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Abstract. A symmetric Lorenz map is obtain by “flipping” one of the two branches
of a symmetric unimodal map. We use this to derive a Sharkovsky-like theorem for
symmetric Lorenz maps, and also to find cases where the unimodal map restricted
to the critical omega-limit set is conjugate to a Sturmian shift. This has connections
with properties of unimodal inverse limit spaces embedded as attractors of some planar
homeomorphisms.

1. Introduction

Topological properties of a continuous dynamical system are, in general, easier to un-
derstand than those of discontinuous systems. For example, for continuous functions
of the real line there is the celebrated Sharkovsky Theorem [27], which says that if the
map has a periodic point of prime period n, it also has a periodic point of prime period
m for every m ≺ n in the Sharkovsky order

1 ≺ 2 ≺ 4 ≺ 8 ≺ · · · ≺ 4 · 7 ≺ 4 · 5 ≺ 4 · 3 · · · ≺ 2 · 7 ≺ 2 · 5 ≺ 2 · 3 · · · ≺ 7 ≺ 5 ≺ 3.

However, in general there is no analogue of the Sharkovsky theorem for discontinuous
functions of the reals.

In this paper we study Lorenz maps, which are piecewise monotone interval maps with
a single discontinuity point. Such Lorenz maps appear as Poincaré maps of geometric
models of Lorenz attractors described independently by Guckenheimer [20], Williams
[28] and Afraimovich, Bykov and Shil’nikov [1]. For the class of “old” maps (discon-
tinuous degree one interval maps) which also include Lorenz maps, a characterisation
of periodic orbit forcing was given by Alsedá, Llibre, Misurewicz and Tresser in [3].
Hofbauer in [22] obtained a result similar as in [3] using an oriented graph with infin-
itely many vertices whose closed paths represent the periodic orbits of the map except
that he did not characterize completely the set of periodic points. In [2] the connection
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between β-expansions and Sharkovsky’s ordering is given. Recently, Cosper [18] proved
a direct analogue of Sharkovsky’s theorem in special families of piecewise monotone
maps (truncated tent map family).

In the present paper we combine some old and more recent results on the relation
between unimodal and Lorenz maps, including a version of Sharkovsky’s Theorem.
The basic idea is to explore the relation between a unimodal map f and symmetric
Lorenz maps ϕ and ψ obtained by “flipping the right branch” and “flipping the left
branch” of the graph of f respectively, see Figure 1.

c = 1
2

c = 1
2

c = 1
2

ϕf ψ

Figure 1. An increasing and decreasing symmetric Lorenz map ϕ and
ψ obtained from a unimodal map f .

For increasing Lorenz maps ϕ we prove in Theorem 1 that Sharkovsky’s Theorem holds
with the exception of the fixed points and for decreasing Lorenz maps ψ we prove in
Theorem 2 that Sharkovsky’s Theorem holds possibly except for periods 2r, r ≥ 1.

We can turn ϕ into a proper circle endomorphism (with unique rotation number inde-
pendent of x ∈ S1) by setting (see also Figure 3):

ϕ̄(x) =

{
ϕ(1) = f̃(1), x ∈ [0, a]; where a < c is such that ϕ(a) = ϕ(1),

ϕ(x), otherwise.

In Proposition 2 we calculate the rotation number of the family of such maps, and
prove that in the irrational rotation number case the restriction to omega limit set is a
minimal homeomorphism. We use techniques developed primarily for unimodal interval
maps.

Next, we also give an implementation of Sturmian shifts in interval maps. For every
Sturmian shift we assign a unimodal map (basically a kneading sequence) so that the
unimodal map restricted to its omega limit set is conjugate to that Sturmian shift.

Maps ϕ̄, besides being interesting on their own, prove also to be very useful in surface
dynamics. Namely, knowledge of their dynamics can be related to special orientation
preserving planar embeddings of inverse limit spaces with bonding maps being f . In the
last section of the paper we connect the map ϕ̄ to the study of unimodal inverse limit
spaces represented as attractors of some planar homeomorphisms (this was initially done
in [8] using a map conjugated to ϕ̄). In Theorem 3 we give a compete characterisation of
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accessible points of tent inverse limit spaces embedded in such a way. Then Corollary 1
gives a partial answer to Problem 1 in [4] by giving an example of tent inverse limit
space which has uncountably many inhomogeneities with only countably infinitely many
of them not being endpoints.

2. Preliminaries

Let I := [0, 1] be the unit interval, and f : I → I a symmetric unimodal map, i.e., given
the involution x̃ = 1−x, we assume that f(x̃) = f(x) for every x. This means that the
critical point c = 1

2
, and by an appropriate scaling, we can assume that f(c) = 1. For

example, fa(x) = 1− a(x− 1
2
)2 with a ∈ (0, 4] is the logistic family in this scaling.

We can turn f into an (increasing) symmetric Lorenz map ϕ : I → I by flipping the
right half of the graph vertically around c = 1

2
, see Figure 1, giving the following result:

ϕ(x) =

{
f(x) if x ∈ [0, c],

f̃(x) if x ∈ (c, 1].

The choice ϕ(c) = f(c) = 1 is arbitrary, only made to be definite.

Then, ϕ is semi-conjugate to f : f ◦ ϕ = f ◦ f . In fact

(1) ϕn(x) =

{
fn(x) if fn is increasing at x;

f̃n(x) if fn is decreasing at x.

We can also flip the left branch of f and obtain ψ := ϕ̃ which is called a decreasing

symmetric Lorenz map. Then ψ̃(x) = ψ(x̃) for all x, and by induction

ψn(x) =

{
ϕ̃n(x) = ϕ̃n(x) if n is odd,

ϕn(x) if n is even.

Suppose then ψn is continuous at x. Then (1) implies that

ψn(x) = fn(x) if and only if

{
fn is decreasing at x and n is odd,

fn is increasing at x and n is even,

and ψn(x) = f̃n(x) otherwise.

