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Abstract

We show that for a one-parameter family of unimodal polynomials

{fc} with even critical order £ > 2, for almost all parameters c, f.
admits a unique SRB-measure, being either absolutely continuous, or
supported on the postcritical set. As a byproduct we prove that if f.
has a Cantor attractor, then it is uniquely ergodic on its postcritical
set.
Nous montrons que si { f. } est une famille a un parameétre de polynémes
unimodaux dont l'ordre £ > 2 est pair, alors pour presque toute valeur
du parametre ¢, f. admet une unique mesure SRB et soit cette mesure
est absolument continue, soit son support est I’ensemble postcritique.
Nous montrons aussi si f. a un attracteur de Cantor, alors f. est
uniquement ergodique.

1 Introduction and Statement of Results

About 10 years ago, Jacob Palis conjectured that “most” dynamical systems
have a finite number of metric attractors whose union of basins of attraction
has total probability, and that each of these attractors either is a periodic

*WS was supported by EPSRC grant GR/R73171/01



orbit or supports a physical measure, i.e., a measure whose set of typical
points has positive Lebesgue measure. The topological version of this con-
jecture was recently proved in the one-dimensional case: within the space of
C one-dimensional maps, hyperbolic maps are dense, see [18] and [19]. This
paper deals with ‘Lebesgue most’ parameters within a family of polynomial
maps, and proposes a new strategy for proving a probabilistic version of the
above conjecture.

Consider the family f.(x) = 2% + ¢, where £ is an even positive integer.
Let M denote the set of parameters ¢ such that f, has a connected Julia set.
Then M N R consists of the parameters ¢ € R for which f. has a compact
invariant interval, consisting of the (real) points not escaping to infinity. An
f-invariant measure y is called physical or SRB if its basin, i.e., the set B(u)
of points x such that for all continuous functions ¢: R — R one has

im + el @) = [ o
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has positive Lebesgue measure. A probability invariant measure which is
absolutely continuous w.r.t. the Lebesgue measure is called an acip, and we
say that a dynamical system g: X — X is uniquely ergodic if there is at most
one probability measure on X which is invariant under g. There are many
parameters ¢ € M N R for which f. has no physical measure, see [15] and
also [26]. Our main theorem states that for Lebesgue almost all c € M NR
there is a physical measure.

Theorem 1. For Lebesque a.e. ¢ € MNR, f.: R — R has a unique
physical measure j. Moreover, either y is an acip, or p is supported on w(0)
and f.|w(0) is uniquely ergodic.

The basin of the measure p from the theorem, in fact, has full Lebesgue
measure in the compact interval which is invariant under f,.

It is well-known, see for example [26], that for all parameters, f, has a
unique metric attractor which is either a periodic orbit, or a finite union of
intervals, or a Cantor set w(0). In the last case, w(0) is either of solenoidal
type (the infinitely renormalizable case) or a “wild attractor” (which attracts
a positive measure set of only first Baire category). We should emphasize
that if in the above theorem supp(u) = w(0), then this need not imply that
w(0) is the metric attractor. It could, for example, happen that there is a
conservative o-finite acip fi, such that Lebesgue a.e. x is typical for both pu



and [i; yet these points visit any set A whose closure is disjoint from w(0)
with frequency 0.

For ¢ = 2 a stronger result is known: for almost all c € M N R, either f,
is Collet-Eckmann or f, has a hyperbolic periodic attractor, see [21, 22, 3].
However, the geometry of orbits for £ = 2 and ¢ > 2 is completely different
(for example, wild attractors exist only if ¢ is sufficiently large). For this
reason several crucial steps of the proofs in those papers fail for the case
¢ > 2. For this reason we use a new approach to this problem in this paper.

Decompose the set M N R as the union of the following pairwise disjoint
sets: MNR=AUFUZ, where

A={ce MNR: f,. has a periodic attractor},
F={ce MNR\ A: f.is at most finitely renormalizable},
Z={ce MNR: f, is infinitely renormalizable}.

In the first case, f. has a SRB-measure supported on the periodic attractor
and in the third case, it has a SRB-measure supported on the postcritical set
w(0). So we are only concerned in the second case.

Let us further decompose F as F = (J,-,F", where F" denotes the
subset of F consisting of parameters ¢ for which f, is exactly n times renor-
malizable. Most of our effort will be put into the case ¢ € F° as the finitely
renormalizable case can be reduced to the non-renormalizable case. Let us
use F? to denote the subset of F° consisting of parameters ¢ for which f, has
a recurrent critical point. It is well known that the set of parameters F°\ F?
has Lebesgue measure zero and by a classical result of Misiurewicz, f. has
an acip for any ¢ € F°\ F?, see for example [26].

The case when f. has a recurrent critical point is much more tricky. So
let us say that an open interval I is nice if f*(0I) NI = () for all n > 0. An
interval J is a called a child of I if it is a unimodal pullback of I, i.e., if there
exists an interval J' containing the critical value ¢ and an integer s > 0 so
that f*~': J' — I is a homeomorphism and J = f~1(J') 3 0. If c € F? and
there exists a nice interval I 5 0 with infinitely many children, then we say
that f, is reluctantly recurrent; otherwise it is called persistently recurrent.
Let us say that a parameter ¢ € F? has decaying geometry property if either

e f. is reluctantly recurrent, or

e f.is persistently recurrent and there exists a sequence of nice intervals
' >71!t > ---3 0 such that for each n > 0, I'*! is the smallest child
of I'", and so that |T™*|/|T"| — 0 as n — co.
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Let DG denote the collection of parameters ¢ for which f,. satisfies the de-
caying geometry condition. We should note that if £ = 2, F? = DG (and
in fact, the decay is at least exponentially fast). To deal with parameters
c € F2\ DG we first prove in Sections 2 and 3 the following.

Theorem 2. Ifc € F2\DG then f.|w.(0) is uniquely ergodic. More precisely,
if f = f. is persistently recurrent the following holds:

e If f has low combinatorial complexity:

31/, = 0 (1)

n>0

(where Gy, G, ... are the positive integers associated to the chain T° D
't O .- 3 0 defined in Section 2), then flw(0) is uniquely ergodic,
i.e., there exists a unique f-invariant measure u supported on w(0),
and either f has an acip or p is the unique physical measure for f.

o Assume that the critical point of f is recurrent, but f does not sat-
1sfy the decaying geometry property. Then liminf G, < oo and so in
particular f has low combinatorial complexity (1).

To deal with the set DG, we shall carry out a parameter exclusion argu-
ment in spite of the fact that |[T™*!|/|T""| need not decay exponentially.
For a subset A of a bounded interval I, and v > 1,

h(A)|
Cap,(A,I) =sup ———,
4D =5 )
where h runs over all y-quasisymmetric maps from I into R. Moreover, let
DC be the subset of F? consisting of all the parameters ¢ such that for any
a > 0 the following summability condition holds:

c

- 1
2 Dy <™ )

By [8], for any ¢ € DC, f. has an acip which has decay of correlations faster
than any polynomial rate.



