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Abstract

Within the class of S-unimodal maps with fixed critical order it is shown that the existence of
an absolutely continuous invariant probability measure is not a topological invariant.

1 Introduction

Rigidity is one of the main themes of interest in (one-dimensional) dynamics. We speak of rigidity
if a certain topological property, within some smoothness class of mappings, guarantees a much
stronger metrical or measure-theoretical structure; or if a certain metric or measure-theoretical
property is preserved under topological conjugacies. A good example is the theory of circle dif-
feomorphisms. Here, the mere fact that the rotation number of a circle diffeomorphism satisfies
a Diophantine condition guarantees smoothness of the conjugacy with a circle rotation, see e.g.
[6, 17]. In a non-invertible setting, a much less orderly picture is to be expected. Let us restrict
ourselves to the class F of C® S-unimodal maps of the interval with a fixed critical order. Contrary
to the case of circle diffeomorphisms, conjugacies between smooth unimodal maps and tent-maps,
i.e. piecewise linear unimodal maps, are in general not absolutely continuous, let alone C*. There
can be weaker forms of rigidity though.

Let f be a unimodal map on the interval I = [0,1] with critical point ¢. Then f satisfies
the Collet-Eckmann condition if liminf L log |Df™(f(c))| > 0. The question whether the Collet-
Eckmann condition is a topological invariant, is one of the major open questions in interval dy-
namics. Some partial answers were given in [12, 16]. In [15] it was shown that the Collet-Eckmann
condition is invariant under quasisymmetric conjugacies. A conjugacy h : I — I is quasisymmetric
if there exists K > 1 such that % < % < K for all z € I and £ > 0. This brings us to a
second open question: Under what conditions two conjugate maps in F are also quasisymmetrically
conjugate? Many results with respect to this question were obtained in e.g. [5, 8, 9].

It is known that a Collet-Eckmann map admits an absolutely continuous invariant probability
measure (henceforth called acip). But an acip can exist under weaker conditions too, cf. [14]. In
this paper we prove
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Theorem 1 The existence of an absolutely continuous invariant probability measure is not a topo-
logical invariant in F.

In other words, there exist two conjugate maps f,g € F such that f has an acip, but g has not.
In fact Theorem 1 applies to very general families of maps. The only things we will use in the
proof are negative Schwarzian derivative, the abundance of long-branched maps (see Definition 1)
in families of unimodal maps, and the fact that fixed points of conjugate but different maps usually
have different multipliers. As an example we use the standard quadratic and a sine family. Note
also that the order of the critical point is the same for both maps. We will show that the result
holds for f = asinwz and g = bx(1 — z) for appropriate values of a and b. If we allow different
critical orders, there is a counter-example in the so-called Fibonacci map: A quadratic Fibonacci
map has an acip [10], while a Fibonacci map with sufficiently large critical order has not [4]. In fact,
it can even have a wild attractor. It would be interesting to know if two conjugate long-branched
maps are always quasisymmetrically conjugate. An affirmative answer would prove the conjecture:
Within F, the existence of an acip is not preserved under quasisymmetric conjugacies.

Theorem 1 was contained in our PhD.-thesis [2], but in this paper we try to keep the proof as
concise as possible. We want to thank the referee for his suggestions.

2 Preliminaries

A map f : I — I is unimodal if there exists a unique critical point, ¢, such that f is increasing
on the left and decreasing on the right of ¢. Assuming that f is C', Df must vanish at ¢. Let
¢; == f(c), and the critical orbit orb(c) := {c,c1,c2,...}. We say that ¢ has critical order £ if there
exist 0 < 01 < O3 such that

D _
(0 < % < €0, and O, < W <0, (1)
Moreover, 8—? can be taken arbitrarily close to 1, provided z is sufficiently close to ¢. Let z — &

be defined as é = ¢, and for x # ¢, £ # z is the unique point such that f(z) = f(z). If f
has critical order £ for some ¢ > 0, then |z — ¢| — |Z — ¢| is Lipschitz. For simplicity we will
assume that f is symmetric, i.e. |z —c| = |2 —c|. A C® map f has negative Schwarzian derivative

if ll); Jf((f)) - %(%2;((;)))2 < 0 whenever Df(z) # 0. A unimodal map with negative Schwarzian

derivative is called S-unimodal. An interval J, ¢ € J C I, is called restrictive if f™(J) C J for some
n > 1. If a restrictive interval exists, f is called renormalizable. It can be derived from the results
in [1], that if f is not renormalizable and has no periodic attractor, then the following property
holds:

