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Abstract. We show that, given a finite partition of the plane C such that the map G
acts as a linear contraction on each part, for almost every choice of parameters every
orbit of G is (asymptotically) periodic.

1. Introduction

Piecewise isometries are a class of dynamical systems which exhibit complicated behaviour
without being chaotic in the classical sense; they have zero Lyapunov exponents, their
topological entropy is zero [5], and they usually have islands of quasi-periodic motion.
However, they also tend to have ‘exceptional sets’ on which the dynamical behaviour is
of a fascinating complexity. Two well-known examples of piecewise isometries are (i) the
class of piecewise affine maps of the torus, studied for example in [1, 2, 6] and (ii) the
‘Goetz map’ [10]. The latter consists of piecewise rotations of the positive and negative
half planes around different centres of rotation. For angles satisfying specific number
theoretical properties, both ‘toral maps’ and Goetz maps can be understood in terms of
substitution shifts [1, 4, 12], but otherwise the dynamics remain mostly not understood.

Piecewise isometries, including those mentioned above, appear in many applications, for
instance, as descriptions of at least three electronic circuits [2, 6, 8], and also in relation to
impact oscillators, as first return maps of polygonal billiards and in queueing theory [13].
In two of the three electronic circuits alluded to, the (not realistic) assumption of zero
dissipation has been made; allowing non-zero dissipation forces one to consider piecewise
contractions instead of piecewise isometries, and it is this that motivates the present work.

Whereas in piecewise isometries, the discontinuities are responsible for complicated be-
haviour, we show in this paper that for typical piecewise contractions, the contracting
behaviour dominates the complexity introduced by discontinuities, so that we only see
(asymptotic) periodic motion. This is illustrated by a ‘contracting Goetz map’ in Fig-
ure 1. When the Goetz map has a contraction factor λ < 1, we are left with only finitely
many preimages of pieces of the discontinuity line in a finite area. In fact, for sufficiently
small λ, it has been shown in [9] that every point is attracted to a single periodic orbit.
The case of λ < 1 is to be contrasted with the same mapping with λ = 1, also shown in
Figure 1.
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Figure 1. Approximations to the exceptional set for the Goetz map
with rotation angle 0.7 radians and λ = 0.9 (left) and λ = 1 (right). The
rotation angle and contraction factor apply to both partitions. The centres
of rotation, shown as stars, are w1 = −1+2i, w2 = 1 and the left/right-hand
half planes are rotated about w2, w1 respectively.

In the present paper, we assume that {Xk}
K
k=1 is a finite partition of C such that for each

k, G|Xk
is an affine map contracting distances. By this we mean that G|Xk

extends to an
affine contraction on C with a fixed point wk ∈ C. (Note that wk need not belong to Xk.)
Let w = {w1, . . . , wK} ∈ CK and λ = {λ1, . . . , λK} ∈ DK , where λk ∈ D are contraction
factors and D is the open unit disc in C.

Thus we arrive at a piecewise continuous map G : C → C defined as

G(z) := Gk(z) = λkz + (1 − λk)wk if z ∈ Xk. (1)

Lemma 1. There exists R such that the disc BR = {|z| ≤ R} is forward invariant, and

for every z there is n such that Gn(z) ∈ BR.

Proof. Let λmax = maxk |λk| and wmax = maxk |wk|. Then it is straightforward to show
that taking R = 2wmax/(1 − λmax) satisfies the lemma. �

Let S = ∪k∂Xk ∩ BR; by definition of the partition, S consists of finitely many curves,
which we assume to be rectifiable, i.e., they have finite length (finite one-dimensional
Hausdorff measure). How G is defined on S is only important if ∂S contains a periodic
point. To give a one-dimensional example: If f(x) = x/2 + 1/2 for x ∈ [0, 1/2] and
f(x) = x/2 + 1/4 for x ∈ (1/2, 1], then every orbit converges to 1/2, but due to the
discontinuity 1/2 is not fixed.

The exceptional set E is defined as

En = ∪0≤i≤nG−i(S) ∩ BR and E = ∪n≥0En.

Each En consists of a finite set of rectifiable arcs.

Theorem 2. For all λ ∈ DK and Lebesgue a.e. w ∈ CK , there exists a finite N such that

E = EN .



