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Abstract

We provide an example of a non-uniformly hyperbolic semiflow for which we obtain sharp
decay rates of the correlation function for observables supported on a flow-box of unbounded
length. We do so by verifying the hypotheses of our recent work which provides such results
in an abstract set-up.

1 Introduction

In the work [1], we develop an abstract framework for obtaining sharp mixing rates for finite

and infinite measure preserving suspension semiflows over non-uniformly hyperbolic maps. This

framework is based on a renewal scheme that closely resembles the renewal scheme for the discrete

time scenario, see [8, 3, 6]. A previous framework for Gibbs Markov semiflows has been developed

in [7].

In our treatment of the semiflow ft, we induce to a map Φ defined on a flow-box Ỹ of length

h̃, that is: Ỹ =
⋃
y∈Y {y} × [0, h̃(y)) where Y is a Poincaré section of the semiflow. One novelty

of [1] is that we can treat unbounded length flow-boxes, i.e., h̃ can be unbounded.

The first return map to the Poincaré section Y is denoted F : Y → Y , so F = fϕ0 , where

ϕ0 : Y → R+ is the first return time to Y , and F is assumed to be uniformly expanding and

preserve a measure µ.

The map Φ = fϕ where the flow-time ϕ : Ỹ → R+ is constructed such that Φ becomes

uniformly expanding also in the flow direction. For this purpose, we need to remetrize Ỹ (as

explained in [1, Section 2.2]) so that the flow within Ỹ is no longer of unit speed. More precisely,
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after the change of coordinates, we have Ỹ = Y × [0, 1) with Φ and ft acting on Ỹ as

Φ(y, u) = fϕ(y,u)(y, u) = (Fy, 2u mod 1), (1.1)

where

ϕ(y, u) = ϕ0(y) +

{
(2h̃(Fy)− h̃(y))u if 0 ≤ u < 1

2 ,

(2h̃(Fy)− h̃(y))u− h̃(Fy) if 1
2 ≤ u < 1,

(1.2)

and

ft(y, u) = (y, u+ t/h̃(y)) for 0 ≤ u+ t/h̃(y) < 1.

The reason for this particular choice of Φ is that the transfer operator R associated with Φ will

have good spectral properties (ensured by F being uniformly expanding). We notice that twisted

transfer operators can be related to proper Laplace transforms of non delta functions. More pre-

cisely, the twisted version R(e−sϕv) of the transfer operator associated with Φ, can be related to∫∞
0 Rtve

−st dt, where Rtv = R(1{t<ϕ<t+1}v). For details we refer to [1, Section 3]. This makes

it possible to show that many techniques/calculations from the discrete time scenario [8, 3, 6] carry

over to the continuous case. Below we recall the abstract hypotheses and the main results of [1].

The aim of this work is to give an example to which the sharp rates of mixing obtained in

[1] apply for both the finite and infinite measure preserving setting. It is the first such example

with unbounded length flow-box. For an example with bounded length flow-box, see [1, Section

9]. In Proposition 2.2 (referring back to Propositions 1.1 and 1.2) we give the precise statement.

While rather restrictive, this example addresses the difficulties posed by the required tail estimates

(in hypotheses (H4) and (H5) below) of the norm ‖Rt‖, which don’t hold for standard norms.

The norm we construct here is a combination of the Hölder norm and the L1-norm where the

integration is over “multivalued” curves that transversally intersects the sets St = {(y, u) ∈ Ỹ :

t < ϕ < t+ 1} appearing in the definition of Rt. The problem is not so much the discontinuity of

the indicator function 1{t<ϕ<t+1}; this can in fact be dealt with in different ways. It is rather that

‖Rt‖ should be roughly proportional with the measure of the sets St, which for unbounded h̃ is the

real obstacle. Nonetheless, since our Banach spaces of observables are required to be embedded

in L∞ (which L1 is not), we have to put serious restrictions of analyticity on our Banach space in

Section 2. It would therefore be interesting to see if the generalized BV norms of Keller [4] and

Saussol [9] can be adjusted to fulfill these requirements.

1.1 Recalling the abstract set-up of [1]

In this section we list the hypotheses in the abstract set-up of [1].

(H0) i) Finite case: µΦ((y, u) ∈ Ỹ : ϕ(y, u) > t) = O(t−β), β > 1.

ii) Infinite case: µΦ((y, u) ∈ Ỹ : ϕ(y, u) > t) = `(t)t−β where ` is slowly varying and

β ∈ (1/2, 1).

We require that the height h̃ of the flow-box satisfies
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(H1) infy∈Y h̃(y) ≥ 1 and that h̃ = ϕγ0 , where

i) Finite case. Under (H0) i), we assume that γ ∈ (0, 1).

ii) Infinite case. Under (H0) ii), we assume that γ ∈ (0,min{2β−1
1−β ,

1−β
2β−1 , β}).

We require that Φ satisfies the functional analytic assumptions listed below. We assume that

there exists a Banach space B, with norm ‖.‖B such that

(H2) i) The space B contains constant functions and B ⊂ L∞(µΦ).

ii) 1 is a simple eigenvalue for R, isolated in the spectrum of R.

Define the twisted transfer operator R̂(s)v = R(e−sϕv) associated with the map Φ. By (H2)

ii), 1 is an isolated eigenvalue in the spectrum of R̂(0). In addition to (H2) ii), we require

(H3) The spectral radius of R̂(s) is strictly less than 1 for s ∈ H−{0} and is equal to 1 for s = 0.

Set Rt,av = R(1{t<ϕ<t+a}v) and define L̂a(s) =
∫∞

0 Rt,ae
−stdt. Given a > 0 such that

esa 6= 1, we make certain assumptions on ‖Rt,a‖, which in the sequel will be used to obtain

appropriate continuity properties for R̂.

(H4) Finite case. Under (H0) i), we require that for any τ < β, the following upper bound holds

uniformly in a ∈ [1, 2]: ∫ ∞
0

στ‖Rσ,a‖B dσ <∞,

(H5) Infinite case. Under (H0) ii), we require that there exists a Banach space B0 such that B ⊂
B0 ⊂ L∞(µΦ) such that

i) There exists constants C1 > 0, C2 < 1 and some θ ∈ (0, 1) such that

‖R̂n(s)v‖B ≤ C1θ
n‖v‖B + C2‖v‖B0 , ‖R̂(s)v‖B0 ≤ ‖v‖B0 .

ii) The following upper bound holds uniformly in a ∈ [1, 2],∫ ∞
0

στ‖Rσ,a‖B→B0 dσ <∞,

for max{1− β, 2β − 1} < τ < β
1+γ .

