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Abstract

We show that the renewal theory developed by Sarig and Gouézel in the con-
text of nonuniformly expanding dynamical systems applies also to the study of
compact group extensions of such systems. As a consequence, we obtain results
on subexponential decay of correlations for equivariant Holder observations.

1 Introduction

Suppose that f: X — X is a discrete dynamical system with ergodic measure u. If
#,7% : X — R lie in L?(X), we define the correlation function

pou(n) = [ 3o o f¥)du— [ pduf ¥ dp.

The dynamical system is mixing if ps(n) — 0 as n — oo for all ¢,9 € L?(X). For
certain classes of dynamical systems and sufficiently regular observations ¢, ¢, it is
possible to estimate the speed at which py 4 (n) — 0. For Axiom A diffeomorphisms,
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it is known that the correlation function decays exponentially for Holder observations
(see for example [3, 20, 19]).

The early proofs in the uniformly hyperbolic case revolve around quasicompactness
of a certain transfer operator. This method also applies to certain hyperbolic systems
with singularities and to certain nonuniformly hyperbolic situations. Such systems
can often be modelled by the tower construction of Young [23] and then exponential
return asymptotics guarantee the existence of a “physical” measure p and exponential
decay of correlations.

Several methods have been developed to deal with the case where the rate of de-
cay of correlations are slower than exponential. (For a recent survey, see Baladi [2].)
These methods include Birkhoff cones [14, 22] and probabilistic coupling [24]. In
particular, Young towers with subexponential return asymptotics have subexponen-
tial (stretched exponential or polynomial) decay of correlations [24]. Sarig [21] used
renewal sequences to obtain lower bounds for decay of correlations and this method
was generalised by Gouézel [7]. In particular, the results of [7, 21] show that the
subexponential decay rates of Young [24] are optimal. (See also [12, Theorem 4.3].)

In this paper, we are interested in group extensions X x G where G is a compact
connected Lie group with Haar measure v and f : X — X is a dynamical system of
the type described above with ergodic measure p. Given a Holder cocycle h : X — G,
we define the G-extension fj, : X XxG — X XG by fu(z, 9) = (fz, gh(z)). The product
measure m = p X v is fy-invariant and is ergodic/mixing under mild hypotheses on f
and h (see [5] for the case when X is uniformly hyperbolic). We take mixing as given in
this paper, and direct attention to the rate of mixing. For general Holder observations
0,9 : X x G — R, existing results are restricted to the case when X is uniformly
hyperbolic and either G is semisimple or X is infranil Anosov, see Dolgopyat [4].
Nicol et al. [18] introduced a class of equivariant observations ¢ : X x G — R¢ of
the form ¢(z,g) = g - v(z) where R? is a representation of G and v : X — R%. The
statistics of such observations arise naturally in dynamical systems with Euclidean
symmetry [18]. The correlation function py,(n) is defined as before but with
replaced by 47, and so takes values in the space of d x d matrices.

Results on exponential decay of correlation for equivariant observations on com-
pact group extensions were obtained by [6] in the case when X is uniformly hyperbolic.
This was extended in [15] to include the general situation where the transfer operator
is quasicompact for the X dynamics. In a sense, exponential decay on X leads to
exponential decay on X x G for equivariant observations (more accurately, the proof
of exponential decay on X by quasicompactness leads to the result on X x G).

An important open problem is to obtain results on subexponential decay of corre-
lations for sufficiently regular observations of compact group extensions. Previously,
there were no such results even for equivariant observations. In this paper, we deduce
subexponential decay results for equivariant observations on X X G in certain situa-



tions where subexponential decay can be proved on X. (Again, it is the proof that
extends, not the result directly.) The technique of proof is perhaps unexpected. The
Hilbert cones and probabilistic coupling methods mentioned above fail for equivariant
observations — Hilbert cones uses positivity of the transfer operator; in coupling the
observation is viewed as the density for a probability measure; neither makes sense
here. Instead we use the renewal sequence method of Sarig [21] and Gouézel [7] for
obtaining upper bounds for decay rates, even though this method was introduced for
obtaining lower bounds. (The fact that it can be used for obtaining upper bounds for
general Holder observations was pointed out in Gouézel [10].) In fact, the method is
much easier to apply in our context than in the nonequivariant situation, but we do
not obtain lower bounds. (These two statements are related since the leading term
in [7, 21] vanishes in the equivariant case.)

(a) Statement of the main result

Let (X, d) be alocally compact separable bounded metric space with Borel probability
measure 7 and let f : X — X be a nonsingular transformation for which 7 is ergodic.
Let Y C X be a measurable subset with n(Y) > 0. We suppose that there is an
at most countable measurable partition {Y;} with n(Y;) > 0, and that there exist
integers r; > 1, and constants A > 1; C, D > 0 and ~y € (0, 1) such that for all j,

(1) f" :Y; =Y is a (measure-theoretic) isomorphism.
(2) d(fz, friy) > Md(z,y) for all z,y € Y.
(3) d(fFz, fry) < Cd(friz, friy) for all z,y € Yy, k < r;.

d(nly;o(f7)~1)
4) 9 = — @y —
z,y €Y.

