
PLANAR EMBEDDINGS OF CHAINABLE CONTINUA
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Abstract. We prove that for a chainable continuum X = lim←−([0, 1], fi) where every
x ∈ X has only �nitely many coordinate projections contained in a zigzag there
exists a planar embedding ϕ : X → ϕ(X) ⊂ R2 such that ϕ(x) is accessible. This
partially answers a question of Nadler and Quinn from 1972. Two embeddings ϕ,ψ :
X → R2 are called strongly equivalent if ϕ ◦ ψ−1 : ψ(X) → ϕ(X) can be extended
to a homeomorphism of R2. We prove that every nondegenerate indecomposable
chainable continuum can be embedded in the plane in uncountably many ways that
are not strongly equivalent.

1. Introduction

It is well-known that every chainable continuum can be embedded in the plane, see [6].
In this paper we develop methods to study nonequivalent planar embeddings, similar
to methods used by Lewis in [14] and Smith in [26] for the study of planar embeddings
of the pseudo-arc. Following Bing's approach from [6] (see Lemma 3.1), we construct
nested intersections of discs in the plane which are small tubular neighborhoods of
polygonal lines obtained from the bonding maps. Later we show that this approach
produces all possible planar embeddings of chainable continua which can be covered
with planar chains with connected links, see Theorem 8.5. From that we can produce
uncountably many nonequivalent planar embeddings of the same chainable continuum.

De�nition 1.1. Let X be a chainable continuum. Two embeddings ϕ, ψ : X → R2 are
called equivalent if there is a homeomorphism h of R2 such that h(ϕ(X)) = ψ(X). They
are strongly equivalent if ψ ◦ϕ−1 : ϕ(X)→ ψ(X) can be extended to a homeomorphism
of R2.
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That is, equivalence requires some homeomorphism between ϕ(X) and ψ(X) to be
extended to R2 whereas strong equivalence requires the homeomorphism ψ◦ϕ−1 between
ϕ(X) and ψ(X) to be extended to R2.

Clearly, strong equivalence implies equivalence, but in general not the other way around,
see for instance Remark 9.19. We say a nondegenerate continuum is indecomposable, if
it is not the union of two proper subcontinua.

Question 1. Are there uncountably many nonequivalent planar embeddings of every
chainable indecomposable continuum?

This question is listed as Problem 141 in a collection of continuum theory problems
from 1983 by Lewis [15] and was also posed by Mayer in his dissertation in 1983 [16]
(see also [17]) using the standard de�nition of equivalent embeddings.

We give a positive answer to the adaptation of the above question using strong equiv-
alence, see Theorem 9.14. If the continuum is the inverse limit space of a unimodal
map and not hereditarily decomposable, then the result holds for both de�nitions of
equivalent, see Remark 9.20.

In terms of equivalence, this generalizes the result in [2], where we prove that every
unimodal inverse limit space with bonding map of positive topological entropy can be
embedded in the plane in uncountably many nonequivalent ways. The special construc-
tion in [2] uses symbolic techniques which enable direct computation of accessible sets
and prime ends (see [3]). Here we utilize a more direct geometric approach.

One of the main motivations for the study of planar embeddings of tree-like continua is
the question of whether the plane �xed point property holds. The problem is considered
to be one of the most important open problems in continuum theory. Is it true that
every continuum X ⊂ R2 not separating the plane has the �xed point property, i.e.,
every continuous f : X → X has a �xed point? There are examples of tree-like continua
without the �xed point property, see e.g. Bellamy's example in [5]. It is not known
whether Bellamy's example can be embedded in the plane. Although chainable continua
are known to have the �xed point property (see [11]), insight in their planar embeddings
may be of use to the general setting of tree-like continua.

Another motivation for this study is the following long-standing open problem. For this
we use the following de�nition.

De�nition 1.2. Let X ⊂ R2. We say that x ∈ X is accessible (from the complement
of X) if there exists an arc A ⊂ R2 such that A ∩X = {x}.

Question 2 (Nadler and Quinn 1972, pg. 229 in [25]). Let X be a chainable continuum
and x ∈ X. Can X be embedded in the plane such that x is accessible?

We will introduce the notion of a zigzag related to the admissible permutations of
graphs of bonding maps and answer Nadler and Quinn's question in the a�rmative for
the class of non-zigzag chainable continua (see Corollary 7.4). From the other direction,
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a promising possible counterexample to Question 2 is the one suggested by Minc (see
Figure 15 and the description in [20]). However, the currently available techniques are
insu�cient to determine whether the point p ∈ XM can be made accessible or not, even
with the use of thin embeddings, see De�nition 8.2.

Section 2 gives basic notation, and we review the construction of natural chains in
Section 3. Section 4 describes the main technique of permuting branches of graphs of
linear interval maps. In Section 5 we connect the techniques developed in Section 4
to chains. Section 6 applies the techniques developed so far to accessibility of points
of chainable planar continua; this is the content of Theorem 6.1 which is used as a
technical tool afterwards. Section 7 introduces the concept of zigzags of a graph of
an interval map. Moreover, it gives a partial answer to Question 2 and provides some
interesting examples by applying the results from this section. Section 8 gives a proof
that the permutation technique yields all possible thin planar embeddings of chainable
continua. Furthermore, we pose some related open problems at the end of this section.
Finally, Section 9 completes the construction of uncountably many planar embeddings
that are not equivalent in the strong sense, of every chainable continuum which contains
a nondegenerate indecomposable subcontinuum and thus answers Question 1 for strong
equivalence. We conclude the paper with some remarks and open questions emerging
from the study in the �nal section.

2. Notation

Let N = {1, 2, 3, . . . } and N0 = {0, 1, 2, 3, . . . } be the positive and nonnegative integers.
Let fi : I = [0, 1]→ I be continuous surjections for i ∈ N and let inverse limit space

X∞ = lim←−{I, fi} = {(x0, x1, x2, . . . ) : fi(xi) = xi−1, i ∈ N}

be equipped with the subspace topology endowed from the product topology of I∞. Let
πi : X∞ → I be the coordinate projections for i ∈ N0.

De�nition 2.1. Let X be a metric space. A chain in X is a set C = {`1 . . . , `n} of
open subsets of X called links, such that `i ∩ `j 6= ∅ if and only if |i − j| ≤ 1. If also
∪ni=1`i = X, then we speak of a chain cover of X. We say that a chain C is nice if
additionally all links are open discs (in X).

The mesh of a chain C is mesh(C) = max{diam `i : i = 1, . . . , n}. A continuum X is
chainable if there exist chain covers of X of arbitrarily small mesh.

We say that C ′ = {`′1, . . . , `′m} re�nes C and write C ′ � C if for every j ∈ {1, . . . ,m}
there exists i ∈ {1, . . . , n} such that `′j ⊂ `i. We say that C ′ properly re�nes C and

write C ′ ≺ C if additionally `′j ⊂ `i implies that the closure `′j ⊂ `i.

Let C ′ � C be as above. The pattern of C ′ in C, denoted by Pat(C ′, C), is the ordered m-
tuple (a1, . . . , am) such that `′j ⊂ `a(j) for every j ∈ {1, . . . ,m} where a(j) ∈ {1, . . . , n}.
If `′j ⊂ `i ∩ `i+1, we take a(j) = i, but that choice is just by convention.
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For chain C = {`1, . . . , `n}, write C∗ = ∪ni=1`i.

3. Construction of natural chains, patterns and nested intersections

First we construct natural chains Cn for every n ∈ N (the terminology originates from
[9]). Take some nice chain cover C0 = {l01, . . . , l0k(0)} of I and de�ne C0 := π−10 (C0) =

{`01, . . . , `0k(0)}, where `0i = π−10 (l0i ). Note that C0 is a chain cover of X∞ (but the links

are not necessarily connected sets in X∞).

Now take a nice chain cover C1 = {l11, . . . , l1k(1)} of I such that for every j ∈ {1, . . . , k(1)}
there exists j′ ∈ {1, . . . , k(0)} such that f1(l1j ) ⊂ l0j′ and de�ne C1 := π−11 (C1). Note

that C1 is a chain cover of X∞. Also note that C1 ≺ C0 and Pat(C1, C0) = {a11, . . . , a1k(1)}
where f1(π1(`

1
j)) ⊂ π0(`

0
a1j

) for each j ∈ {1, . . . , k(1)}. So the pattern Pat(C1, C0) can

easily be calculated by just following the graph of f1.