Hypothesis (H4) gives a good control of (I − R̂(a+ ib))−1 for a ≥ 0 and |b| < 1. To be able

to estimate the inverse Laplace transform ρt(v, w) of ρ̂(s), we need a good understanding of the

asymptotics of (I − R̂(a+ ib))−1, for a ≥ 0 and large values of b. For this purpose we assume

(H6) Dolgopyat type inequality. There exist C > 0 and α > 0 such that for all |b| ≥ 1

‖(I − R̂(ib))−1‖B ≤ C|b|α.
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1.2 Recalling the main results in [1]

In contrast to the discrete time operator renewal theory which is concerned with estimating the

operators Tt in the norm of some appropriate Banach space, here we follow the strategy in [7].

Namely, we adapt renewal theory techniques to estimate the correlation function

ρt(v, w) =

∫
Ỹ
vw ◦ ft dµ̂,

where dµ̂ = h̃
ϕ̄0
dµΦ for ϕ̄0 =

∫
Y ϕ0 dµΦ in the finite case (under (H0) i)) and dµ̂ = h̃dµΦ in the

infinite case (under (H0) ii)).

For the statement of the main results, define the class of observables

Cm(Ỹ ) = {w : Ỹ → C, w = w∗/h̃ with w∗ ∈ Cm(Ỹ , µΦ)}. (1.3)

Recall that B is the Banach space defined by (H2) and (H3) and that the corresponding norm is

denoted by ‖.‖B.

Under (H0) i), we let ε > 0 and define

η(t) =
1

ϕ̄0

∫ ∞
t

µΦ(ϕ > τ) dτ, ξβ,ε(t) =

{
t−(β−ε), β ≥ 2,

t−(2β−2), 1 < β < 2.
(1.4)

With these specified we recall:

Proposition 1.1 (Theorem 5.1. of [1]: Finite measure). Assume (H0) i), (H1) i), (H2), (H3), (H4)

and (H6). Set α such that (H6) holds. Let v = v∗/h̃ with v∗ ∈ B, and w ∈ Cm(Ỹ ). The following

hold for all m ∈ N such that m ≥ 3 + α(β + 1) and for any ε > 0.

(a) Let η and ξβ−ε be as defined in (1.4). Then,

ρt(v, w)−
∫
Ỹ
v dµ̂

∫
Ỹ
w dµ̂ = η(t)

∫
Ỹ
v dµ̂

∫
Ỹ
w dµ̂+O(‖v∗‖B‖w‖Cm(Ỹ ) ξβ,ε(t)).

(b) Suppose further that
∫
vdµ̂ = 0. Then,

ρt(v, w) = O
(
‖v∗‖B‖w‖Cm(Ỹ )t

−(β−ε)).
Proposition 1.2 (Theorem 5.2. of [1]: Infinite measure). Assume (H0) ii), (H1) ii), (H2), (H3),

(H5) and (H6). Set α such that (H6) holds. The following hold for all m ∈ N such that m ≥
2(α+ 1). Let v = v∗/h̃, with v∗ ∈ B, and w ∈ Cm(Ỹ ). Then

`(t)t1−βρt(v, w)→ 1

π
sinπβ

∫
Ỹ
v dµ̂

∫
Ỹ
w dµ̂.
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2 Semiflows over analytic maps: unbounded h̃

Markov maps represent a class of examples where the conditions of the abstract setting are likely

to hold, except that condition (H4) is problematic for standard norms. The difficulty in checking

condition (H4) for unbounded h̃ is that on the one hand ‖Rt,a‖ needs to be proportional to µΦ(St,a)

for

St,a = {(y, u) ∈ Ỹ : t < ϕ(y, u) < t+ a}. (2.1)

We address this by letting ‖ ‖B involve integrals over diagonal multivalued curves. On the other

hand B needs to be embedded in L∞(µΦ) (and hence ‖v‖∞ � ‖v‖B). Therefore we resort to

piecewise analytic Markov maps with a class of observables v that are complex analytic in both

directions, i.e., there are ρ > 0 and complex ρ-neighborhoods Yρ in C of the real interval Y , and

[0, 1)ρ in C of [0, 1), such that for each u ∈ [0, 1), v(·, u) is complex analytic on Yρ and for each

y ∈ [0, 1), v(y, ·) is complex analytic on [0, 1)ρ. We call this class B = B(Ỹρ), defining its norm

in Section 2.2 below.

2.1 The set-up

Let P be the partition of Y into domains of continuity of F , and for n ≥ 1, let Pn = P ∨F−1P ∨
· · · ∨F−(n−1)P be the n-th joint of this partition. On Ỹ , in the vertical direction, letQ be defined

as the partition of Ỹ into the complementary domains of the line {(y, 1/2) : y ∈ Y }, and the n-th

joint Qn as the partition of Ỹ into the complementary domains of the lines {(y, j2−n) : y ∈ Y }
for the integers 0 < j < 2n. Then Φ is continuous on each element of the product partition

P̃n := Pn×Qn. For y1, y2 ∈ Y , define the separation time s(y1, y2) as the smallest integer n ≥ 0

such that Fny1 and Fny2 lie in different elements of P . Similarly for ỹ1, ỹ2 ∈ Ỹ , let s̃(ỹ1, ỹ2) be

the smallest integer n ≥ 0 such that Φnỹ1 and Φnỹ2 lie in different elements of P̃ .

For given θ ∈ (0, 1), let B(Ỹ ) be the Banach space of function v supported on Ỹ , with norm

‖v‖θ = |v|θ + ‖v‖∞, where ‖v‖∞ = ‖v‖L∞(µΦ) and the seminorm |v|θ is defined as

|v|θ = sup
ỹ1 6=ỹ2∈Ỹ

θ−s̃(ỹ1,ỹ2)|v(ỹ1)− v(ỹ2)|.

Let f : X → X be a non-uniformly expanding map with a single indifferent fixed point, say

at 0 ∈ X . Consider a suspension flow over f with continuous roof function h and assume that h is

bounded and bounded away from zero. Assume that F : Y → Y is an induced map over f , with

the following properties:

(1) F is full-branched, i.e., F (Z) = Y for every Z in the Markov partition P , and the induced

time τF : Y → N such that F = f τF is constant on each Z ∈ P .

(2) F is expanding and there is a distortion constant Cdis such that

|DF k(y1)|
|DF k(y2)|

≤ Cdis, (2.2)
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for all k ≥ 0, Z ∈ Pk and y1, y2 ∈ Z. This condition implies that F preserves a measure µ,

absolutely continuous w.r.t. Lebesgue, such that 1
Cµ
≤ dµ

dx ≤ Cµ for some Cµ > 0.

Define the potential p : Y → R, p = log dµ
dµ◦F and pn =

∑n−1
j=0 p◦F j ; we assume that there

is a constant Cp such that

epn(y) ≤ Cpµ(Z) for every y ∈ Z,Z ∈ P. (2.3)

(3) The roof function of the induced system F : Y → Y is ϕ0 =
∑τF−1

i=0 h ◦ f i ≤ τF suph.