(5) >2;rim(Y;) < oo
We say that a dynamical system f satisfying (1)—(5) is nonuniformly expanding.
Define the return time function r : Y — N by r|y, = r;. Condition (5) says that
Jy 7dn < oco. The map f¥ : Y — Y given by f¥(y) = 7@ (y) is the corresponding
induced map. (By condition (2), f¥ is uniformly expanding.) It can be shown (see
Young [24, Theorem 1]) that there is a unique invariant probability measure pu on X
that is equivalent to 7.
Let G be a compact connected Lie group with Haar measure v. Given a measurable
cocycle h : X — G, we define the G-extension f, : X x G — X x G with fj invariant
measure m = pu X v. Forward iterates are given for n > 1 by

iz, 9) = (f"z, ghn(z)), where h,(x) = h(z)h(fz)---h(f" 'z).

satisfies |logg;(xz) — logg,(y)| < Dd(x,y)” for almost all
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In particular, we obtain the induced transformation on Y x G given by (y,g) —
(fYy,gh¥ (y)) where BY : Y — G is defined to be hY (y) = k) (y).

Now let R? be an orthogonal representation of G' (so G can be viewed as a closed
subgroup of the d x d orthogonal matrices). We say that ¢ : X x G — R? is
an equivariant observation if ¢(z,g) = ¢ - v(z) where v : X — R? Note that
¢ € L*(X x G) if and only if v € L*®°(X) in which case |¢|e = |V]eo- If v: X — R?
is y-Holder, then we say that ¢ is Holder and we define ||¢||, = |v|s + |v|, Where
|v]y = supg, [v(z) — v(y)|/d(z,y)".

Theorem 1.1 Let fr, : X X G = X X G be a weak mizing compact group extension
of a nonuniformly erpanding map as above, where h : X — G s a Holder cocycle.
Assume that

wly €Y :ri(y) > n) = O(n~ ),

for some B > 1. Let G act orthogonally on R%. Then there exists a constant C > 0
such that for all equivariant observations ¢, : X x G — R* with ¢ Hélder and
Y e L=,

pow(n) < Cllolly [$]oon ™.

Simalar results hold for more general decay rates, including stretched exponential
(see Section 2(a)).

Remark 1.2 (a) Define FixG = {v € R? : gv = v for all g € G}. We can always
decompose R? = R# x R% where G acts trivially on R% (FixG = R%) and fixed-
point freely on R® (FixG = {0}). When G acts trivially, we are in the situation
studied by [7, 21] so we focus on the case Fix G = {0}.

(b) Suppose that Fix G = {0} and that ¢ is supported in Y x G. Then we obtain the
improved estimate py(n) < C||8||, [¥|on™ PV if the cocycle h is either (i) locally
constant, or (ii) supported in Y. See Remark 5.6.

Remark 1.3 A standard application of decay of correlations is to deduce statistical
limit laws such as the central limit theorem or the almost sure invariance principle.
However, stronger results can be obtained more easily by observing that the full map
fn i X XxG — X x (@ is a discrete suspension over the induced map on Y X G.
By [17], the limit laws on X x G can be deduced from the corresponding laws on
Y x G (see [8]). The CLT and ASIP on X x G is proved in [16] under hypotheses
more general than in Theorem 1.1.

The remainder of the paper is organised as follows: In Section 2, we prove a sim-
plified special case of the Renewal Theorem of [7, 21] which suffices for our purposes.
Then we turn to the proof of Theorem 1.1. Various parts of the proof are best treated



at different levels of abstraction, so in Section 3 we relate nonuniformly expanding
maps to Young towers and Gibbs-Markov maps.

In Section 4, we describe the set up of inducing in the context of compact group
extensions and we use the renewal theorem to relate properties of the dynamics on
X x G to properties of the induced system on Y x G. At this point, conditions (1)—(5)
are not required.

In Section 5, we prove Theorem 1.1 for Holder observations supported in Y x G.
This is done by proving the corresponding result when f : X — X is a Markov map
and fY : Y — Y is a Gibbs-Markov map. This is certainly the case for nonuniformly
expanding maps (Condition (3) is not required here.)

In Section 6, we prove Theorem 1.1 for Holder observations supported in X x G.
This is done by proving the corresponding results for Young towers. The result for
nonuniformly expanding maps follows immediately from the result for Young towers.

2 A simplified renewal theorem

Let Hom(B) denote the space of bounded linear operators on a Banach space B. Let
R, € Hom(B). We assume that

(H1) 3772, IRl = O(n?), where 8 > 0.

Set R(w) = Y o0, R,e™. It follows from (H1) that R : S' — Hom(B) is a well-
defined map. Next, we assume that

(H2) The spectrum of R(w) does not contain 1 for all w € S*.

Define T'(w) = (I — R(w)) *. Hypothesis (H2) guarantees that T : S* — Hom(B) is
well-defined.

Theorem 2.1 Assume that (H1) and (H2) are valid with B > 0 not an integer. Then
the Fourier coefficients T, of T satisfy ||T,|| = O(n=?).

Corollary 2.2 Assume that (H1) and (H2) are valid with 8 > 0 and 8 # 1. Then
the Fourier coefficients T, of T satisfy ||T,|| = O(n=").

Proof By Theorem 2.1, we may assume that § € {2,3,...}. In particular, the
Fourier coefficients ||7},|| are summable. Now apply [7, Lemma 4.5]. |

Remark 2.3 (1) Much of the difficulty, and hence depth, of the work in [7, 21]
stems from the fact that 1 is automatically an eigenvalue of R(0) in their context.
Hence (H2) is violated, necessitating a combination of complex analytic techniques
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and Fourier analysis. In our work, Fourier analysis alone suffices.