Inductively we construct Cn+1 = {`n+1
1 , . . . , `n+1

k(n+1)} := π−1n+1(Cn+1), where Cn+1 =

{ln+1
1 , . . . , ln+1

k(n+1)} is some nice chain cover of I such that for every j ∈ {1, . . . , k(n+1)}
there exists j′ ∈ {1, . . . , k(n)} such that fn+1(l

n+1
j ) ⊂ lnj′ . Note that Cn+1 ≺ Cn

and Pat(Cn+1, Cn) = (an+1
1 , . . . , an+1

k(n+1)), where fn+1(πn+1(`
n+1
j )) ⊂ πn(`n

an+1
j

) for each

j ∈ {1, . . . , k(n+ 1)}.

Throughout the paper we use the straight letter C for chain covers of the interval I and
the script letter C for chain covers of the inverse limits space. Note that the links of
Cn can be chosen small enough to ensure that mesh(Cn)→ 0 as n→∞ and note that
X∞ = ∩n∈N0C∗n.

Lemma 3.1. Let X and Y be compact metric spaces and let {Cn}n∈N0 and {Dn}n∈N0

be sequences of chains in X and Y respectively such that Cn+1 ≺ Cn, Dn+1 ≺ Dn and
Pat(Cn+1, Cn) = Pat(Dn+1,Dn) for each n ∈ N0. Assume also that mesh(Cn) → 0 and
mesh(Dn) → 0 as n → ∞. Then X ′ = ∩n∈N0C∗n and Y ′ = ∩n∈N0D∗n are nonempty and
homeomorphic.

Proof. To see that X ′ and Y ′ are nonempty note that they are nested intersections of
nonempty closed sets. De�ne Ck = {`k1, . . . , `kn(k)} and Dk = {Lk1, . . . , Lkn(k)} for each

k ∈ N0. Let x ∈ X ′. Then x = ∩k∈N0`
k
i(k) for some `ki(k) ∈ Ck such that `ki(k) ⊂ `k−1i(k−1) for

each k ∈ N. De�ne h : X ′ → Y ′ as h(x) := ∩k∈N0L
k
i(k). Since the patterns agree and

diameters tend to zero, h is a well-de�ned bijection. We show that it is continuous. First
note that h(`mi(m) ∩X ′) = Lmi(m) ∩ Y ′ for every m ∈ N0 and every i(m) ∈ {1, . . . , n(m)},
since if x = ∩k∈N0`

k
i(k) ⊂ `mi(m), then there is k′ ∈ N0 such that `ki(k) ⊂ `mi(m) for each

k ≥ k′. But then Lki(k) ⊂ Lmi(m) for each k ≥ k′, thus h(x) = ∩k∈N0L
k
i(k) ⊂ Lmi(m). The

other direction follows analogously. Now let U ⊂ Y ′ be an open set and x ∈ h−1(U).
Since diameters tend to zero, there is m ∈ N0 and i(m) ∈ {1, . . . , n(m)} such that
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h(x) ∈ Lmi(m) ∩ Y ′ ⊂ U and thus x ∈ `mi(m) ∩X ′ ⊂ h−1(U). So h−1(U) ⊂ X ′ is open and
that concludes the proof. �

In the following sections we will construct nested intersections of nice planar chains
such that their patterns are the same as the patterns of re�nements Cn ≺ Cn−1 of
natural chains of X∞ (as constructed at the beginning of this section) and such that
the diameters of links tend to zero. By the previous lemma, this gives embeddings of
X∞ in the plane. We note that the previous lemma holds in a more general setting
(with an appropriately generalized de�nition of patterns), i.e., for graph-like continua
and graph chains, see e.g. [19].

4. Permuting the graph

Let C = {l1, . . . , ln} be a chain cover of I and let f : I → I be a continuous surjection
which is piecewise linear with �nitely many critical points 0 = t0 < t1 < . . . < tm <
tm+1 = 1 (so we include the endpoints of I = [0, 1] in the set of critical points). In the
rest of the paper we work with continuous surjections which are piecewise linear (so
with �nitely many critical points); we call them piecewise linear surjections. Without
loss of generality we assume that for every i ∈ {0, . . . ,m} and l ∈ C, f([ti, ti+1]) 6⊂ l.

De�ne Hj = f([tj, tj+1])× {j} for each j ∈ {0, . . . ,m} and Vj = {f(tj)} × [j − 1, j] for
each j ∈ {1, . . . ,m}. Note that Hj−1 and Hj are joined at their left endpoints by Vj if
there is a local minimum of f in tj and they are joined at their right endpoints if there
is a local maximum of f in tj (see Figure 1). The line H0∪V1∪H1∪ . . .∪Vm∪Hm =: Gf

is called the �attened graph of f in R2.

De�nition 4.1. A permutation p : {0, 1, . . . ,m} → {0, 1, . . . ,m} is called a C-admissible
permutation of Gf if for every i ∈ {0, . . . ,m − 1} and k ∈ {0, . . . ,m} such that
p(i) < p(k) < p(i+ 1) or p(i+ 1) < p(k) < p(i) it holds that:

(1) f(ti+1) 6∈ f([tk, tk+1]), or
(2) f(ti+1) ∈ f([tk, tk+1]) but f(tk) or f(tk+1) is contained in the same link of C as

f(ti+1).

Denote a C-admissible permutation of Gf by

pC(Gf ) = p(H0) ∪ p(V1) ∪ . . . ∪ p(Vm) ∪ p(Hm),

for p(Hj) = f([t̃j, t̃j+1]) × {p(j)} and p(Vj) = {f(t̃j)} × [p(j − 1), p(j)], where t̃j is
chosen such that f(tj) and f(t̃j) are contained in the same link of C, and such that
pC(Gf ) has no self intersections for every j ∈ N. A line pC(Gf ) will be called a permuted
graph of f with respect to C. Let E(pC(Gf )) be the endpoint of p(H0) corresponding
to (f(t̃0), p(0)).

Note that p(Vj) from De�nition 4.1 is a vertical line in the plane which joins the end-
points of p(Hj−1) and p(Hj) at f(t̃j), see Figure 1.
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De�nition 4.2. If p(j) = m, we say that Hj is at the top of pC(Gf ).

t1 t2 t3

(a)

l1

l2

l3

l4

l1 l2 l3 l4

0

1

2

3

H0

H1

H2

H3

V0

V1

V2

(b)

l1 l2 l3 l4

0 = p(1)

1 = p(2)

2 = p(3)

3 = p(0)

p(H1)

p(H2)

p(H3)

p(H0)

p(V0)

p(V1)

E

(c)

Figure 1. Flattened graph and its permutation. Note that H0 is at the
top of pC(Gf ).

Note that a �attened graph Gf is just a graph of f for which its critical points have
been extended to vertical intervals. These vertical intervals were introduced for the
de�nition of a permuted graph. After permuting the �attened graph, we can quotient
out the vertical intervals in the following way.

For every i = 1, . . . ,m, pick a point qi ∈ p(Vi). There exists a homotopy F : I×R2 → R2

such that F (1, y) = qi for every y ∈ p(Vi) and every i = 1, . . . ,m, and for every
t ∈ I, F (t, ·) : pC(Gf )) → R2 is injective, and such that πx(F (t, (x, y))) = x for every
(x, y) ∈ R2 and t ∈ I. Here πx(x, y) denotes a projection on the �rst coordinate. From
now on pC(Gf ) will always stand for the quotient F (1, pC(Gf )), but for clarity in the
�gures of Sections 5 and 6 we will continue to draw it with long vertical intervals.

5. Chain refinements, their composition and stretching

De�nition 5.1. Let f : I → I be a piecewise linear surjection, p an admissible C-
permutation of Gf and ε > 0. We call a nice planar chain C = {`1, . . . , `n} a tubular
ε-chain with nerve pC(Gf ) if

• C∗ is an ε-neighborhood of pC(Gf ), and
• there exists n ∈ N and arcs A1 ∪ . . . ∪ An = pC(Gf ) such that `i is the ε-
neighborhood of Ai for every i ∈ N.

Denote a nerve pC(Gf ) of C by NC. When there is no need to specify ε and NC we just
say that C is tubular.

De�nition 5.2. A planar chain C = {`1, . . . , `n} will be called horizontal if there are
δ > 0 and a chain of open intervals {l1, . . . , ln} in R such that `i = li× (−δ, δ) for every
i ∈ {1, . . . , n}.