We assume that there exists Cϕ0 > 2 such that

|ϕ0(y1)− ϕ0(y2)| ≤ Cϕ0θ
s(y1,y2), (2.4)

for all y1, y2 ∈ Z, Z ∈ P .

If there is only one Z ∈ P with τF (Z) = n, the following is immediate: There is hn =

h(0)n+ o(n) such that

|ϕ0(y)− hn| ≤ Cϕ0 (2.5)

for all y ∈ Z,Z ∈ P with τF (Z) = n. Let us write η : R → N for the asymptotic

inverse of hn in the sense that η(t) is minimal such that hη(t) ≥ t. For example, for the

case β ∈ (0, 1), if the roof function h is differentiable near 0, and the branch of f with the

indifferent fixed point is x 7→ x + x1+1/β , then hn = h(0)n + h′(0)
1−β n

1−β + o(n1−β), and

η(t) = t/h(0) +O(t1−β).

(4) τF satisfies the tail condition

µ(y ∈ Y : τF (y) = n) =

{
O(n−(β+1)), if 1 < β, (finite case)
`(n)n−(β+1), if 0 < β ≤ 1, (infinite case)

(2.6)

for some slowly varying function `. By the argument of [7, Proposition 2.6], the same tail

condition holds for µ(y ∈ Y : ϕ0(y) ∈ [hn, hn + 1]).

(5) To make B(Ỹρ) invariant under the transfer operator associated with Φ, the inverse branches

of F : Y → Y are assumed to be complex analytic as well. That is, for each Z ∈ P we

can extend the inverse branches F−1
Z : Y → Z to complex analytic maps F−1

Z : Yρ → Zρ,

where the Zρ are appropriate neighborhoods of Z in C. (In the u-direction, Φ−1 is clearly

analytic, so we don’t need extra assumptions there.)

(6) The parameter θ ∈ (0, 1) is such that

θ−1/ε′ ≤ inf
Z∈P

inf
y1 6=y2∈Z

|Fy1 − Fy2|
|y1 − y2|

for some ε′ ∈ (0, 1− 1
p), where p > 1 is such that h̃ = ϕγ0 ∈ Lp(µΦ) as in (H1).

(7) We restrict B(Ỹρ) to those v which satisfy

v(y, 0) = v(y, 1) for all y ∈ Y. (2.7)
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2.2 The space B(Ỹρ) with norm ‖ ‖B = | |∗θ + ‖ ‖∗∞

The standard θ-Hölder norm on B(Ỹ ) does not work well with the sets St,a (defined in (2.1)): since

St,a is not aligned with P̃n, we get ‖Rt,av‖θ =∞ for most v ∈ B(Ỹ ). In this section we define a

version of the θ-Hölder seminorm and the∞-norm, where we first integrate over one-dimensional

curves.

Let G0 be the collection of piecewise linear curves G0 = {y, u(y)}y∈Y such that

(a)
∣∣∣∂u∂y ∣∣∣ = 1/|Y | wherever the derivative is defined.

(b) For Lebesgue a.e. u ∈ [0, 1), there is exactly one y ∈ Y such that (y, u) ∈ G0.

Next let G = ∪r≥1Gr := ∪r≥1Φ−r(G0), see Figure 1. Hence Φ−1(G) ⊂ G and for every multival-
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Figure 1: Schematic picture of two curves G1 and G2, and their Φr-preimages G′1 and G′2.

ued curve G = {(y, u(y))}y∈Y ∈ G we can take r = r(G) ≥ 0 such that G ∈ Φ−r(G0). Then we

have r(Φ−1G) = r(G) + 1 and

(c) For allZ ∈ Pr and Lebesgue a.e. u ∈ [0, 1), there is exactly one y ∈ Z such that (y, u) ∈ G.

(d) For all Z ∈ Pr and y ∈ Z, there are exactly 2r values uj ∈ [0, 1) such that (y, uj) ∈ G.

(The notation u(y) = {uj(y), 0 ≤ j < 2r} is our shorthand for this.)

For r = r(G), let

∫
Y
v(y, u(y)) dµ(y) =

∫
Y

1

2r

2r−1∑
j=0

v(y, uj(y)) dµ(y) (2.8)

be our notation for the weighted integral of v over the multivalued curve G. In the sequel, we will

usually estimate a single integral in this sum.

Given G ∈ G with r(G) = r, let G(y1) denote the multivalued curve translated in the u-

direction mod 1 so that (y1, 0) ∈ G(y1), and similar for G(y2). Let (y, u1(y)) and (y, u2(y)),
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y ∈ Y parametrize the multivalued curves G(y1) and G(y2), respectively. Due to property (a),

G(y1) and G(y2) are vertical translation of each other by

u1,2 =
|y1 − y2|

2r|Y |
. (2.9)

Define the seminorm for v ∈ B(Ỹρ):

|v|∗θ = sup
G1,G2∈G

θ−s(y1,y2)

∫
Y
|v(y, u1(y))− v(y, u2(y))| dµ(y), (2.10)

and weak norm

‖v‖∗∞ = sup
G∈G

∫
Y
|v(y, u(y)| dµ(y). (2.11)

The norm ‖v‖B = |v|∗θ + ‖v‖∗∞ will then make B(Ỹρ) into a Banach space. The choice of bi-

analytic functions ensures that ‖v‖∗∞ is actually equivalent to ‖v‖∞:

Lemma 2.1. There is Cρ such that for all v ∈ B(Ỹρ)

1

Cρ
‖v‖∗∞ ≤ ‖v‖∞ ≤ Cρ‖v‖∗∞ (2.12)

and

‖∂v
∂u
‖∞ ≤

1

ρ
‖v‖∞ (2.13)

for all v ∈ B.

Proof. Formula (2.13) follows directly from the Cauchy formula ∂v(y,u)
∂u = 1

2πi

∫
Γ
v(y,ζ)
(ζ−u)2 dζ by

taking Γ a circle of radius ρ around u.

The first inequality of (2.12) follows by taking Cρ = |Y |.
The other inequality means roughly that v is not disproportionally large on small sets. To prove

the inequality, let (y0, u0) be such that |v(y0, u0)| = ‖v‖∞. If |y − y0| ≤ A := 1
3
‖v‖∞
‖ ∂v
∂y
‖∞

, then

|v(y0, u0)− v(y, u0)| ≤ |y0 − y|‖∂v∂y‖∞ ≤
1
3‖v‖∞. Similarly, if |u− u0| ≤ B := 1

3
‖v‖∞
‖ ∂v
∂u
‖∞

, then

|v(y, u0)− v(y, u)| ≤ |u0 − u|‖ ∂v∂u‖∞ ≤
1
3‖v‖∞.