(2) As the proof of Corollary 2.2 shows, it suffices to show that Theorem 2.1 holds for
B € (0,1) and that ||T,]|| is summable for 5 > 1. However the details for 5 > 1 not an
integer are elementary and so are included. In addition, the estimates in Theorem 2.1
are explicit (this is clear in the proof) which may be of use for estimating mixing
times (though we do not pursue that issue here).

(a) Stretched exponential rates and convolutive sequences

Corollary 2.2 can be generalised significantly using ideas in the Ph. D. thesis of
Gouézel [10, Définition 2.2.10]. Adapting the definitions there, we say that a se-
quence of positive numbers u, > 0 is convolutive if Y, u, < oo and there exists a
constant C' > 0 such that

(i) (u*u), < Cuy foralln > 1,
(ii) Up < Cuy, for allm > n,
)

(iii) (1 —€)" = O(uy,) for all € > 0,
(iv) for all € > 0, there exists N > 1 such that the sequence v, = 1,>yu, satisfies
(v*v), < euy, for all n > 1.

For wu,, convolutive, it follows from Gouézel [10] that if 32 [|R;|| = O(u,) and (H2)
is valid, then ||T5,|| = O(uy).

It is easily verified that u, = n~? is convolutive for 8 > 1, so we recover Corol-
lary 2.2 in this case. Also, stretched exponential sequences u, = 7" with 7, € (0,1)
are convolutive, so we obtain a stretched exponential version of Corollary 2.2.

The above definition of convolutive sequence is simpler than in [10], so it is worth
mentioning where the various conditions are used. The method in [10] is to apply a
generalised version of the Wiener lemma from harmonic analysis (if f € L*(S*,C) is
nonvanishing and has summable Fourier coefficients, then f~! has summable Fourier
coefficients) [13, p. 202]. Conditions (i) and (ii) guarantee the existence of a suitable
Banach algebra. Conditions (iii) and (iv) ensure that the Wiener lemma holds in this
Banach algebra. The remaining conditions in [10] are not required here due to the
simplification mentioned in Remark 2.3(1).

(b) Proof of Theorem 2.1

In the remainder of this section, we prove Theorem 2.1. Throughout, if 8 > 0 then
we write 8 = k + « where k =[] and « € [0,1).



Lemma 2.4 Assume that R(w) = Y2, R,e™ with Y22, ||R;|| = O(n?) where
B > 0 is not an integer. Then R : S* — R is CP.

Proof First suppose that 8 = a € [0,1). We follow [7, 21]. Let w;y,wy € S and fix
N > 1. Write S, =7, [|R;||. Then

=2

—1 o]
IR(wi) = Rwa)[| < D €™ — ™| Rull + 2 || Rall
n=N

n=1

Il

N—-1 [e'9)
< Jwr —wa| Y n(Sn = Snr1) +2 > (Sn = Snya)
n=1

n=N
N-1 N-1
S \wl —wz‘ an +QSN S C’\wl —a)g‘ Zn_o‘ +20N_a
n=1 n=1

< 01— oz)_lN_a{N|w1 — | +2(1 - a)}.

Let N =1/|w; —wq|+cwhere 0 < ¢ < 1. Then N™® < |w; —we|* and N|w; —ws| <
1+ 27 so that ||R(w1) — R(ws)|| < C(1 — a) }(3 + 27 — 2a)|w; — we|®, as required.

Next suppose that 8 = k£ + o > 1. Repeatedly differentiating the power series
for R yields R®(w) = Y°°° nfR,e™. Let E, = ... j*||R;]. We claim that
E, = O(n~?). It follows that R*) is C* as required.

It remains to prove the claim. We have S, = )
that

jzn

ion 1B < Cn~*+2) - Compute

E, =Y IRl =) i*(S; = Sjm) =n*Su+ D (* = (G- 1N)S;

jzn jzn j2n+l

Using the identity 2% —y* = (x—y) (ack’l-i-a:k’Zy—i-- : -+yk’1), we see that j’“—(j—l)’C <
kj* 1. Hence E, < COn *+CkY ;5,7 ) < C(1+k/a)n . n

Lemma 2.5 Suppose that T : S* — Hom(B) is C? where 3 > 0 and let T,, € Hom(B)
denote the Fourier coefficients of T. Then ||T,|| = O(n™?).

Proof First suppose that § = a € [0,1). The estimate is a standard result for
B = C (see [13, p. 25]) which easily generalises as in Sarig [21].
Next suppose that = k + o > 1. Integrating by parts £ times yields

1 2 —inw

T, =—
2 Jo



Now E, = (in)*T,, are the Fourier coefficients of the C* function T") and so || E,|| =
O(n ®). Hence ||T,,|| = O(n*) as required. |

Proof of Theorem 2.1 By Lemma 2.4, R is C? and it follows from (H2) that
T = (I — R)~!is CP. The result follows from Lemma 2.5. |

3 Background on Young towers and Gibbs-
Markov maps

As mentioned earlier, certain parts of this paper are best formulated at various dif-
ferent levels of abstraction. Eventually, we prove Theorem 1.1 for G-extensions of
a Young tower which is an effective model for nonuniformly expanding maps. The
result for nonuniformly expanding maps follows from the result for towers, but the
tower has an additional Markov structure which simplifies the proofs. The base of the
tower has a Gibbs-Markov structure. We recall background material about Young
towers in Subsection (a) and about Gibbs-Markov maps in Subsection (b).