Theorem 3. The set DC has full Lebesque measure in FXN'DG. To describe
the geometry of the set DC more precisely, for every ¢ € DG and every € > 0
and v > 1, there exists a neighborhood J > ¢, such that

Cap, ((J\DC),J) < e.

To prove this theorem we shall follow the idea of [21, 3], which uses
complex method in an essential way. The new ingredient here is a different
strategy to obtain dilatation control of “pseudo-conjugacies”. In quadratic
case, such control was deduced from “linear growth of the principal moduli”
which does not hold in our case (even for maps satisfying our decaying ge-
ometry condition). Instead, we shall prove in the case ¢ € DG, that there
exists a sequence of critical puzzle pieces for which the relative size of the
first return domains is arbitrarily ‘small’, see Theorem 5. This result implies
dilatation control for the pseudo-conjugacies by an argument used previously
in [16, 32, 29].

Finally, we shall show in Section 3 that the geometry implied by the DG
condition excludes existence of Cantor attractors. Therefore we have

Theorem 4. If f has a Cantor attractor w(0) (of solenoid type, or a “wild
attractor”), then f|w(0) is uniquely ergodic.

1.1 Organization of the paper

Clearly Theorem 1 follows from Theorems 2 and 3. In Section 2 we show
that if f is persistently recurrent and one has low combinatorial complexity,
then f|w(0) is uniquely ergodic, see Proposition 1. This is done by showing
that certain transition matrices act as contractions on the projective Hilbert
metric. In Section 3 we use real bounds to complete the proof of Theorem 2.
The proof of Theorem 4 is also given in that section. The remainder of the
paper is devoted to the proof of Theorem 3. In Section 4 we review how the
combinatorics of Yoccoz puzzles changes with the parameter. In Section 5, we
study the geometry of the Yoccoz puzzle for maps f. with decaying geometry
property, and prove Theorem 5. In Section 6, we convert this result to an
estimate of the dilatation of pseudo-conjugacies. The proof of Theorem 3
will be given in Section 7.



2 A condition for unique ergodicity in the
persistently recurrent case

In this section, let f be an arbitrary C? unimodal map with a non-flat critical
point. We shall assume that the critical point is recurrent, but not periodic.
The goal is to give a sufficient condition for f|w(0) to be unique ergodic. So
we shall assume that f is not renormalizable; if f is finitely renormalizable we
pass to the “deepest” renormalization, whereas for infinitely renormalizable
maps, w(0) is an attractor and f|w(0) is isomorphic to the adding machine
(defined by “adding 1 and carry”) on the space {(z;)2; | z1 € {0,...,p1 —
1}, z; € {0,...,-2—1} for ¢ > 2}. Here p; is the period of the i-th periodic

? pi—1
interval. Such adding machines are well-known to be uniquely ergodic.

2.1 Construction of the nest of children

Recall that an open interval I' is called nice if f(0T') NT = () for all n > 1.
For any nice interval I' 3 0, let R : [' — I' be the first return map; it has one
central unimodal branch and in general infinitely many non-central branches.
Let p(I) be the collection of return domains of I that intersect w(0). A child
I of ' is a neighborhood of 0 such that there exists a neighborhood I' of
¢; := f(0) such that f~%(I') = I'" and f*~' : T — T is monotone onto for
some s > 0. The children of ' are again nice, nested neighborhoods of 0.
Each nice neighborhood has at least one, and if f is not renormalizable at
least two children.

If f is persistently recurrent then (by definition) each nice neighborhood
' of 0 has only finitely many children (cf. [35, 7]). Note that persistent
recurrence of f implies that w(0) is a minimal Cantor set. Making this
assumption, let I'' be the smallest child of I'°. Continue by induction, I'"**+!
being the smallest child of I'". Let s, be the iterate such that f*»~! maps a
(one-sided) neighborhood T"** of f(I'"**!) monotonically onto I'™,

Lemma 1. If ™" is the smallest child of T™, then for each J € p(I'™), there
ezists an iterate t < s, such that fY(T™"*) C J. In particular, the existence
of a smallest child implies that #p(I'™) < oo.

Proof. If J is the central domain, then ¢ = 0 works. Take J € p(I'") non-
central, and let ¢ be minimal such that f*(0) € J. Then there exists a
neighborhood U of ¢; such that f¥~' : U — J is monotone onto, and iterating



some 3 = B(J) steps more, U is mapped monotonically onto I'". Therefore
fYU) is a child of T™. If #' > s,, then this child is actually smaller than
™t a contradiction. O

2.2 Unique ergodicity

Let I := I'" be any interval in the chain of smallest children. Let I' be
the central return domain of Rr» =: Ry. This domain is again nice, so it
has a central return domain I? under the return map Ry := Rp1 : I' — I'.
Continue by induction to construct the principal nest of I'"" by defining I***
as the central return domain of the return map R; to the previous central
domain I*. Then for some r, I" 2 I > ["*! For any y € '™ N w(0),
the first landing map of y to I'™*! can be decomposed into return maps R;.
Indeed, write

| Ro(2) if z€ I°\ I
Rlz) = { Ri_1(z) ifzeI'\I'"' andi> 1. (3)

Let k = k(y) > 0 be such that R*(y) is the first landing of y into ['™*!, and
for 0 <1 < k, write oy(y) = i if R'(y) € I* \ I**!. Define the combinatorial
complezity of y € I'™ to be

Gu(y) =#{0 <1<k | ay(y) < cus1(y)}-

Note that G, (y) > 1, unless y € I"*!. As w(0) is a minimal Cantor set, k(y)
is uniformly bounded for y € w(0) NI'. In particular, we have

Gn:= sup Gu(y) < .
yew(0)NC'»

Since we assume that f is not renormalizable, G,, > 1 for all n.

Proposition 1 (Non-unique ergodicity implies growing combinato-
rial complexity). Let f be a persistently recurrent non-flat C* unimodal
map such that ) -, é = 00, then f|w(0) is uniquely ergodic.

Proof. Abbreviate p, = p(I'"). Let y be any point in w(0), and J € p, for
some n. Consider the visit frequency interval of y to J:

() = [liminf (i <n | fi(y) € T}, lmsup i <n | fiy) € J)
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Unique ergodicity implies (and is actually equivalent to) =, (J) being a point,
and independent of y, for each n > 0 and J € p,,.

We can express 7,(J) in terms of the yp41(J)’s for J € ppi1. Indeed, let
Apn be the #p, X #py11 matrix such that the entry a, ; of A, indicates the

number of visits of J to J before J returns to I™*!. Then,

1 ~ 1 -
Tu(J) C N Z aJ,j7n+1(J) = N Z ay iz | 2 € Ynt1(J)

jEpn+1 jEpn+1

for some normalizing constant V,,. Write =, for the frequency vector (y,(J) | J €
pn)t. Then composing matrices A, we find

1

Yn = N—An : An—l—l T Am—l’ym-

Write C,, for the cone (Rso)#”". Disregarding the normalizing constants
Nym, we find that -, is independent of y if and only if

Ly = NimsnAn - Aps1 - A1 (Cr)

is a line, and in that case 7, is the intersection of ¢, and the unit simplex
in C,. Indeed, the visit frequency (and hence the measure) to any J € p,
and any n > 0 is determined independently of y € w(0). By Kolmogorov’s
extension theorem, this uniquely determines the measure p.