This implies that |v(y, u)| ≥ 1
3‖v‖∞ for all (y, u) in the rectangle ([y0 − A, y0 + A] ∩ Y ) ×

([u0 − B, u0 + B] ∩ [0, 1)). If G = {(y, u(y))}y∈Y ∈ G is a curve through (y0, u0), then (using

Lemma 2.3 below)

‖v‖∗∞ ≥
∫
Y
|v(y, u(y))| dµ(y) ≥ 1

3Cµ
‖v‖∞min(A,B/Cdis).

Using the Cauchy formula again, A,B ≥ ρ/3. This gives ‖v‖∞ ≤ 9CµCdis
ρ ‖v‖∗∞.
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2.3 The result for unbounded h̃

The following Diophantine condition below plays the role (A2) in [7] (namely that there exists

periodic points y1, y2 ∈ Y such that the ratio ϕ0(y1)/ϕ0(y2) is Diophantine):

(♣) There exist two periodic points ỹ1, ỹ2 ∈ Ỹ such that the ratio ϕ(ỹ1)/ϕ(ỹ2) is Diophantine.

Proposition 2.2. Every system satisfying conditions (♣) and (1)-(7) for the space (B(Ỹρ), ‖ ‖B)

satisfies the conclusions of Proposition 1.1. and Proposition 1.2.

The proof consists of verifying the conditions required for Proposition 1.1. Condition (H0) is

supplied by [1, Lemma 4.4], and it does not rely on the Markov structure. Condition (H1) can

freely be assumed since h is bounded away from zero. Using this Diophantine assumption (♣)

condition (H3) follows as in [7, Proposition 3.5 (a)]. The verification of (H2), (H4) and (H6) takes

some more work; this will be carried out in the following subsections.

2.4 Verifying (H4)

Since computing the norm ofRt,a will involve integration over preimage curves in G, the following

property about the slope of multivalued curves G ∈ G is necessary.

Lemma 2.3. For every r ≥ 1, Z ∈ Pr and G = {(y, uj(y)}y∈Y,0≤j<2r ∈ Gr,

1

2r|Z|Cdis
≤
∣∣∣∣duj(y)

dy

∣∣∣∣ ≤ Cdis
2r|Z|

, j = 0, . . . , 2r − 1, (2.14)

whenever duj(y)
dy is defined at y ∈ Z.

Proof. This is a consequence of distortion condition (2.2), which, combined with the Mean Value

Theorem, implies that |Y |/Cdis ≤ |DF r(y′)||Z| ≤ Cdis|Y |. If G = Φ−r(G0) is parametrized

as {(y′, uj(y′))}y′∈Y,j=0,...,2r−1, and y = F r(y′) is used to parametrize G0 = {(y, u(y))}y∈Y =

{(F r(y′), 2ruj(y′) mod 1)}y′∈Z , then we have

1

|Y |
=

∣∣∣∣du(y)

dy

∣∣∣∣ = 2r
∣∣∣∣duj(y′)dy′

∣∣∣∣ ∣∣∣∣dy′dy
∣∣∣∣ .

This gives ∣∣∣∣duj(y′)dy′

∣∣∣∣ =
|DF r(y′)|

2r|Y |
≤ Cdis

2r|Z|
,

and the lower bound follows in the same way.

Proposition 2.4. Let B(Ỹρ) be the Banach space be equipped with the norm ‖ ‖B = | |∗θ + ‖ ‖∗∞
from (2.10) and (2.11). Assume (2.5) and tail condition (2.6), and let 0 < ε′ < min{1−1/p, 1−γ}
as in property (6). Then

‖Rt,a‖B � t−(1+β−ε′).
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Proof. We divide the 2-cylinders in Ỹ into three groups, and estimate ‖Rt,av‖∗∞, splitting the

involved integrals according to these cases. The final estimate for ‖Rt,av‖∗∞ brings these three to-

gether in the form of the sum of convolutions. To estimate |Rt,av|∗θ, we split the involved integrals

according to the same three cases, leading again to a final sum of convolutions. However, since

we need compare the integrals along different (parallel) multivalued curves, the way how these

multivalued curves intersect St,a requires a further subdivision into cases A, B and C.

Step I: Subdividing into Cases (1)-(3). Recall from (1.2) that ϕ(y, u) = ϕ0(y) + ψ(y, u),

where

ψ(y, u) =

{
(2h̃ ◦ F (y)− h̃(y))u, u ∈ [0, 1

2);

(2h̃ ◦ F (y)− h̃(y))u− h̃ ◦ F (y), u ∈ [1
2 , 1).

(2.15)

A 1-cylinder Z with τF (Z) = n only contributes to the estimate for Rt,a if ψ(y, u) + hn ≈ t for

some y ∈ Z, u ∈ [0, 1). On 2-cylinders W ∈ P̃2, 2h̃(Fy) − h̃(y) varies no more than 2Cγϕ0 due

to (2.5) and (H1), i.e., h̃ = ϕγ0 . It helps to split the set Ỹ into three regions, each coming with

a certain range of “allowed” n = τF (Z) that contribute to the estimates for Rt,a for particular

ranges of the value of 2h̃(Fy) − h̃(y), and we first take the range 0 ≤ u < 1
2 . Recall constant

Cϕ0 > 2 from property (3).

Case (1) |2h̃(Fy)− h̃(y)| ≤ 4Cϕ0 . Here |t− hn| ≤ |ϕ−ϕ0|+ a+ |ϕ0 − hn| ≤ 3Cϕ0 + a, so there

is C ′ = C ′(a) such that bη(t)− C ′c ≤ n < b(η(t) + C ′c.

Case (2) 2h̃(Fy) − h̃(y) < −4Cϕ0 . Hence there is a region W0 of (y, u) ∈ W where ψ(y, u) <

−Cϕ0 , and there t−hn ≤ (ϕ−ϕ0)+(ϕ0−hn) < 0. On the other hand, recalling from (H1)

that h̃ = ϕγ0 , we have the lower bound t−hn ≥ (ϕ−ϕ0)−Cϕ0 −a ≥ −h̃(y)−Cϕ0 −a ≥
−(hn +Cϕ0)γ −Cϕ0 − a ≥ −2hγn. Therefore hn − 2hγn ≤ t < hn, so there is C ′ such that

η(t) ≤ n ≤ bη(t) + C ′tγc.

Case (3) 2h̃(Fy) − h̃(y) > 4Cϕ0 . Since now ψ(y, u) has no upper bound, the range of allowed n

will be 1 ≤ n ≤ η(t).

For the range 1
2 ≤ u < 1, we can make similar computations, but the effect will be that we replace

η(t) in the above formulas by the larger value η(t + h̃(Fy)). This means that the estimates will

improve compared to the range 0 ≤ u < 1
2 , so we will omit the computations for 1

2 ≤ u < 1.