(a) Young towers

Let (Ag, mg) be a probability space and let Fy : Ay — Ay be a measure-preserving
transformation. Given an L' function » : Ay — N with » > 0 almost everywhere
(such an r is called a roof function), we define the suspension

A={(z,0) €Ag xN:0< L < r(z)}/ ~

where (z,7(x)) ~ (Foz,0). Define the suspension map F' : A — A by F(z,¢) =
(xz,£+ 1) computed subject to identifications. An F-invariant probability measure is
given by m =mgy X &/ || AT dmg where £ is counting measure.

Let {A o} be an at most countable measurable partition of A, that separates
points in Ay, such that r; = 7‘|Aj,0 is constant, and such that Fy : A;o — Ag is a
measurable isomorphism. For each j and 0 < £ < rj, let A;, = A, x {¢}. This
defines a partition {A;,} of A.

Define a separation time function s : A x A — N as follows: If x, y lie in distinct
partition elements, then s(z,y) = 0. If z,y € A, for some j, then s(z,y) is the
greatest integer n > 0 such that Fjz and Fj'y lie in the same partition element of
Ag. Finally, if z,y € Aj, then write z = Ftzy, y = Fly, where xg,v0 € Ajo and
define s(z,y) = s(xo,yo). Since {A;} separates points, s(z,y) = oo if and only if
z = y. Hence dy(z,y) = 0°®¥ defines a metric on A for any choice of § € (0, 1).



Definition 3.1 Let g; be the Jacobian of FO\A].,O : Ajo — Ay. The suspension
f:A — Ais a called a Young tower if there exist constants § € (0,1) and C' > 0
such that for each j, |log g;(z) —logg;(y)| < Cdy(z,y) for all z,y € A, ,.

Now suppose that f : X — X is a nonuniformly expanding map with induced
uniformly expanding map fY : Y — Y as described in the introduction. In particular,
suppose that A > 1 and v € (0,1) are the constants appearing in conditions (2)
and (4). Let A = {(y,¢) :y€ Y, £=0,...,r(y) — 1}, so A is the disjoint union of
r; copies of each Y;. Define a measure p on A by setting ,u|ij{¢} = mly,. Define
F: A — A by setting F(y,£) = (y, £+ 1) for 0 < ¢ <r(y) —1 and F(y,r(y) — 1) =
(f¥y,0).

Proposition 3.2 Let § = 1/\7. Then the map F : A — A is a tower with Ay =Y,
Fy = Y and Ajy = Y,. Moreover, there is a constant C' > 1 such that d(z,y) <
C'[dg(, y)]*" for all z,y € A.

Proof It follows from condition (2) for nonuniform expansion that d(z,y) <
diam(Y)/A*@¥ for all (z,y) € A. Hence the partition A,y of Ay separates points
and the required distortion condition on g, is immediate, so A is a tower.

If z,y lie in the same partition element of A,, then write z = fzy, y = flyo so
d(f¥ zo, f¥yo) < diam(Y)/A*@¥). By condition (3) for nonuniform expansion,

d(z,y) < Cd(f¥ zo, f¥yo) < C diam(Y)/X*@¥) = C diam(Y)[dg(z, )]/

The last statement of the proposition follows. |

Define the projection 7 : A — X by 7(y,¢) = f*(y). Then 7 is a measure-
preserving isomorphism and it follows as in the proof of Proposition 3.2 that

d(m(z),7(y))" < C"d(x,y).

for all (xz,y) € A. In particular, if v : (X,d) — R is globally y-Holder, then v o7 :
(A,dy) — R is globally Lipschitz.

We conclude that Theorem 1.1 for G-extensions of nonuniformly expanding maps
is equivalent to the corresponding theorem for tower maps (with Hélder observations
replaced by Lipschitz observations).

(b) Markov maps and Gibbs-Markov maps

A background reference for Markov maps is [1, Section 4.7]. We follow the presen-
tation in [7]. Let (X, u) be a Lebesgue space. Recall that a measure-preserving
transformation f : X — X is a Markov map if there is a measurable partition «



of X such that if @ € a with p(a) > 0, then fa is a union of elements of o and
fla is injective. Moreover, it is assumed that the partition « separates points. If
Ao, . .., Gn_1 € @, we define the cylinder [ag, ..., a,_1] = N'2y f 'a,.

Suppose that Y = U,cza is a union of elements of «, and define the induced map
f¥Y Y — Y. This is a measure-preserving transformation with respect to u¥ =
ply- Moreover, f¥ is a Markov map with respect to the partition 3 consisting of all
cylinders for f : X — X of the form b = [a,&,...,&—1, Y] wherea € a,&,...,61 &
Q.

If by, ..., by_1 € (3, we define the n-cylinder [by, ..., b, 1]y = NP5 (f¥)7b;. These
cylinders can be used to define a metric on Y in terms of separation times. Fix
9 € (0,1), and define dy(z,y) = 6°@¥ where s(z,y) is the greatest integer n > 0 such
that x,y lie in the same n-cylinder.

We shall suppose that the induced map is additionally a Gibbs-Markov map sat-
isfying the following properties:

(i) Big images property: There exists ¢ > 0 such that u(fYb) > ¢ for all b € 3.
(ii) Distortion: There exists 6 € (0, 1) such that that p|, : b — R is Lipschitz with
du¥
— Y (y) —
respect to dy for all b € ' where p(z) = p* (z) = log a7 o 7
the smallest partition of Y such that fYb is a union of atoms in 8’ for all b € 3.

and 3’ denotes

Remark 3.3 Clearly, conditions (1), (2) and (4) for nonuniformly expanding maps
guarantee that the induced map f¥ : Y — Y (or the map Fy : A — A, for the
tower map in Subsection (a)) is Gibbs-Markov with respect to the partition {Y}}
with # = 1/\7. By condition (1), the big images property is trivially satisfied since
each Y; is mapped onto the whole of Y. Condition (2) guarantees that the partition
separates points. Condition (4) gives the distortion, indeed 3 = {Y}, and p is
globally Lipschitz.