Remark 5.3. Let C be a tubular chain. There exists a homeomorphism H̃ : R2 → R2

such that H̃(C) is a horizontal chain and H̃−1(C ′) is tubular for every tubular C ′ ≺ H̃(C).
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C

H

H(C)

Figure 2. Stretching the chain C. Recall that the vertical intervals
are actually identi�ed with points and thus H̃−1(C ′) is tubular for every
tubular C ′ ≺ H̃(C).

Moreover, for C = {`1, . . . , `n} denote by NH̃(C) = I × {0}. Note that C \ (`1 ∪ `n ∪NC)
has two components and thus it makes sense to call the components upper and lower.
Let S be the upper component of C \ (`1 ∪ `n ∪NC).

There exists a homeomorphism H : R2 → R2 which has all the properties of a homeo-
morphism H̃ above and in addition satis�es:

• the endpoint H(E(pC(Gf ))) = (0, 0) (recall E from De�nition 4.1) and
• H(S) is the upper component of H(C∗) \ (H(`1) ∪H(`n) ∪H(A)).

Applying H to a chain C is called the stretching of C (see Figure 2).

Remark 5.4. Let X∞, {Ci}i∈N0 , {Ci}i∈N0 be as de�ned in Section 3. For i ∈ N0, let Di
be a horizontal chain with the same number of links as Ci and such that pCi(Gfi+1

) ⊂ D∗i
for some Ci-admissible permutation p. Fix ε > 0 and note that, after possibly dividing
links of Ci+1 into smaller links (i.e., re�ning the chain Ci+1 of I), there exists a tubular
chain Di+1 ≺ Di with nerve pCi(Gfi+1

) such that Pat(Di+1,Di) = Pat(Ci+1, Ci) and
mesh(Di+1) < ε, see Figure 3.

De�nition 5.5. Let H : R2 → R2 be a stretching of some tubular chain C. If C ′ is a
nice chain in R2 re�ning C and there is an interval map g : I → I such that pC(Gg) is
a nerve of H(C ′), then we say that C ′ follows pC(Gg) in C.

Now we discuss compositions of chain re�nements. Let f, g : I → I be piecewise linear
surjections. Let 0 = t0 < t1 < . . . < tm < tm+1 = 1 be the critical points of f and let
0 = s0 < s1 < . . . < sn < sn+1 = 1 be the critical points of g. Let C1 and C2 be nice
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DiDi+1

Figure 3. Constructing a tubular chain with nerve pC(Gf ). Recall that
vertical intervals represent points.

chain covers of I, let p1 : {0, 1, . . . ,m} → {0, 1, . . . ,m} be an admissible C1-permutation
of Gf and let p2 : {0, 1, . . . , n} → {0, 1, . . . , n} be an admissible C2-permutation of Gg.

Assume C ′′ ≺ C ′ ≺ C are nice chains in R2 such that C is horizontal and pC1
1 (Gf ) ⊂ C∗

(recall that C∗ denotes the union of the links of C), C ′ is a tubular chain with NC′ =
pC1
1 (Gf ), and C ′′ follows pC2

2 (Gg) in C ′. Then C ′′ follows f ◦ g in C with respect to a
C1-admissible permutation of Gf◦g which we will denote by p1 ∗ p2 (see Figures 4 and
5).

De�ne
Aij = {x ∈ I : x ∈ [si, si+1], g(x) ∈ [tj, tj+1]},

for i ∈ {0, 1, . . . , n}, j ∈ {0, 1, . . . ,m}, i.e., Aij are maximal intervals on which f ◦ g is
injective and possibly Aij = ∅. Let Hij be the horizontal branch of Gf◦g corresponding
to the interval Aij.

We want to see which branch Hij corresponds to the top of (p1 ∗ p2)C1(Gf◦g). Denote

the top of pC1
1 (Gf ) by p1(HT1), i.e., p1(T1) = m. Denote the top of pC2

2 (Gg) by p2(HT2),
i.e., p2(T2) = n. By the choice of orientation of H, the top of (p1 ∗ p2)C1(Gf◦g) is HT2T1

(see Figures 4 and 5).

6. Construction of the embeddings

Let X∞ = lim←−{I, fi} where for every i ∈ N the map fi is a continuous piecewise linear

surjection with critical points 0 = ti0 < ti1 < . . . < tim(i) < tim(i)+1 = 1. Let I ik = [tik, t
i
k+1]

for every i ∈ N and every k ∈ {0, . . . ,m(i)}. We construct chains (Cn)n∈N0 and (Cn)n∈N0

as before, such that for each i ∈ N0, k ∈ {0, . . . ,m(i + 1)} and l ∈ Ci, fi+1(I
i+1
k ) 6⊂ l.

The �attened graph of fi will be denoted by Gfi = H i
0∪V i

1 ∪ . . .∪V i
m(i)∪H i

m(i) for each
i ∈ N0.

Theorem 6.1. Let x = (x0, x1, x2, . . . ) ∈ X∞ be such that for each i ∈ N0, xi ∈ I ik(i)
and there exists an admissible permutation (with respect to Ci−1) pi : {0, . . . ,m(i)} →
{0, . . . ,m(i)} of Gfi such that pi(k(i)) = m(i). Then there exists a planar embedding
of X∞ such that x is accessible.
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H0

H1

H2

H3

C
NC′

t1 t3t2

Γf

(a)

H0

H1

H(C′)
NH(C′′)

t1

t2

t3 Γg

(b)
t1 t2 t3

H13

H03 H02

H12H11

H01

H10

Γf◦gC NC′′

(c)

Figure 4. Composing re�nements. In (a) the horizontal chain C and
a nerve of C ′ are drawn. Nerve NC′ equals GC1

f , a �attened version of
the graph Γf . In (b) we draw C ′ as a horizontal chain by applying H.
Also, nerve NH(C′′) is given as GC2

g , a �attened version of the graph Γg.
In (c) we draw NC′′ in C. In bold we trace the arc which is the top of
(id ∗ id)C1(Gf◦g) = NC′′ .

Proof. Fix a strictly decreasing sequence (εi)i∈N such that εi → 0 as i→∞. Let D0 be a
nice horizontal chain in R2 with the same number of links as C0. By Remark 5.4 we can
�nd a tubular chain D1 ≺ D0 with nerve pC0

1 (Gf1), such that Pat(D1,D0) = Pat(C1, C0)
and mesh(D1) < ε1. Note that p1(k(1)) = m(1).

Let F : R2 → R2 be a stretching of D1 (see Remark 5.3). Again using Remark 5.4
we can de�ne F (D2) ≺ F (D1) such that mesh(D2) < ε2 (F is uniformly continuous),
Pat(F (D2), F (D1)) = Pat(C2, C1) and nerve of F (D2) is pC1

2 (Gf2). Thus H2
k(2) is the

top of NF (D2). By the arguments in the previous section, the top of ND2 is Hk(2)k(1).

As in the previous section, denote the maximal intervals of monotonicity of f1 ◦ . . . ◦ fi
by

An(i)...n(1) := {x ∈ I : x ∈ I in(i), fi(x) ∈ I i−1n(i−1), . . . , f1 ◦ . . . ◦ fi−1(x) ∈ I1n(1)},
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p1(H2)

p1(H1)

p1(H0)

p1(H3)
C

p1(NC′)

p2(H1)

p2(H0)

H(C′)
p2(NH(C′′))

t1 t2 t3

C p1 ∗ p2(Gf◦g)p1 ∗ p2(H03)

Figure 5. Composing permuted re�nements. Here p1 = (0 2) and p2 =
(0 1) are admissible. The top of p1(NC′) is p1(H3), so T1 = 3. The top
of p2(NH(C′′)) is p2(H0), so T2 = 0. Thus, the top of (p1 ∗ p2)C1(Gf◦g) is
HT2T1 = H03 (in bold).

and denote the corresponding horizontal intervals of Gf1◦...◦fi by Hn(i)...n(1).

Assume that we have constructed a sequence of chains Di ≺ Di−1 ≺ . . . ≺ D1 ≺
D0. Take a stretching F : R2 → R2 of Di and de�ne F (Di+1) ≺ F (Di) such that
mesh(Di+1) < εi+1, Pat(F (Di+1), F (Di)) = Pat(Ci+1, Ci) and such that a nerve of
F (Di+1) is p

Ci
i+1(Gfi+1

), which is possible by Remark 5.4. Note that the top of NDi+1
is

Hk(i+1)...k(1).