Step II: Estimates for ‖Rt,a‖∗∞. By pointwise formula of the transfer operator gives

Rt,av =
∑
W∈P̃

1

2
ep(y

′
W ) 1St,a(y′W , u

′
W ) v(y′W , u

′
W ),

where (y′W , u
′
W ) = Φ−1(y, u)∩W . EachW ∈ P̃ has the form Z× [0, 1

2) or Z× [1
2 , 1) for Z ∈ P

with τF (Z) = n. Two such W s are stacked vertically above the same Z.
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This means for the ‖ ‖∗∞-norm

‖Rt,av‖∗∞ = sup
G∈G

∑
W∈P̃

∫
Y

1

2
ep(y

′
W )1St,a(y′W , u(y′W ))|v(y′W , u(y′W ))| dµ(y)

≤ sup
G∈G

∑
Z∈P

∫
Y

1

2
ep(y

′
Z)
(
1St,a(y′Z , u(y′W ))|v(y′Zu(y′Z))|

+ 1St,a(y′, u(y′Z) +
1

2
)|v(y′Z , u(y′Z) +

1

2
)|
)
dµ(y) (2.16)

≤ ‖v‖∞ sup
G∈G

∑
Z∈P

∫
Z

1

2

(
1St,a(y′, u(y′)) + 1St,a(y′, u(y′) +

1

2
)

)
dµ(y′),

and by (2.12), we can bound ‖v‖∞ ≤ Cρ‖v‖∗∞. To estimate
∫
Z 1St,a(y′, u(y′)) dµ(y′) (and the

estimate of
∫
Z 1St,a(y′, u1(y′) + 1

2) dµ(y′) goes by the same argument), we use the announced

case distinction:

Case (1) For those Z ′ ∈ P2 contained Z ∈ P with τF (Z) = n satisfying |n − η(t)| ≤ C ′, it

suffices to estimate
∑

Z′∈P2∩Case (1),Z′⊂Z
∫
Z′ 1St,a(y′, u(y′)) dµ(y′) ≤ µ(Z).

Case (2) We need to consider those regions W0 ⊂ Z ′ × [0, 1
2), Z ′ ∈ P2 contained in Z on which

inf(y,u)∈W0
ψ(y, u) < −Cϕ0 . For fixed t and any suchZ ′, we have |t−hn| ≤ |ϕ−ϕ0|+|ϕ0−hn| ≤

1
2 |2h̃(Fy)− h̃(y)|+Cϕ0 . This gives |2h̃(Fy)− h̃(y)| ≥ |t−hn|. The sets St,a ∩ (Z ′× [0, 1)) are

contained in horizontal strips of height≤ a|2h̃(Fy)− h̃(y)|−1 ≤ a|t−hn|−1. Since the preimage

curve G′ of G has r(G′) ≥ 2, G′ intersects this strip transversally with a slope ≥ 1/4Cdis|Z ′| by

(2.14). Therefore∫
∪Case 2,Z′⊂ZZ

′
1St,a(y′, u(y′)) dµ(y′) ≤ a|t− hn|−1 4Cdisµ(Z).

Case (3) Consider those Z ′ ∈ P2 contained in Z ∈ P with τF (Z) = n on which 2h̃(Fy)−h̃(y) >

4Cϕ0 . For fixed t, we have t < ϕ(y, u) = ϕ0(y) + ψ(y, u) ≤ hn + Cϕ0 + h̃(Fy), so that
1
2(t− hn) ≤ (t− hn)− Cϕ0 ≤ h̃(Fy).

Due to the distortion control of F of property (2) and the tail estimates of ϕ0 = h̃1/γ given in

property (4), we can find a constant C̃ such that

µ(y ∈ Z : k ≤ h̃(Fy) < k + 1) � µ(y ∈ Y : k ≤ h̃(y) < k + 1)µ(Z)

� µ(y ∈ Y : k1/γ ≤ ϕ0(y) < (k + 1)1/γ)µ(Z)

≤ C̃(2k)−(1+β/γ)µ(Z). (2.17)

This implies that the 2-cylinders Z ′ ∈ P2, contained in Z, on which k ≤ h̃(Fy) < k + 1 with

b1
2(t− hn)c = k, have combined measure ≤ C̃|t− hn|−(1+β/γ)µ(Z). Thus we obtain∫

∪Case 3Z′
1St,a(y′, u(y′)) dµ(y′) ≤ C̃|t− hn|−(β+1)/γ µ(Z).



12 Henk Bruin, Dalia Terhesiu

Combining Cases (1)-(3) and taking into account the allowed ranges of n = τF (Z), gives

‖R1St,a∩(Z×[0,1))v‖∗∞ ≤
(
1{|n−η(t)|≤C′}µ(Z)

+ 1{η(t)<n<η(t)+C′tγ}Cϕ0 |t− hn|−1µ(Z)

+ 1{1≤n<η(t)}C̃|t− hn|−(1+β/γ)µ(Z)
)
‖v‖∞,

and ‖v‖∞ ≤ Cdis‖v‖∗∞ by (2.12). Recall from (2.6) that µ(∪τF (Z)=nZ) = `(n)n−(β+1). There-

fore, summing over all Z ∈ P gives the convolutions:

‖Rt,av‖∗∞ �

 bη(t)+C′c∑
n=bη(t)−C′c

`(n)n−(β+1) +

bη(t)+C′tγc∑
n=η(t)+1

`(n)n−(β+1)|t− hn|−1

+

η(t)∑
n=1

`(n)n−(β+1)|t− hn|−(β+1)/γ

 ‖v‖∗∞
�

(
˜̀(t)t−(β+1) + ˜̀(t)t−(β+1) log t+ ˜̀(t)t−(β+1)

)
‖v‖∗∞.

Step III: Estimates for |Rt,av|∗θ. For the | |∗θ-seminorm, we need to compare the integral of

v over preimage multivalued curves G(y′1) and G(y′2), which are the vertical translation of each

other by 1
2u1,2. (Recall from (2.9) that u1,2 is small if s(y1, y2) is large.) We have to consider the

intersections of these multivalued curves with St,a, and therefore it makes sense to subdivide the

Cases (1)-(3) into subcases, see Figure 2.

0
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C B CA A

St,a

W

G(y′1)

G(y′2)

u+

u−

The set St,a ∩W is bounded above and below
by curvesu+(y) = t+a−ϕ0(y)

2h̃(Fy)−h̃(y)
,

u−(y) = t−ϕ0(y)

2h̃(Fy)−h̃(y)
.

Figure 2: Schematic picture of cases A-C for St,a intersecting a cylinder W .

Case A: Both (y′, u1(y′)) and (y′, u2(y′)) /∈ St,a. There is no contribution to the integral, so we

can ignore this case.