If |A] > 0, then U f~%(A) has full Lebesgue measure. (2)

Here | | denotes Lebesgue measure. If f is finitely renormalizable, then (2) remains valid if A is
taken in the smallest restrictive interval of f. We will fix 1 < £ < oo throughout the paper, and
let F be the class of symmetric C® S-unimodal maps with critical order ¢, having no periodic
attractor.

An interval T is called a monotonicity interval of f™ if it is a maximal interval on which f" is
monotone. We will need the notions of cutting times {Si }r>0 and closest precritical points {2y} r>0.
Define Sy := 1, 2z := f~1(c) N (0,¢) and inductively

Skr1 min{n > S | f"((2x,¢)) 3 ¢},

Zpy1l = f_S’“Jrl(c)ﬂ(zk,c).
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In particular, ™|, ) and f"|(,z,) are monotone for every n < Sj11. We claim that fS-1(z;) is
a closest precritical point. Clearly y := fo%-1(z) € fo%-1=5¥(c), so it is a precritical point. If y is
not a closest precritical point, then there exists z,, € (y,¢) (or 2, € (¢,y)) such that S, < Sp—Sk—1.
Pulling back z, (or 2,) via the branch fS-1|, ., yields a point in f=5»=Sk-1(c) N (25—1, 21)-
This contradicts that zj is a closest precritical point, proving the claim. As y € fS-17%(c) is
a closest precritical point, it follows that S — S,—1 is again a cutting time. We can define the
kneading map @ : N — N by
Sk - Skfl = SQ(k)

In particular, we have
FEE=1(0) € (2Qur)—1,2Q(k) YU (o) s ok —1)- (3)

In many cases we need to estimate Koebe space (see the Koebe Principle below) for intervals
containing the critical value c;. Let H,,_; be the monotonicity interval of f*~! containing ¢;. By
construction, f*~!(H,_1 N [c2,c1]) D ¢ whenever n is a cutting time. If however f"~1(H,_;\
[c2,c1]) D ¢, then we say that n is a co-cutting time. We denote them by

{Tk}k>0, where To := min{n > 1| ¢, € (¢, c1]}.

Using the above arguments, one can show that the difference T — Tx_1 is also a cutting time for
each k > 1.

3 Long-branched Maps

Definition 1 A map f is called long-branched if there exists 8 > 0 such that for every n > 0 and
every monotonicity interval T of ™, |f™(T)| > 8.

Lemma 1 A unimodal map f is long-branched if and only if there exists B such that Q(k) < B
for all k € N.

Proof: Taking B such that |f(zg) — f(c)| < B shows the only if part. Conversely, suppose that T is
a monotonicity interval of f. Then there exist a < b < n such that ¢ € f*(0T), f®(8T). More pre-
Cise1y7 fa (T) = (Zka C) or (Ca ék) for some k: and fb(T) = (CJ CSk)' By (3)7 CSy, ¢ (zQ(k+1)7 2Q(k+1)) o
(2B,2B)- So f*(T) > zp or 2p, and |f*(T)| > |c—zp| > 0. Furthermore, n —Sj < Sp, and because
f is non-singular, also |f™(T)| is uniformly bounded away from 0. O

Lemma 2 Let f € F be long-branched. There exists v > 0 such that if T is a monotonicity
interval such that f*(T) 3 zp (resp. Zx), then f™(T) D (2 — 7, zx) (resp- (Zx2k +7))-

Proof: Take 8 > 0 such that |f™(T")| > g for every branch, and let K be such that |f(c) — f(2Kk)| <
8. Then it is clear that we only have to check the point z;, with k¥ < K. Let L = max, |D f(z)| < oo,
and v = L=Sx723. If f*(T) 3 z, but has an endpoint in (z; — 7, 2x), then T contains a
interval of monotonicity 7' of fP+tS++1 such that |f*+S++1(T")| < L%*'y < 3, contradicting
long-branchedness. |

The main reason to consider long-branched maps is that they have relatively nice distortion prop-
erties.
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Definition 2 Let g : J — g(J) be a monotone C' map. The quantity

dis(g,J) := sup 7|Dg(a:)|

zyes | Dg(y)
is called the distortion of g on J.