3. Sharkovsky’s Theorem for Lorenz maps

We can describe the dynamics of f using the standard symbolic dynamics with the
alphabet {0, ∗, 1}, where the symbols stand for the sets [0, c), {c} and (c, 1] respectively.
It is also enough to restrict the study to the dynamical core [f(0), 1], since points from
[0, f(0)) will be mapped to the core under f . The kneading invariant ν ∈ {0, ∗, 1}N is
the itinerary of the point 1 = f(c). Since the itinerary map x 7→ i(x) is monotone in the
parity-lexicographical order on {0, ∗, 1}N, the kneading invariant is maximal admissible
sequence, i.e., i(x) ≤pl ν for all x ∈ I. Also, i(x) ≥pl σ(ν) for all x ∈ [f(0), 1]. It can
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be shown that every itinerary for which every shift is in parity-lexicographical ordering
between σ(ν) and ν can be realized by a point in the dynamical core (see e.g. [24]).

Also, if an m-periodic point y is closest to c from all the points in its orbit, and
i(f(y)) = e1 . . . em, then σn(e1 . . . em) ≤pl e1 . . . em for all n ≥ 1. As a corollary,
e1 . . . em−1e′m (if admissible) is periodic of period k = m or k = m/2, which we prove
in the rest of this paragraph. To prove that, assume that there is k ≥ 3 such that
for j = m/k we can write e1 . . . em−1e

′
m = (e1 . . . ej)

k. Then,since e1 . . . em is max-
imal among its shifts, e1 . . . e

′
j <pl e1 . . . ej, and thus #1(e1 . . . ej) is odd. But then

e1 . . . eje1 . . . e
′
j >pl (e1 . . . ej)

2, so σ(k−2)j(e1 . . . em−1em) >pl e1 . . . em−1em, violating the
parity-lexicographical shift-maximality of e1 . . . em.

Lemma 1. Let f be a unimodal map with a periodic point x of period n. Then for
every m ≺ n, m > 1, there are periodic points y and y′ of f such that

(a) y has prime period m and fm is decreasing at y, and
(b) y′ has prime period m and fm is increasing at y′ or y′ has prime period m/2

and fm/2 is decreasing at y′.

If fn is decreasing at x, then the statement holds for m = n as well.

Proof. By Sharkovsky’s Theorem, f has at least one periodic orbit of period m. Take
the m-periodic point y closest to c, so the itinerary e := i(f(y)) is maximal (w.r.t. the
party-lexicographical order ≤pl) among all admissible m-periodic itineraries. Find e′

by setting e′i = 1 − ei if ei 6= ∗ and i = km, k ∈ N. Otherwise we set e′i = ei. Let us
first show that e′ is admissible. Let j ≥ 1 be the smallest integer such that ej 6= νj.
If j < m, then both e, e′ <pl ν. If m ≤ j and #{1 ≤ i ≤ m : ei = 1} is odd, then
e′ <pl e <pl ν. The remaining case is #{1 ≤ i ≤ m : ei = 1} is even and m ≤ j.
Assume that m = j. Thus e = ν1 . . . ν ′m. To show that e′ = ν1 . . . νm is admissible,
assume that e′ >pl ν. Since #{1 ≤ i ≤ m : νi = 1} is odd, we have ν <pl σ

m(e′) =
e′ <pl σ

m(ν), which contradicts shift-maximality of ν. Thus, e′ is admissible in this
case. Also, e′ cannot be periodic of period m/2 since e1 . . . em−1e

′
m has an odd number

of ones. It follows that e <pl e
′, which contradicts the assumption that e is the closest

to ν among m-periodic itineraries, so this case is not possible.
Assume that m < j. Then σm(e) ≤pl σm(ν) but since the first symbol at which
σm(e) = e and σm(ν) differ is j −m, the parity argument and m-periodicity of e imply
that σm(ν) >pl ν, which contradicts the shift-maximality of ν. So this case cannot
occur either.

We conclude that e′ <pl ν, and since it is shift-maximal, σn(e′) <pl ν for every n ≥ 0.
We still have to argue that σn(e′) >pl σ(ν) for every n ≥ 0. Assume there is n ≥ 0
such that σn(e′) <pl σ(ν) and take the smallest such n. Since m > 1, e′ starts with 1,
and thus n > 0. Also, since n is the smallest such integer, σn−1(e′) = 1σn(e′). Then
σn(e′) <pl σ(ν) implies that σn−1(e′) = 1σn(e′) >pl ν, which is a contradiction. We
conclude that e′ is admissible, i.e., realized by a point y′ in [f(0), 1].
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Moreover, we also conclude that fm is decreasing in y and increasing in y′. From the
discussion preceding the statement of the lemma, we conclude that the prime period of
y′ is m or m/2.

If y′ has prime period m/2 = k, then e = e1 . . . eke1 . . . ek−1e′k and e′ = e1 . . . ek. Since
σk(e) <pl e, we conclude that #{1 ≤ i ≤ k : ei = 1} is odd, from which is follows that
fk is decreasing in y′. �

For discontinuous interval maps, there are previous results regarding the forcing relation
between periods, see e.g. [3] which however do not give the following result.

Theorem 1. Symmetric increasing Lorenz maps ϕ satisfy Sharkovsky’s Theorem, ex-
cept for the fixed points.

Proof. We start the proof for the symmetric Lorenz map ϕ with two claims.

(1) We first show that if ϕ has a periodic point of prime period n ≥ 1, then f also
has a periodic point of prime period n, unless, possibly, n is a power of 2, and
then f has a periodic point of prime period n or n

2
.

Let ϕn(x) = x and assume ϕk(x) 6= x for all k < n. Then the same holds for
x̃. At exactly one of x and x̃, say at x, fn is increasing, so fn(x) = x. Assume
k < n is such that fk(x) = x and take the smallest such (so that x has prime
period k). If k is not a power of two, then, since k divides n, Sharkovsky’s
Theorem gives the existence of a periodic point of prime period n as well. So
we only have to consider the case that k = 2r.

If fk is increasing at x, then ϕk(x) = fk(x) = x, a contradiction. Thus
fk must be decreasing at x. In that case f 2k is increasing at x, and thus
ϕ2k(x) = f 2k(x) = x, from which we conclude that n = 2k = 2r+1 and x is a
periodic point of f of prime period k = n

2
.