Let us have a closer look at the matrices A,. The first thing to notice
is that A, has strictly positive entries. This is a consequence of Lemma 1,
and it is here that we effectively use the fact that I'"*! is the smallest child
of I'™. More precisely, if the matrix A records all the visits of J’s in ppi1
to J’s in p, before iterate s,, then AT is already strictly positive. Moreover,
for each t < s,,, fY(I'*!) intersects at most one return domain J € p,. Thus
all columns of A are identical. The differences of visits of the respective .J’s
occur only after the iterate s,, and are recorded in the matrix A, = A, —A;.

Lemma 2. Each entry of A, can be at most 2G,, times the corresponding
entry of AT

Proof. Given z € w(0) NT™, write yo = y = f**(z) and y; = R'(y), where
R is as in equation (3). Abbreviate oy = oy(y). For ¢ > 1, R|I* = R;_4|I' is
the central branch of the return map to I'~!; let ¢; be such that R|I* = f.
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Claim 1: If ; = 0, i.e., y; belongs to a non-central domain J € p(I°), and
R|J = ft, then t < s,. Moreover, 1 = #{0 <i < t|fi(y) € J} < #{0<i<
sn| f1(0) € J}.

Proof: By Lemma 1, there exists ¢ > 0 such that f*(0) € J, and hence
ot (J)NI° # (. Therefore ¢t < s, — ' < s,. The second statement of this
claim follows because R|J is the first return map to I°.

Claim 2: Assume that there exist [ < I’ such that
o> oy > - > Qp

then R'~!(y,) = f'(y,) for some t < s,. A fortiori, #{0 < i < t|fi(y) €
J} < #{0 < i < 5,|f%(0) € J} for each J € p(I°).

Proof: Since f is not renormalizable, there exists at least one non-central
return domain J of I°. Therefore there exists a maximal s}, < s, and J such,
and f5~1(I"*t') = J, where ['""*! is the one-sided neighborhood of f(I'"*1)
that maps onto I° under f*. Since I® > I'™t!, fu(I*) contains at least one
boundary point of J. But the forward orbit of 0J is disjoint from the open
interval I°, and therefore the return time t,, < s/,. Furthermore, if f7(y,) € J
for some J € p(I°) and j < t,, while fI(I"™*!) ¢ J, then f7(I*) contains a
boundary point of .J. This would contradict that ffe: (1) C I*~'. Therefore
y; and I™*! visit the same return domains along the iterates 0 < j < t,,.
This proves Claim 2 when ' = + 1.

If I" > 1+ 1, then fle(I"*1) C flea(I) C I+, Hence we can repeat
the argument for the iterates to, < j <tq +tq,,, etc.

In fact, the same argument also proves:

Claim 3: Assume that [ is such that 0 < oy < ayq;. Then R(y;) = f* for
some ¢ < s, and #{0 < i < t|f'(y) € J} < #{0 < i < 5,|f*(0) € J} for
each J € p(I°).

To prove the lemma, take any z € J € p(I'"*"), and decompose {0,...,k}
into stings [,1 4+ 1,...,[I' that satisfy the hypotheses of one of the thee above
claims. If oy < oy, then Claim 1 or 3 holds for /, whereas for any maximal
string a; > 41 > -+ > ap, Claim 1 or 3 holds for I'. By definition of
Gn, there are at most 2G, such strings, and each such strings, #{0 < i <
tfi(y) € J} < #{0 < i < s,|f*(0) € J} for each J € p(I'"). Hence the

. _|_ —
J, J-entry in AJ,j < QQnAJ,j as asserted. O

To conclude the proof, we will show that the matrices A,, act as contractions
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in the projective Hilbert metric. Given v, w € C, 1, define this metric as

inf{u | pv —w € Cpyr}
sup{\ |w— v €Chi1} /)"

O(v,w) = log(

Let A, : Chy1 — C, be alinear map. It is shown in e.g. [4] that ©(A4,v, A,w) <
tanh(D/4)O (v, w) for D = sup, ,sec, ., O(Anv'; Ayw'). In particular, A, is a
contraction if A,, maps 0C,,+1\ {0} into the interior of C,,. By strict positivity
of the A,,, this is true for all n.

Remark 1. A different way of regarding this Hilbert metric is the following,
see Figure 1. The lines through 0 and v resp. w span a plane V, which
contains the line connecting v and w. Let A and B be the intersections of
this line with those coordinate axes that V intersects (A or B could be co).
The points v, w, A and B bound an arc and divide it into three piece; call
the middle piece j and the other pieces j and r. It is not hard to see that the
ratio § equals the cross ratio % Linear transformations preserve this
cross-ratio, and the contraction is due to Schwartz inclusion of the image arc
in the cone C,,.

A

B

Figure 1: Illustration of the Hilbert metric.

To continue the calculation, in our case each column in A, is at most
2@, times the corresponding column in Af. Therefore, when comparing
two columns a and b in A,, we always find that ﬁa <b<(1+2G,)a,
element-wise. Therefore § < (1 + 2G,)?. The contraction factor therefore
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becomes

e% log(1+2Gr) 1log(1+2Gn)

— e_
6%log(H—QQn) + e—%log(1+2gn)

V142G, — V 1+§gn
T /1

2 1

<1- :
1+26,)(1+ 5550) — 142G,

tanh(D/4) =

Therefore ¢, is indeed a line if [], -, (1 —
Dm0 gl_n = 0.

We have shown now that for any n and J € p(I'™), the visit frequency
interval 7, (J) is a point, and independent of the choice of y. Given z € w(0)
and n > 0, there exists a minimal integer ¢ > 0 such that f'(z) € J € p(I').
Let J,(z) denote the pullback of J under f* to x. Since f is assumed to be
C? and therefore has no wandering intervals (see [26]), NJ,(z) = {x}. This
shows that f|w(0) is indeed uniquely ergodic. O

1+%gm) = 0, which is equivalent to

Remark 2. The consecutive visits of the J’s in p,,, to J’s in p, give a direct
way to describe f|w(0) as a substitution shift based on a chain of substitutions
Xn. The matrices A,, are the associated matrices of the substitutions yx,,, cf.
[13, 6]. The proof of unique ergodicity then becomes almost identical to the
one given in [6].

Remark 3. The proof of Proposition 1 can be applied to unicritical complex
maps as well. In this case, Yoccoz puzzle pieces will take the role of nice
intervals, see Section 4. However, since we have no analogue of the “no
wandering interval” result from real dynamics, it is not true in all generality
that N, J,(z) = {z}. Therefore, Proposition 1 can only be used to show that
there is a unique invariant probability measure which is measurable with
respect to the partition into atoms N, J,(z), = € w(0).