Since Pat(F (Di+1), F (Di)) = Pat(Di+1,Di) for every i ∈ N0 and by the choice of the
sequence (εi), Lemma 3.1 yields that ∩n∈N0D∗n is homeomorphic to X∞. Let ϕ(X∞) =
∩n∈N0D∗n.

To see that x is accessible, note that H = limi→∞Hk(i)...k(1) is a well-de�ned horizontal
arc in ϕ(X∞) (possibly degenerate). Let H = [a, b] × {h} for some h ∈ R. Note that
for every y = (y1, y2) ∈ ϕ(X∞) it holds that y2 ≤ h. Thus every point p = (p1, h) ∈ H
is accessible by the vertical planar arc {p1} × [h, h+ 1]. Since x ∈ H, the construction
is complete. �

7. Zigzags

De�nition 7.1. Let f : I → I be a continuous piecewise monotone surjection with
critical points 0 = t0 < t1 < . . . < tm < tm+1 = 1. Let Ik = [tk, tk+1] for every
k ∈ {0, . . . ,m}. We say that Ik is inside a zigzag of f if there exist critical points a
and e of f such that a < tk < tk+1 < e ∈ I and either
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(1) f(tk) > f(tk+1) and f |[a,e] assumes its global maximum at a and its global mini-
mum at e, or

(2) f(tk) < f(tk+1) and f |[a,e] assumes its global minimum at a and its global maxi-
mum at e.

Then we say that x ∈ I̊k = Ik \ {tk, tk+1} is inside a zigzag of f (see Figure 6). We also
say that f contains a zigzag if there is a point inside a zigzag of f .

f

a t3 x t4 e

g

a t3 x t4 e

Figure 6. The interval [t3, t4] is inside a zigzag of f and g.

Lemma 7.2. Let f : I → I be a continuous piecewise linear surjection with critical
points 0 = t0 < t1 < . . . < tm < tm+1 = 1. If there is k ∈ {0, . . . ,m} such that
Ik = [tk, tk+1] is not inside a zigzag of f , then there exists an admissible permutation p
of Gf (with respect to any nice chain C) such that p(k) = m.

Proof. Assume that Ik is not inside a zigzag of f . Without loss of generality assume
that f(tk) > f(tk+1). If f(a) ≥ f(tk+1) for each a ∈ [0, tk] (or if f(e) ≤ f(tk) for each
e ∈ [tk+1, 1]) we are done (see Figure 7) by simply re�ecting all Hi, i < k over Hk (or
re�ecting all Hi, i > k over Hk in the second case).

Therefore, assume that there exists a ∈ [0, tk] such that f(a) < f(tk+1) and there exists
e ∈ [tk+1, 1] such that f(e) > f(tk). Denote the largest such a by a1 and the smallest
such e by e1. Since Ik is not inside a zigzag, there exists e′ ∈ [tk+1, e1] such that
f(e′) ≤ f(a1) or there exists a

′ ∈ [a1, tk] such that f(a′) ≥ f(e1). Assume the �rst case
and take e′ for which f |[tk+1,e1] attains its global minimum (in the second case we take
a′ for which f |[a1,tk] attains its global maximum). Re�ect f |[a1,tk] over f |[tk,e′] (in the
second case we re�ect f |[tk+1,e1] over f |[a′,tk+1]). Then, Hk becomes the top of Gf |[a1,e1]
(see Figure 8).

If f(a) ≥ f(e′) for each a ∈ [0, a1] (or if f(e) ≤ f(a′) for all e ∈ [e1, 1] in the second
case), we are done. So assume that there is a2 ∈ [0, a1] such that f(a2) < f(e′) and
take the largest such a2. Then there exists a′′ ∈ [a2, a1] such that f(a′′) ≥ f(e1),
and take a′′ for which f |[a2,a1] attains its global maximum. If f(e) ≤ f(a′′) for each
e ∈ [e1, 1], we re�ect f |[a2,a′′] over f |[e1,1] and are done. If there is (minimal) e2 > e1
such that f(e2) > f(a′′), then there exists e′′ ∈ [e1, e2] such that f(e′′) ≤ f(a2) and for
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f(tk)

f(tk+1)

Figure 7. Re�ections in the �rst part of the proof of Lemma 7.2.

a1

tk

tk+1

e′

e1

Figure 8. Re�ections in the second part of the proof of Lemma 7.2.

which f |[e1,e2] attains a global minimum. In that case we re�ect f |[a′′,tk] over f |[tk,e′] and
f |[a2,a′′] over f |[tk,e′′] (see Figure 9).

Thus we have constructed a permutation such that Hk becomes the top of Gf |[a2,e2] . We
proceed by induction. �

Theorem 7.3. Let X∞ = lim←−{I, fi} where each fi : I → I is a continuous piecewise

linear surjection. If x = (x0, x1, x2, . . . ) ∈ X∞ is such that for each i ∈ N, xi is not
inside a zigzag of fi, then there exists an embedding of X∞ in the plane such that x is
accessible.

Proof. The proof follows by Lemma 7.2 and Theorem 6.1. �
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a′′

a2

a1

tk

tk+1

e′

e1

e′′

e2

Figure 9. Re�ections in the third part of the proof of Lemma 7.2.

Corollary 7.4. Let X∞ = lim←−{I, fi} where each fi : I → I is a continuous piecewise

linear surjection which does not have zigzags. Then, for every x ∈ X∞ there exists an
embedding of X∞ in the plane such that x is accessible.

Remark 7.5. Note that if T : I → I is a unimodal map and x ∈ lim←−(I, T ), then

lim←−(I, T ) can be embedded in the plane such that x is accessible by the previous corollary.

This is Theorem 1 of [2]. This easily generalizes to an inverse limit of open interval
maps (e.g. generalized Knaster continua).

The following lemma shows that given arbitrary chains {Ci}, the zigzag condition from
Lemma 7.2 cannot be improved.

Lemma 7.6. Let f : I → I be a continuous piecewise linear surjection with critical
points 0 = t0 < t1 < . . . < tm < tm+1 = 1. If Ik = [tk, tk+1] is inside a zigzag for some
k ∈ {0, . . . ,m}, then there exists a nice chain C covering I such that p(k) 6= m for
every admissible permutation p of Gf with respect to C.

Proof. Take a nice chain cover C of I such that mesh (C) < min{|f(ti)− f(tj)| : i, j ∈
{0, . . . ,m + 1}, f(ti) 6= f(tj)}. Assume without loss of generality that f(tk) > f(tk+1)
and let ti < tk < tk+1 < tj be such that minimum and maximum of f |[ti,tj ] are attained
at ti and tj respectively. Assume ti is the largest and tj is the smallest index with
such properties. Let p be some permutation. If p(i) < p(j) < p(k), then by the
choice of C, p(Hj) intersects p(Vi′) for some i′ ∈ {i, . . . , k}. We proceed similarly if
p(j) < p(i) < p(k). �

Remark 7.7. Let X∞ = lim←−{I, fi} and x = (x0, x1, x2, . . .) ∈ X∞. If there exist

piecewise linear continuous surjections gi : I → I and a homeomorphism h : X∞ →
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lim←−{I, gi} such that every projection of h(x) is not in a zigzag of gi, then X∞ can be

embedded in the plane such that x is accessible. We have the following two corollaries.
See also Examples 7.10-7.12.

Corollary 7.8. Let X∞ = lim←−{I, fi} where each fi : I → I is a continuous piecewise

linear surjection. If x = (x0, x1, x2, . . . ) ∈ X∞ is such that xi is inside a zigzag of fi for
at most �nitely many i ∈ N, then there exists an embedding of X∞ in the plane such
that x is accessible.

Proof. Since lim←−{I, fi} and lim←−{I, fi+n} are homeomorphic for every n ∈ N, the proof

follows using Theorem 7.3. �

Corollary 7.9. Let f be a continuous piecewise linear surjection with �nitely many
critical points and x = (x0, x1, x2, . . . ) ∈ X∞ = lim←−{I, f}. If there exists k ∈ N such

that xi is not inside a zigzag of fk for all but �nitely many i , then there exists a planar
embedding of X∞ such that x is accessible.

Proof. Note that lim←−{I, f
k} and X∞ are homeomorphic. �

We give applications of Corollary 7.9 in the following examples.

Example 7.10. Let f be a piecewise linear map such that f(0) = 0, f(1) = 1 and with
critical points 1

4
, 3
4
, where f(1

4
) = 3

4
and f(3

4
) = 1

4
(see Figure 10).