(2) Next we show that if m > 1 is such that f has an m-periodic point, then there
exists an m-periodic point of ϕ. Assume fm(x) = x and fk(x) 6= x for all k < m.
If fm is increasing at x, then ϕm(x) = x. Assume that there is k < m such that
ϕk(x) = x. Then fk must be decreasing at x, and we get f 2k(x) = ϕ2k(x) = x,

thus m = 2k. Now fk(x̃) = fk(x) = ϕ̃k(x) = x̃, so f 2k(x) = fk(x̃) = x̃, but on
the other hand f 2k(x) = fm(x) = x, which gives a contradiction.

The remaining case is when fm is decreasing at x. By Lemma 1 and its proof,
we find a point x′ such that fm(x′) = x′ and fm is increasing at x′. If m is indeed
the prime period of x′, then we can use the above argument to conclude that x′

is m-periodic point of ϕ. Otherwise, the prime period of x′ is m/2 and fm/2 is
decreasing in x′. But then ϕm/2(x′) = x̃′ and ϕm(x′) = x′, so x′ is periodic for
ϕ with prime period m.

However, if m = 1, then e = 1, e′ = 0 and x′ lies in general outside the core
(and in fact outside I), so it is lost in the construction of ϕ. Indeed, ϕ has
a fixed point only if it comes from a “full” unimodal map f (i.e., a unimodal
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map that exhibits all possible itineraries of points, such as e.g. the quadratic
Chebyshev polynomial f(x) = 4x(1− x)).

To finish the proof, assume that ϕ has an n-periodic point. By the first part of the
proof, there exists an n-periodic point for f (or possibly an n/2-periodic point if n is
a power of 2). Sharkovsky’s Theorem implies that f has an m-periodic point for every
m ≺ n. The second part of the proof implies that there exists an m-periodic point of
ϕ provided m 6= 1. �

There are maps f with periodic points of period 2r and no other periods. If r is maximal
with this property, we say that f is of type 2r. If f has periodic points of all periods of
the form 2r we say that f is of type 2∞. The union of these two is called type � 2∞.
If x is a 2r-periodic point of a unimodal map f of type � 2∞, then we say that x has
the pattern from the first period doubling cascade; itinerary of such point is the (shift
of the) 2r-periodic continuation of the Feigenbaum itinerary νF = νF1 ν

F
2 ν

F
3 . . . which

equals

(2) 1.0.11.1010.10111011.1011101010111010.1011101010111011101110101 . . .

where the dots indicate the powers of 2.

Studying the decreasing symmetric Lorenz maps ψ we can obtain a theorem similar to
Theorem 1.

Theorem 2. Decreasing symmetric Lorenz maps ψ satisfy Sharkovsky’s Theorem, pos-
sibly except for periods 2r, r ≥ 1.

Proof. The proof for a decreasing symmetric Lorenz map ψ is similar as for increasing
Lorenz maps. We only need to repeat the two claims.

(1) Let ψn(x) = x and assume ψk(x) 6= x for all k < n. Then the same holds for x̃.
For even n the proof is the same as for ϕ in Theorem 1, so assume that n is odd.
At exactly one of x and x̃, say at x, fn is decreasing, so fn(x) = x. Assume
k is a divisor of n is such that fk(x) = x. Then k and n/k are odd and fk is
decreasing as well, so ψk(x) = x, which is a contradiction.

(2) Assume that f has a n-periodic point and take m ≺ n. (We note that the claim
does not hold for m = n. Indeed, if n = m = 3 and the 3-periodic point is
emerging in a saddle node bifurcation, then ψ does not yet have a 3-periodic
point.) By Lemma 1, f has periodic points x of prime period m, and if m is not
a power of two, then we can take x orientation preserving as well as orientation
reversing. Assume that fk(x) 6= x for all proper divisors k of m.
• If m is odd, we take x orientation reversing, so that ψm(x) = x. Suppose

that j is a proper divisor of m such that ψj(x) = x. Then f j(x) = x̃
because f j(x) 6= x by assumption. Also, x = ψm−j(ψj(x)) = ψm−j(x) so
we also conclude that fm−j(x) = x̃. But then x = fm(x) = fm(x̃) =
fm−j(f j(x̃)) = fm−j(x̃) = x̃, a contradiction. Therefore m is the prime
period of x for ψ.
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• If m is even, we take x orientation preserving, so that ψm(x) = x. Analo-
gously as above we prove that m is the prime period of x for ψ.

This shows that ψ satisfies Sharkovsky’s Theorem with the potential exception of peri-
odic points in the first period doubling cascade. For instance, if fa(x) = 1− a(x− 1

2
)2

with 4 > a > aFeig (where aFeig is the Feigenbaum parameter, then ψ does not have a
point of prime period 2, despite the fact that it has periods n � 2. More generally, if fa
is r − 1 renormalisable of period 2 (so in contrast with Theorem 1 the final renormali-
sation has period 2r−1), then ψ has no periodic point of period 2r. The map ψ always
has a fixed point, so we don’t need to make exceptions for fixed points. �

4. Cutting times

We recall some notation from Hofbauer towers and kneading maps that we use later in
the paper; for more information on these topics, see e.g. [11, Chapter 6].

Recall that c denotes the critical point 1/2. For n ∈ N denote by cn := fn(c). We
assume that c2 < c (otherwise the dynamics of f is trivial).

Define inductively D1 := [c, c1], and

Dn+1 :=

{
[cn+1, c1] if c ∈ Dn;

f(Dn) if c /∈ Dn.

We say that n is a cutting time if c ∈ Dn. The cutting times are denoted by S0, S1, S2, . . .
(where S0 = 1 and S1 = 2). They were introduced in the late 1970s by Hofbauer
[21]. The difference between consecutive cutting times is again a cutting time (see e.g.
Subsection 6.1 in [11]), so we can define the kneading map Q : N→ N ∪ {0} as

SQ(k) := Sk − Sk−1.

We call f long-branched if lim infn |Dn| > 0, which is equivalent to lim infk |DSk | > 0
and also to lim supkQ(k) <∞.