It follows in a standard manner from assumptions (i) and (ii) that there exists a
constant D > 0 such that for all z,y € [by, ..., bk_1]y,

_ 1‘ < DO *dy(z,y) and D' < ilbos - bl < D, (3.1)

ePk () ePk (z)

where py(z) = p(z) + p(f¥2) + -+ p((f)*2).

4 Compact group extensions

In this section, we begin by recalling the formalism of inducing for discrete dynamical
systems in the context of compact group extensions and equivariant observations.
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Then we apply the renewal theorem (Corollary 2.2) to this situation. We also prove
a partial result towards the verification of hypothesis (H2).

(a) Inducing and compact group extensions

Let (X, ) be a probability space, f : X — X a measure preserving transformation,
and Y C X a measurable subset with u(Y) > 0. By Poincaré recurrence, for almost
every point y there is an integer n > 1 such that f"y € Y. Let Z, consist of
those y € Y for which n is the least integer such that f"y € Y. Then we have
the measurable partition ¥ = U,>1Z, and we define the induced transformation
f¥Y 1Y = Y by setting f¥y = f*y for y € Z,. (To make the connection with
nonuniformly expanding maps, Z,, is the union of those subsets Y; with r; = n.)

Given a cocycle h : X — G with corresponding G-extension f; : X xG — X x G,
we define (as in the Introduction) the induced G-extension (f;)¥*¢ : Y xG — Y xG.
Note that (fz)Y*¢ = (fY),r where

B =h,=h-hof-—-hof"! on Z,.

We consider equivariant observations ¢ : X x G — R? of the form ¢(z, g) = gv(z)
where v € L'(X,R¢). The standing assumption Fix G = {0} has the consequence
that [ xxg @dm = 0 for all equivariant observations ¢ (since fG gudrv = 0 for all
v € RY).

Corresponding to the map f : X — X, we define as usual the transfer (or Perron-
Frobenius) operator L on L'(X): ifv € L}(X), then Lv is the unique element of L (X)
such that [, Lvwdp = [, vw o fdu for all w € L>(X). The operator L defines
(componentwise) an operator L : L'(X,C%) — L'(X,C?) for all d > 1. Similarly,
we obtain a transfer operator L : L'(X x G, C?) — L}(X x G,C%) corresponding to
fn: X xG — X x G. We define the twisted transfer operator L : L'(X,C%) —
LY(X,C?%) by Lyv = L(h™'v) (taking the complexified action of G on C%).

The analogous definitions apply to the induced transformation fY:Y =Y. We
have the transfer operators R : L'(Y,C%) — L*(Y,C%) and R : L}(Y x G,C¢) —
LYY x G,C%), and and the twisted transfer operator Ry, : L'(Y,C?%) — L'(Y,C%) de-
fined by Ryv = R((hY)~'v). (We avoid the more natural, but cumbersome, notation
Ryy.)

Proposition 4.1 Let ¢(z,9) = gv(x) be an equivariant observation with v €
LYX,C or v € LY(Y,C"). Then (L)(x,9) = g(Lnv)(x) and (R$)(y,9) =
9(Rpv)(y).

Proof This is standard, see for example [6]. |
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We define the following bounded linear operators on L'(X, C%):
Tn’U = LZ(lyU)]_y, Rn’U = LZ(]-va)lY

Proposition 4.2 (a) T,, = > R, --- R, R;,.

TR —

(b) Restricting to L*(Y'), we have
Rh(eirwv) — Zanemw
n=1

where 7 : Y — N is given by r|z, = n.
Proof Define the sequences of bounded operators fn, ﬁn on L'(X x G) by

T = Z"(1y><(;<15)1Y><G, R, = En(lanG¢)1YxG- (4.1)

It follows from Proposition A.1(a) that

11+ tip=n

Let ¢(z, g) = gv(x). Using Proposition 4.1 and the definitions in (4.1), we compute
that

(Ta0) (2, 9) = (L"(1yxa®)lyxa) (2, 9) = gl(Lily0)ly](z) = g(Twv) ().

Similarly, (R,¢)(z,g) = g(R,v)(z). Substituting into (4.2) yields part (a).
Next, define R,¢ = R(e™¢). It follows from Proposition A.1(b) that

R,=> Rue™ (4.3)

n>1

By Proposition 4.1, (R,¢)(z,9) = g(Ru(e™v))(z) and again (R,¢)(z,g) =
g(R,v)(x). Substituting these into (4.3) yields part (b). |

(b) The renewal theorem applied to equivariant observations

We continue to assume that f : X — X is a measure-preserving transformation with
induced map f¥ : Y =Y, that f, : X x G = X x G is a compact group extension,
and that G acts orthogonally on R? with Fix G = 0.

12



Theorem 4.3 Let B C L}(Y,C%) be a Banach space with norm || || satisfying |v|; <
|v|| for all v € B, such that the operators T, R, restrict to bounded linear operators
on B. Assume that hypotheses (H1) and (H2) from Theorem 2.1 are satisfied with
8 >1.

Then there is a constant C > 0 such that for all equivariant observations ¢(zx, g) =
gv(x), ¥(x,g9) = gw(z) where v € B and w € L®(Y,R?),

[ 6uT o firdm| < Cllollfuwlon?
XxG

for all n > 1.

