W, = Ep[Zn+1|~7:n] —Zn 2 X{r>n}
because of (4.3). It follows that
(4.4) Wp>2n+s on{z; 7(z) >n}.
Next note that on {7 > n} holds
Eu[(Mn+1 - Mn)2|Fn] = Eu[(Zn-f—l - Eu[Zn+1|fn])2|fn]
< Eul(Zpt1 — Zn)2|]:n] = Eﬂ[(A‘P)2 o F"|Fy]
< M,
where we used the fact that E,[(Z,+1—Y)?|F,] is minimized by Y = E,,[Z,,11|F,]

for the first inequality and assumption (4.2) for the second one. On {7 < n}
we have

Mn+1 - Mn = 4dnp4+1 — Ey[Zn—l—l']:n] = Zn+1 - Zn =0.
Both estimates together yield E,[(Mp41 — M,)? < M, and we can apply
Chow’s version of the Hajek-Rényi inequality (see [Sto, Theorem 3.3.7]):

M " B, (M; — M;_1)2 1
(4.5) 'u{max|7z|121}§z (M Z;)]SMZ — <
1<i<n § — 19 + 12 =1 (s =m0 +1) j>s—7"0‘7

?

N | —

if s — rg is large enough. Hence

p{r <oo} = u U{T:n} <pu U{anToandeZn—l—s}
n>1 n>1
< p|lUMu<ro—s—n}| <p| J{IMa| = 5s—r0+n}
n>1 n>1
{ | M| } 1
= suppgq max —— > 1, < -
n>1 1<i<n § — 19 + 1 2



26 H. BRUIN, G. KELLER, T. NOWICKI, S. VAN STRIEN

for such s, i.e. p{T = oo} > 3.
Now a convergence theorem of Chow (see [Sto, Theorem 3.3.1]) asserts
that
lim M,/(s—70+n)=0 p-as.

n—00

in view of the finiteness of the sum in (4.5). Hence, on {7 = oo},

F™ Zpn .. . Wy .M,
lim inf 22 = liminf — =liminf — + lim — >1 p-a.s.
n—oo n n—oo 1 n—oo n n—oo 1,

in view of (4.4). In particular, for p-almost every z € {7 = oo} the trajectory
x, Fz,F?z, ... visits each element Aj € A only finitely often. O

5. Proof of the Main Theorem

In this section we shall complete the proof of the Main Theorem. So let f be
a C? Fibonacci map with a critical point of order £. First we should remark
that the complement of the basin of w(c) is a residual set. This can be seen
as follows. From Theorem A in Chapter IV of [MS] it follows that f has no
wandering intervals (a wandering interval is an interval whose forward iterates
are all disjoint and which is not in the basin of a periodic attractor). Moreover,
f is not renormalizable and has positive topological entropy, see [HK]. It
follows that f is semi-conjugate to a tent-map of the form

z— A1 -2z — 1))

and that the semi-conjugacy only collapses components of basins of periodic
attractors. Clearly such components cannot be in the basin of the Cantor set
w(c). So it suffices to show that there exists a residual set of points z for
which w(z) (w.r.t. a tent-map) is equal to a cycle of intervals. This fact is
well-known, see for example [Mil, page 189]. So the deepest part of the proof
consists in showing that B(w(c)) has positive Lebesgue measure.

Let the points uy, cs, and so on be defined as in Section 2 and choose as
before g1 € {ug41,Urs+1} so that it is on the same side of ¢ as ug. As in
[KN] counsider intervals Iy, = (ug, Ug+1) and Iy (the interval symmetric to I)
and observe that [ig, ug] \ Ug>1(Jx U fk) is a countable set. Define

F : U (I, U I,) — Tiig, uo]
k>1

by
F|I, = f .

Then F(I;) = F(I1) = (d,ug) and for k > 1
F(Ix) = F(Ix) = (uk—2,uz) -
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Hence, if we let Ay = I, U}, (k > 1), then A = {Ay:k = 1,2,...} is a partition
of X = (ug,ug) (modulo a countable set), and F' is Markov with respect to A.

Uk—1
Uk
fsk—l
Zk Zlk—1
¢ Up 1 | Uk U1
fo%
Uk —2
Uk—3
Figure 5.1.

In this section we shall show that F' and A satisfy the assumptions of
Theorem 4.1 and thus prove:

THEOREM 5.1.  For all sufficiently large £ holds: The set D of all points
for which the trajectory (F¥z)gsq visits each interval I,, and I,, at most finitely
often, has positive Lebesgue measure.