A purely symbolic way of obtaining the cutting times is the following. Recall that we
use the itinerary map i for f (and also for ϕ) with codes 0 for [0, c) and 1 for (c, 1]. We
will use the modified kneading sequence ν = limx↗c i(x) = 10 · · · ∈ {0, 1}N, where we
traditionally omit the zero-th symbol. Note that if c is not periodic, ν = i(c1) and the
modification is only made so that the itineraries do not contain symbol ∗ (we take the
smaller of the two sequences in parity-lexicographical ordering).

We can split any sequence e ∈ {0, 1}N into maximal pieces (up to the last symbol) that
coincide with a prefix of ν. To this end, define

(3) ρ : N→ N, ρ(n) = max{k > n : en+1en+2 . . . en+k−1 is prefix of ν}.
That is, the function ρ depends on e and ν, but we will suppress this dependence. When
we apply this for e = ν, we obtain

S0 = 1, Sk+1 = ρ(Sk),
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or in other words Sk = ρk(1) for e = ν and k ≥ 0.

Define the closest precritical points ζ ∈ I as any point such that fn(ζ) = c for some
n ≥ 1 and fk(x) 6= c for all k ≤ n and x ∈ (ζ, c). By symmetry, if ζ is a closest

precritical point, ζ̃ = 1 − ζ is also a closest precritical point. If ζ ′ ∈ (ζ, c) is a closest

precritical point of the lowest n′ > n, then the itineraries of f(c) and f(x), x ∈ (ζ̃ ′, ζ̃)
coincide for exactly n′− 2 entries, and differ at entry n′− 1. Hence n′ is a cutting time,
say n′ = Sk′ for some k′ ≥ 1. We use the notation ζ = ζk′ if n′ = Sk′ . That is

(4) · · · < ζk < ζk+1 < · · · < c < · · · < ζ̃k+1 < ζ̃k < . . . fSk(ζk) = fSk(ζ̃k) = c.

and

(5) x ∈ Υk := (ζk−1, ζk] ∪ [ζ̃k, ζ̃k−1) ⇒ i(f(x)) = ν1 . . . νSk−1ν
′
Sk
. . .

Applying this to x = fm(c), we obtain that ρ(m)−m is a cutting time.

fSQ(k)

c ζSQ(k)

cSk−1

ζSQ(k)−1

c

cSk

cSQ2(k)

�
�
��� ?

A
A
AAU

Figure 2. The points ζSQ(k)
< cSk−1

< ζSQ(k)−1
and their images under fSQ(k) .

In particular,

(6) fSk−1(c) ∈ ΥQ(k) = (ζQ(k)−1, ζQ(k)] ∪ [ζ̃Q(k), ζ̃Q(k)−1),

see Figure 2, and the larger Q(k), the closer fSk−1(c) is to c.

Let κ = min{j > 1 : νj = 1}. Then we can define the co-cutting times as

Ŝ0 = κ, Ŝk+1 = ρ(Ŝk),

The cutting and co-cutting times are always disjoint sequences (see [13, Lemma 2]),

and {Ŝk} = ∅ if f is the full unimodal map (because then ν = 10000 . . . and κ is not

defined). Furthermore, there is a co-kneading map Q̂ : N→ N ∪ {0} such that

Ŝk = Ŝk−1 + SQ̂(k).

Proposition 1. Let f be a unimodal map with the kneading map Q. If Q(k) → ∞,

then Q̂(k)→∞ and ω(c) is a minimal Cantor set.

Proof. In [12, Lemma 3.6 and Proposition 3.2] and [13, Lemma 4 and Proposition 2]

it was shown that Q(k) → ∞ implies Q̂(k) → ∞ and that c is persistently recurrent.
This property was introduced by Blokh and implies minimality of ω(c), see [7] and also
[14, Section 3]. �
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In fact, lim supkQ(k) =∞ implies that lim supk Q̂(k) =∞, but not vice versa. If both

lim supkQ(k) < ∞ and lim supk Q̂(k) < ∞, then c is non-recurrent, but as we will see

in Section 6, there are maps where lim supkQ(k) < lim supk Q̂(k) =∞.

5. Sturmian shifts

There are multiple ways of defining Sturmian shifts and we take the one using the
symbolic dynamics of circle rotations.

Definition 1. Let Rα : S1 → S1, x 7→ x + α mod 1, be the rotation over an irrational
angle α. Let β ∈ S1 and build the itinerary u = (un)n≥0 by

(7) un =

{
1 if Rn

α(x) ∈ [0, α),

0 if Rn
α(x) /∈ [0, α).

Then u is called a rotational sequence. The minimal (and uniquely ergodic) shift space

obtained as Xα = {σn(u) : n ∈ N} is the Sturmian shift of frequency α, and each x ∈ Xα

is called a Sturmian sequence.

The purpose of this section is to describe cases when unimodal maps restricted to their
critical omega-limit sets ω(c) are conjugate to Sturmian shift. There are in fact multiple
ways of choosing the kneading map Q so that (ω(c), f) is Sturmian. The simplest way
is by means of the Ostrowski numeration, see [25]. Indeed, let α ∈ I be some irrational
number and let pn/qn be the convergent of its continued fraction expansion. Thus
q−1 = 0, q0 = 1 and qn = anqn−1 + qn−2. Take kn =

∑n
j=0 aj and then cutting times as

follows: 
Sk = k + 1 for 0 ≤ k ≤ a1,

Skn = qn for n ≥ 1,

Skn+a = aqn + qn−1 for 1 ≤ a ≤ an, n ≥ 1.

It is clear that Q(k)→∞ in this case, and the {Sk} interpolate between the numbers
qn, see also [16]. However, f : ω(c) → ω(c) is in general not invertible, since c itself
and/or other points in the backward orbit of c have two preimages in ω(c), see also [15].
As such (ω(c), f) is conjugate to the one-sided Sturmian shift.