Proof View the operators Ty, R, as lying in Hom(B) and let

R(w) =Y Rpe™, T(w)=(I-Rw))™"

n>1

Hypotheses (H1) and (H2) guarantee that the maps R,T : S' — Hom(B) are well-
defined and by Lemma 2.4 they are C”?. In particular, the series definition of R(w)
is absolutely convergent to R(w) and since § > 1, T(w) has an absolutely con-
vergent Fourier series T'(w) = I + anfnei”“’. By Corollary 2.2, there is a con-

stant C' > 0 such that ||Tn|| < Cn~". Equating coefficients in T(I — R) = I yields
Tn = Zi1+___+ik:n R;, - - - R;, so it follows from Proposition 4.2(a) that 7, = Tn Hence
I T]] < Cn".

The remainder of the proofis a straightforward computation using Proposition 4.1:

pin)= [ ¢ ofrdm= | L'¢¢"dm= [ g(Lpw)w" g dm,

XxG XxG XxXG

so that |p(n)| < | [ Lpvw"dp|. Since v and w are supported in Y, we can write
p(n)] < | xTavw’du| < [Tyl [w]eo.

But |T,v]; < ||Twv|| € Cn=?||v|| as required. |

(c) Ruling out eigenvalues on the unit circle

The next result is a step towards verifying hypothesis (H2). Recall that R(w) =
D ons1 Rne™.

13



Proposition 4.4 Suppose that Fix G = {0} and that fr, : X X G — X x G is weak
mixing. Then for all w € R the cohomological equation

R(w)v = v,
has no nonzero L? solutions v:Y — C¢.

Proof By Proposition 4.2(b), it is equivalent to rule out solutions to the cohomo-
logical equation R(e(hY)™'v) = v. The proof is standard for w # 0 (cf. Pollicott
& Parry [19, Proposition 6.2]), and the case w = 0 follows as in [6]. The details are
provided for completeness.

Let U : L2(Y,C%) — L?(Y,C?%) denote the isometry Uv = e""hY v o f¥ with
adjoint U*v = R(e"(hY)~'v) satisfying U*U = I. Tt is easy to see that Uv = v is
equivalent to U*v = v (see for example [15, Section 2]). Hence it suffices to show that
Uv = v has no nonzero solutions in L?(Y,C?).

Suppose for contradiction that v € L2?(Y,C?%) is nonzero and Uv = v. Writing

¢(y, 9) = gv(y) we have
$o fry = €. (4.4)
We can view X X G as a discrete suspension over Y X G by writing
XxG={(y,9,j) €Y xG@xN:0<j<r(y)}/ ~,

where (y,9,7(y)) ~ (f¥y,gh¥ (y),0). Then f, : X x G — X x G is simply given by
In(y,9,7) = (v, 9,7 +1) computed modulo identifications. Define ¢ : ¥ x G x N — C?
by setting ¥(y,g,j) = €¥“¢(y, g). Condition (4.4) guarantees that 1 is well-defined
as amap ¥ : X x G — C?. Moreover, it is immediate that

Yo fr=e"1p.

If w # 0, then this contradicts the assumption that f; is weak mixing. If w = 0 then
it follows from ergodicity of f, that v is constant. Writing ¢(x, g) = gw(x) (where
w(y,j) = €¥%v(y)), we obtain that w(z) € FixG = {0} for all z € X contradicting
the assumption that v is nonzero. |

5 Observations supported in Y x ¢

In this section, we prove a version of Theorem 1.1 for observations supported in Y x G
under the assumption that the underlying dynamical system f : X — X is Markov
and the induced dynamical system fY : Y — Y is Gibbs-Markov. As discussed in

14



Section 3(b), conditions (1), (2) and (4) in the definition of nonuniformly expanding
map guarantee that f¥ : Y — Y is Gibbs-Markov. We assume the material from
Section 3(b). In addition, we have Y = UZ, where the subsets Z, are defined as in
Section 4. Note that each Z, is a union of elements of the partition 5 of Y defined
in Section 3(b).

Let |v|g denote the Lipschitz constant for v (with respect to the metric dy) and let
B denote the Banach space of functions v : Y — C¢ with norm ||v|| = |v]e+|v]s < 0.
The transfer operator R : L' (Y, C?) — L(Y, C?) associated to the Gibbs-Markov map
fY 1Y — Y restricts to an operator R : B — B given by

@ =3 ey

Yy=x

Let h : X — G be a measurable cocycle, and recall that hY(z) = h,(z) =
h(z)h(fz)---h(f"'z) for x € Z,. Throughout, h} means (h");. Since h(z) acts
orthogonally on R¢ for all z € X, |h) | = 1 for all k. Define |hY |y as above, viewing
RY ;Y — G C RY. Note that |(RY) [y = |hY .

Let b = [by,...,b; 1]y be a k-cylinder for the induced map f¥. If z € Y, write
Eac = bo e bk_lﬂf.

Proposition 5.1 Let 2,y € Y. Then |k} (bx) — h} (by)| < (1 — 0) 7 |hY |¢dy(z, y).

Proof Compute that

k— k—1
[ (u) Z [R5 B ((F Y u) = Y ((FY) ) < ) [hY (o0 dg(u, v).
=0 =0
The result follows since dg (b, by) = 0Fdy(z, y). |

For z € Y, define
(Mzv) (@) = e”®=) (1)~ () (b)

if the point br = bo - - - b1 is defined, and zero otherwise. It is immediate from (3.1)
that |Mg|oo < Du(b).