Let us first show that this result implies our Main Theorem, which states:

THEOREM 5.2. w(c) is a wild Cantor attractor for f provided £ is large
enough.

Proof. First we should remark that f is ergodic with respect to the (non-
invariant) Lebesgue measure if its Schwarzian derivative is negative, see [BL].
Take D as in Theorem 5.1. Then f~}(D) = D and D has positive Lebesgue.
Hence, if f is ergodic, D has full Lebesgue measure and we are finished. In
general f need not be ergodic. For example, it could have a periodic attractor
in which case w(c) cannot be a ‘global’ attractor. But even in this case, the
argument below will show that it attracts a set of positive Lebesgue measure.
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We should remark that w(c) is not accumulated by periodic attractors, see
[MMS] or [MS], so near w(c) these periodic attractors are ‘invisible’.
Consider a point € X for which (F¥z),~( visits each interval I,, and I,
at most finitely often, and denote by ¢; < t2 < t3 < ... the sequence of times
for which F¥z = fi%z. We have to show that lim;, dist(f'z,ws(c)) = 0.
Along the subsequence t; this holds as limg_,oo f*z = limg_ 00 Fkz = ¢ €
wy(c). Conmsider now t; < t < tx41 and suppose that FFz € I, (or F*z €
I,). As f5* is monotone on I, (and on I,) and as f5+(I,) = f5(I,) is an
interval contained in the union of the two central monotonicity intervals of
f5=2 the interval V := fi=t(I,) = ft=t (fn) is contained in the union of
two adjacent monotonicity intervals of fS»-2t%+1=t  Furthermore, f'z € V,
and as cg,,, € I,, V contains the point f5=+1+=%(c) € wy(c). Therefore
dist(f'z, wy(c)) < |V]| < 288, 34ty —t < 26s,_,, where &, denotes the maximal
length of a monotonicity interval of f¥, and limy_,o 6; = 0 because f is non-
renormalizable. O

IT Ir—2

cs,  Up c Up_2 CS,_,

Figure 5.2. The diffeomorphic image of F™|H.

Proof of Theorem 5.1. Let us show that we can apply Theorem 4.1.

Step 1: The first condition of Theorem 4.1 is satisfied. Let m be the
Lebesgue measure and F' the induced map from above. Take H € A, ;. We
have to show that

(5.1) /H(A¢ 1) o F"dm >0

where A¢(z) = ¢(F(z)) — ¢(z) and where ¢(x) is the ‘index’ of the state z.
By definition F™(H) is equal to I, or I, for some r > 1. Let us consider the
former case. Recall that F' maps I, (and also I,,) diffeomorphically onto

U?irAi Ul,_1UIL._o,

where A; = I; U f, For convenience let IZ# be the component of A; which lies
on the same side of ¢ as I,_3. Hence

{zeH; Ap(z) <0y =IFur? urf,ur,

see Figure 5.2. (Note that I, and I, o are on opposite sides of ¢.) Hence

(5.2) /H(A¢ “1)o F"dm
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is equal to

(5.3) > i |Hi| + (=1)- |H? |+ (=2) - [H?| - |H| > Y i~ |Hi| + (—4) - |H],
where

Hy={zc H; F"''Y(z) € A, ;},i=0,1,2,...

and
Hf ={e e H; F"™ (@) e If)}, i=-2,-1

We shall show below that there exists a universal constant C' > 0 such that for
1=1,2,...,

1
(5.4) C |Hi—1| < |Hi| < F[Hi-1]
and for 1 <1 < /4,

C

(5.5) [Hi| > | Hol.
Moreover, for : = —1,0,

1
(5.6) C-[HE| < |HF| < GIHE|

Before proving these inequalities let us show that they suffice. Indeed,
using these inequalities, we can estimate (5.3) from below by:

. C
(5.7) S i o Hol — 41H]| > (C/2) log(t)| Ho| — 4|H].
1<ige
Hence if
| Ho| 8
5.8 >
(58) H| ~ Clog(t)

then we get that (5.7) is non-negative and we are done. So assume that (5.8)
is not satisfied. In this case, we use (5.4) and (5.6) and we have that there
exists a universal constant C7 < oo and A € (1,00) (which one can choose to

be 1/C) so that for k£ > 1
|H?,U H?, UHyU...U Hy_1| < C1\*|Hy|.