However, also when Q(k) is bounded (in fact also when Q(k) ≤ 1) there are examples
where (ω(c), f) is Sturmian, see [12, Chapter III, 3.6]. Let ϕ : I → I be an increasing
symmetric Lorenz map as in previous sections. In addition to i, another way of coding
orbits of unimodal maps (used by Milnor & Thurston [24], Collet & Eckmann [17] and
Derrida et al. [19]) is as follows: set ϑ0(x) = +1 and for n ≥ 1,

(8) ϑn(x) =
n−1∏
j=0

(−1)ij(x) =

{
+1 if fn is increasing at x;

−1 if fn is decreasing at x.
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It follows that ϑ(f(x)) = σ(ϑ(x)) if i0(x) = 0 and ϑ(f(x)) = −σ(ϑ(x)) if i0(x) = 1.
For the itinerary iϕ of x ∈ I \

⋃n
j=0 ϕ

−j(c) under the function ϕ this means that

iϕn(x) = 0⇔


in(x) = 0 and ϑn(x) = +1,

or

in(x) = 1 and ϑn(x) = −1.

⇔ ϑn+1(x) = +1,

and

iϕn(x) = 1⇔


in(x) = 1 and ϑn(x) = +1,

or

in(x) = 0 and ϑn(x) = −1.

⇔ ϑn+1(x) = −1,

In other words, iϕn = (1 − ϑn+1(x))/2. This gives iϕ ◦ ϕ(x) = σ ◦ iϕ(x). Also, if
νϕ = limx↗c i

ϕ(x) with the first symbol neglected, and defined ρϕ(n) = min{k > n :
νϕk = νϕk−n}, then we recover the cutting times as S0 = 1, Sk+1 = ρϕ(Sk). (The co-

cutting times can be recovered as Ŝ0 = κ = min{k ≥ 1 : νϕk = 0} and Ŝi+1 = min{k >
Ŝi : νϕk 6= νϕ

k−Ŝi
}.) See the example in the proof of Proposition 2.

To each x ∈ I we can assign a rotation number by first assigning a lift Φ : R → R to
the Lorenz map ϕ:

Φ(x) =


ϕ(x) if x ∈ [0, c], ϕ(c) = 1;

ϕ(x) + 1 if x ∈ (c, 1);

Φ(x− n) + n if x ∈ [n, n+ 1).

Then Φ(x) mod 1 = ϕ(x mod 1) and the rotation number is defined as

(9) α(x) = lim sup
n→∞

Φn(x)− x
n

,

Since bΦ(x)c = bxc if and only if x mod 1 ∈ [0, c) and bΦ(x)c = bxc + 1 otherwise, we
obtain

α(x) = lim sup
n→∞

1

n
#{0 ≤ k < n : iϕk (x) = 1}(10)

= lim sup
n→∞

1

n
#{1 ≤ k ≤ n : ϑk(x) = −1}.

Next we turn ϕ into a proper circle endomorphism (with unique rotation number inde-
pendent of x ∈ S1) by setting:

ϕ̄(x) =

{
ϕ(1) = f̃(1), x ∈ [0, a]; where a < c is such that ϕ(a) = ϕ(1),

ϕ(x), otherwise.

Also let b > c be such that ϕ(b) = a, see Figure 3.

The circle endomorphism ϕ̄ obtained from ϕ was already studied in the last section of
[12].
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c = 1
2

a

ϕ(1) ϕ̄

b

Figure 3. A stunted symmetric Lorenz map ϕ̄ as a circle endomorphism.

Proposition 2. Assume that f is a unimodal map with cutting times {Sj}j≥0. Let b > c
be such that ϕ̄(b) = a, see Figure 3. Then the rotation number of the corresponding ϕ̄
equals

α =

{
k
Sk
∈ [1

2
, 1] ∩Q if k is minimal such that fSk(c) ∈ (b̂, b),

limk→∞
k
Sk
∈ [1

2
, 1] if no such k exists.

In the latter case, the kneading map Q(j) ≤ 1 for all j ∈ N, and if α /∈ Q, then
f : ω(c)→ ω(c) is a minimal homeomorphism.

Proof. Recall that f(c) = 1 and assume that there is a minimal integer n ≥ 1 such that
ϕn(1) ∈ (c, b]. Then ϕ̄n+1(1) ∈ (0, a] and ϕ̄n+2(1) = ϕ̄(1) is periodic with period n+ 1.

Recall that b > c is such that ϕ̄(b) = a, so f(b) = ã > c, and f 2(b) = f(a) = f̃ 2(c) > c.

Therefore b ∈ (ζ̃2, ζ̃1) for closest precritical points ζ̃1 > ζ̃2 > c, see (4), and b̃ ∈ (ζ1, ζ2).
There are two possibilities:

• ϕn(1) = fn(1). In this case fn is increasing at 1 and thus n+1 = Sk is a cutting
time.
• ϕn(1) = f̃n(1). In this case fn is decreasing at 1 and again n + 1 = Sk is a

cutting time.

By minimality of k, fSj(c) /∈ [b̃, b] \ {c} for all j < k, and hence the kneading sequence
ν of f consists of blocks 0 or 11. For example:

ν = 1. 0. 0. 1 1. 0. 1 1. 0. 1 1. 1 0 1 . . .

ϑ = +1 − 1 − 1 − 1 + 1− 1 − 1 + 1 − 1− 1 + 1 − 1 + 1 + 1− 1 . . .

νϕ = 1. 1. 1. 0 1. 1. 0 1. 1. 0 1. 0 0 1 . . .

where dots indicate cutting times and the bold symbol the position Sk. Since n + 1 is
the period of ϕ̄(1), this shows that #{1 ≤ j ≤ Sk : ϑj = −1} = k, and in view of (10)
we have α = k/Sk.
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If there is no such minimal n, i.e., ϕn(1) /∈ (b̃, b) for all n ≥ 1, then fn(1) /∈ (b̃, b) for
all n ≥ 1 (and in particular Q(j) ≤ 1) for all j ≥ 1. A counting argument similar to
the above shows that α = lim supk→∞ k/Sk = limk→∞ k/Sk. It is possible that α is
rational, e.g., for the logistic map fa(x) = 1− a(x− 1

2
)2 with a = 3.5097. In this case,

ν = (101)∞ and ϕ̄i(1) converges to an attracting orbit of period 3. Also for the tent
map T (x) = 1 − λ|x − 1

2
| with λ = 1

2
(1 +

√
5), the critical orbit {1

2
, 1, 3

4
− 1

4

√
5} has

period three and avoids [0, a].

