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Abstract. We prove that every self-homeomorphism h : Ks → Ks on the inverse limit space
Ks of tent map Ts with slope s ∈ (

√
2, 2] is isotopic to a power of the shift-homeomorphism

σR : Ks → Ks.

1. Introduction

The solution of Ingram’s Conjecture constitutes a major advancement in the classification of

unimodal inverse limit spaces and the group of self-homeomorphisms on them. This conjecture

was posed by Tom Ingram in 1992 for tent maps Ts : [0, 1] → [0, 1] with slope ±s, s ∈ [1, 2],

defined as Ts(x) = min{sx, s(1−x)}. The turning point is c = 1
2

and we denote its iterates by

cn = T n
s (c). The inverse limit space Ks = lim←−([0, s/2], Ts) consists of the core lim←−([c2, c1], Ts)

and the 0-composant C0, i.e., the composant of the point 0̄ := (. . . , 0, 0, 0), which compactifies

on the core of the inverse limit space. Ingram’s Conjecture reads:

If 1 ≤ s < s′ ≤ 2, then the corresponding inverse limit spaces lim←−([0, s/2], Ts)

and lim←−([0, s′/2], Ts′) are non-homeomorphic.

The first results towards solving this conjecture were obtained for tent maps with a finite

critical orbit [9, 12, 3]. Raines and Štimac [11] extended these results to tent maps with a

possibly infinite, but non-recurrent critical orbit. Recently Ingram’s Conjecture was solved

completely (in the affirmative) in [2], but we still know very little of the structure of inverse

limit spaces (and their subcontinua) for the case that orb(c) is infinite and recurrent, see

[1, 5, 8].

2000 Mathematics Subject Classification. 54H20, 37B45, 37E05.
Key words and phrases. isotopy, tent map, inverse limit space.
HB was supported by EPSRC grant EP/F037112/1. SŠ was supported in part by NSF 0604958 and in
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2 ON ISOTOPY AND UNIMODAL INVERSE LIMITS

Given a continuum K and x ∈ K, the composant A of x is the union of the proper subcontinua

of K containing x. For slopes s ∈ (
√

2, 2], the core is indecomposable (i.e., it cannot be written

as the union of two proper subcontinua), and in this case we also proved [2] that any self-

homeomorphism h : Ks → Ks is pseudo-isotopic to a power σR of the shift-homeomorphism

σ on the core. This means that h permutes the composants of the core of Ks in the same way

as σR does, and it is a priori a weaker property than isotopy. This is for instance illustrated

by the sin 1
x
-continuum, defined as the graph {(x, sin 1

x
) : x ∈ (0, 1]} compactified with a bar

{0} × [−1, 1]. There are homeomorphisms that reverse the orientation of the bar, and these

are always pseudo-isotopic, but never isotopic, to the identity. Since such sin 1
x
-continua are

precisely the non-trivial subcontinua of Fibonacci-like inverse limit spaces [8], this example is

very relevant to our paper.

In this paper we make the step from pseudo-isotopy to isotopy. To this end, we exploit so-

called folding points, i.e., points in the core of Ks where the local structure of the core of Ks

is not that of a Cantor set cross an arc. In the next section we prove the following results:

Theorem 1.1. If s ∈ (
√

2, 2], and h : Ks → Ks is a homeomorphism, then there is R ∈ Z
such that h(x) = σR(x) for every folding point x in Ks.

Folding points x = (. . . , x−2, x−1, x0) are characterized by the fact that each entry x−k belongs

to the omega-limit set ω(c) of the turning point c = 1
2
, see [10]. This gives the immediate

corollary for those slopes such that the critical orbit orb(c) is dense in [c2, c1], which according

to [7] holds for Lebesgue a.e. s ∈ [
√

2, 2].

Corollary 1.2. If orb(c) is dense in [c2, c1], then for every homeomorphism h : Ks → Ks

there is R ∈ Z such that h = σR on the core of Ks.

The more difficult case, however, is when orb(c) is not dense in [c2, c1]. In this case, h can be

at best isotopic to a power of the shift, because at non-folding points, where the core of Ks is

a Cantor set cross an arc, h can easily act as a local translation. It is shown in [4] that for tent

maps with non-recurrent critical point (or in fact, more generally long-branched tent maps),

every homeomorphism h : Ks → Ks is indeed isotopic to a power of the shift. The proof

exploits the fact that in this case, so-called p-points (indicating folds in the arc-components

of Ks) are separated from each other, at least in arc-length semi-metric. Here we prove the

general result.