Corollary 3. For all λ ∈ DK and Lebesgue a.e. w ∈ CK, G has a finite number of

attracting periodic orbits, and every point is attracted to one of them.

Remark: Not all piecewise contractions have asymptotic periodic behaviour. Simple
examples occur in the family fa : [0, 1) → [0, 1), f(x) = λx + a (mod 1), for a fixed
λ ∈ (0, 1) and parameter a ∈ [0, 1). The rotation number ρ(fa) depends continuously
on a, and is not constant. In fact, the point 0 has period one for a = 0 and two for
a = 1/(1 + λ), so ρ(f0) = 0 < 1

2
= ρ(f1/(1+λ)). By continuity, if we vary a, we will

obtain irrational rotation numbers, and in such a case, no periodic orbits exist, and the
asymptotic dynamics is an irrational rotation on a Cantor set.

Most applications of piecewise contractions that we are familiar with are in the plane.
Theorem 2 has higher dimensional generalisations, where (1) is replaced by e.g.

Gk(x) = Λkx + (I − Λk)wk if x ∈ Xk.

for regions Xk ⊂ R
d, linear contractions Λk : R

d → R
d translated over wk ∈ R

d. However,
since the geometry of the boundaries ∂Xk and the possible eccentricities of Λk create
technicalities that only obscure the main idea, we prefer to deal only with the planar case
in this paper.

2. Proof of Theorem 2

Define the itinerary of z as a sequence e(z) = e0e1 · · · ∈ {1, . . . , K}N0 (N0 = N ∪ {0}),
where en = k if Gn(z) ∈ Xk. Let In be a collection of strings in {1, . . . , K}n to be specified
later, but satisfying the properties

• σ(In) ⊂ In−1, where σ denotes the left-shift.
• {e0(z) . . . en−1(z) : z ∈ BR} ⊂ In.

Let I = ∪nIn. Define a multivalued image of z by

G̃n(z) := {Gen−1
◦ · · · ◦ Ge0

(z) : e0 . . . en−1 ∈ In}.

The omega-limit set is the set of accumulation points of an orbit, i.e., ω(z) = ∩m∪n≥mGn(z).
Let us define the multivalued omega-limit set analogously:

ω̃(z) = ∩m∪n≥mG̃n(z).

Lemma 4. For every z ∈ BR, ω(z) ⊂ ω̃(0).

Proof. If y ∈ ω(z), then there is a sequence (ni)i∈N such that Gni(z) → y. Take xi ∈ Ini

obtained as Geni−1
◦ Geni−2

◦ · · · ◦ Ge0
(0), where e = e(z) is the itinerary of z. Since

|Gni(z) − xi| ≤ 2Rλni
max, we have xni

→ y and the lemma follows. �

Let Sε be an ε-neighbourhood of S.

Lemma 5. For all λ ∈ D
K and Lebesgue a.e. w ∈ C

K , the following holds: for every

L ∈ N, there exists ε > 0 and a neighbourhood U ∋ w such that for every x ∈ S and

w′ ∈ U , there is at most one integer 0 < r1 ≤ L such that Sε ∩ Gr1(Bε(x)) 6= ∅.



Proof. Suppose first that the conclusion fails for w. Then for every m ∈ N, there is xm ∈ S
and 0 < r1 < r2 ≤ L such that for ε = 1/m, Sε ∩ Gri(Bε(xm)) 6= ∅, i ∈ {1, 2}. Since S is
compact, and by passing to a subsequence if necessary, we can say that xm → x ∈ S and
there is a pair 0 < r1 < r2 ≤ L such that Gri(x) ∈ S for i ∈ {1, 2}.

This is a condition that happens with positive co-dimension, so for Lebesgue a.e. w, it will
not occur. Finally, because G depends continuously on w, and by decreasing ε if necessary,
there is a neighbourhood U of w on which the conclusion remains true on U . �

Lemma 6. If ω̃(0) ∩ S = ∅, then there exists N ∈ N such that EN = E .

Proof. Since ω̃(0) ∩ S = ∅, there is N ∈ N and ε > 0 such that ∪n≥N G̃n(0) ∩ Sε = ∅.
Additionally, assume that λN

maxR < ε.