Proposition 1 does generalize to the real multimodal case; for the defini-
tion of nice intervals and its children in the multimodal setting, we refer to
[18].
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2.3 SRB-measures

For this subsection, we allow f to be a multimodal interval map with non-
flat critical points, with a finite set Crit of non-flat critical points. Assume
also that f has only repelling periodic points. Such maps have no wandering
intervals (cf. [26]). According to [5, 34], the Lebesgue measure has finitely
many ergodic components, and the number of ergodic components is bounded
by the number of critical points. For each ergodic component, the set of
“typical points” E has positive Lebesgue measure, and satisfies exactly one
of the following properties:

1. There exists € > 0 such that for any x € F

1 )

limsup —#{0 <i<n | f'(z) ¢ B(w(Crit),e)} > 0. (4)
n—oo 1N

In this case, there is an acip with E as set of typical points, see Propo-

sition 2.

2. For all £ > 0 such that for any z €

lim %#{0 <i<n| fiz) € Bw(Crit),e)} = 1. (5)

n—oQ
In this case, any possible physical measure is supported in w(Crit).

In the next two propositions, we prove that a physical measure p is either
absolutely continuous, or supported on w(Crit). In the unimodal setting,
Hofbauer and Keller [15] proved the stronger statement that y is either abso-
lutely continuous, or contained in the convex hull of the weak accumulation
points of % > 05i(0), the averages of Dirac measures along the critical orbit.
We will prove the weaker statement for multimodal maps without the use of
Markov extension arguments.

Proposition 2. Let f be a C? multimodal map with only repelling periodic
points, having an ergodic component such that (4) holds for its set E of typical
points. Then f has an acip u, and supp(p) is a finite union of intervals.

Proof. Take £ > 0 such that (4) holds. Since f has no wandering intervals,
Unf ™(Crit) is dense. For some large M > 0, take N so large that P :=
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Un<n f"(Crit) is an 537-spanning set. For at least one component J of

I\ P, u(J) > 0 with J N B(w(Crit); ) = () we have
1 .
limsup—#{0<i<n| f(zr)eJ}=n>0
non

for m-a.e. z € E. By construction of P, f"(dJ)NJ = @ for all n > 0.
Therefore, the first return map F' : J — J has only monotone onto branches
and each branch F;: .J; — J can be extended to a diffeomorphism ﬁ’, j, —
J where J is a M-neighborhood J of J. Because we are assuming that
all periodic points are repelling, by Theorem C.2 in [34], F; has bounded
distortion. (The argument for this goes as follows: take a neighborhood U of
the critical point, let F; = f™ and let s; < n; be the last visit of J; to U. By
Kozlovski’s theorem [17] (or its multimodal version in [34]), %! has negative
Schwarzian, and by Mané, f™~*~! has bounded distortion. Combined this
gives the required statement.) In particular, |[DF(x)| is uniformly bounded
away from 1. By a telescoping argument, we can derive that the distortion
of all branches of all iterates of F' are bounded uniformly as well.

Let Jy C J be the set of points on which F* is defined for all k. Then
Jo is forward invariant under F' and m(Jy) > 0. The Folklore Theorem [23]
gives an F'-invariant absolutely continuous probability measure, say v, such
that v(Jo) = 1, and % is bounded and bounded away from 0. From this it
easily follows that supp(v) = Jq.

For z € .Jy, define the return time 7(x) > 0 such that F(z) = f7@)(x),
and let 7x(z) = min{N, 7(z)}. Then 75 € L'(v), and by Birkhoff’s Ergodic
Theorem, v-a.e. x € Jy satisfies

n—1 n—1

1 . 1 . 1
/TN dv = lim — Y w(Fi(z)) < lim inf —  r(Fi(z) = ;<o
1=0 i=0

This shows that 7 := [ 7dv < co. Therefore we can pullback v to obtain an
absolutely continuous f-invariant probability

u(4) = = Y (A0 = ).

The support of 4 is the forward orbit of J C E. Since E contains no non-
repelling periodic orbit and there are no wandering intervals, supp(u) is a
finite union of compact intervals. O
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Since we proved Proposition 1 only for unimodal maps, we will state the next
result in this case. The multimodal version holds just as well.

Proposition 3. Suppose that a C? non-renormalizable unimodal map f has
small combinatorial complezity, i.e., >, 1/G, < co. Suppose also that (5)
holds for m-a.e. = € [f%(0), f(0)]. Then f has a unique physical measure
supported on w(0).

Proof. Condition (5) only implies that for Lebesgue a.e. x, any accumulation
point of Cesaro means of Dirac measures 2?2—01 dfi(z) is an invariant measure
supported on w(0). But by Proposition 1, f|w(0) is uniquely ergodic. There-
fore the invariant measure on w(0) is physical. O

Remark 4. For C? non-flat multimodal maps with all periodic points re-
pelling, compact forward invariant sets that are disjoint from Crit, are hy-
perbolic and have 0 Lebesgue measure. Therefore each physical measure
contains at least one critical point in its support. It follows from [34, The-
orem E| that any critical point interior to the support of an acip cannot be
in the support of another physical measure. For singular physical measures,
this is not true; it is possible, for example, to construct a bimodal map on
[0, 1] with two Cantor attractors, such that the basins of both attractors are
dense in [0, 1].

3 No decaying geometry implies low combi-
natorial complexity

Throughout this section we consider a map f = f.. For any interval I, let
al denote the interval of length «|I| that is concentric with /.

Let I be a nice interval. Let us denote the first entry domain to I con-
taining x by £,(I). The interval I is called d-nice, if for each z € I Nw(0)
we have (1 +26)L,([) C I.

Lemma 3. There exists 6 > 0 such that of I > 0 is a nice interval with a
non-central return (i.e., with R;(0) ¢ Lo(I)) then

(1+28)L3(1) C Lo(I).

Moreover, for each € > 0 there exists n > 0 such that if |Lo(I)| > (1 —n)|I|
then
[L5(1)] < el Lo(T)]-
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Proof. See [24] as well as [34]. O

Lemma 4. For any N and p > 0, there exists p' > 0 such that if J is a
pullback of a nice interval I with order bounded by N, and if (1+ 2p)J C I,
then J is a p'-nice interval. Moreover, p' — o0 as p — oo.

Proof. See Lemma 9.7 in [18]. O

Lemma 5. For any p > 0, § > 0 there exists r > 0 such that if I is a d-nice
interval and K1 2D Ko 2 ... are children of I, then I D (1+2p)K; fori > r.