1
4

1
2

3
4

1
4

1
2

3
4

Figure 10. Graph of f from Example 7.10.

Note that X = lim←−{I, f} consists of two rays compactifying on an arc and therefore, for

every x ∈ X, there exists a planar embedding making x accessible. However, the point
1
2
is inside a zigzag of f . Figure 11 shows the graph of f 2. Note that the point 1

2
is not

inside a zigzag of f 2 and that gives an embedding of X such that (1
2
, 1
2
, . . .) is accessible.

Let x = (x0, x1, x2, . . .) ∈ X be such that xi ∈ [1/4, 3/4] for all but �nitely many
i ∈ N0. Then, the embedding in Figure 11 will make x accessible. For other points
x = (x0, x1, x2, . . .) ∈ X there exists N ∈ N such that xi ∈ [0, 1/4] for each i > N or
xi ∈ [3/4, 1] for each i > N so the standard embedding makes them accessible. In fact,
the embedding in Figure 11 will make every x ∈ X accessible.
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1
4

1
2

3
4

1
4

1
2

3
4

Figure 11. Graph of f 2 from Example 7.10.

1
4

1
2

3
4

1
4

1
2

3
4

1
4

1
2

3
4

1
4

1
2

3
4

Figure 12. Graph of f and f 2 in Example 7.11.

Example 7.11. Assume that f is a piecewise linear map with f(0) = 0, f(1) = 1 and
critical points f(3

8
) = 3

4
and f(5

8
) = 1

4
(see Figure 12).

Note that X = lim←−{I, f} consists of two Knaster continua joined at their endpoints to-

gether with two rays both converging to these two Knaster continua. Note that (1
2
, 1
2
, . . .)

can be embedded accessibly with the use of f 2, see Figure 12. However, as opposed to the
previous example, X cannot be embedded such that every point is accessible (this follows
already by a result of Mazurkiewicz [18] which says that there exist nonaccessible points
in any planar embedding of a nondegenerate indecomposable continuum). It is proven
by Minc and Transue in [21] that such an embedding of a chainable continuum exists
if and only if it is Suslinean, i.e., contains at most countably many mutually disjoint
nondegenerate subcontinua.

Example 7.12 (Nadler). Let f : I → I be as in Figure 13. This is Nadler's candidate
from [25] for a negative answer to Question 2. However, in what follows we show that
every point can be made accessible via some planar embedding of lim←−(I, f).

Let n ∈ N. If J ⊂ I is a maximal interval such that fn|J is increasing, then J is not
inside a zigzag of fn, see e.g. Figure 13.



16 ANA ANU�I�, HENK BRUIN, JERNEJ �IN�

1
5

2
5

3
5

4
5

1
5

2
5

3
5

4
5

1
5

2
5

3
5

4
5

1
5

2
5

3
5

4
5

Figure 13. Map f and its second iterate. Bold lines are increasing
branches of the restriction to [1/5, 4/5]. Note that they are not inside a
zigzag of f or f 2 respectively.

We will code the orbit of points in the invariant interval [1/5, 4/5] in the following way.
For y ∈ [1/5, 4/5] let i(y) = (yn)n∈N0 ⊂ {0, 1, 2}∞, where

yn =


0, fn(y) ∈ [1/5, 2/5],

1, fn(y) ∈ [2/5, 3/5],

2, fn(y) ∈ [3/5, 4/5].

The de�nition is somewhat ambiguous with a problem occurring at points 2/5 and 3/5.
Note, however, that fn(2/5) = 4/5 and fn(3/5) = 1/5 for all n ∈ N. So every point
in [1/5, 4/5] will have a unique itinerary, except the preimages of 2/5 (to which we can
assign two itineraries a1 . . . an

0
1
2222 . . .) and preimages of 3/5, (to which we can assign

two itineraries a1 . . . an
1
2
0000 . . .), where 0

1
means �0 or 1� and a1, . . . , an ∈ {0, 1, 2}.

Note that if i(y) = 1y2 . . . yn1, where yi ∈ {0, 2} for every i ∈ {2, . . . , n}, then y is
contained in an increasing branch of fn+1. This holds also if n = 1, i.e., y2 . . . yn = ∅.
Also, if i(y) = 0 . . . or i(y) = 2 . . ., then y is contained in an increasing branch of f .
See Figure 14.

0 1 2 0
0

0
1

0
2

1
2

1
1

1
0

2
0

2
1

2
2

Figure 14. Map f and its iterate with symbolic coding of points. Note
that points with itinerary 0 . . . or 2 . . . are contained in an increasing
branch of f and points with itineraries 11 . . . are contained in an increas-
ing branch of f 2.
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We extend the symbolic coding to X. For x = (x0, x1, x2, . . .) ∈ X with itinerary i(x)
let (yk)k∈Z be de�ned by

yk =


i(x)k, k ≥ 0, and for k < 0,

0, x−k ∈ [1/5, 2/5],

1, x−k ∈ [2/5, 3/5],

2, x−k ∈ [3/5, 4/5].

Again, the assignment is injective everywhere except at preimages of critical points 2/5
or 3/5.

Now �x x = (x0, x1, x2, . . .) ∈ X with its backward itinerary ←−x = . . . y−2y−1y0 (assume
the itinerary is unique, otherwise choose one of the two possible backward itineraries).
Assume �rst that yk ∈ {0, 2} for every k ≤ 0. Then, for every k ∈ N0 it holds that
i(xk) = 0 . . . or i(xk) = 2 . . . so xk is in an increasing branch of f and thus not inside a
zigzag of f . By Theorem 7.3 it follows that there is an embedding making x accessible.
Similarly, if there exists n ∈ N such that yk 6= 1 for k < −n, we use that X is
homeomorphic to lim←−{I, fj} where f1 = fn, fj = f for j ≥ 2.

Assume that ←−x = . . . 1(0
2
)n31(0

2
)n21(0

2
)n1 where 0

2
means �0 or 2� and ni ≥ 0 for

i ∈ N. We will assume that n1 > 0; the general case follows similarly. Note that
i(xn1−1) = (0

2
)n1 . . . and so it is contained in an increasing branch of fn1−1. Note fur-

ther that i(xn1+1+n2) = 1(0
2
)n21(0

2
)n1 . . . and so it is contained in an increasing branch

of fn2+2. Also fn2+2(xn1+1+n2) = xn1−1. Further we note that i(xn1+1+n2+1+n3−1) =
(0
2
)n31(0

2
)n21(0

2
)n1 and so it is contained in an increasing branch of fn3. Furthermore,

fn3(xn1+1+n2+1+n3−1) = xn1+1+n2.

In this way, we see that for every even k ≥ 4 it holds that

i(xn1+1+n2+1+...+1+nk
) = 1

(
0

2

)nk

1 . . . 1

(
0

2

)n1

. . .

and so it is contained in an increasing branch of fnk+2. Also, fnk+2(xn1+1+n2+1+...+1+nk
) =

xn1+1+n2+1+...+1+nk−1−1. Similarly,

i(xn1+1+n2+1+...+1+nk+1+nk+1−1) =

(
0

2

)nk+1

1 . . . 1

(
0

2

)n1

. . .

so xn1+1+n2+1+...+1+nk+1+nk+1−1 is in an increasing branch of fnk+1. Note also that
fnk+1(xn1+1+n2+1+...+1+nk+1+nk+1−1) = xn1+1+n2+1+...+1+nk

.

So we have the following sequence

. . .
fn5

−→ xn1+1+...+1+n4

fn4+2

−→ xn1+1+n2+1+n3−1
fn3

−→ xn1+1+n2

fn2+2

−→ xn1−1
fn1−1

−→ x0,
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where the chosen points in the sequence are not contained in zigzags of the corresponding
bonding maps. Let

fi =


fn1−1, i = 1,

fni+2, i even,

fni , i > 1 odd.

Then, lim←−{I, fi} is homeomorphic to X and by Theorem 7.3 it can be embedded in the

plane such that every x ∈ lim←−{I, fi} is accessible.

8. Thin embeddings

We have proven that if a chainable continuum X has an inverse limit representation
such that x ∈ X is not contained in zigzags of bonding maps, then there is a pla-
nar embedding of X making x accessible. Note that the converse is not true. The
pseudo-arc is a counter-example, because it is homogeneous, so each of its points can
be embedded accessibly. However, the crookedness of the bonding maps producing the
pseudo-arc implies the occurrence of zigzags in every representation. Since the pseudo-
arc is hereditarily indecomposable, no point is contained in an arc. To the contrary, in
Minc's continuum XM (see Figure 15), every point is contained in an arc of length at
least 1

3
.