We will use a standard tool (see e.g. [13]) to obtain bounds on the distortion:

Lemma 3 (Koebe Principle) Suppose g : T — g(T') is monotone and has negative Schwarzian
derivative. Assume that the interval J C T is such that both components of g(T \ J) have size
> 0|g(J)|. Then there exists K = K (J) such that dis(g,J) < K.

The components of g(T"\ J) are called the Koebe space. The Koebe Principle states that the
existence of (relative) Koebe space gives a bound on the distortion of the middle part of the
branch.

4 Construction of the Measure

Define annuli Ay := (2g—1,2k) U (2, Zx—1). Define the induced map F as

F: | Ak = (20,20), Fla, = f&.
k>1

Clearly F(Ar) = (2qk),c) or (¢, 2g(k))- Hence F preserves the partition | J, Ax of (20, 20): F is a
Markov map.

Lemma 4 If f is long-branched, then also the induced map is long-branched, and there exists
K > 0 such that for every n > 0, the distortion of every branch of F™ is bounded by K.

Proof: The long-branchedness of F is obvious. To be precise, every branch-image F™(J) has the
form (z,c) or (¢, 2;) for some k < B. Now for the distortion, let J be any branch-domain of any
iterate F™, say F™(J) = f™(J) = (2x,¢). Let T be the monotonicity interval of f™ containing J.
Then by Lemma 2 and long-branchedness, f™(T') contains also (z — 7, 2] and [¢, Zg). This gives
Koebe space on both sides. So the lemma follows from the Koebe Principle. O

As a result, we can conclude that the induced map has an acip. This follows from a ‘Folklore
Theorem’:

Theorem 2 (Folklore Theorem) Let F' be a Markov map on the interval. If there exist 3 > 0
and K > 1 such that dis(F™,J) < K and |F™(J)| > B for all n and all branches F™|;, then F
dm

admits an acip, m, and the Radon-Nikodym derivative T is bounded.

The proof can be found in e.g. [13, Theorem V 2.1].

Proposition 1 Let f € F be long-branched. Then f admits an acip if and only if the summability
condition

ZS}C,1|Ak| < o0
k

is satisfied. Every long-branched map has at least a o-finite absolutely continuous invariant mea-
sure.
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Proof: Let m be the acip of the induced map. We construct an invariant measure yu for the original
map f using Kac’s formula: For any measurable set A, let

Sp_1—1

=2, ) mf AN A

k>0 =0
It is easy to verify that u is absolutely continuous and invariant. For the finiteness of u we check

Sp_1—1

=3 Y m( )N A =Y Sieam(Ar) <Y Semi MA,
k k

k>0 =0

where M is an upper bound of ”fi—’;. Because every branch of F' covers either (zp,c) or (¢,2B),

there exists also M’ > 0 such that m(A4) > M'|A|, whenever A = A C (2, 2p) is measurable.
Therefore u(I) > -5 g Sk—1M'|Ag|. So p is infinite if and only if -, Sk|Ax| = oo

The measure p is o-finite though. For a long-branched map, the critical orbit is nowhere dense,
as was proven in [3, Lemma 6]. Every S-unimodal finitely renormalizable map with a nowhere
dense critical orbit have a o-finite absolutely continuous invariant measure, [7, 11]. We will give
a proof for our case. We neglect the case that f has a periodic attractor. In that case a o-finite
invariant measure, be it dissipative, is easily constructed. Let U C (zp, 2p) be an interval such
that orb(c) NU = (. Let V be the middle third of U, and let N be such that both components
of U\ V contain a point in |J, .y f "(c). Assume that f*(Ay) NV # @ for some n < Sp_;.
Because orb(c) N U = 0, f*((zx_1,c¢)) contains a component of U \ V, and therefore a point of
U,.<n f~"(c). Because f5k|(c,zk_1) is monotone, it follows that Sy_; —n < N. Hence u(V) <
Zk_Nm(Ak) < N. By (2), U,, f~™(V) has full measure. So we can write I = |J,,~o Vn UW, where

Vi := (V) \ Uo<icn [~ (V) has measure u(V,,) < u(V), and W is a nullset. So p is indeed
o-finite.