Case B: Both (y′, u1(y′)) and (y′, u2(y′)) ∈ St,a. In this case, by Lemmas 2.1 and 2.3,

|v(y′, u1(y′))− v(y′, u2(y′))| ≤ ‖∂v
∂u
‖∞

u1,2

2
≤ CρCdis

2ρ
‖v‖∗∞ |y1 − y2| (2.18)

provided the preimages y′1, y
′
2 ∈ Z. (Note that, assuming y′1 < y′2, the bottom piece of the multi-

valued curve G(y′1) may have to be paired to the top piece of the multivalued curve G(y′2). Due to
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our assumption (2.7), this pairing doesn’t create discontinuity problems.)

Case C: Only one of (y′, u1(y′)) and (y′, u2(y′)) ∈ St,a. This applies to two intervals (one “on

either side” of Case B) of length at most

|y′1 − y′2| ≤ Cµµ(Z)|y1 − y2|, (2.19)

provided the preimages y′1, y
′
2 ∈ Z.

The | |∗θ-seminorm of Rt,av takes a form similar to (2.16). Changing coordinates y → y′ =

F−1
Z (y) gives:

|Rt,av|∗θ = sup
y1,y2∈Y

θ−s(y1,y2) sup
G1,G2∈G

∑
W∈P̃

∫
Y

1

2

∣∣∣ep(y′W )1St,a(y′W , u1(y′W ))v(y′W , u1(y′W ))

− ep(y′W )1St,a(y′W , u2(y′W ))v(y′W , u2(y′W ))
∣∣∣ dµ(y)

≤ sup
y1,y2∈Y

θ−s(y1,y2) sup
G1,G2∈G

1

2

1∑
k=0

∑
Z∈P̃∫

Z

∣∣1St,a(y′, u1(y′))v(y′, u1(y′))− 1St,a(y′, u2(y′))v(y′, u2(y′))
∣∣ dµ(y′),

where the sum over k = 0, 1 refers to the two cylinders W stacked above the same Z. (For

simplicity of notation, we suppress this k-dependence in the parametrizations u of the multivalued

curves.)

We will use the division into cases B and C for the ‖ ‖∗θ-norm confined to each Z ∈ P sepa-

rately.

Case (1) For those Z ′ ∈ P contained in Z ∈ P with τF (Z) = n and |n− η(t)| ≤ C ′, we have by

(2.18) and (2.19):∫
∪Z′∩Case B

+

∫
cupZ′∩Case C

∣∣1St,a(y′, u1(y′))v(y′, u1(y′))− 1St,a(y′, u2(y′))v(y′, u2(y′))
∣∣ dµ(y′)

≤ CρCdis
2ρ

‖v‖∗∞ |y1 − y2|µ(Z) + 2Cµµ(Z)|y1 − y2|‖v‖∞

≤ (
Cdis
2ρ

+ 2Cµ)Cρ‖v‖∗∞θs(y1,y2)µ(Z).

Case (2) Again, we consider those regions W0 ⊂ Z ′ × [0, 1
2), Z ′ ∈ P2 contained in Z, on which

inf(y,u)∈W0
ψ(y, u) < −Cϕ0 . As before the sets St,a ∩ (Z ′ × [0, 1)) are contained in horizontal

strips of height ≤ a|2h̃(Fy)− h̃(y)|−1 ≤ a|t− hn|−1.

For the “Case B part” in Z ′, the multivalued curves G(y′2) and G(y′2) cross St,a ∩ (Z ′× [0, 1))

with slope ≥ 1/(2Cdis|Z ′|) by Lemma 2.3. This means that Z ′ ∩ Case B is an interval of length

≤ 2Cdis|Z ′|a|t− hn|−1 and |Z ′| ≤ Cµµ(Z ′). Thus by (2.18), the integral over Z ′ results in∫
Z′∩Case B

|v(y′, u1(y′))− v(y′, u2(y′))| dµ(y′) ≤
∫
Z′∩Case B

CρCdis
2ρ

‖v‖∗∞|y1 − y2| dµ(y′)

≤ aCµCρCdis
ρ

|t− hn|−1θs(y1,y2)µ(Z ′).
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For the “Case C part”, the integration within Z ′ is over at most two separate curves with slope

≥ 1/(2Cdis|Z ′|) inside St,a. Hence, we need to integrate |v(y′, u1(y′))| or |v(y′, u2(y′))| over

intervals of length at most

min{Cµµ(Z ′)|y1 − y2| , 2Cdis|Z ′| a|t− hn|−1}

≤ Cµ(1 + 2Cdis)µ(Z ′)|y1 − y2|ε
′
a|t− hn|−(1−ε′)

≤ Cµ(1 + 2Cdis)µ(Z ′)θs(y1,y2)a|t− hn|−(1−ε′),

where ε′ is given in property (6). By (2.12),∫
Z′∩Case C

|1St,a(y′, u1(y′))v(y′, u1(y′))− 1St,a(y′, u2(y′))v(y′, u2(y′))| dµ(y′)

≤ CµCρ(1 + 2Cdis)‖v‖∗∞a|t− hn|−(1−ε′)θs(y1,y2)µ(Z ′).

Summing up over all Z ′ ∈ P2 of this type contained in Z of Case (2), we get∫
Z

∣∣1St,a(y′, u1(y′))v(y′, u1(y′))− 1St,a(y′, u2(y′))v(y′, u2(y′))
∣∣ dµ(y′)

≤ CµCρ(1 + 2Cdis)a|t− hn|−(1−ε′)θs(y1,y2)‖v‖∗∞µ(Z).

Case (3) Consider those Z ′ ∈ P2 contained in Z ∈ P with τF (Z) = n on which 2h̃(Fy)−h̃(y) >

4Cϕ0 . For fixed t, we have again t − hn ≤ h̃(Fy). As in the argument leading up to (2.17), the

2-cylinders Z ′ where k ≤ h̃(Fy) < k + 1 have combined measure ≤ C̃|t − hn|−(β+1)/γµ(Z).

For the “Case B part” of the integral, we therefore obtain by (2.18)∫
Z′∩Case B

|v(y′, u1(y′))−v(y′, u2(y′))| dµ(y′)

≤
∫
Z′∩Case B

CρCdis
2ρ

‖v‖∗∞|y1 − y2| dµ(y′)

≤ CρCdis
2ρ

‖v‖∗∞C̃|t− hn|−(1+β/γ)θs(y1,y2)Cµµ(Z).

For the Case C part, we need to integrate |v(y′, u1(y′))| or |v(y′, u2(y′))| over at most two separate

intervals of length at most

min{Cµµ(Z ′)|y1 − y2| , C̃µ(Z ′)|t− hn|−(1+β/γ)}

≤ max{Cµ, C̃}µ(Z ′)|y1 − y2|ε
′ |t− hn|−(1+β/γ)(1−ε′)

≤ max{Cµ, C̃}µ(Z ′)θs(y1,y2)|t− hn|−(1+β/γ)(1−ε′).