Lemma 5.2 There exists a constant E > 0 such that
| Myv|| < Ep(b){(1+ B |g)|v]oc + 0% |v]p},

for all k-cylinders b = [by, ..., by 1]y, v € B.
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Proof See [21] for a proof in the absence of h. To simplify the notation, we suppress
superscript and subscript Y’s throughout the proof. Also, we write b instead of b.
Let z,y € Y and compute that

|(Myv)(2) — (Myv)(y)] = [P b, (bx)v(ba) — e (by)v(by)|
< (1€ o (b) — v(by)| + [16eP* ool by (b2) — B (by)| [150] oo
P, (bx)

€
e 1‘ 115000

P
+ |1b€ k|oo P (by)

and so by (3.1) and Proposition 5.1,

|(My)(z) = (Myv)(y)| < Du(0){0"[15v]o + 0(1 — 0) 7 Alo|14v]c0 + D[160]oc }do(2, ).
Hence |Myv|g < Du(b){6%|15v]g + 0(1 — ) 1|hlg|15v|co + D|14v|s0}. Combining this
with the estimate for | M|, yields the required result. |

Remark 5.3 It can be seen from the proof of Lemma 5.2 that if & = 1, then |hY],
can be replaced by [15hY .

Corollary 5.4 (a) Let E > 0 be the constant in Lemma 5.2. For all w € S*, the
linear operator R(w) : B — B is bounded, and satisfies

[R(w) vl < E((1+[h" o) v]o + 6% v]o),

for all k> 1.
(b) |IR.| = O(ZEeZn w(b)(1 + |15h”|g)), where the sum is over all 1-cylinders
be Z,.

Proof Recall from Proposition 4.2(b) that R(w)v = R(e™ (hY)"!v) where R is the
transfer operator for f¥ : Y — Y. Write R(w)* = > "5 Mze'** where the sum is over
all k-cylinders b. Since 7 is constant on b, the term e”*“ does not contribute to the
Holder estimates. Hence the required estimate for R(w)* follows from Lemma 5.2.
Next, recall that R,v = R(1z,(hY)"'v). Hence, summing up the estimates in
Lemma 5.2 over l-cylinders b C Z, yields ||R,| < EY 5, u(b)(1+ |h¥]s). By
Remark 5.3, the improved estimate is obtained. |

Theorem 5.5 Let f, : X X G — X X G be a mixing compact group extension of a
Markov map f : X — X. Suppose that there exists Y C X such that the induced
transformation f¥ : Y — Y is Gibbs-Markov. Suppose that h : X — G is a cocycle

and that )
D> u®)(1+[15h400) = O(n7P),

j>n EEZ]'
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for some B > 1, where the second summation is over 1-cylinders b € Z;.
Let G act orthogonally on R? with Fix G = {0}. Then hypotheses (H1) and (H2)
of Theorem 2.1 (and Theorem 4.3) are satisfied.

Proof Hypothesis (H1) is immediate from Corollary 5.4(b). By a standard argu-
ment, the unit ball in B is compact in L*®. This combined with Corollary 5.4(a)
implies, by Hennion [11], that the essential spectral radius of R(w) : B — B is
bounded above by § < 1 for all w € S'. By Proposition 4.4, 1 is not an eigenvalue
of R(w) : L*(Y) — L*(Y), and B C L*(Y), so we conclude that 1 does not lie in the
spectrum of R(w), establishing (H2). |

As an immediate consequence of Theorems 5.5 and 4.3, we obtain decay of corre-
lations for observations (one Lipschitz, one L*) supported in Y.

Remark 5.6 If A is Holder, then ., > 55, pu(b)(1 + [Lih4l0) < 325, n(Z5)(1 +
j|hlg). Hence it suffices that u(r > n) = O(n~(#*V), thus proving Theorem 1.1 in the
case when observations are supported in Y x G. If in addition A is supported in Y

or h is locally constant, then we obtain the improved O(n~(#+1) estimate mentioned
in Remark 1.2(b).

6 Observations defined on the whole of X x GG

In this section we prove Theorem 1.1 by proving the corresponding result for a Young
tower F' : A — A. We refer to Section 3(a) for background material and notation.
However, we will let ;1 denote the invariant measure on A, reserving m = u X v for
the product measure on the G-extension A x G.

Let L denote the transfer operator corresponding to F' : A — A. Given the cocycle
h: A — G, we define Lyv = L(h~'v). Then (Lyv)(z) = Y pn,—p n(2)hn(2) " 0(2)
where g¢,(z) is the inverse of the Jacobian of F™ at z. It follows from the definition
of the tower that g(z) = 1if 2 € A, for 0 < j < r;. Moreover, if z € Aj,, then g,
is Lipschitz and coincides with the inverse of the Jacobian of Fy : A, — A,.

Define A, : L®(A,, C?) — LY(A,C%) by

(Anv)(z) = Y. ga(@ha(2)M0(2).
gy
FzgAo,...,F"z¢ Ao
Note that A,v is supported on level n of the tower, and that for x in level n we have
(A,v)(z) = hn(2)"'v(2) where 2 is the unique point in Ay with F"z = x.