Let A be any arc in En \ En−1, so Gn(A) ⊂ S. Moreover, there is x ∈ G̃n(0) such that
d(x, Gn(A)) < λn

maxR. Yet, if n ≥ N , then λn
maxR < ε, and no such arc A can exist. This

proves the lemma. �

Lemma 7. Suppose that I = ∪nIn has the following property: there is N such that for

n ≥ N and every e ∈ In, there are at most L0 strings in In+L that coincide with e on the

first n coordinates. Then the Hausdorff dimension dimH(ω̃(0)) ≤ log L0

−L log λmax
.

Proof. Let an = #G̃n(0). By the condition in the lemma, an+L ≤ L0an for every n ≥ N ,
so aN+iL ≤ KNLi

0.

Take δ > log L0

−L log λmax

, so λLδ
maxL0 < 1. Let ε > 0 be arbitrary, and i so large that 2Rλm

max < ε,

where m = N + iL. We will argue that ω̃(0) is contained in the union of closed discs Dx

of radius 2Rλm
max centred at the points x ∈ G̃m(0).

Indeed, let y ∈ ω̃(0), and yk ∈ G̃nk(0) are such that yk → y. By passing to a subsequence,
we may assume that

enk−m(yk) . . . enk−1(yk) = d0 . . . dm−1,

i.e., the itinerary of yk ends in the same m coordinates, for all sufficiently large m. Since
σ(In) ⊂ In−1 for all n, it follows that d0 . . . dm−1 ⊂ Im, and there exists x = Gdm−1

◦ · · · ◦

Gd0
(0) ∈ G̃m(0). Therefore |x − yk| ≤ λm

maxR for all k, and hence y ∈ Dx.

Now sum over all such discs to get
∑

x∈G̃m(0)

diam(Dx)
δ =

∑

x∈G̃m(0)

(2R)δλmδ
max ≤ KNλNδ

maxL
i
0(2R)δλLδi

max ≤ KNλNδ
max(2R)δ

independently of m, where the last inequality follows from the choice of δ above. Hence we
have found a cover of ω̃(0) with discs Dx of diameter < ε and

∑
x diam(Dx)

δ < ∞. Since
this holds for any ε and δ > log L0

−L log λmax

is arbitrary, the Hausdorff dimension dimH(ω̃(0)) ≤
log L0

−L log λmax
as required. �

Remark: The idea of the proof of Theorem 2 is that since dimH(ω̃(0)) < 1, ω̃(0) should
be disjoint from S for each λ and Lebesgue a.e. w ∈ CK and ‘generically parametrised’
families of piecewise contractions. In the proof below, we use linearity in w to show that



for a fixed λ ∈ DK , the family {Gw}w∈CK is indeed ‘generically parametrised’; however,
the result should hold for piecewise contractions that are nonlinear in w as well.

Proof of Theorem 2. We can assume without loss of generality that 0 /∈ S, so η := inf{|s| :
s ∈ S} > 0. Fix λ ∈ DK , take w ∈ CK arbitrary so that Lemma 5 holds, and let ε > 0
and neighbourhood U be taken from that lemma; U can be arbitrarily small. Recall that
wmax = maxk{|wk|} and λmax = maxk{|λk|}. Let

w∗ := 1 + sup{|w′
max| : w′ ∈ U}.

Then for R := 2w∗/(1 − λmax), the disc BR satisfies Lemma 1 for every (w′, λ′) ∈ U .

Let L0 := K2 and take L so large that log L0/(−L log λmax) < 1. Now take N ∈ N such
that 2RλN

max < ε. If n ≥ N and Y ⊂ BR is a neighbourhood on which Gn is continuous,
then diam(Gn(Y )) < ε, so by Lemma 5, each x ∈ Gn(Y ) can visit Sε at most twice in
the next L iterates. On such a visit, say the ith, Gn+i(Y ) can intersect all K regions Xk,
but as this happens at most twice, there are at most K2 subregions of Y on which Gn+L

is continuous. This is true for all w′ ∈ U .