As Lebesgue measure is ergodic [1], there can be only one (up to a multiplicative constant)
absolutely continuous invariant measure, finite or o-finite. This proves the proposition. a

5 Saddle Node Returns

A close return ¢, of ¢ to itself is called a saddle node return if the central branch is almost tangent
to the diagonal, see figure 1. The central branch of f™ doesn’t cover ¢ in this case, so n is not a
cutting time. Let S be the smallest cutting time larger than n. Then f™ is monotone on (¢, 2x_1),
and f™(Z;) = %, for some r < k. If f is long-branched, then r < B. Call 2 = Zpegin. Pulling back
Zbegin along the central branch of f™, we get new closest precritical points. If f, is very close to the
diagonal, these precritical points cluster together near the funnel. Past the funnel, the preimages
get more separated again. Let Z.,4 be the last of those preimages for which |Zeng — ¢| > |en — |-
The number of closest precritical points between Zycgin, and Zenq can be arbitrarily large, provided
we take the central branch of f™ close enough to the diagonal.
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éend 2begin
Figure 1

Let for t € R, 2t € (¢, Zbegin) be the point, closest to ¢, such that D f™(x) = t.

Lemma 5 Let f € F, and let ¢, be a closest return of saddle node type. Writing € = |Zpegin — |,
there exist K1, Ko and K3, independent of n, such that

_£ _£
K™ <|z9 — ¢| < Kpe™ T,

and if v is the smallest iterate such that f™" (xa¢) € (¢, Zvegin), then r < K3zloglog %

Proof: Write the central branch f™[(. cic) as g o f|(c,c+e)- Since ¢, is a closest return, the mono-
tonicity interval T 3 ¢; of f~! maps onto (2g, f*~°*-1(c)) D (2B, 2B). Here k is such that Sy, >
n > Sk_1. By Lemma 2 and the Koebe Principle, there exists a constant K, independent of n and
e such that the distortion dis(g, (f(c+¢), f(c))) < K. Let also 1 > 9 := | f™(Zpeqgin) —¢| > |28 — ¢|.
It follows by (1) that

01 ﬁn 105K

— < Df () =t < |myp — | T2

O- Ket = f (.Z't) = |.fEt C| 0O, P

which proves the first part of the lemma. The above arguments show that f"|( .4c) has roughly
the shape ¢ : [0,€] = R, ¢(z) = n(£)* + Ce7™7. For this function, zo; = (%)ﬁsﬁ = doe™ .
In general @(deﬁ) = (nd* + C’)sfﬁ;l, so we get wr(dosﬁ) = drsﬁ, where d, = nd’_; +C. An
inductive proof shows that d, > 2"~ )dy. It follows that

|-77t _ c|€—1

Flm) < = 2GR <
n

12 1 n

i< L gl

= ST 1log2 %®:

—loglog2} + 1.

1 n
< —{loglog — +1
= r—logf{0g0g5+0g€—1
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This proves the second statement. o

6 Proof of the Theorem 1

For the proof of the Theorem 1 we have to find, in view of Proposition 1, two conjugate maps, f
and g, such that ), S;|A;(f)| < oo and ), S;|4;i(g)| = 0o. So there must be a significant difference
between f and g. The difference that we will exploit is the difference in slope at the fixed point.
If the critical point approaches the fixed point very closely, this will have an effect on the rate at
which certain closest precritical points converge to the critical point.