Proof. For each ¢ > 1 there exists s; € N such that f%~! maps a one-side
neighborhood 7; of f(K;) onto I. Clearly, f%(K;;1) is contained in a return
domain of /. By the real Koebe principle, 7; contains a definite neighborhood
of fK;,, and hence K; contains a definite neighborhood of K;,;. The lemma
follows. O

Lemma 6. For each p > 0 and § > 0, there erists N = (p,0) with the
following property. Let I be a 6-nice interval and let T be its smallest child.
Let I :== I° > I' D I?... the principal nest corresponding to I, i.e., I' =
Lo(I'™Y) for i > 1 and let m be a positive integer such that Ryi(0) = Ro(0)
fori=0,...,m—1. If there exists N' > N and z € w(0) such that R}(z) €
(I\NI™) for 5 =0,...,N" and at least N of these points are in I \ I', then
(1+2p) C 1.

Proof. Let us show that I has at least N children. Write R := R; and let
ny <mng <---<ny < N beso that R"(z) € I\ I'. Since z,...,R" (2) ¢
(I\I™), R™*! maps a neighborhood J; of z diffeomorphically onto I. (Here
we use that R maps a component of I*\I**! 1 <4 < m—1, diffeomorphically
onto a component of I*"1\ I*.) Tt follows that K; := Ly(J;) is a child of I.
Since J1 2 Jy 2 --- 2 Jy we also have Ky D Ky D --- D Ky, ie., I has
at least N children. So if we let r be the integer associated to ¢ and p from
Lemma 5 then the conclusion of the lemma holds if N > r. O

Proposition 4. Assume that f is non-renormalizable and persistently re-
current. Let T® DTt D --- 3 0 be a sequence of nice intervals as in Section
2. For each p > 0 there exists C' so that for any n > 2, if the combinatorial
complezity G, > C, then T™*? is p-nice.
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Proof. By Lemma 4, there exists 7 = 7(p) > 0 such that [ is p-nice if
IT™+2|/|T™| < 7 since T2 is a pull back of I of order 2. Assuming that
|L"*2| /[T > 7, let us show that G, cannot be too large.

Let I = '™ and let I’ be the corresponding principal nest. Let 7(0) = 0
and (1) < i(2) < --- be all the positive integers such that R;;—;(0) ¢ I'9).
Choose 7 so that I"™ C I"*! C I" and let ¢ be maximal with i(q) < r. By
Lemma 3, ¢ is bounded from above by a constant g(7).

Claim. There exists § = 6(7) > 0 such that I*C) is a d-nice interval for
all 0 <5 <q.

First let us consider the case 1 < j < ¢. As I')+l 5 T™+2 we have
|1*9)+1| /| I"'0)| > 7, which implies by the second statement of Lemma 3 that
|1°9)| /| I*9)~1| is bounded away from 1. By Lemma, 4, there exists § = §(7) >
0 such that I') is §-nice. Now let us consider the case j = 0. Again by
Lemma 4, it suffices to show that I° = I'" is well inside ["~2. To see this,
let I = "2 and for ¢ > 1, I' = Lo(I?), and let m > 1 be minimal such
that R, 1(0) ¢ I™. As T2 N w(0) contains a point outside I', we have
I™ c ™! and hence I™! > I'. By the first statement of Lemma 3, it
follows that

(14 280)I™ C (1 + 280)I™ ¢ I™ c T2,

This completes the proof of the claim.

Now let N = N(77',6) be as in Lemma 6. Let us show that G, < N9*1.
To this end, let y € w(0) NT™ be such that G,(y) = G, > C and let s > 0 be
minimal such that f*(y) € T"*!. Note that if 0 < 7 < r and I' is central, i.e.,
Rpi-1(0) € I*, then Rpi-» maps I* \ I'™ into I*"! \ I*, so in the definition of
combinatorial complexity, visits to I'\ I'*! do not contribute to G,. Therefore

q
#HO0<k<s:fry e JIrO\rov>g,

j=0
For j > 0, let
v(j)=#{0<k<s:ffz)e J) \]i(j)+1}.

Note that v(¢+ 1) = 0.

Let us show that for any 0 < j < ¢, v(j) < (v(j+1)+1)(N —1). Indeed,
otherwise, there exists 0 < s’ < s such that the orbit {f*(y)};i_, visits
I'0) \ I'O)F1 at least N times before it enters I°U*1). By Lemma 6, this,
together with the claim above, implies that if K; is the last child of I*) then
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(1 + 27 YK; C I'0). Noticing I'V) D T+ we have K; D ™2, Therefore

(1427 HT"*2 ¢ I'9) ¢ T, contradicting the hypothesis [T"2|/|T"| > 7.
It follows that v(j) < N9 9t — N9J forall 0 < j < ¢q. So G, <
1 v(j) < No*. =

Proof of Theorem 2. The first part of Theorem 2 follows from Proposi-
tions 1 and 3, and the second part from the previous proposition. O

Proof of Theorem 4. Assuming that f is not uniquely ergodic on w(0),
let us show that f has no Cantor attractor. For the reason explained at the
beginning of Section 2, we may assume that f is non-renormalizable. More-
over, we may assume that f is persistently recurrent as this is a necessary
condition for the existence of Cantor attractors, see [20, 7.

By Proposition 1, the combinatorial complexity G,, tends to co as n — oo.
Furthermore, Proposition 4 states that for n sufficiently large, I'" is p-nice,
and hence (1 + 2p)Ly(I'™) C T'™ for p large.

To prove non-existence of Cantor-attractors, we will use a by now stan-
dard random walk argument on an induced map, see e.g. [9]. Let us first
define the inducing scheme: Let R, : '™\ Lo(I'™) — I'" be the first return
to I'". Recall that for each n > 1, there exists s, such that f*»~! maps a
one-sided neighborhood of f(I') monotonically onto I'"~'. Let j be minimal
such that R)_, o f*»|T', has a branch whose image intersects Lo(I'"""!) but
is properly contained in ['~!. This branch is part of the central branch of
fsntt for some ¢t > 0. Let V,, be the maximal neighborhood of 0 such that
fort(OV) C OLy(T™ ) and fo*=L|f(V) is monotone. Then V, D I'*!
because otherwise f*» (') contains a boundary point of Lo(T™™1). More-
over, the central branch of f*»** covers a boundary point of " !. Because
Lo(T™1) lies deep inside I, V,, lies deep inside I'™.

Now we define R. For z € V,, \ """}, let R(z) be the first return map to
™+ Hence R|V, \ I'""*! has (countably many) branches onto ['"™*!.

For z € T"\ V,, let R(z) = RI®) o f*(z) where j(z) > 0 is minimal such
that there is a neighborhood U, such that Rfl(ﬂ o f*» maps U, monotonically
onto I'""!. Obviously, j(y) and U, are the same for all y € U,.