Theorem 1.3. If s ∈ (
√

2, 2], and h : Ks → Ks is a homeomorphism, then there exists R ∈ Z
such that h is isotopic to σR.
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The paper is organized as follows. In Section 2 we give basic definitions and prove results

on how homeomorphisms act on folding points, i.e., Theorem 1.1 and Corollary 1.2. These

proofs depend largely on the results obtained in [2]. In Section 3 we present the additional

arguments needed for the isotopy result and finally prove Theorem 1.3.

2. Inverse limit spaces of tent maps and folding points

Let N = {1, 2, 3, . . . } be the set of natural numbers and N0 = N ∪ {0}. The tent map

Ts : [0, 1] → [0, 1] with slope ±s is defined as Ts(x) = min{sx, s(1 − x)}. The critical or

turning point is c = 1/2 and we write ck = T k
s (c), so in particular c1 = s/2 and c2 = s(1−s/2).

Also let orb(c) and ω(c) be the orbit and the omega-limit set of c. We will restrict Ts to the

interval I = [0, s/2]; this is larger than the core [c2, c1] = [s − s2/2, s/2], but it contains the

fixed point 0 on which the 0-composant C0 is based.

The inverse limit space Ks = lim←−([0, s/2], Ts) is

{x = (. . . , x−2, x−1, x0) : Ts(xi−1) = xi ∈ [0, s/2] for all i ≤ 0},
equipped with metric d(x, y) =

∑
n60 2n|xn − yn| and induced (or shift) homeomorphism

σ(. . . , x−2, x−1, x0) = (. . . , x−2, x−1, x0, Ts(x0)).

Let πk : lim←−([0, s/2], Ts) → I, πk(x) = x−k be the k-th projection map. Since 0 ∈ I, the

endpoint 0̄ := (. . . , 0, 0, 0) is contained in lim←−([0, s/2], Ts). The composant of lim←−([0, s/2], Ts)

of 0̄ will be denoted as C0; it is a ray converging to, but disjoint from the core lim←−([c2, c1], Ts)

of the inverse limit space. We fix s ∈ (
√

2, 2]; for these parameters Ts is not renormalizable

and lim←−([c2, c1], Ts) is indecomposable. Moreover, the arc-component of 0̄ coincides with the

composant of 0̄, but for points in the core of Ks, we have to make the distinction between

arc-component and composant more carefully.

A point x = (. . . , x−2, x−1, x0) ∈ Ks is called a p-point if x−p−l = c for some l ∈ N0. The

number Lp(x) := l is the p-level of x. In particular, x0 = T p+l
s (c). By convention, the endpoint

0̄ of C0 is also a p-point and Lp(0̄) := ∞, for every p. The ordered set of all p-points of the

composant C0 is denoted by Ep, and the ordered set of all p-points of p-level l by Ep,l. Given

an arc A ⊂ Ks with successive p-points x0, . . . , xn, the p-folding pattern of A is the sequence

FPp(A) := Lp(x
0), . . . , Lp(x

n).

Note that every arc of C0 has only finitely many p-points, but an arc A of the core of Ks can

have infinitely many p-points. In this case, if (ui)i∈Z is the sequence of successive p-points of

A, then FPp(A) = (Lp(u
i))i∈Z. The folding pattern of the composant C0, denoted by FP (C0),
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is the sequence Lp(z
1), Lp(z

2), . . . , Lp(z
n), . . . , where Ep = {z1, z2, . . . , zn, . . . } and p is any

nonnegative integer. Let q ∈ N, q > p, and Eq = {y0, y1, y2, . . . }. Since σq−p is an order-

preserving homeomorphism of C0, it is easy to see that σq−p(zi) = yi for every i ∈ N, and

Lp(z
i) = Lq(y

i). Therefore, the folding pattern of C0 does not depend on p.

Definition 2.1. Let (si)i∈N be a sequence of p-points of C0 such that 0 ≤ Lp(x) < Lp(si) for

every p-point x ∈ (0̄, si). We call p-points satisfying this property salient.