If α /∈ Q, then ωϕ̄(c) is the Cantor set, disjoint from [0, a] and minimal w.r.t. the
action of ϕ̄. Under the semi-conjugacy f between f and ϕ (indeed f ◦ f = f ◦ ϕ), this
projects to a minimal map f : ωf (c) → ωf (c). We will show that f : ωϕ(c) → ωf (c)
is in fact a homeomorphism, from which it follows that f : ωf (c) → ωf (c) is also a
homeomorphism. Assume by contradiction that x < c < x̃ are points in ωϕ(c) such
that f(x) = f(x̃) = y ∈ ωf (c). Then, since f is the semi-conjugacy between ϕ and f ,

we must have f(ϕn(x̃)) = f(ϕn(x)) = fn(y) for every n ∈ N. Note that ϕn(x̃) = ϕ̃n(x)
for every n ∈ N, and thus ϕn(x̃) 6= ϕn(x), unless ϕn(x) = c, and thus fn(x) = c. Since
c is not periodic, there exists N ∈ N such that ϕn(x̃) 6= ϕn(x) for all n ≥ N , and
thus fn(y) has two f -preimages in ωϕ(c). Since f : ωf (c)→ ωf (c) is minimal, for every
ε > 0 there exists infinitely many y′ ∈ orbf (y) which are ε-close to f 2(c) = f(1). For
sufficiently small ε, an f -preimage of a point ε-close to f(1) will be contained in [0, a].
Since every point in orbf (y) eventually has both f -preimages in ωϕ(c), we conclude that
ωϕ̄(c) ∩ [0, a] = ωϕ(c) ∩ [0, a] 6= ∅, which is a contradiction. �

We argued so far that there exist stunted Lorenz maps for which orbϕ̄(c) is a Cantor set
with dynamics similar to circle rotations (in fact to Denjoy circle maps) with irrational
rotation number, and that there are also unimodal maps with kneading map bounded
by 1, such that f |ω(c) is semi-conjugate to a circle rotation, and in fact, the rotation
number is α = limk→∞ k/Sk. Therefore (ω(c), f) represents a Sturmian shift.

In fact, every irrational rotation number (hence every Sturmian shift) can be realized
this way, as we can prove by studying this rotation number closer. Indeed, let α =
[0; a1, a2, a3, . . . ] be the continued fraction expansion of ρ, with convergents pi

qi
. For the

irrational rotation Rα, the denominators qi are the times of closest returns of any point
x ∈ S1 to itself, and these returns occur alternatingly on the left and on the right. If we
assume that Rqi

α (x) is to the right of x, and set Aqi = [x,Rqi
α (x)], then the first iterate

k such that Rk
α(Aqi) 3 x is k = qi+1 and R

qi+1
α (x) is to the left of x.

For the map ϕ̄, the closest returns on the left indeed accumulate on c, but the right
neighborhood [c, b) is the preimage of the plateau [0, a) and no further iterates of c enter
that region. Instead, returns on the left accumulate on b.

Translating this back to the unimodal map f with kneading sequence ν = ν1ν2ν3 . . . ,
the closest returns on the left correspond to closest returns at co-cutting times (recall

that there are no cutting times Sj so that fSj(c) ∈ (b̃, b)). If qi is such a co-cutting
time, then (recalling the function ρ from (3) and using the above argument), the Farey



TOPOLOGICAL PROPERTIES OF LORENZ MAPS DERIVED FROM UNIMODAL MAPS 13

convergents ρa(qi) = qi + aqi+1 are also the next co-cutting times for 1 ≤ a ≤ ai+1, and
in particular, ρai+1(qi) = qi+2.

The closest returns on the right correspond to cutting times, but this time f qi(c) accu-
mulate on b, and because f 3(b) = f 3(c), the itinerary of b is

(11) i(b) = b1b2b3b4b5 · · · = 11ν3ν4ν5 . . .

Therefore we need to consider the analogous function ρb(m) = min{n > m : bn 6= bn−m},
and find that ρab (qi) = qi + aqi+1 for 1 ≤ a ≤ ai+1, and in particular, ρ

ai+1

b (qi) = qi+2.

For example, if ai ≡ 2, so the qis are the Pell numbers 2, 5, 12, 29, 70, 189, . . . , then we
obtain

ν = 10.1′1.1′1.0.11.11.0.11.11.1′1.0.11.11.0.11.11.1′1.0 . . .

where dots indicate cutting times and primes co-cutting times. The bold symbols
indicate the positions qi. In fact, for each i

νqi+1−qi+1 . . . νqi+1−1νqi+1
= ν1 . . . νqi−1νqi or ν1 . . . νqi−1ν

′
qi

for each even i ∈ N,

and therefore c has two limit itineraries limx↗c i(x) = 0ν and limx↘c i(x) = 1ν, but c
has only one preimage in ω(c).

6. Outside maps and unimodal inverse limit spaces

Boyland, de Carvalho and Hall in [8, Section 3] present a different way of creating a
circle endomorphism from a unimodal map. They call this the outside map B, and
use it to study the inverse limit space of the unimodal map as attractors of sphere
homeomorphisms. Starting from a unimodal map f : I → I such that the second branch
is surjective (i.e., f([c, 1]) = I), they double the interval to a circle R/2Z = [0, 2]/0∼2,
and let B map the second branch onto [1, 2] by flipping this branch, and then extend
the definition of f on [1, 2 − d] for the unique point d ∈ (c, 1] for which f(d) = f(0)
to cover the interval [0, f(0)]. The remaining interval [2 − d, 2] is then mapped to the
constant f(0). That is

B(x) =


f(x) if x ∈ [0, c);

2− f(x) if x ∈ [c, 1);

f(2− x) if x ∈ [1, 2− d);

f(0) if x ∈ [2− d, 2),

see Figure 4. Let us carry this out for the family of cores of tent maps Tλ : I → I,

Tλ =

{
λx+ 2− λ, x ∈ [0, λ−1

λ
],

−λx+ λ, x ∈ [λ−1
λ
, 1],

for all λ ∈ (1, 2].
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Then the map

(12) ϕ̄(x) =

{
λ
2

if 0 ≤ x ≤ a = λ−1
λ

;

λ(x− 1
2
) mod 1 if a = λ−1

λ
≤ x < 1,

on R/Z

and the outside map

B(x) =

{
λ(x− 1) + 2 mod 2 if 0 ≤ x < 2

λ
;

2− λ if 2
λ
≤ x < 2,

on R/2Z

are conjugate with conjugacy G : R/Z → R/2Z, G(x) = 2(1 − x) mod 2, i.e., G ◦ ϕ̄ =
B ◦G. But the conjugacy reverses orientation, so the rotation numbers are each others
opposite, α for ϕ̄ versus 1− α for B.