Hence

H
| Uik Hi| > |H| — C1\F|Hy| = (1 - CM’“%) |H],

and therefore choosing k¥ = 8 we can also bound (5.3) from below by

i H
(5:9) S [l — 4] 2 8+ Uiss 1|4} > (8- —cm%] ~4) |
1=8
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Since we have assumed that (5.8) fails, we can make sure that Cl)\s%l is at
most 1/2 by taking £ sufficiently large and therefore (5.9) becomes non-negative
in this case.

So we need to prove (5.4), (5.5) and (5.6). By the estimates from Theo-

rem 3.14 there exist constants C1,Cy € (0,00) such that for large £ and large
J5

C i — C
(5.10) 4G tmd o O

L [tj11 — ¢ 1
In particular, since (1 4+ C/£)* < €€ for i < £, there exist universal constants
C3,Cy € (0,00) such that

(5.11) Cs|ly| < |Ir4i| < Ca|ly|

for each integer i between —2 and £ (and the same holds for I~T and A, because
of the symmetry of f near c).

It follows from Proposition 2.1 that F' satisfies the following extension
properties:

* FI?I is of the form f™ (in fact, f™ is a composition of maps of the form
fSi) and therefore F o F™ = fsr+m;

e there exists an interval T D H which is mapped by f5 1™ diffeomorphi-
cally onto (cs,_,,cs,)-

Now note that we have the following Koebe inequality: if 5 C T is an interval

such that F"*(T) = (cs,_,, cg,) contains a T-scaled neighbourhood of F™*1(5)
then

IDF™(z)|  [Dfm() 147
DFi(y)| ~ [Dfm(y) = o]

where O < oo is some universal number. (We shall refer to 7 as the Koebe

T

space.) If Sf < 0 this follows immediately from the Koebe Principle, see
Proposition 3.2. In the general case it follows by combining the Koebe Principle
3.4 with Proposition 3.6. Indeed, the first assumption of this proposition holds
by definition of F'; assumptions 2) and 3) follow from the above extension
properties and from the bounds from Theorem 3.14 (where 7 is a constant
which is independent of £); finally in assumption 4) the constant K can be
taken as the intersection multiplicity 3 from Proposition 2.1.

Since |cg, , —ur—_2| is of the same order as the size of Ijﬁ_i fori =-2,-1,0
by Theorem 3.14, F"*! maps some neighbourhood of each component of (the
closure of) H; U H;1 diffeomorphically to a definite neighbourhood of one
component of (the closure of) A,;; U A,4;41 for ¢ > 0. Hence this map has
uniformly bounded distortion on each component of (the closure of) H; UH; ;.
The images of H; and H;; are equal to the union of A,,; and A,;;11. Since
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each of the components of these sets has roughly equal size, see (5.11), the
components of the sets H; and H;;1 on one side of ¢ have roughly the same
size. This proves (5.4). Similarly, one has that H#z, H#l and H(# have roughly
equal length and thus we get (5.6).

Moreover, all the components of H;, 1 <4 < £, and also the Koebe space
are of the same order because of (5.11). Hence the Koebe space around the
Fm*limage of a component of (the closure of) Hy U H; U...U H; is of order
1/i provided 1 < ¢ < £. It follows by the above Koebe inequality (and the
Mean Value Theorem) that the ratio of the two expressions

[Ao| _ |F"™H(Hy)| and Ail _ [FmH(H))
|Ho| |Ho| | Hj| | H|

is bounded from above by i?/Cg where Cg > 0 is uniformly bounded away from
zero (and 1 <7 < /). By (5.11) this implies (5.5).

Step 2: The second condition of Theorem 4.1 is satisfied. We need to
show that there exists M such that for any n € N and any H € A,,11,

/ (Ap)2o Fdm < M -m(H).
H

Since (1 — 1/£)¢ =~ e7! and by (5.10), | U;jsg I.1;| is of the same order as
| Up<i<s Ir4i|. Therefore by the Koebe Principle and by (5.10) there exist
constant A =1+ C/f and K (where C and K are universal) so that

|Hi| < K- X7 |Hy| < KX©F - |H|

for i > £. Hence there exists M which is independ of H and n (but does depend
on £) so that

/ (Ag)2 o Frdm < 2H|+ Y i [Hi| < M- |H|.
H >t
Step 3: Conclusion of the proof of theorem. Because we have checked
both condition of Theorem 4.1 the proof is complete. O
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