Since for every slope s > 1 and p ∈ N0, the folding pattern of the 0-composant C0 starts

as ∞ 0 1 0 2 0 1 . . . , and since by definition Lp(s1) > 0, we have Lp(s1) = 1. Also, since

si = σi−1(s1), Lp(si) = i, for every i ∈ N. Note that the salient p-points depend on p: if

p ≥ q, then the salient p-point si equals the salient q-point si+p−q.

A folding point is any point x in the core of Ks such that no neighborhood of x in core of

Ks is homeomorphic to the product of a Cantor set and an arc. In [10] it was shown that

x = (. . . , x−2, x−1, x0) is a folding point if and only if x−k ∈ ω(c) for all k ≥ 0. We can

characterize folding points in terms of p-points as follows:

Lemma 2.2. Let p be arbitrary. A point x ∈ Ks is a folding point if and only if there is a

sequence of p-points (xk)k∈N such that xk → x and Lp(x
k) →∞.

Proof. ⇒ Take m ≥ p arbitrary. Since πm(x) ∈ ω(c) there is a sequence of post-critical points

cni
→ πm(x). This means that any point yi = (. . . , cni

, cni+1, . . . , cni+m) is a p-point with

p-level Lp(y
i) = ni +m− p. Furthermore, for each 0 ≤ j ≤ m, |πj(y

i)−πj(x)| → 0 as i →∞.

Since m is arbitrary, we can construct a diagonal sequence (xk)k∈N of p-points, by taking a

single element from (yi)i∈N for each m, such that supj≤k |πj(x
k)−πj(x)| → 0 as k →∞. This

proves that xk → x and Lp(x
k) →∞.

⇐ Take m arbitrary. Since xk → x, also |πm(xk) − πm(x)| → 0 and πm(xk) = cn for

n = Lp(x
k) + p−m. But Lp(x

k) →∞, so πm(x) ∈ ω(c). ¤

A continuum is chainable if for every ε > 0, there is a cover {`1, . . . , `n} of open sets (called

links) of diameter < ε such that `i ∩ `j 6= ∅ if and only if |i− j| ≤ 1. Such a cover is called a

chain. Clearly the interval [0, s/2] is chainable.

Definition 2.3. We call Cp a natural chain of lim←−([0, s/2], Ts) if

(1) there is a chain {I1
p , I2

p , . . . , In
p } of [0, s/2] such that `j

p := π−1
p (Ij

p) are the links of Cp;

(2) each point x ∈ ∪p
i=0T

−i
s (c) is the boundary point of some link Ij

p ;

(3) for each i there is j such that Ts(I
i
p+1) ⊂ Ij

p .
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If maxj |Ij
p | < εs−p/2 then mesh(Cp) := max{diam (`) : ` ∈ Cp} < ε, which shows that

lim←−([0, s/2], Ts) is indeed chainable. Condition (3) ensures that Cp+1 refines Cp (written Cp+1 ¹
Cp).

We are now ready to prove Theorem 1.1.

Proof of Theorem 1.1. Let h : Ks → Ks be a homeomorphism. Let x, y ∈ Ks be folding

points with h(x) = y. For i ∈ N0 let qi, pi ∈ N be such that for sequences of chains (Cqi
)i∈N0

and (Cpi
)i∈N0 of Ks we have

· · · ≺ h(Cqi+1
) ≺ Cpi+1

≺ h(Cqi
) ≺ Cpi

≺ · · · ≺ h(Cq1) ≺ Cp1 ≺ h(Cq) ≺ Cp,

where q0 = q and p0 = p. Let (`x
qi
)i∈N0 be sequence of links such that x ∈ `x

qi
∈ Cqi

, and

similarly for (`y
pi

)i∈N0 . Then `x
qi+1

⊂ `x
qi
, `y

pi+1
⊂ `y

pi
and h(`x

qi
) ⊂ `y

pi
. Let (s′di

)i∈N be a sequence

of salient q-points with s′di
→ x as i →∞. Then for every i there exist ji such that s′dji

∈ `x
qi
,

h(s′dji
) ∈ `y

pi
and h(s′dji

) → y as i → ∞. By [2, Theorem 4.1] the midpoint of the arc

component Ai of `y
pi

which contains h(s′dji
) is a salient pi-point s′′mi

. Since s′′mi
, y ∈ `y

pi
, for

every i and diam `y
pi
→ 0 as i → ∞, we have s′′mi

→ y. Since s′di
is a salient q-point and

s′di
∈ `x

q , s′′mi
can be also considered as a salient p-point and is also the midpoint of the arc

component Bi ⊃ Ai of `y
p which contains h(s′dji

). Therefore, s′′mi
= sdji

+M , where M is as in

[2, Theorem 4.1].