Therefore∫
Z′∩Case C

|1St,a(y′, u1(y′))v(y′, u1(y′))− 1St,a(y′, u2(y′))v(y′, u2(y′))| dµ(y′)

≤ max{Cµ, C̃}Cρ‖v‖∗∞|t− hn|−(1+β/γ)(1−ε′)θs(y1,y2)µ(Z).
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Finally, combining Cases (1)-(3) with all the constants a,Cdis, · · · , Cρ replaced by the notation

�, and taking into account the allowed ranges of n = τF (Z), we obtain

|R1St,a∩(Z×[0,1))v|∗θ �
(
1{|n−η(t)|≤C′}µ(Z)

+ 1{η(t)<n<bη(t)+C′tγc}C
′|t− hn|−(1−ε′)µ(Z)

+ 1{1≤n≤η(t)}C
′|t− hn|−(1+β/γ)(1−ε′)µ(Z)

)
‖v‖∗∞.

Recall that µ(∪τF (Z)=nZ) = `(n)n−(β+1). Therefore, summing over all Z ∈ P gives:

|Rt,av|∗θ �

 bη(t)+C′c∑
n=bη(t)−C′c

`(n)n−(β+1) +

bη(t)+C′tγc∑
n=η(t)+1

`(n)n−(β+1)|t− hn|−(1−ε′)

+

η(t)∑
n=1

`(n)n−(β+1)|t− hn|−(1+β/γ)(1−ε′)

 ‖v‖∗∞
�

(
˜̀(t)t−(β+1) + ˜̀(t)t−(β+1−γε′) + ˜̀(t)t−(1+β/γ)(1−ε)′)

)
‖v‖∗∞.

Combining the above estimates for | |∗θ and ‖ ‖∗∞ gives the bound ‖Rt,a‖B � t−(1+β−ε′) as re-

quired.

2.5 Verifying (H2)

First we show that the twisted transfer operator R̂(s)v = R(e−sϕv), <s ≥ 0, satisfies the Lasota-

Yorke inequality. The difficult part is the behavior of R̂ under | |∗θ, and the discontinuities in the

twist e−sϕ that it comes with.

Lemma 2.5. Assume that <s ≥ 0. There exists constants K1,K2 > 0 such that

|R̂n(s)v|∗θ ≤ K1θ
n|v|∗θ +K2 |s| ‖v‖∗∞, and ‖R̂(s)v‖∗∞ ≤ ‖v‖∗∞, (2.20)

for all n ∈ N and v ∈ B(Ỹρ) satisfying (2.12).

Proof. Let W = Z × [j2−n, (j + 1)2−n) ∈ P̃n, with Z ∈ Pn defined in Section 2.2. Let

multivalued curveG ∈ G with r = r(G) be given. The translated multivalued curvesG(y1), G(y2)

are parametrized as (y, u1(y)) and (y, u2(y)). For (y, uj(y)) ⊂ Ỹ , j = 1, 2, and W ∈ P̃n, we

will use (y′W , uj(y
′
W )) to denote the points in Φ−n(y, uj(y)) ∩W . Also let ϕn =

∑n−1
j=0 ϕ ◦ Φj

and analogously ϕ0,n =
∑n−1

j=0 ϕ0 ◦ F j and ψn =
∑n−1

j=0 ψ ◦ Φj , where ψ = ϕ− ϕ0 as in (2.15).
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With this notation, we obtain

|R̂n(s)v|∗θ = sup
G1,G2∈G

θ−s(y1,y2)

∫
Y

∑
W∈P̃n

1

2n
|epn(y′W )−sϕ0,n(y′W )|

∣∣∣e−sψn(y′W ,u1(y′W ))v(y′W , u1(y′W ))− e−sψn(y′W ,u2(y′W ))v(y′W , u2(y′W ))
∣∣∣ dµ(y)

≤ sup
G1,G2∈G

θ−s(y1,y2)

∫
Y

∑
W∈P̃n

1

2n
|epn(y′W )|

(
|e−sϕn(y′W ,u2(y′W ))|

∣∣∣e−s(ψn(y′W ,u1(y′W ))−ψn(y′W ,u2(y′W ))) − 1
∣∣∣ |v(y′W , u1(y′W ))|

+ |e−sϕn(y′W ,u2(y′W ))| |v(y′W , u1(y′W ))− v(y′W , u2(y′W ))|
)
dµ(y)

=: sup
G1,G2∈G

θ−s(y1,y2) (I1 + I2).

To estimate I1, we majorize |e−sϕn(y′W ,u2(y′W ))| by 1 (possible because <s ≥ 0). Using the change

of coordinates y → y′ = y′W (so epn(y′W ) dµ(y) = dµ(y′)) we obtain

I1 =
1

2n

2n−1∑
k=0

∑
Z∈Pn

∫
Z

∣∣∣e−s(ψn(y′,u1(y′))−ψn(y′,u2(y′))) − 1
∣∣∣ |v(y′, u1(y′))| dµ(y′)

≤ |s| ‖v‖∞
1

2n

2n−1∑
k=0

∑
Z∈Pn

∫
Z

∣∣ψn(y′, u1(y′))− ψn(y′, u2(y′))
∣∣ dµ(y′), (2.21)

where the sum over k refers to the 2n cylinders W ∈ P̃n stacked over a single Z ∈ Pn. (We

suppress this k-dependence in our notation u1(y′) and u2(y′).)

To estimate this integral, we pair pieces Q1 of G(y′1) with pieces Q2 of G(y′2) if they are

vertical translations of one another by 2−nu1,2. The discontinuity of ψn (or rather the discontinuity

of ψ appearing at {u = 1
2}, where there is a jump of h̃ ◦F ) causes some complications, which we

will deal with below. But if Φj(Q1) and Φj(Q2) are not separated by the line {u = 1
2}, then

|ψ ◦ Φj(y′, u1(y′))− ψ ◦ Φj(y′, u2(y′))| ≤ |2h̃ ◦ F j+1(y′)− h̃ ◦ F j(y′)|2j−nu1,2.

This gives an estimate or the “continuous part” of (2.21), using (2.8) with r = r(G), as

1

2n

2n−1∑
k=0

∑
Z∈Pn

∫
Z∩continuous

∣∣ψn(y′, u1(y′))− ψn(y′, u2(y′))
∣∣ dµ(y′)

≤ 2r
2n−1∑
k=0

∑
Z∈Pn

n−1∑
j=0

∫
Z
|2h̃ ◦ F j+1(y′)− h̃ ◦ F j(y′)|2j−nu1,2 dµ(y′)

≤ 2r
n−1∑
j=0

2j−nu1,2

∫
Y

(2h̃ ◦ F j+1(y′) + h̃ ◦ F j(y′)) dµ(y′) ≤
3‖h̃‖L1(µ)

|Y |
θs(y1,y2),

by F -invariance of µ and property (a) to bound u1,2 ≤ 2−r|Y |−1|y1 − y2| ≤ |Y |−1θs(y1,y2).