1
3

1
2

2
3

1
3

1
2

2
3

f

p

1
3

1
2

2
3

1
3

1
2

2
3

p

f2

Figure 15. Minc's map and its second iteration (the example was given
at the Spring Topology and Dynamical Systems Conference 2001 in a talk
by Minc entitled �On embeddings of chainable continua into the plane�).

In the next two de�nitions we introduce the notion of thin embedding, used under this
name in e.g. [10]. In [1] the notion of thin embedding was referred to as C-embedding.

De�nition 8.1. Let Y ⊂ R2 be a continuum. We say that Y is thin chainable if there
exists a sequence (Cn)n∈N of chains in R2 such that Y = ∩n∈NC∗n, where Cn+1 ≺ Cn for
every n ∈ N, mesh(Cn) → 0 as n → ∞, and the links of Cn are connected sets in R2

(note that links are open in the topology of R2).

De�nition 8.2. Let X be a chainable continuum. We say that an embedding ϕ :
X → R2 is a thin embedding if ϕ(X) is thin chainable. Otherwise ϕ is called a thick
embedding.

Note that in [6] Bing shows that every chainable continuum has a thin embedding in
the plane.
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Question 3 (Minc, 2001). Is there a planar embedding of Minc's chainable continuum
XM which makes p accessible? Or as a special case, is there a thin embedding of XM

which makes p accessible?

Example 8.3 (Bing, [6]). An Elsa continuum (see [24]) is a continuum consisting of a
ray compactifying on an arc (in [8] this was called an arc+ray continuum). An example
of a thick embedding of an Elsa continuum was constructed by Bing (see Figure 16).

Figure 16. Bing's example from [6].

An example of a thick embedding of the 3-Knaster continuum was given by D¦bski and
Tymchatyn in [10]. An arc has a unique planar embedding (up to equivalence), so all
of its planar embeddings are thin. Therefore, it is natural to ask the following question.

Question 4 (Question 1 in [1]). Which chainable continua have a thick embedding in
the plane?

De�nition 8.4. Given a chainable continuum X, let EC(X) denote the set of all pla-
nar embeddings of X obtained by performing admissible permutations of Gfi for every
representation X as lim←−{I, fi}.

The next theorem says that the class of all planar embeddings of chainable continuum
X obtained by performing admissible permutations of graphs Gfi is the class of all thin
planar embeddings of X up to the equivalence relation between embeddings.

Theorem 8.5. Let X be a chainable continuum and ϕ : X → R2 a thin embedding of
X. Then there exists an embedding ψ ∈ EC(X) which is equivalent to ϕ.

Proof. Recall that C∗n =
⋃
`∈Cn `. Let ϕ(X) = ∩n∈N0C∗n, where the links of Cn are open,

connected sets in R2. Furthermore, Cn+1 ≺ Cn for every n ∈ N0. Note that we assume
that links of Cn have a polygonal curve for a boundary, using a brick decomposition of
the plane (see e.g. [23], pg. 34).

We argue that we can also assume that every C∗n is simply connected. This goes in a
few steps. In every step we �rst state the claim we can obtain and then argue in the
rest of the step how to obtain it.

(1) Without loss of generality we can assume that the separate links of Cn are simply
connected, by �lling in the holes. That is, if a link ` ∈ Cn is such that R2 \ `
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separates the plane, instead of `, we take `∪
⋃
i Vi, where the Vi are the bounded

components of R2 \ `. Filling in the holes thus merges all the links contained in
` ∪
⋃
i Vi into a single link. This does not change the mesh nor the pattern of

the chain.
(2) We can assume that for every hole H between the links `i and `i+1 (i.e., a

connected bounded component of R2 \ (`i ∪ `i+1)) it holds that if H ∩ `j 6= ∅ for
some j, then `j ⊂ `i∪`i+1∪H. Denote by Ui the union of bounded component of
R2\(`i∪`i+1) and note that {`1∪U1∪`2, `3∪U3∪`4, . . . , `k(n)−1∪Uk(n)−1∪`k(n)}
is again a chain. (It can happen that the �rst or last few links are merged
into one link. Also, we can assume that n is even by merging the last two
links if necessary.) Denote for simplicity ˜̀

i = `2i−1 ∪ U2i−1 ∪ `2i for every i ∈
{1, 2, . . . , n/2}. We claim that if ˜̀

j ∩H 6= ∅ for some hole between ˜̀
i and ˜̀

i+1,

then ˜̀
j ⊂ ˜̀

i∪ ˜̀
i+1∪H. Assume the contrary, and take without loss of generality

that j > i + 1. Then necessarily j = i + 2 and ˜̀
i+2 separates ˜̀

i+1 so that at
least two components of ˜̀

i+1 \ ˜̀
i+2 intersect ˜̀

i. That is, ˜̀
i+2 separates `2i+1. But

this is a contradiction since ˜̀
i+2 = `2i+3 ∪ U2i+3 ∪ `2i+4 can only intersect `2i+1

if `2i+1 ⊂ U2i+3 in which case ˜̀
i+2 does not separate `2i+1.

(3) If there is a hole between links ˜̀
i and ˜̀

i+1, then we can �ll it in a similar
way as in Step (1). That is, letting Ũi be the union of bounded components

of R2 \ (˜̀
i ∪ ˜̀

i+1), the links of the modi�ed chain are {˜̀1, . . . , ˜̀
i−1, ˜̀

i ∪ Ũi ∪
˜̀
i+1, ˜̀

i+2, . . . , ˜̀
k(n)/2}. (It can happen that ˜̀

j ⊂ Ũi for all j > N ≥ i + 1
or j < N ≤ i, but then we merge all these links.) We do this for each i ∈
{1, . . . , k(n)/2} where there is a hole between ˜̀

i and ˜̀
i+1, so not just the odd

values of i as in Step (2). Due to the claim in Step (2), the result is again
a chain. These modi�ed chains can have a larger mesh (up to four times the
original mesh), but still satisfy Cn+1 ≺ Cn for every n ∈ N0 and mesh(Cn) → 0
as n→∞.

In the rest of the proof we construct homeomorphisms Fj, 0 ≤ j ≤ n ∈ N0 and
Gn := Fn ◦ . . . ◦ F1 ◦ F0, which straighten the chains Cn to horizontal chains. The
existence of such homeomorphisms follows from the generalization of the piecewise
linear Schoen�ies' theorem given in e.g. [23, Section 3]. Take a homeomorphism F0 :
R2 → R2 which maps C0 to a horizontal chain. Then F0(C1) ≺ F0(C0) and there is a
homeomorphism F1 : R2 → R2 which is the identity on R2 \ F0(C0)∗ (recall that C∗n
denotes the union of links of Cn), and which maps F0(C1)∗ to a tubular neighborhood
of some permuted �attened graph with mesh(F1(F0(C1))) < mesh(C1).
Note that Gn(Cn+1) ≺ Gn(Cn) and there is a homeomorphism Fn+1 : R2 → R2 which is
the identity on R2 \ Gn(Cn)∗ and which maps Gn(Cn+1)

∗ to a tubular neighborhood of
some �attened permuted graph with mesh(Fn+1(Gn(Cn+1))) < mesh(Cn+1).
Note that the sequence (Gn)n∈N0 is uniformly Cauchy and G := limn→∞Gn is well-
de�ned. By construction, G : R2 → R2 is a homeomorphism and G ◦ ϕ ∈ EC(X). �
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Question 5 (Question 2 in [1]). Is there a chainable continuum X and a thick embedding
ψ of X such that the set of accessible points of ψ(X) is di�erent from the set of accessible
points of ϕ(X) for any thin embedding ϕ of X?

9. Uncountably many nonequivalent embeddings

In this section we construct, for every chainable continuum containing a nondegenerate
indecomposable subcontinuum, uncountably many embeddings which are pairwise not
strongly equivalent. Recall that ϕ, ψ : X → R2 are strongly equivalent if ϕ ◦ ψ−1 can
be extended to a homeomorphism of R2.

The idea of the construction is to �nd uncountably many composants in some inde-
composable planar continuum which can be embedded accessibly in more than a point.
The conclusion then follows easily with the use of the following theorem.