Let R = M − q + p. By [2, Corollary 5.3], R does not depend on q, p and M . Since

σR : Ks → Ks is a homeomorphism, and since s′di
→ x as i → ∞, we have σR(s′di

) → σR(x)

as i → ∞. Note that σR(s′dji
) = sdji

+M and sdji
+M → y. Therefore σR(x) = y, i.e.,

σR(x) = h(x). ¤

Proof of Corollary 1.2. If orb(c) is dense in [c2, c1], every point x in the core of Ks satisfies

πk(x) ∈ ω(c) for all k ∈ N. By [10], this means that every point is a folding point, and hence

the previous theorem implies that h ≡ σR on the core of Ks. ¤

Remark 2.4. A point x ∈ Ks is an endpoint of an atriodic continuum, if for every pair of

subcontinua A and B containing x, either A ⊂ B or B ⊂ A. The notion of folding point is

more general than that of end-point. An example of a folding point that is not an endpoint is

the midpoint x of a double spiral S, i.e., a continuous image of R containing a single folding

point x and two sequences of p-points

. . . yk ≺ yk+1 ≺ · · · ≺ x ≺ · · · ≺ zk+1 ≺ zk . . .

converging to x such that the arc-length d̄(yk, yk+1), d̄(zk, zk+1) → 0 as k → ∞. Here ≺
denotes the induced order on S.
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It is natural to classify arc-components A according to the folding points they may contain.

For arc-components A, we have the following possibilities:

• A contains no folding point.

• A contains one folding point x, e.g. if x is an end-point of A or A is a double spiral.

• A contains two folding points, e.g. if A is the bar of a sin 1
x
-continuum.

• A contains countably many folding points. One can construct tent maps such that the

folding points of its inverse limit space belong to finitely many arc-components that

are periodic under σ, but where there are still countably folding points.1

• A contains uncountably many folding points, e.g. if ω(c) = [c2, c1], because then every

point in the core is a folding point.

This is clearly only a first step towards a complete classification.

Definition 2.5. Let `0, `1, . . . , `k be those links in Cp that are successively visited by an arc

A ⊂ C0 (hence `i 6= `i+1, `i ∩ `i+1 6= ∅ and `i = `i+2 is possible if A turns in `i+1). Let Ai ⊂ `i

be the corresponding arc components such that Cl Ai are subarcs of A. We call the arc A

• p-link symmetric if `i = `k−i for i = 0, . . . , k;

• maximal p-link symmetric if it is p-link symmetric and there is no p-link symmetric

arc B ⊃ A and passing through more links than A.

The p-point of Ak/2 with the highest p-level is called the center of A, and the link `k/2 is called

the central link of A.

3. Isotopic Homeomorphisms of Unimodal Inverse Limits

It is shown in [2] that every salient p-point sl ∈ C0 is the center of the maximal p-link sym-

metric arc Al. We denote the central link that sl belongs to by `sl
p . For a better understanding

of this section, let us mention that a key idea in [2] is that under a homeomorphism h such

that h(Cq) ≺ Cp, (maximal) q-link symmetric arcs have to map to (maximal) p-link symmetric

arcs, and for this reason h(sm) ∈ `sl
p for some appropriate m ∈ N (see [2, Theorem 4.1]).

Lemma 3.1. Let h : Ks → Ks be a homeomorphism pseudo-isotopic to σR, and let q, p ∈ N0

be such that h(Cq) ¹ Cp. Let x be a q-point in the core of Ks and let `sl
p ∈ Cp be the link

1An example is the tent-map where c1 has symbolic itinerary (kneading sequence) ν = 1001012013014

015 . . . . Then the two-sided itineraries of folding points are limits of {σj(ν)}j≥0. The only such two-sided
limit sequences are 1∞.1∞ and {σj(1∞.01∞) : j ∈ Z}. Since they all have left tail . . . 1111, these folding
points belong to the arc-component of the point (. . . , p, p, p) for the fixed point p = s

1+s . This use of two-sided
symbolic itineraries was introduced for inverse limit spaces in [6].
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containing both σp(x) and salient p-point sl, where l = Lp(σ
R(x)). Suppose that the arc-

component Wx of `sl
p containing σR(x) does not contain any folding point. Then h(x) ∈ Wx.