Using this definition for all n, we find that R is defined Lebesgue a.e.,
and it is a Markov induced map preserving the partition generated by the
intervals I'".
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To describe the random walk, let a, = n if RF(z) € T"\T™*!. The o4 can
be considered as random variable which satisfy the conditional probabilities

m(ax =n and oy =n — 1)

>1- O(pl)a

m(ax =n)

and
m(ax =n and a1 =n+7)

< O Pn—l—r Fn
R — < o /),
which decreases at least exponentially fast in . Therefore, provided C' and
hence p' are sufficiently large, the drift of the random walk is

ar =n and gy =n+7) 1

m(
= = < ——
E(ag1 |ax = n) T>El r (or =1) < -5

for n sufficiently large. A similar computation shows that the variance is
bounded as well. Hence we can apply the random walk argument from [9] to
conclude that lim inf oy < oo for Lebesgue a.e. x, excluding the existence of
a Cantor attractor. O

4 Yoccoz puzzle

Let us consider the family f, = 2¢ + ¢ parametrized by ¢ € C. By definition,
the filled Julia set K. of f, is the completion of the open set

A(o0) ={z€C: fl(z) = o0 as n — o0},
which is the attracting basin of infinity. The Green function
1
Ge:C—= Ry = {t > 0},2 = lim - log™ [ f(2)],

is a subharmonic function vanishing exactly on the filled Julia set K.. The
classical Bottcher Theorem provides us a unique conformal representation

B.:{z:G.2) > G.(0)} = {z]|z| > r.}, where logr. = G.(0),

which satisfies B!(c0) = 1 and B, o f, = (B.)".
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The Green function is equal to log|B.| on the domain of B.. The level
curve {G.(z) = r},r > 0 is called the equipotential curve of level r, and
denoted by E.(r). The external ray of angle t € R/Z is the gradient curve
of G. stemming from infinity with the angle ¢ (measured via the Bottcher
coordinate B.), and denoted by R.(t). When c is contained in the Multibrot
set

M = {ceC: K, is connected},

the map B, is defined in the whole complement A.(co) of the filled Julia set
K., and so R.(t) = B, 1({re*™ : r > 1}). In this case, any external ray R.(t)
with ¢ rational has a well defined landing point lim,_,;+ B, ! (re?™®) which is
contained in the Julia set 0K ; vice versa, a repelling or parabolic point is
the common landing point of finitely many external rays with rational angle.
When K, is disconnected, provided that arg B.(c) # ¢*t for all k£ > 1, the
external ray R.(t) is still a smooth curve joining infinity and 0K,, so each
point in R.(t) has a well define potential.

For every ¢ € C, the domain of B, contains the critical value ¢ of f. so
that B.(c) is well defined. By [11], the set M is connected and the map
®(c) = B.(c) defines a conformal map from C \ M onto C \ D. As in the
dynamical plane, the parameter (external) ray of angle t € R/Z is the set

R(t) = &' {re*™ . r > 1}),
and the equipotential of level » > 0 is the closed curve
E(r)={ce C\ M :log|®(c)| =r}.

Let H denote the component of the interior of M which contains 0. This
is the region where f. has an attracting fixed point. For ¢ € (M \ H)NR, f.,
has an orientation fixed point o, in R. There exist exactly two external rays
R, (t7), R (t") landing at «,, see Lemma 5.2 in [18]. These two external
rays are symmetric to each other with respect to the real axis, and permuted
by fe:
- =t 0t~ =t", mod 1.

Arguing as in Theorem 2.1 in [27], the corresponding dynamical rays R(¢")
and R(¢") land at a common point v € R. The configuration R(¢")UR(t+)U
{7} cuts the parameter plane into two connected components, and we use
W to denote the one which does not contain 0 (the 1/2-wake). The set
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W consists of all ¢ for which f. has a repelling fixed point a, at which the
external rays R.(t1) and R.(¢") land. In particular,

WD M\H)NR S c.

4.1 Yoccoz puzzle

Now let us recall the definition of Yoccoz puzzle for c € W. Let X = {z €
C : G¢(z) < 1/¢"}. By definition, the Yoccoz puzzle of f. is the following
sequence of graphs:

St=oxpu|xn |J R
te{ttt=}
St =f"S0 n=1,2,....

c

A component of X\ S* = f,"(X2\ 5?) will be called a puzzle piece of depth
n. A puzzle piece of depth n which contains a point z will be denoted by

Definition 1. Let m > n > 0 be integers. We say that P™(0) is a child of
P™0) if fm—n=1: Pm=1(¢) — P(0) is a conformal map.

Lemma 7. Assume that ¢ € W N R s such that f. is non-renormalizable.
Then P2(c) € Pl(c).

Proof. Otherwise, Py(c) contains —a, in its closure. As ¢ € R, this implies
that P»(0) N R is a periodic interval of period 2, contradicting that f. is
non-renormalizable. ]

4.2 First return maps

Consider a map f = f. with ¢ € W. Let V be a puzzle piece which contains
0. Let D(V) ={z € C: 3k > 1 such that f*(z) € V}. The first return map
gy is defined as follows: for each z € D(V) NV, if k > 1 is the return time
of z to V, i.e., the minimal k > 1 such that f*(2) € V, then gy (2) = f*(2).
It is well-known that the return time is constant on each component P of
D(V) NV and that gy|P is conformal if P # 0 and /-to-1 otherwise. If
0 € D(V), and V is strictly nice: f¥(V)NV =0 for all k > 1, then the first
return map gy is an R-map as defined below.
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Definition 2. Let V,U;,7 = 0,1,... be Jordan disks such that such that
the 7] are pairwise disjoint and contained in U. A holomorphic map g :
Uj2oU; — U is called an R-map (where “R” stands for “return”) if the
following hold:

e g:Uy— V is an f-to-1 proper map with a unique critical point at 0,
e foralli>1, g:U; =V is conformal.

The renormalization Lg is, by definition, the first return map of g to Uy,
which is again an R-map provided that ¢*(0) € U, for some k > 1.

The following is a lemma which we shall need later.

For an R-map g : |J,U; = V define

mod(g) = mod(V \ Up), mod'(g) = inf{mod(V \ U;),i > 1}.
Lemma 8. Let g : | JU; — V be an R-map. Let W be a return domain to
Uy (under g) such that Lg|\W = g*|W. Then

1
mod(Up \ W) > Z((S — 1)mod'(g) + mod(g)). (6)

Proof. For each 1 < j < s, let i; be such that U;, > ¢/ (W). Then i; _;é 0
forall 1 < j < s—1andi;, = 0. Let Q; be the component of ¢g~7(V)
containing g(W) for j =0,1,...,s. Then W = g }(Q;). For any j < s —1,
¢ (@5, Qj+1) = (V,Ui,,,) is a conformal map. So

s—1

mod(V'\ Q) > Z mod(Q; \ Qj+1)

§=0

= im()d(v \ Uij+1) > (3 — l)ﬁmod'(g) + mod(g).

Jj=0

Since mod(Up \ W) > mod(V '\ Qs)/¢, the lemma follows. 0O

4.3 Holomorphic motion

Definition 3. A holomorphic motion of a set X € C over a complex manifold
D is a map

h:DxX —>DxC, (\z)— (XA hrz)),

which satisfies the following properties:
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e for any A € D, hy : X — C is injective;
e for any z € X, A — h,(z) is holomorphic;
e h, = idx for some * € D.
We shall also say that h is a holomorphic motion of X over (D, ).