It follows that at most bn := KNL
(n−N)/L
0 discs of radius εn := 2Rλn

max are sufficient to
cover ω(0), uniformly over (w′, λ) ∈ U . Let In be the collection of all possible itineraries
of points x ∈ BR and w′ ∈ U . For each e ∈ In, let

He,n(w
′) := Gen−1

◦ · · · ◦ Ge0
(0)

= λen−1
λen−2

· · ·λe1
(1 − λe0

)w′
e0

+ · · ·

· · · + λen−1
(1 − λen−2

)w′
en−2

+ (1 − λen−1
)w′

en−1
.

Since this expression is linear in w, the partial derivative ∂He,n

∂wk
is the sum of all coefficients

of terms which contain wk. Thus

De,n := max
k∈{1,...,K}

∣∣∣∣∣
∂He,n(w′)

∂wk

∣∣∣∣∣ ,

is independent of w′. Take

A := {w′ ∈ C
K : ω̃(0) ∩ S 6= ∅}

⊂ {w′ ∈ C
K : ∪e∈In

Bεn
(He,n(w

′)) ∩ S 6= ∅}.

We show that A has no Lebesgue density points, whence Leb(A) = 0.

Let lS be the length of S, i.e., the sum of the lengths of all rectifiable curves that comprise
S ∩ BR. Next take n ≥ N such that

bnw∗εnlS <
η

8
Leb(U).

Each of the at most bn discs Bεn
(He,n) needed to cover ω̃(0) moves slightly as w′ moves

in U . For each such disc, i.e., for each e ∈ In, there are two cases.
(i) If De,n < η/2w∗, then

sup{|He,n(w
′)| : w′ ∈ U} ≤ w∗De,n < η/2,

so Bεn
(He,n) ∩ S = ∅ for each w′ ∈ U . In this case, the disc Bεn

(He,n) is ‘harmless’; it
doesn’t contribute to the set A.



(ii) If De,n ≥ η/2w∗, then we can take k ∈ {1, . . . , K} such that
∣∣∣∂He,n

∂wk

∣∣∣ ≥ η/2w∗. The

εn-neighbourhood Sεn
has area ≤ 2εnlS, and the disc Bεn

(He,n(w
′)) intersects S only if

its centre He,n(w
′, λ′) belongs to Sεn

. Thus if we fix the other wi and all λi, then

Leb({w′
k ∈ C : w′ ∈ U, Bεn

(He,n(w
′)) ∩ S 6= ∅}) ≤

2lSεn

Dn
≤

4w∗lSεn

η
.

Integrating over the remaining w′
i (using Fubini’s theorem) gives

Leb({w′ ∈ U : Bεn
(He,n(w

′)) ∩ S 6= ∅}) ≤
4w∗lSεn

η
.

Summing over all the bn discs, we obtain

Leb({w′ ∈ U :
⋃

e∈In

Bεn
(He,n(w

′)) ∩ S 6= ∅}) ≤
4w∗lSbnεn

η
<

1

2
Leb(U).

Since this holds for all sufficiently small neighbourhoods U of w (adjusting n if necessary),
it follows that w cannot be a Lebesgue density point of A. Since w was arbitrary in a set
of full measure, Leb(A) = 0, as required.

Next we claim that if ω(z) ∩ S = ∅, then z is asymptotically periodic. To prove this,
let y ∈ ω(z), and let the sequence (nk)k∈N be such that Gnk(z) =: zk → y. We have
ω(y) ∩ S = ∅, so there is δ > 0 such that Gn(Bδ(y)) ∩ S = ∅ for all n ≥ 0. Take k < k′

such that zk, zk′ ∈ Bδ/2(y) and λ
nk′−nk
max < 1

4
. Then, since

zk′ ∈ Gnk′−nk(Bδ(x)) ⊂ B
2δλ

n
k′

−nk
max

(yk′) ⊂ Bδ(x),

the disc Bδ(y) is mapped continuously into itself under Gnk′−nk . So it contains a single
attracting periodic point attracting the orbit of z.

Finally, apply Lemma 6 to complete the proof. �

Proof of Corollary 3. On each component Y of BR \EN , Gn is continuous and contracting
for all n ≥ 0, and therefore Y contains at most one periodic point pY . If it does contain
such a point, then every point in Y is asymptotic to orb(pY ). Since EN consists of a finite
number of arcs, there are finitely many periodic orbits, and every point in BR, and hence
every point in C, is asymptotic to one of them. �
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