Proof. Since Wx does not contain any folding point, it contains finitely many p-points. Note

that Wx contains at least one p-point since σR(x) ∈ Wx is a p-point. Since C0 is dense in

Ks, there exists a sequence (Wi)i∈N of arc-components of `sl
p such that Wi ⊂ C0, FPp(Wi) =

FPp(Wx) for every i ∈ N, and Wi → Wx in the Hausdorff metric. Let (xi)i∈N be a sequence

of q-points such that for every i ∈ N, Lq(xi) = Lq(x), xi → x and σR(xi) ∈ Wi. Obviously

(xi)i∈N ⊂ C0, Lp(σ
R(xi)) = Lp(σ

R(x)) and σR(xi) → σR(x). Since h is a homeomorphisms,

h(xi) → h(x). It follows by the construction in the proof of [2, Proposition 4.2] that h(xi) ∈ Wi

for every i ∈ N. Therefore h(x) ∈ Wx. ¤

Corollary 3.2. Let h : Ks → Ks be a homeomorphism pseudo-isotopic to σR. Then h

permutes arc-components of Ks in the same way as σR.

Proof. Since h is a homeomorphism, h maps arc-components to arc-components. Let A be

an arc-component of Ks. Let us suppose that A contains a folding point, say x. Then

h(x) = σR(x) implies h(A) = σR(A).

Let us assume now that A does not contain any folding point. There exist q, p ∈ N0 such that

h(Cq) ¹ Cp and that h(A) is not contained in a single link of Cp. Then A is not contained

in a single link of Cq. Let `q ∈ Cq and V ∈ `q ∩ A be an arc-component of `q such that V

contains at least one q-point, say x. Let `sl
p ∈ Cp be such that l = Lp(σ

R(x)). Let W ⊂ `sl
p be

arc-component containing σR(x). Since A does not contain any folding point, h(A) does not

contain any folding point implying W does not contain any folding point. Then, by Lemma

3.1, h(x) ∈ W implying h(A) = σR(A). ¤

Lemma 3.3. Let h : Ks → Ks be a homeomorphism that is pseudo-isotopic to the identity.

Then h preserves orientation of every arc-component A, i.e., given a parametrization ϕ : R→
A (or ϕ : [0, 1] → A or ϕ : [0,∞) → A) that induces an order ≺ on A, then x ≺ y implies

h(x) ≺ h(y).

Proof. Let us first suppose that h : Ks → Ks is any homeomorphism. Then, by [2, Theorem

1.2] there is an R ∈ Z such that h, restricted to the core, is pseudo-isotopic to σR, i.e., h

permutes the composants of the core of the inverse limit in the same way as σR. Therefore,

by Corollary 3.2, it permutes the arc-components of the inverse limit in the same way as σR.

Let A,A′ be arc-components of the core such that h, σR : A → A′, and let x, y ∈ A, x ≺ y.

We want to prove that h(x) ≺ h(y) if and only if σR(x) ≺ σR(y). Since h and σR are
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homeomorphisms on arc-components, each of them could be either order preserving or order

reversing. Therefore, to prove the claim we only need to pick two convenient points u, v ∈ A,

u ≺ v, and check if we have either h(u) ≺ h(v) and σR(u) ≺ σR(v), or h(v) ≺ h(u) and

σR(v) ≺ σR(u). If A contains at least two folding points, we can choose u, v to be folding

points. Then h(u) = σR(u) and h(v) = σR(v) and the claim follows.

Let us suppose now that A contains at most one folding point. Then there exist q, p ∈ N0

such that h(Cq) ¹ Cp and q-points u, v ∈ A, u ≺ v (on the same side of the folding point if

there exists one) such that σR(u) and σR(v) are contained in disjoint links of Cp each of which

does not contain the folding point of A, if there exists one.