Discontinuities in ψn(y, u) occur when Φj(y, u) lies on the horizontal line {u = 1
2} for some

j ≤ n, and the jump in the value of ψ ◦ Φj is h̃ ◦ F (F j(y)). There is also a difference in value
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between ψ ◦Φj(y, 0) with ψ ◦Φj(y, 1). Therefore, to estimate the “discontinuous part” of (2.21),

we need to integrate over all pieces Q1 of G(y′1) and Q2 of G(y′2) that:

(i) touch a line {u = a2−(j+1)}, 0 ≤ j < n and odd integer a, from opposite sides (because here

the discontinuity line {u = 1
2} is reached after j iterates), or

(ii) Q1 touches {u = 0} while Q2 touches {u = 1} (because these are the only pieces of G(y′1)

and G(y′2) that are not the vertical translations of each other by 2−nu1,2).

There are precisely 2k points u = a2−(k+1), a odd, such that 2ku mod 1 = 1
2 . For each of

these, the pieces Q1, Q2, touching the line {u = a2−(k+1)} contribute to the discontinuous part

for iterate j = k, . . . , n− 1, namely for n− k iterates.

Let U = [y1, y2] and Uj = F−j(U); these are unions of intervals of combined measure µ(U).

Since h̃ ∈ Lp(µ), the Hölder inequality implies that the integral of h̃ ◦ F over any set of measure

µ(U) is at most ≤ ‖h̃‖Lp(µ)µ(U)
1− 1

p ≤ ‖h̃‖Lp(µ)C
1− 1

p
µ |y2 − y1|1−

1
p ≤ ‖h̃‖Lp(µ)C

1− 1
p

µ θs(y1,y2)

by the choice of θ in property 6. This gives∫
Un

h̃ ◦ F j+1 dµ(y′) =

∫
Y

(1Un−j h̃ ◦ F ) ◦ F j(y′) dµ(y′)

=

∫
Un−j

h̃ ◦ F (y) dµ(y) ≤ ‖h̃‖Lp(µ)C
1− 1

p
µ θs(y1,y2).

Therefore, the “discontinuous part” of (2.21) is bounded as

1

2n

2n−1∑
k=0

∑
Z∈Pn

∫
Z∩discontinuous

∣∣ψn(y′, u1(y′))− ψn(y′, u2(y′))
∣∣ dµ(y′)

≤
n∑
j=0

1

2n
((n− j)2j + n)

∫
Un

h̃ ◦ F j+1(y′) ≤ 2‖h̃‖Lp(µ)C
1− 1

p
µ θs(y1,y2).

Combining the two, we find by (2.12)

I1 ≤ |s|Cρ‖v‖∗∞
(

3‖h̃|L1(µ)/|Y |+ 2‖h̃‖Lp(µ)C
1− 1

p
µ

)
θs(y1,y2).

To estimate I2, we majorize |e−sϕn(y′W ,u2(y′W ))| by 1, and then we have the difference of the inte-

grals of v taken over the preimage curves Φ−n(G(y1)) and Φ−n(G(y2)). By the definition of | |∗θ,
this is less than θn+s(y1,y2)|v|∗θ.

The ‖ ‖∗∞-norm poses no problem:

‖R̂(s)v‖∗∞ = sup
G∈G

∑
W∈P̃

1

2

∫
Z
|ep(y′)−sϕ(y′,u(y′))| |v(y′, u(y′))| dµ(y)

≤ sup
Φ−1G∈G

∫
Y
|v(y′, u(y′))| dµ(y′) ≤ ‖v‖∗∞,

because the sum of integrals over all W ∈ P̃ , after the change of coordinates y → y′ = y′W ,

amounts to integrating over a single Φ-preimage multivalued curve as in (2.8).
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Remark 2.6. For every θ ∈ (1
2 , 1) and using (2.13), we have

sup
u1,u2∈[0,1)

|v(y, u1)− v(y, u2)|
θs̃((y,u1),(y,u2))

≤ sup
u1,u2∈[0,1)

|v(y, u1)− v(y, u2)|
|u1 − u2|

≤ ‖∂v
∂u
‖∞ ≤

1

ρ
‖v‖∞,

uniformly in y, where the separation time s̃((y, u1), (y, u2)) is taken w.r.t. P̃ . Together with (2.12),

this means that the norm ‖v‖θ = |v|θ + ‖v‖∞ is equivalent to ‖v‖B.

The following can be proved directly for the norms (‖ ‖B, ‖ ‖∗∞) by means of the Arzela Ascoli

Theorem. But passing to the equivalent pair of norms (‖ ‖θ, ‖ ‖∞), we can also refer to known

results (for instance [7, Proposition 3.5(b)]) to conclude that the Theorem of Ionescu-Tulcea and

Marinescu applies. That is, there is a uniform constant K such that

‖R̂n(s)(v −
∫
v dµΦ)‖B ≤ Kθn‖v‖B, (2.22)

and in particular, R̂(s) acts quasi-compactly on (B, ‖ ‖B). Since (Ỹ ,Φ, µΦ) is ergodic, the eigen-

value 1 of R = R̂(0) is simple. This verifies (H2) ii).

2.6 Verifying (H6): the Dolgopyat type inequality

For the verification of hypothesis (H6) we refer to [7, Lemma 5.2]. However, let us sketch the

argument for obtaining the weak form of the Dolgopyat type inequality. For details we refer to [5]

(see also [7] for a different setting of the arguments in [5]).

For b ∈ R, define Mb : L∞(µΦ) → L∞(µΦ), Mbv = eibϕv ◦ Φ. We say that there are

approximate eigenfunctions on a subset Z ⊂ Ỹ if there exist constants α > 0 arbitrarily large,

β > 0 and C ≥ 1, and sequences |bk| → ∞, ψk ∈ [0, 2π), θ-Hölder uk with |uk| ≡ 1, such that

setting nk = [β ln |bk|],
|Mnk

bk
uk(ỹ)− eiψkuk(ỹ)| ≤ C|bk|−α,

for all ỹ ∈ Z and all k ≥ 1. A subset Z0 ⊂ Ỹ is called a finite subsystem if Z0 =
⋂
n≥0 Φ−nZ

where Z is a finite union of partition elements W ∈ P̃ .

By [2, Section 13], the Diophantine condition (♣) ensures that there exists a finite subsystem

such that there are no approximate eigenfunctions on Z0. Together with [5, Lemma 3.13], which

can be applied to our setting because ‖ ‖B and ‖ ‖θ are equivalent (see Remark 2.6) and because

the technical estimates in [7, Lemma 4.1] hold with exactly same proof since Φ is Gibbs Markov,

this implies that (H6) holds.
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