Theorem 9.1 (Mazurkiewicz [18]). Let X ⊂ R2 be an indecomposable planar contin-
uum. There are at most countably many composants of X which are accessible in at
least two points.

Let X = lim←−{I, fi}, where fi : I → I are continuous piecewise linear surjections.

De�nition 9.2. Let f : I → I be a continuous surjection. An interval I ′ ⊂ I is called a
surjective interval if f(I ′) = I and f(J) 6= I for every J ( I ′. Let A1, . . . , An, n ≥ 1, be
the surjective intervals of f ordered from left to right. For every i ∈ {1, . . . , n} de�ne
the right accessible set by R(Ai) = {x ∈ Ai : f(y) 6= f(x) for all x < y ∈ Ai} (see
Figure 17).

f

A1 A2 A3

R(A1) R(A3)

Figure 17. Map f has three surjective intervals. The right accessible
sets in the surjective intervals A1 and A3 of f are denoted in the picture
by R(A1) and R(A3) respectively. Note that R(A2) = A2.

We will �rst assume that the map fi contains at least three surjective intervals for every
i ∈ N. We will later see that this assumption can be made without loss of generality.
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Remark 9.3. Assume that f : I → I has n ≥ 3 surjective intervals. Then A1∩An = ∅
and f([l, r]) = I for every l ∈ A1 and r ∈ An. Also f([l, r]) = I for every l ∈ Ai and
r ∈ Aj where j − i ≥ 2.

Lemma 9.4. Let J ⊂ I be a closed interval and f : I → I a map with surjective
intervals A1, . . . An, n ≥ 1. For every i ∈ {1, . . . , n} there exists an interval J i ⊂ Ai
such that f(J i) = J , f(∂J i) = ∂J and J i ∩R(Ai) 6= ∅.

Proof. Consider the interval J = [a, b] and �x i ∈ {1, . . . , n}. Let ai, bi ∈ R(Ai) be
such that f(ai) = a and f(bi) = b. Assume �rst that bi < ai (see Figure 18). Find the
smallest ãi > bi such that f(ãi) = a. Then J i := [bi, ãi] has the desired properties. If

ai < bi, then take J i = [ai, b̃i], where b̃i > ai is the smallest such that f(b̃i) = b. �

J

J3

aibi

a

b

f

Figure 18. Construction of interval J i from the proof of Lemma 9.4.

The following de�nition is a slight generalization of the notion of the �top� of a permu-
tation p(Gf ) of the graph Γf .

De�nition 9.5. Let f : I → I be a piecewise linear surjection and for a chain C of
I, let p be a admissible C-permutation of Gf . For x ∈ I denote the point in p(Gf )
corresponding to f(x) by p(f(x)). We say that x is topmost in p(Gf ) if there exists a
vertical ray {f(x)} × [h,∞), where h ∈ R, which intersects p(Gf ) only in p(f(x)).

Remark 9.6. If A1, . . . , An are surjective intervals of f : I → I, then every point in
R(An) is topmost. Also, for every i = 1, . . . , n there exists a permutation of Gf such
that every point in R(Ai) is topmost.

Lemma 9.7. Let f : I → I be a map with surjective intervals A1, . . . An, n ≥ 1. For
[a, b] = J ⊂ I and i ∈ {1, . . . , n} denote by J i an interval from Lemma 9.4. There
exists an admissible permutation pi of Gf such that both endpoints of J i are topmost in
pi(Gf ).

Proof. Let Ai = [li, ri]. Assume �rst that f(li) = 0 and f(ri) = 1, thus ai < bi (recall

the notation ai, ãi and bi, b̃i from the proof of Lemma 9.4). Find the smallest critical

point m of f such that m ≥ b̃i and note that f(x) > f(a) for all x ∈ Ai, x > m. So we
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can re�ect f |[m,ri] over f |[ai,m] and f |[ri,1] over f |[0,li]. This makes ai and b̃i topmost, see
Figure 19. In the case when f(li) = 1, f(ri) = 0, thus ai > bi, we have that f(x) < f(b)
for all x ∈ Ai, x > m so we can again re�ect f |[m,ri] over f |[ai,m] making ãi and bi
topmost. �

(m, f(m))

b

a

Figure 19. Making endpoints of J i topmost.

Lemma 9.8. Let X = lim←−{I, fi}, where each fi : I → I is a continuous piecewise linear

surjection and assume that X is indecomposable. If fi contains at least three surjective
intervals for every i ∈ N, then there exist uncountably many planar embeddings of X
that are not strongly equivalent.

Proof. For every i ∈ N let ki ≥ 3 be the number of surjective branches of fi and �x
Li, Ri ∈ {1, . . . , ki} such that |Li − Ri| ≥ 2. Let J ⊂ I and (ni)i∈N ∈

∏
i∈N{Li, Ri}.

Then

J (ni) := J
f1← Jn1

f2← Jn1n2
f3← Jn1n2n3

f4← . . .

is a well-de�ned subcontinuum of X. Here we used the notation Jnm = (Jn)m. More-
over, Lemma 9.7 and Theorem 6.1 imply that X can be embedded in the plane such
that both points in ∂J ← ∂Jn1 ← ∂Jn1n2 ← ∂Jn1n2n3 ← . . . are accessible.

Remark 9.3 implies that for every f : I → I with surjective intervals A1, . . . , An, every
|i − j| ≥ 2 and every J ⊂ I it holds that f([J i, J j]) = I, where [J i, J j] denotes the
convex hull of J i and J j. So if (ni), (mi) ∈

∏
i∈N{Li, Ri} di�er at in�nitely many places,

then there is no proper subcontinuum of X which contains both J (ni) and J (mi), i.e.,
they are contained in di�erent composants of X. Now Theorem 9.1 implies that there
are uncountably many planar embeddings of X that are not strongly equivalent. �

Next we prove that the assumption of at least three surjective intervals can be made
without loss of generality for every nondegenerate indecomposable chainable continuum.
For X = lim←−{I, fi}, where each fi : I → I is a continuous piecewise linear surjection,

we show that there is X ′ = lim←−{I, gi} homeomorphic to X such that gi has at least

three surjective intervals for every i ∈ N. We will build on the following remark.

Remark 9.9. Assume that f, g : I → I each have at least two surjective intervals.
Note that then f ◦ g has at least three surjective intervals. So if fi has two surjective
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intervals for every i ∈ N, then X can be embedded in the plane in uncountably many
nonequivalent ways.

De�nition 9.10. Let ε > 0 and let f : I → I be a continuous surjection. We say
that f is Pε if for every two segments A,B ⊂ I such that A ∪ B = I it holds that
dH(f(A), I) < ε or dH(f(B), I) < ε, where dH denotes the Hausdor� distance.

Remark 9.11. Let f : I → I and ε > 0. Note that f is Pε if and only if there exist
0 ≤ x1 < x2 < x3 ≤ 1 such that one of the following holds

(a) |f(x1)− 0|, |f(x3)− 0| < ε, |f(x2)− 1| < ε, or
(b) |f(x1)− 1|, |f(x3)− 1| < ε, |f(x2)− 0| < ε.

For n < m denote by fmn = fn ◦ fn+1 ◦ . . . ◦ fm−1.

Theorem 9.12 (Kuykendall [13]). The inverse limit X = lim←−{I, fi} is indecomposable

if and only if for every ε > 0 and every n ∈ N there exists m > n such that fmn is Pε.

Furthermore, we will need the following strong theorem.

Theorem 9.13 (Mioduszewski, [22]). Two continua lim←−{I, fi} and lim←−{I, gi} are home-

omorphic if and only if for every sequence of positive integers εi → 0 there exists an
in�nite diagram as in Figure 20, where (ni) and (mi) are sequences of strictly increasing

I

I

I

I

I

I

I

I

. . .

. . .

fn2
n1 fn3

n2 fn4
n3 fn5

n4

gm2
m1 gm3

m2 gm4
m3 gm5

m4

Figure 20. In�nite (εi)-commutative diagram from Mioduszewski's theorem.

integers, f
ni+1
ni = fni+1 ◦ . . . ◦ fni+1

, g
mi+1
mi = gmi+1 ◦ . . . ◦ gmi+1

for every i ∈ N and every
subdiagram as in Figure 21 is εi-commutative.

I

I

I

. . .

. . .

I

I

I

f
ni+1
ni

f
ni+2
ni+1 f

nk+1
nk

g
mi+1
mi

g
mk
mk−1 g

mk+1
mk

I

I

I

. . .