20

a = λ−1
λ

2
λ = 2− ddc

1− 2
λ 1− 1

λ 1

2− λ

2(λ−1)
λ

Tλ

ϕ̄

ϕ̄

B

B

Figure 4. Constructing the outside and stunted Lorenz map for a tent
map Tλ.

Outside map B was used in [8] to give a complete description of the prime end and
accessible points structure in unimodal inverse limits embedded in the plane as attrac-
tors of an orientation-preserving homeomorphism of the plane (or the two-dimensional
sphere S2).

In the rest of the section we restate some results from [8] and relate them to the
established conjugacy between maps B and ϕ̄.

Recall that I denotes the unit interval [0, 1]. The inverse limit space with the bonding
map g : I → I is a subspace of the Hilbert cube IN0 defined by

lim←−(I, g) := {(x0, x1, x2, . . .) ∈ IN0 : g(xi+1) = xi, i ∈ N0}.
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Equipped with the product topology, the space lim←−(I, g) is a continuum, i.e., compact

and connected metric space. Define the shift homeomorphism ĝ : lim←−(I, g)→ lim←−(I, g),

ĝ((x0, x1, . . .)) := (g(x0), x0, x1, . . .) for (x0, x1, . . .) ∈ lim←−(I, g).

There is a natural way to make lim←−(I, g) an attractor of an orientation preserving sphere

homeomorphism. Such embeddings are called Barge-Brown-Martin embeddings (abbre-
viated BBM embeddings), see [6] for the original construction, [9] for generalisation of
the construction to parametrised families and [8] for the construction applied to uni-
modal inverse limits. As the outcome of the BBM embedding of lim←−(I, g), one obtains

an orientation-preserving homeomorphism H : S2 → S2 so that H|lim←−(I,g) is topologically

conjugate to ĝ and for every x ∈ S2 \ {point}, and ω(x,H) is contained in lim←−(I, g).

In [8] the authors study in detail BBM embeddings of inverse limits of unimodal maps
satisfying certain (mild) conditions, which are in particular satisfied for the tent map
family Tλ, λ ∈ (

√
2, 2]. For simplicity we state the following results for tent maps only,

noting that they can be generalized to a much wider class of unimodal maps.

Fix the slope λ ∈ (
√

2, 2] for the tent map Tλ. Let B be the corresponding outside

map. Denote by Ŝ = lim←−{S
1, B}. Theorem 4.28 from [8] shows that there is a natural

homeomorphism h between Ŝ and the circle P of prime ends of lim←−(I, Tλ). Then h

conjugates the shift homeomorphism B̂ of the outside map to the action of H on P , so
that the prime end rotation number of lim←−(I, Tλ) is equal to the rotation number (as

defined in (9)) of B̂, see [8, Lemma 4.30]. Finally, Corollary 4.36 in [8] gives that the

prime end rotation number of B̂ is equal to the rotation number of B. Since ϕ̄ and
B are conjugate, the results above follow analogously and by Proposition 2 we obtain

that the prime end rotation number of B̂ equals 1− α.

Proposition 3. Let Tλ be a tent map with slope λ ∈ (
√

2, 2] and let ϕ̄ be corresponding
stunted Lorenz map with rotation number α. Let lim←−([0, 1], Tλ) be embedded in S2 by a

BBM construction. Then the prime end rotation number of T̂λ on lim←−([0, 1], Tλ) equals
1− α.

Remark 1. In [8], the prime end rotation number is expressed in terms of the height
q(ν) of the kneading sequence of a unimodal map f (see the definition of height in
e.g. [8, Section 2.6]). Proposition 2 thus gives an algorithm to compute the height of the
kneading sequence in the following way: find the smallest n ∈ N such that cn ∈ (1−b, b),
and n is a cutting time n = Sk. Then the height equals 1 − k/Sk. If no such n exists,

then the height equals 1 − limk→∞ k/Sk. Recall that b > c is such that f 2(b) = f̂ 2(c),
so the itinerary of b is i(b) = 11ν3ν4ν5 . . ., see (11), where ν = i(f(c)) = 10ν3ν4ν5 . . . is
the kneading sequence. Hence, the previous condition can be expressed with symbols as
01ν3ν4ν5 . . . ≺ νnνn+1νn+2 . . . ≺ 11ν3ν4ν5 . . ., where ≺ denotes the parity-lexicographic
ordering on symbolic sequences.
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Furthermore, [8] gives the complete characterisation of accessible points the BBM em-
beddings of lim←−(I, Tλ) using the outside map. We emphasize it here and connect it to

the stunted Lorenz map ϕ.

Let S : [0, 2] → R2 be a circle parametrisation defined by S(t) = (1
2

+ 1
2

cos(π +

tπ), 1
2

sin(π + tπ)) for t ∈ [0, 2]. Let τ : S([0, 2]) → I be the vertical projection, i.e.,
τ((x, y)) = x for (x, y) ∈ S([0, 2]). Furthermore, let γ̊ = (S(2/λ), S(2)). As before, let

Ŝ = lim←−{S([0, 2]), B}.

Proposition 4 (Theorem 4.28(d), Remark 4.15, Definition 4.12, Corollary 4.14 in
[8]). Let lim←−(I, Tλ) be embedded in R2 by an orientation-preserving BBM embedding.