Let `
sj
p , `sk

p ∈ Cp with j = Lp(σ
R(u)) and k = Lp(σ

R(v)) be links containing σR(u) and

σR(v) respectively. Let Wu ⊂ `
sj
p and Wv ⊂ `sk

p be arc-components containing σR(u) and

σR(v) respectively. Then Wu and Wv do not contain any folding point and by Lemma 3.1

h(u) ∈ Wu and h(v) ∈ Wv. Therefore obviously h(u) ≺ h(v) if and only if σR(u) ≺ σR(v).

If h is a homeomorphism that is pseudo-isotopic to the identity, then R = 0 and the claim of

lemma follows. ¤

Corollary 3.4. If h is pseudo-isotopic to the identity, then the arc A connecting x and h(x)

is a single point, or A contains no folding point.

Proof. Since h is pseudo-isotopic to the identity, x and h(x) belong to the same composant,

and in fact the same arc-component. So let A be the arc connecting x and h(x). If x = h(x),

then there is nothing to prove. If h(x) 6= x, say x ≺ h(x), and A contains a folding point y,

then x ≺ y = h(y) ≺ h(x), contradicting Lemma 3.3. ¤

In particular, any homeomorphism h that is pseudo-isotopic to the identity cannot reverse

the bar of a sin 1
x
-continuum, or reverse a double spiral S ⊂ Ks, see Remark 2.4. The next

lemma strengthens Lemma 3.1 to the case that Wx is allowed to contain folding points.

Lemma 3.5. Let h : Ks → Ks be a homeomorphism that is pseudo-isotopic to the identity.

Let q, p ∈ N0 be such that h(Cq) ¹ Cp. Let x be a q-point in the core of Ks and let `sl
p ∈ Cp be

such that l = Lp(x). Let Wx ⊂ `sl
p be an arc-component of `sl

p containing x. Then h(x) ∈ Wx.

Proof. If Wx does not contain any folding point the proof follows by Lemma 3.1 for R = 0.

Let Wx contain at least one folding point. If x is a folding point, then h(x) = x ∈ Wx by

Theorem 1.1. If Wx contains at least two folding points, say y and z, such that x ∈ [y, z] ⊂ Wx,

then h(x) ∈ [y, z] ⊂ Wx by Corollary 3.4.
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The last possibility is that x ∈ (y, z) ⊂ Wx, where z ∈ Wx is a folding point, y /∈ Wx, i.e., y is

a boundary point of Wx, and (y, z) does not contain any folding point. Since C0 is dense in Ks,

there exists a sequence (Wi)i∈N of arc-components of `sl
p such that Wi ⊂ C0 and Wi → (y, z]

in the Hausdorff metric. Note that for the sequence of p-points (mi)i∈N, where mi is the

midpoint of Wi, we have mi → z and Lp(mi) →∞. Also, for every i large enough, every Wi

contains a q-point xi with Lq(xi) = Lq(x), and for the sequence of q-points (xi)i∈N we have

xi → x. Obviously (xi)i∈N ⊂ C0 and Lp(xi) = Lp(x). By the proof of [2, Proposition 4.2]

applied for R = 0 we have h(xi) ∈ Wi for every i. Since h is a homeomorphisms, h(xi) → h(x).

Therefore, h(x) ∈ (y, z) ⊂ Wx. ¤

Proposition 3.6. Let h : Ks → Ks be a homeomorphism. If zn → z and An = [zn, h(zn)],

then An → A := [z, h(z)] in Hausdorff metric.

Proof. We know that h is pseudo-isotopic to σR for some R ∈ Z; by composing h with σ−R we

can assume that R = 0. By Corollary 3.2, h preserves the arc-components, and by Lemma 3.3,

preserves the orientation of each arc-component as well.

Take a subsequence such that Ank converges in Hausdorff metric, say to B. Since x, h(x) ∈ B,

we have B ⊃ A. Assume by contradiction that B 6= A. Fix q, p arbitrary such that h(Cq)

refines Cp, and such that πp(B) 6= πp(A) and a fortiori, that there is a link ` ∈ Cp such that

` ∩ A = ∅ and πp(`) contains a boundary point of πp(B).

Let dn = max{Lp(y) : y is p-point in An}. If D := sup dn < ∞, then we can pass to the chain

Cp+D and find that all Ank ’s go straight through Cp+D, hence the limit is a straight arc as

well, stretching from x to h(x), so B = A. Therefore D = ∞, and we can assume without

loss of generality that dnk
→∞.