. . .

I

I

I
f
ni+2
ni+1 f

nk+1
nk

f
nk+2
nk+1

g
mi+1
mi

g
mi+2
mi+1 g

mk+1
mk

Figure 21. Subdiagrams which are εi-commutative for every i ∈ N.

Theorem 9.14. Every nondegenerate indecomposable chainable continuum X can be
embedded in the plane in uncountably many ways that are not strongly equivalent.
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Proof. Let X = lim←−{I, fi}, where each fi : I → I is a continuous piecewise linear

surjection. If all but �nitely many fi have at least three surjective intervals, we are done
by Lemma 9.8. If for all but �nitely many i the map fi has two surjective intervals, we
are done by Remark 9.9.

Now �x a sequence (εi) such that εi > 0 for every i ∈ N and εi → 0 as i → ∞. Fix
n1 = 1 and �nd n2 > n1 such that fn2

n1
is Pε1 . Such n2 exists by Theorem 9.12. For

every i ∈ N �nd ni+1 > ni such that f
ni+1
ni is Pεi . The continuum X is homeomorphic

to lim←−{I, f
ni+1
ni }. Every f

ni+1
ni is piecewise linear and there exist xi1 < xi2 < xi3 as in

Remark 9.11. Take them to be critical points and assume without loss of generality
that they satisfy condition (a) of Remark 9.11. De�ne a piecewise linear surjection
gi : I → I with the same set of critical points as f

ni+1
ni such that gi(c) = f

ni+1
ni (c) for all

critical points c 6∈ {x1, x2, x3} and gi(x1) = gi(x3) = 0, gi(x2) = 1. Then gi is εi-close
to f

ni+1
ni . By Theorem 9.13, lim←−{I, f

ni+1
ni } is homeomorphic to lim←−{I, gi}. Since every gi

has at least two surjective intervals, this �nishes the proof by Remark 9.9. �

Remark 9.15. Speci�cally, Theorem 9.14 proves that the pseudo-arc has uncountably
many embeddings that are not strongly equivalent. Lewis [14] has already proven this
with respect to the standard version of equivalence, by carefully constructing embeddings
with di�erent prime end structures.

In the next theorem we expand the techniques from this section to construct uncount-
ably many strongly nonequivalent embeddings of every chainable continuum that con-
tains a nondegenerate indecomposable subcontinuum. First we give a generalisation of
Lemma 9.7.

Lemma 9.16. Let f : I → I be a surjective map and let K ⊂ I be a closed interval.
Let A1, . . . , An be the surjective intervals of f |K : K → f(K), and let J i, i ∈ {1, . . . , n},
be intervals from Lemma 9.4 applied to the map f |K.
Assume n ≥ 4. Then there exist α, β ∈ {1, . . . , n} such that |α − β| ≥ 2 and such
that there exist admissible permutations pα, pβ of Gf such that both endpoints of Jα are
topmost in pα(Gf |K ) and such that both endpoints of Jβ are topmost in pβ(Gf |K ).

Proof. Let K = [kl, kr] and f(K) = [Kl, Kr]. Let x > kr be the smallest local extremum
of f such that f(x) > Kr or f(x) < Kl. A surjective interval Ai = [li, ri] will be called
increasing (decreasing) if f(li) = Kl (f(ri) = Kl).

Case 1. Assume f(x) > Kr (see Figure 22). If Ai = [li, ri] is increasing, since f(x) >
Kr, there exists an admissible permutation which re�ects f |[m,x] over f |[ai,m] and leaves
f |[x,1] �xed. Here m is chosen as in the proof of Lemma 9.7. Since there are at least
four surjective intervals, at least two are increasing. This �nishes the proof.

Case 2. If f(x) < Kl we proceed as in the �rst case but for decreasing Ai. �

Theorem 9.17. Let X be a chainable continuum that contains a nondegenerate in-
decomposable subcontinuum Y . Then X can be embedded in the plane in uncountably
many ways that are not strongly equivalent.
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kl kr

Kl

Kr

. . .

f(m)

f(x)

f(m)

f(x)

Figure 22. Permuting in the proof of Lemma 9.16.

Proof. Let

Y := Y0
f1← Y1

f2← Y2
f3← Y3

f4← . . . .

If ϕ, ψ : X → R2 are strongly equivalent planar embeddings of X, then ϕ|Y , ψ|Y are
strongly equivalent planar embeddings of Y . We will construct uncountably many
strongly nonequivalent planar embeddings of Y extending to planar embeddings of X,
which will complete the proof.

According to Theorem 9.12 and Theorem 9.13 we can assume that fi|Yi : Yi → Yi−1 has
at least four surjective intervals for every i ∈ N. For a closed interval J ⊂ Yj−1, let αj, βj
be integers from Lemma 9.16 applied to fj : Yj → Yj−1, and denote the appropriate
subintervals of Yj by J

αj , Jβj . For every sequence (ni)i∈N ∈
∏

i∈N{αi, βi} we obtain a
subcontinuum of Y :

J (ni) := J
f1← Jn1

f2← Jn1n2
f3← Jn1n2n3

f4← . . .

We use the notation of the proof of Lemma 9.8. Lemma 9.16 implies that for every
sequence (ni) there exists an embedding of Y such that both points of ∂J ← ∂Jn1 ←
∂Jn1n2 ← ∂Jn1n2n3 ← . . . are accessible and which can be extended to an embedding of
X. This completes the proof. �

We have proven that every chainable continuum containing a nondegenerate indecom-
posable subcontinuum has uncountably many embeddings that are not strongly equiv-
alent. Thus we pose the following question.

Question 6. Which hereditarily decomposable chainable continua have uncountably
many planar embeddings that are not equivalent and/or strongly equivalent?

Remark 9.18. Mayer has constructed uncountably many nonequivalent planar embed-
dings (in both senses) in [17] of the sin 1

x
continuum by varying the rate of convergence

of the ray. This approach readily generalizes to any Elsa continuum. We do not know
whether the approach can be generalized to all chainable continua which contain a dense
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ray. Speci�cally, it would be interesting to see if lim←−{I, fFeig} (where fFeig denotes

the logistic interval map at the Feigenbaum parameter) can be embedded in uncountably
many nonequivalent ways. However, this approach would not generalize to the remaining
hereditarily decomposable chainable continua since there exist hereditarily decomposable
chainable continua which do not contain a dense ray, see e.g. [12].

Remark 9.19. In Figure 23 we give examples of planar continua which have exactly
n ∈ N or countably many nonequivalent planar embeddings. However, except for the
arc, all the examples we know are not chainable.

Figure 23. Left: Planar projection (Schlegel diagram) of the sides of the
pyramid with n ≥ 4 faces has exactly n embeddings that are not strongly
equivalent, determined by the choice of the unbounded face. Actually
any planar representation of a polyhedron with n faces would do in the
previous example. We are indebted to Imre Péter Tóth for these exam-
ples. Continua with exactly n = 2, 3 nonequivalent planar embeddings in
the strong sense are e.g. the letters H,X respectively. In the standard
sense, there is only one planar embedding of each of these examples.
Right: the harmonic comb has countably many nonequivalent embed-
dings in both senses; any �nite number of non-limit teeth can be �ipped
over to the left to produce a nonequivalent embedding.

Question 7. Is there a non-arc chainable continuum for which there exist at most
countably many nonequivalent planar embeddings?

Remark 9.20. For inverse limit spaces X with a single unimodal bonding map that
are not hereditarily decomposable, Theorems 9.14 and 9.17 hold with the standard notion
of equivalence as well, for details see [2]. This is because every self-homeomorphism of
X is known to be pseudo-isotopic (two self-homeomorphisms f, g of X are called pseudo-
isotopic if f(C) = g(C) for every composant C of X) to a power of the shift homeo-
morphism (see [4]), and so every composant can only be mapped to one in a countable
collection of composants. Hence, if uncountably many composants can be made accessi-
ble in at least two points, then there are uncountably many nonequivalent embeddings.
In general there are no such rigidity results on the group of self-homeomorphisms of
chainable continua. For example, there are uncountably many self-homeomorphisms of
the pseudo-arc up to pseudo-isotopy, since it is homogeneous and all arc-components
are degenerate. Thus we ask the following question.

Question 8. For which indecomposable chainable continua is the group of all self-
homeomorphisms up to pseudo-isotopy at most countable?
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