Then (x0, x1, x2, . . .) ∈ lim←−(I, Tλ) is accessible if and only if there exists N ≥ 0 and

y = (y0, y1, y2, . . .) ∈ Ŝ such that yi 6∈ γ̊ for all i > N and such that xN+j = τ(yN+j)
for all j ≥ 0.

Using the conjugacy ofB and ϕ̄, we can state the previous theorem in terms of ϕ̄ directly.
We parametrise the circle above as T : I → R2 as T (t) = (1

2
+ 1

2
cos(π + 2tπ), 1

2
sin(π +

2tπ)) and let δ̊ = (T (0), T (λ−1
λ

)). The vertical projection onto a horizontal diameter is
denoted by τ as above (that is actually τ ◦G, where G is the conjugacy between ϕ̄ and
B and it is equal to the vertical projection). In particular, τ ◦ ϕ̄(x) = Tλ ◦ τ(x) for all

x 6∈ δ̊.
Theorem 3. Let Tλ be a tent map with slope λ ∈ (

√
2, 2] and let ϕ̄ be corresponding

stunted Lorenz map with rotation number α. Let lim←−(I, Tλ) be embedded in S2 by an

orientation-preserving BBM embedding. Let Ŝ = lim←−(S1, ϕ̄). A point (x0, x1, x2, . . .) ∈
lim←−(I, Tλ) is accessible if and only if there exists N ≥ 0 and y = (y0, y1, y2, . . .) ∈ Ŝ

such that yi 6∈ δ̊ for all i > N and such that xN+j = τ(yN+j) for all j ≥ 0.

We say that a point x = (x0, x1, . . .) ∈ lim←−(I, Tλ) is a folding point if xn ∈ ωTλ(c) for

every n ≥ 0. In the context of inverse limits on intervals this is equivalent to saying
that x has no neighbourhood homeomorphic to the Cantor set times an open interval
(see [26]). In the case when rotation number of ϕ̄ is irrational, Proposition 2 and its
proof imply that f : ωϕ(c)→ ωTλ(c) is a homeomorphism (recall that orbits of c under
ϕ and ϕ̄ are the same when the corresponding height of the tent map is irrational).
From that and Theorem 3 we have the following:

Corollary 1. If λ ∈ (
√

2, 2] and the rotation number of ϕ̄ is irrational (i.e., the height
of the kneading sequence of Tλ is irrational), then every folding point of lim←−(I, Tλ)

embedded in R2 by the orientation-preserving BBM embedding is accessible.

Proof. We first note that τ : ωϕ̄(c)→ ωTλ(c) is well defined and bijective. The first part
follows since τ(limi→∞ ϕ̄

ni(c)) = limi→∞ τ◦ϕ̄ni(c) = limi→∞ T
ni
λ ◦τ(c) = limi→∞ T

ni
λ (1) ∈

ωTλ(c), when limi→∞ ϕ̄
ni(c) exists. Similar argument also shows that τ is surjective. For

the proof of injectivity, it is enough to note that τ(x) = τ(y) implies that y = x̃ or
y = x and apply the fact that Tλ : ωϕ̄(c)→ ωTλ(c) is a homeomorphism.
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Now let (x0, x1, x2, . . .) ∈ lim←−(I, Tλ) be such that xi ∈ ωTλ(c) for every i ≥ 0. Then

ϕ̄(τ−1(xi)) = τ−1(Tλ(xi)) = τ−1(xi−1) for every i > 0, so (τ−1(x0), τ−1(x1), τ−1(x2), . . .) ∈
lim←−(S1, ϕ̄). We apply Theorem 3 to conclude that (x0, x1, x2, . . .) is accessible. �

Remark 2. Given a continuum X, we say that point x ∈ X is an endpoint if for every
subcontinua A,B ⊂ X such that x ∈ A ∩ B, we have A ⊂ B or B ⊂ A. In [5] it was
shown that if lim←−(I, Tλ) is embedded in the plane by an orientation-preserving BBM

embedding, and if ϕ̄ has irrational rotation number (i.e., the height of the kneading
sequence of Tλ is irrational), then all endpoints are accessible. Moreover, it was shown
that there also exist countably many accessible non-end folding points. Corollary 11 in
particular implies that there are uncountably many endpoints and only countably many
non-end folding point in lim←−(I, Tλ). This partially answers Problem 1 in [4].

Let us discuss the irrational rotation number case in more details. If 1− α (and hence
α) is irrational, then Proposition 2 gives that Q(j) ≤ 1 for all j, and Tλ : ω(c)→ ω(c)
is a Cantor minimal homeomorphism conjugate to a Sturmian shift. This implies that

Ĥ induces Denjoy-like dynamics on the corresponding circle of prime ends P . In [5],
a detailed characterisation of accessible points for BBM embeddings of tent inverse
limit spaces is given (there, also accessible endpoints and non-end folding points are
distinguished), based solely on symbolic dynamics techniques from kneading theory. It
follows (see [5, Theorem 11.20]) that there is a Cantor set C ⊂ P corresponding to
accessible folding points in lim←−(I, Tλ) uncountably many of which are endpoints and

countably many are non-end folding points. Furthermore, all endpoints are accessible.
The remaining countably infinitely many open arcs P \ C correspond to countably
infinitely many open arcs in different arc-components of lim←−(I, Tλ) (unions of all arcs

containing some point from lim←−(I, Tλ)) that are accessible at more than one point. Thus

this planar continua are interesting also from a topological perspective. A theorem of
Mazurkiewicz [23] shows that for every indecomposable planar continuum there are at
most countably infinitely many arc-components accessible at more than one point. Our
examples confirm that it is possible to find planar continua indeed having countably
infinitely many arc-components accessible at more than one point. Furthermore, Tλ is
long-branched since supj Q(j) = 1. Therefore, all proper subcontinua of lim←−(I, Tλ) are

arcs (see e.g. [10, Proposition 3]).
Thus, from the discussion in this section we have a complete understanding of topology
of lim←−(I, Tλ) as well as their orientation-preserving BBM planar embedding in the case

when the rotation number of ϕ̄ is irrational (that is, the height of the kneading sequence
of Tλ is irrational).
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