Since the link in ` is disjoint from A but πp(`) contains a boundary point of πp(B), the arcs

Ank intersects ` for all k sufficiently large. Therefore Ank ∩ ` separates xnk from h(xnk); let

W nk be a component of Ank ∩ ` between xnk and h(xnk). Since πp(`) contains a boundary

point of πp(B), W nk contains at least one p-point for each k. Lemma 3.5 states that there

is ynk ∈ W nk such that h(ynk) ∈ W nk as well, and therefore xnk ≺ ynk , h(ynk) ≺ h(xnk) (or

ynk ≺ xnk , h(xnk) ≺ h(ynk)), contradicting that h preserves orientation. ¤

Let us finally prove Theorem 1.3:
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Proof of Theorem 1.3. Fix R such that h is pseudo-isotopic to σR. Then σ−R ◦ h is pseudo-

isotopic to the identity. So renaming σ−R ◦ h to h again, we need to show that h is isotopic

to the identity.

If x is a folding point of Ks, then h(x) = x by Theorem 1.1. In this case, and in fact for

any point such that h(x) = x, we let H(x, t) = x for all t ∈ [0, 1]. If h(x) 6= x, then x and

h(x) belong to the same arc-component, and the arc A = [x, h(x)] contains no folding point

by Corollary 3.4. By Lemma 2.2, A contains only finitely many p-points, so there is m such

that πm : A → πm(A) is one-to-one. In this case,

H(x, t) = π−1
m |A[(1− t)πm(x) + tπm(h(x))].

Clearly t 7→ H(·, t) is a family of maps connecting h to the identity in a single path as t ∈ [0, 1].

We need to show that H is continuous both in x and t, and that H(·, t) is a bijection for all

t ∈ [0, 1].

Let z ∈ Ks and (zn, tn) → (z, t). If h(z) = z, then H(z, t) ≡ z, and Proposition 3.6 implies

that H(zn, tn) → z = H(z, t). So let us assume that h(z) 6= z. The arc A = [z, h(z)] contains

no folding point, so by Lemma 2.2, for all x ∈ A, there is ε(x) > 0 and W (x) ∈ N such that

Bε(x)(x) contains no p-point of p-level ≥ W (x). By compactness of A, ε := infx∈A ε(x) > 0

and supx∈A W (x) < ∞, whence there is m > p + W such that V := π−1
m ◦ πm(A) is contained

in an ε-neighborhood of A that contains no p-point.

By Proposition 3.6, there is N such that An ⊂ V for all n ≥ N , and in fact πm(An) → πm(A).

It follows that H(zn, tn) → H(z, t).

To see that x 7→ H(·, t) is injective for all t ∈ [0, 1], assume by contradiction that there

is t0 ∈ [0, 1] and x 6= y such that H(x, t0) = H(y, t0). Then x and y belong to the same

arc-component A, which is the same as the arc-component containing h(x) and h(y). The

smallest arc J containing all four point contains no folding point by Corollary 3.4. Therefore

there is m such that πm : J → πm(J) is injective, and we can choose an orientation on A

such that x < y on J , and πm(x) < πm(y). Since t 7→ πm ◦H(x, t) is monotone with constant

speed depending only on x, we find

πm(x) < πm(y) < πm ◦H(x, t0) = πm ◦H(y, t0) < πm ◦ h(y) < πm ◦ h(x)

This contradicts that h preserves orientation on arc-components, see Lemma 3.3.

To prove surjectivity, choose x ∈ Ks arbitrary. If h(x) = x, then H(x, t) = x for all t ∈ [0, 1].

Otherwise, say if h(x) > x, there is y < x in the same arc-component as x such that h(y) = x.

The map t 7→ H(·, t) moves the arc [y, x] continuously and monotonically to [h(y), h(x)] =
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[x, h(x)]. Therefore, for every t ∈ [0, 1], there is yt ∈ [y, x] such that H(yt, t) = x. This proves

surjectivity.

We conclude that H(x, t) is the required isotopy between h and the identity. ¤
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[2] M. Barge, H. Bruin, S. Štimac, The Ingram Conjecture, Preprint 2009, arXiv:0912.4645v1.
[3] L. Block, S. Jakimovik, J. Keesling, L. Kailhofer, On the classification of inverse limits of tent maps,

Fund. Math. 187 (2005), no. 2, 171–192.
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