Lemma 6 Let f € F, and let p be its orientation reversing fixed point. For each € > 0, there
ezrists N with the following property: Suppose n is a cutting time, and n + 1 a co-cutting time.
Suppose also that c; € (c,1) for everyn < j < m. Then for each k such thatn+N < S <m—N,

Do)t —e < B <o sy

Proof: Since n is a cutting and n + 1 is a co-cutting time, f*~'(H,,_1) D (c, 2y). Let
c=q@<E<u<..<p<..<G<p<qa==~%

be the precritical points closest to p. In particular f(g;+1) = ¢; for every i > 0, and ‘q’“ |p N
|Df(p)| =2 as i = co. Let r = m — n. Because ¢; € (¢, 1) for all n < j < m, ¢, must be contamed
n (¢r,qr—1). Furthermore, the precritical points zg, n < S < m, must be mapped onto qo, ¢o,
etc. Let € > 0 be arbitrary. Then there exists N, independent of n and m, such that we can carry
out the following steps:

e Foralli > N,

lai—pl  |Df(p))*" ~— 10

e For everyi <r— N, |M — 1| < §5. By this condition also

||Qi+2_cn|_ 1 |<§
|gi — cnl [Df()|>" — 3

for every N <i<r—N.

e The distortion of f*~!|y is bounded by 1+ 15 Where ¢; € H C H, 1(c1) is the interval that
is mapped onto (gn,gn—1). Using the Koebe Principle, this interval can be found. It follows
that the points f(zk), f(zk+1),---, for n+ N < S < Sg41 ... < m — N, accumulate on f(c)
with exponential rate approximately |D f(p)|~2.

o For all z,y € f~(H) \ {c}, we have by (1) [LLEl _vc— 1| < &

The lemma, follows. O

For the proof of Theorem 1, we have to construct maps that will alternate close saddle node
returns and close approaches to the fixed point. In order to prove that such maps exist, at least
in a combinatorial setting, we will construct a kneading invariant that exhibits this behaviour. In
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particular we will prove that there exist long-branched maps with a recurrent critical point. Let
{vr}r>1 and {wg }r>1 be integer sequences, to be defined inductively. The kneading invariant v(f)
of a unimodal map f is the symbolic itinerary of the critical point: v(f) = vy (f)va(f) ... € {0,1}N,
where v;(f) = 0if ¢; < cand v; = 1 if ¢; > ¢. We will construct a kneading invariant v as the
limit of finite strings vy ...v,, and vy ...v,, of increasing length. These strings are constructed
according to the following algorithm:

(i) Let k=1, vy = v1 = 3 and vyver3 = 101.

(ii) Consider the concatenation vy ... vy V1 ... Uy, V1 ... Vy, - .. and choose wy, arbitrary such that
the wy-th and the wy43-th entry of this concatenation are zeroes. Let v ... v, be the string
consisting of the first wy entries of the concatenation.

(iii) Increase k by 1.

(iv) Let vp > wg—1 + 3 be arbitrary, but such that vy — wg—1 is odd. Let vy ...v,, be the
concatenation of vy ... vy, _, and vy —wg—_1 ones.

(v) Go to step (ii).

Let v be the limit sequence. We call v admissible if there exists a unimodal map having v as
kneading invariant. If f indeed has the above kneading invariant v, then ¢,, will be very close to
c if wy, — vy, is large, and ¢, will be very close to p if vy — wg_; is large.

Lemma 7 For every choice of {vr} and {wg} in the above algorithm, the resulting kneading in-
variant v is admissible, and the corresponding map is long-branched.

Proof: As shown in [3], the cutting times of a map can be retrieved from the kneading invariant
as follows:
So=1and S = min{n > Sk—1 | Vn # Vn-s,_, }

It can be easily checked that Sy — Sg—1 € {1,2} in our case. By Lemma (1), this yields long-
branchedness. The co-cutting times can be found as

To =min{n > 1| v, =1} and T = min{n > Tp_1 | Vn # Vn—T,_, }-
In our case the co-cutting times are
vi, w1 + 3, w1 +5,...,09,ws +3,wa +5,...v3,w3 +3,...