Optimal A-lemma. (Slodkowski [33/) Let D C C be a topological disk and
let cg € D. Given any holomorphic motion h of a set X C C over (D, cy),
there exists a holomorphic motion h of C over (D, co) such that h|Dx X = h.

Moreover, h, is a K(r)-gc map, where r is the hyperbolic distance between c
and ¢y in D and lim, o K(r) = 1.

We shall use the terminology tube for a holomorphic motion h of a Jordan
curve vy over a Jordan disk D. We say that the tube is proper if h extends
to a homeomorphism from D x 7 onto its image. A holomorphic motion h
of a closed Jordan disk V over another Jordan disk D will be called a filled
tube. A filled tube is called proper if the restriction h|D x 9V is.

Given a filled tube h: D x V — D x C, a holomorphic map ¢ : D — C
will be called a diagonal of h if the following hold:

o(c) € he(V) for all c€ D,
e ¢ has a continuous extension to D, and
e ¢ h; ! op(c) defines a homeomorphism from 0D onto 9V .

By the Argument Principle, for each z € V, the equation h.(z) = ¢(c) has a
unique solution in D. See [21].

Lemma 9. There exists M > 0 with the following property. Let D be a
Jordan disk. Let V > U be Jordan disks with mod(V \ U) > 2M. Let h :
D xV — D x C be a proper filled tube and let ¢ : D — C be a diagonal of h.
Assume that for each ¢ € D, there exists a 2-qc map he : V —U — he(V -T)
which coincides with h, on OV UOU. Then D' ={c€ D : h;*(¢(c)) € U} is
a topological disk, and

mod(D \ D') > %mod(V \U) - M.
Proof. See Section 4.3 in [21]. O
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4.4 Parapuzzle

Let us define the Yoccoz parapuzzle as follows. Let X" = {¢ € C\ M :
log |®(c)| < 1/¢"} and T,, = {t € R/Z : £t € {t*,¢t"}}. Define

=0x" U (g R(t )

A component of X"\ 8" is called a parapuzzle of depth n and denoted by
P..(c) if it contains c.

The following lemma describes how the combinatorics of Yoccoz puzzle
changes with the parameter.

Lemma 10. Let ¢y € FP. Then for any n > 2, there exists a holomorphic

motion
Pn : Pn(CO) X (C — PTL(CO) X C7 (Ca Z) = (C7 h"fl,C(Z))

such that for each ¢ € P,(co), the following hold:
1. for each 0 <i<n, S = pn,c(Sgo);
2. for each z & X7, pn(2) = Bc_1 o B, (2);
8. forall1<i<mn andallz €S}, feoPnc(2) = Pneco fe,(2).

Moreover, the restriction p,|Py(co) x P2 (co) is proper filled tube which has
the identity map as a diagonal.

Sketch of proof. We shall only give a sketch of proof here. For the details we
refer to Section 2 in [30]. Although only quadratic polynomials are considered
there, the proof works through in the general unicritical case.

We take p,, to be the restriction of holomorphic motion H,, ; constructed
in Lemma 2.5 of [30] to P,(cp) x C. Assuming n > 2, let us show that
Pn|Pn(co) X P (co) is a proper tube. For n = 2, by Lemma 7, we have
P%(c) € P}(c), which implies that Py(co) € Pi(co) by Lemma 2.8 in [30].
For n > 2 one proceeds by induction. The fact that the identity map is a
diagonal to the filled tube follows from Lemma 2.6 in [30]. O

Remark 5. Clearly, the map p, . is holomorphic outside X. For any 2z €
S\ Kegs Pnyc(2) € S; \ K. and B, o p,o(2) = Be,(2).

Remark 6. As t* = —¢ mod 1, the set 8" is real-symmetric. Conse-
quently, any parapuzzle piece which intersects R is real-symmetric.
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5 Properties of the Julia sets

Given a topological disk 2 and a set A, define

m(p(AN Q)
m(e(2)

where ¢ runs over all conformal maps from {2 into C and m denotes the
planar Lebesgue measure.

A(A|Q2) = sup
7

Definition 4. Let V be a topological disk, and let U;, + = 0,1, . .. be pairwise
disjoint topological disks contained in V. We say that the family {U;} is e-
absolutely-small in V if A(|J, U;|V') < €, and for each %, the diameter of U; in
the hyperbolic metric of V' is less than e.

The main result of this section is the following:

Theorem 5. Consider a map f = f. with c € DG. Then for any e > 0, there
exists a critical puzzle piece Y such that the collection of the components of
the domain of the first return map to Y 1is e-absolutely-small in Y .

5.1 Extendibility

For a puzzle piece Y, let D(Y) denote the set of all points z for which
there exist k = k(z) > 1 with f¥(2) € Y, let E(Y) = D(Y)UY, and let
gy : D(Y)NY — Y denote the first return map to Y.

We shall say that a Jordan disk Y D Y is an extension domain of gy,
if for each component U of D(Y) N'Y, there exists a Jordan disk U with
Y > U D U such that f5': f(lA]) — Y is a conformal map, where s denotes
the return time of U to V, i.e., gy |U = f*|U. We say that gy is C-ezxtendible
if there exists an extension domain Y with mod(Y \ Y) > C.

A critical puzzle Y is called C'-nice if for each return domain U to Y we
have mod(Y'\U) > C. Remark that if gy is C-extendible, then Y is C'/¢-nice:

mod(Y \ U) > mod(U — U) > mod(Y \ Y)/¢ > C/L.
The following lemma will be convenient for us to find extension domains.

Lemma 11. Let Y D Y be puzzle pieces such that fEeY)n Y =0 for all
k>1.
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e IfY 50, then Y is an extension domain of gy.

o If Z is a critical puzzle piece such that fs_lA: f(z) — Y is a conformal
map for some s € N, and f*(0) € Y, then Z is an extension domain of
9z, where Z = Comp,(f°Y).

Proof. Let U be a return domain to Y and let 7 be the return time. For each
0 < i < rlet Q; denote the component of f"(Y) which contains fi(U).
For each 0 < i < r, Q; N Y = () for otherwise there exists z € Y with
f7(2) € Y. This shows that Q; C Y if 0 € @Q;. In particular, Qy C Y.
Moreover, this implies that @; # 0 for all 0 < 7 < r. In fact, otherwise, we
would have f{(U) C Q; C Y, contradicting the fact that r is the return time
of U to Y. This proves that Y is an extension domain of gy. For the second
statement, one checks that f¥(8Z) N Z = @ for all k > 1 and then applies
the first statement of the lemma. O

5.2 A recursive argument

To prove Theorem 5 let us start with a slightly more general situation.