For brevity, we let |A,|1 denote the operator norm of A, : L®(A,, C?) —
LY (A, C?).
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Lemma 6.1 For alln > 1, [Ay]en <37, 5, i(Aj0)

Proof Since |h,!| = 1, it is immediate that |A,v]e < |v|s. Also, the support of A,v
(contained in level n of the tower) has measure at most ern 1(Ajo) = p(r > n).
The result follows. n

Define B(A) to consist of globally Lipschitz functions v : A — C% with ||v]|g =
|v|oo + |v]g where |v|g is the Lipschitz constant with respect to dy. Define B(Ap) in
the same way for functions v : Ay — C¢, so B(4Ay) coincides with the space B from
Section 5. Define B, : B(A) — B(Ay) by

(Bnv)(z) = > 9 (2)hn(2) " 0(2).
zQAg,f,sz_xlngo
F"ze€Ag

Lemma 6.2 There is a constant C > 0 such that

1Ball < C ) w(A50) (1 + [Lay,, - hlo),

ri>n
for all n > 1.

Proof It follows from the definition of B, that each preimage z lies in Aj,. ,
for some j with r; > n. If z and 2’ are compatible preimages of z and z’, then
w(z) —v(2)| < |v]edy(2,2") = O|v|pdg(z,2"). Moreover, g,(z) = e*@ where y € A
with Fyy = x and p is the Lipschitz potential for Fy. Hence the estimates are obtained
in the same way as was done for ||R||,, in Corollary 5.4(b). |

We can now estimate L} : B(A) — B(A).

Corollary 6.3 Suppose that p(r > n) = O(n=#*+Y) and that in addition

> (A0 [1a;,, o halo = O(n?), (6.1)
'I‘j>'n
and
D ul(8j0)1a; el = O(n7P), (6.2)
Ti>n

for some 8> 1. Then ||L}|| = O(n™*).
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Proof Recall that T,v = Z 9n(2)hn(2) " v(2) and so

Flz=x
T,2€Ap

Ly= Y ATBy+Cy,
i+jt+k=n
where A;, B are as defined above and
Cv)@) = > gu(2)hal2) "v(2).
s A N,
Hence

|Lyvli < Z | Ailoo,1| T Brv]oo + |Cnloo,1[0]oo
i+j+k=n

S z |Az’|oo,1

i+j+k=n

Tl Brll 1]l + 1Cnoo 1 l]l-

By condition (6.2) and the results of the previous sections, ||T,|| = O(n=?). By
condition (6.1) and Lemmas 6.1 and 6.2, |4,|w = O(n~#*V) and || B,|| = O(n™*).
Hence the convolution of the sequences A,, T, B, is O(n~?). Also, arguing as in
Lemma 6.1,

Culosoq < ) wAje) =) (rj = n)u(Aze) = O(n™P),

Ti>n Tj>n
n<e<r;
giving the required estimate for the C, term. |

Typically, one would expect that condition (6.1) is weaker than condition (6.2),
but we have to allow for situations where cancellations mean that condition (6.2) is
satisfied even though condition (6.1) fails.

Proof of Theorem 1.1 It follows from the properties of the projection 7 : A — X
in Section 3(a) that the equivariant Holder observation ¢ : X x G — R? lifts to an
equivariant Lipschitz observation ¢om: A x G — R? with ||¢pon|| < C||4||, where C
is a universal constant. Similarly v lifts to ¢ o m with [ 0 7| = |¥]c0-

Similarly, the Hélder cocycle h : X — G lifts to a Lipschitz cocycle on A (which
we denote also by h). Conditions (6.1) and (6.2) are then automatic, just as in
Remark 5.6. By Corollary 6.3, we obtain ||L?|| = O(n=") on the tower. Hence by the
same argument as in the proof of Theorem 4.3, it follows that on the tower,

poorgpor(n) < Kb ol [ o lon™ < CK||g]|y[1h]oon ™"

Since 7 is measure preserving, it is immediate that pg,(n) = pyor,por(n) giving the
required result. [
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A The renewal equation

In this appendix, we recall standard results about induced maps that were used in
Section 4(a). Since the result has nothing to do with group extensions, we write 2
instead of X x G and Z C Q instead of Y x G. So the set up is that (€2, u) is a
probability space, f : 2 — (2 is a measure preserving transformation, and Z C Q is a
measurable subset with (Z) > 0. Let fZ : Z — Z denote the induced transformation
and let Z = U,>1Z, denote the corresponding partition. Let E, R denote the transfer
operators corresponding to f and fZ and define

We also define the return time function r : Z — N by r|;, = n and the twisted
transfer operator

R, ¢ = R(e"™¢),
for w € St.

~ 0~

Proposition A.1  (a) T, = Zi1+---+ik:n R, - Ry, R, .
(b) Restricting to L'(Z), we have R, = 3.°° | Rye™.

Proof Compute that f§n¢w = fZ”(lZn¢) 1790 = [15,6 (1) 0 f*. But f* = f?
when restricted to Z,,, so we have

[Basv= [1a00m)or = [1n0020) 057, (A1)
Applying (A.1) inductively yields
/E)Zk - '§i2§i1¢"/’ = /A¢ (1py) o frrt ¥,

where A = Z;, N (f%)*Z;, N -+ (f4)~* =Y Z, . Hence

/( 2 Ek--ﬁiﬁm)w=/¢1z(1z¢)of”:/fn¢w,

i1 +-tig=n

proving part (a).
Restricting to L'(Z) and summing (A.1) over n yields

/(iﬁm)w:/wof%/ﬁw,
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so that R = 3%, R,,. Hence R,¢ = R(e™¢) = 3%, R,(¢"™¢). But
Ru(€™¢) = L"(15,67¢) = L"(15,6™¢) = Ru(@)e™,

and part (b) follows. |
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