According to [3, Section 4], v is admissible if the differences Sy —Sy—1 and T, — Tx_1 are all cutting
times. These differences are 1, 2 or wy + 3 — v. Since every integer n such that v, = 0 is a cutting
time, also wy + 3 — vi, is easily seen to be a cutting time. O

Proof of Theorem 1: Take f, g € F conjugate, having a kneading invariant of the type described
in Lemma 7. This means that we still have to determine the sequences vy and wg. Assume also
that |Df(ps)| > |Dg(py)|, where py and p, denote the orientation reversing fixed points of f and g
respectively. This can be done as follows: Let f, = asin(wz) and g, = bxz(1 — ) be two unimodal
families. It is well-known, see e.g. [13, Theorem II 4.1], that f, and g, are full, i.e. for every
admissible kneading invariant v, there exist a and b such that f, and g, have kneading invariant v.
Also, the kneading invariants of f, and g, depend continuously on a and b. Now take e.g. w; = 17,
so that v begins with 10110110110110110111. It can be checked that v(fg.92) < v < v(fo.93) and
v(gs.82) < v < v(g3.83), where < denotes the usual order relation between kneading invariants.
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Moreover D f(ps) < —1.85 < —1.83 < Dg(p,) whenever a > 0.92 and b < 3.83. Therefore there
exist Ay and A, such that, under the conditions of Lemma 6,

|zk+1(f) — ¢
|z (f) —

Using these bounds we determine (below) the sequences {vy} and {wy}, and therefore v. By the
fullness of f, and g, there indeed exist parameters a € [0.92, 0.93] and b € [3.82, 3.83], for which
v(fa) = v(gs) = v. (According to [5], b is uniquely determined. For the sine family no uniqueness
result is known.)

|zk+1 (g) — C| (4)

<Ar< A, < .
== Tae) —

The maps f and g will exhibit an infinite sequence of saddle node returns, and close approaches
to the fixed point in between. So let {ar}r>1 and {bx}r>1 be the integers corresponding to the
subsequent Zpegin and Zenq from Section 5. For instance, a; = 2. The choices of {ax} and {bs}
determine the choice of {v;} and {w;} and vice versa. By (4), we can choose ag41 > 2by, + 4N so
large that |zak+1 (g) - C| S %'zbk (g) - c| and

1
|2aj41 (f) — | < WVMH(Q) — .
Then we can choose by1 so large that
£

1< bk+1|zak+l (g) - c|m <2

By Lemma 5,

v

SSA) 2 Yildile) > Y Shilenle)
i i k

Klzlzoo.
k

Now for f, let zx 20 € (c,Zq4,) be the point, closest to ¢, such that D f™(zg20) = 2¢. (Here n
is the iterate corresponding to the k-th saddle node return.) Then by Lemma 5, |z, — ¢| <

v
DN | =

1
§K1§bk|zak (9) — |77 >

|52 — €| < K»|2q, — ¢|7T. Furthermore, it takes at most K3loglog # iterates of the k-th
ok

saddle node branch for zy o, to leave (¢, 2,,). As |c— 24, ] < /\Sfl’“*b’“‘lﬁm < )\L}"/Z, the number
of sets A; disjoint from (&g 2¢, Zk,2¢) is bounded by Kiaxlogay for some K4. Then, for some
C = C(Ki1, K>, Ky)

D SilANI <Y il A

i>by i>by
-ak+K4ak log ay b Qg
< Sy > A+ Y A+ Y A
k>2 L i=ag i=ap+Kaay logag i=bp_1
i ap—bk_1
< S |(ar + Kaaglogag)|za, (f) — ol + belzse —cl + Y ilAipe, . (f)]
k>2 | i=1
< S5 Y [(a+ Kiaxlogan)Ay "z, () —
k>2

ar—br—_1

b Kolze, (f) —cl + D XN |z, () —

i=1
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IN

Sp Y Cbila, (f) — el < Sp > CKoblza, (f) — |7
k

E>1

1 e 1
< Sgp Z CKzﬁbﬂzak (g) — C|£—1 <S8B ZZCK2k_2 < 0.
k>1 k>1
This concludes the proof. O
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