Lemma 12. For any € > 0 there exists C' > 0 such that if Y is a critical
puzzle piece and if the first return map gy is C-extendible, then

mEADY) € -
m(Y \ D(Y)) + em(Y) 47

1= MEYY) >

where Y is the critical return domain to'Y . Moreover, if Y’ is a child of Y,
then

(L—emT\DY)) _ _1-MDI)]Y)

L= MDY 2 DG D)) +em(v) = 1= AD)Y) + 2

Proof. Let us use By (r) to denote the hyperbolic ball in Y with center 0 and
radius r. Let 4 > 0 be a small constant so that

A(By (20)]Y) <

| ™

Define Uy = Y \ D(Y), define V; to be the union of all components P of
Y N D(Y) with PN By (§) = (), and define W, to be the union of all other
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component of D(Y) NY. Moreover inductively define U;, V;, W; for all i > 1
as follows:

={z€eV_: gﬁ,(z) € Up};
Vi={z e Vi1 : gy (2) € o}y
= {Z eVi_1: gé,(Z) € Wo}

By definition of C-extendibility, there exits a topological disk YOV
with mod(Y \ Y) > C and satisfying the following: for each component P of
D(Y)NY, there exists a topological disk P with P C P C Y and such that
forf P — Y is a conformal map, where s denotes the return time of P into
Y. Take 7 to be the core-curve of the annulus }Af\?, i.e., 7y is the Jordan curve
in Y\ Y which separate ¥\ Y into two annuli with modulus mod(Y" \ Y)/2.
Let Y be the domain bounded by v and define P = Compp(f~*Y). Then
mod(Y \ P) > mod(Y \ Y)/(2¢) > C/2¢. If C is sufficiently large, then
this implies that if P C Vj then 0 ¢ P. Tt follows that for any 7 > 1 and
any component A of V; ;, R:|A extends to a conformal map onto Y. By
the Koebe distortion theorem, the distortion Dist(R%|A) is small. Note also
that WO - By(25) Thus

m(ANW;) = 2m(Wy) 2 m(Y) m(Wy) ~— e m(Y) "~

Since E(Y')NY C |, W;, this implies that for each component P of V,

m(P\E(YY) _ 2m(Uy)
m(PAEY) = 2 m(Y)’ (%)

Let us estimate A\(Y \ E(Y")[Y). Let ¢ be a conformal map from Y into
C. Then

m(e(Y \ E(Y)))

P\E 1)) m(p(P))
m(pY) Z + Z

) mleY)

where V), denote the collection of the components of V;. As mod(Y\ )
C/¢, Dist(p|P) << 1 provided that C is sufficiently large. By (9), t
implies
mp(P\E(YY))) o m()
m(e(P))  — m(Uy) +em(Y)’
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and hence

mle(Y\NEWY)  m(ly) (m(SDUo)+Zm(<P(P)))

m(pY) — m(Up) +em(Y)

L) (et
m(Us) +em(Y) m(e(Y))
m(Uo)
> m(Uo) +sm(Y) ( - /\(BY(Qé)‘Y))
m(U()) 9

(1-=

— m(Up) +em(Y)

This proves (7).
Now let Y’ be a child of Y and let s be such that f*(Y’) = Y. As
Y' C Y, we have A(E(Y")|Y) < ME(Y1)]Y). Let Qo 2 0, Q1, Q, - .. be the
components of f~*(D(Y))NY', andlet Z={i>0:i=0or f5(Q;) =Y'}.
Then
AT < 0+1.

As mod(Y"\ @;) > mod(Y'\ f5(Q;))/¢ > C/¢? for all i, it follows that
N €
1€L

provided that C' is sufficiently large. Let ¢ be any conformal map into C,
and let Uy = f~5(Uy) NY"'. For any i ¢ Z, Ry o f* maps @; conformally onto
Y and maps @Q; N D(Y') onto Y N E(Y"), so

m(p(Qi \ D(Y"))) B ,
me@) = A‘E(Y))'Y)
m(UO 9
— m(Up) +em(Y) (1= Z)'
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Thus

m(e(Y'\ D(Y"))) _ m(e(Up)) ) m(e(Qi \ D(Y"))) m(o(Qi))
m(p(Y")) m(e(Y") oz me(@))  me(Y"))
m(Up) _ € _ m(p(Qi))
2 o) +em@) - @ (1 m(eo(Y’))>
m(Up) 5 €
= m(Up) +em(Y) (1- Z) <1 )
m(Uy) .
7 @) ey
—ADM)Y)

2 T hpmm ¢
0

Remark 7. Note that the first part of (8) implies that (provided that gy is
C-extendible with a large C), 1 — A(D(Y")|Y") > 0. This follows from the
simple observation that Y — D(Y") has a non-empty interior.

5.3 Proof of Theorem 5

Proposition 5. Assume that ¢ € DG. Then there exists a sequence of critical

puzzle pieces
R

and a sequence of numbers C,, — o0 as n — 0o such that the following hold:
e for each n, Y11 ts a child of Yy,;
e the first return map to 'Y, is C,-extendible.

Proof. We shall distinguish two cases.
Case 1. f, is reluctantly recurrent.

Step 1. Let N € N be such that PY(0) has infinitely many children.
Then for all n > N, P*(0) has infinitely many children. In fact, if PV74(0)
is a child of PY(0), and if k£ > 0 is minimal such that f***(0) € P*(0), then
PHRs(0) is a child of P™(0).

Step 2. Let V be a critical puzzle piece of depth > N, and let U be its
central return domain. We claim that there exists an arbitrarily large s € N,
such that f*(0) € U and W = Comp,(f *V) is a child of V.
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To see this, fix a positive integer M. There exists s; > M such that
W1 = Compy(f*'V) is a child of V. As 0 is recurrent, there exists a minimal
m € NU{0} such that g{*(f*(0)) € U, where gy denotes the first return map
to V. By minimality of m, there exists a neighborhood @ of f°1(0) such that
g7 maps @ conformally onto V. Let W := Comp,(f*'@Q). Then clearly W
is a child of V' with transition time s > s; > M and f*(0) € U.

Step 3. Let U,V be as in Step 2. Assume that U € V. Let us show that
for every C > 0, any child W of V' with a sufficiently large transition time is
C-nice.

Let s; < s3 < --- be all the positive integers such that f*~(0) € U
and such that W} = Comp,(f~*"V) is a child of V, n > 1. Then W, :=
Comp,(f~*"U) is a child of U. Let Wj = V and W, = U. Note that
W, D W], for all n. For all n > 1, since f* : W, \ W, — V\U is a
covering map of degree £,

mod(W! \ W,) = pu:=mod(V \ U)/¢ > 0.

To complete this step, let us show that if W is a child of V' such that W C
Wi—1, then W is nu/f-nice.

To this end, let s € N be such that f*(W) = V. Let P be a return
domain to W and let r be the return time. Clearly, » > s. If r = s, then
f5(P)=W,so

__ n—1
S w > 'Y mod(Wi\W5) = nu/t.

1=0

mod(W \ P)

If r > s, then f*(P) is a landing domain to W. For 0 <i <n—1, let Q}, Q;
denote the landing domain to W/ and W; respectively. Then mod(Q;\ Q;) >
mod(W/\W;) > . Since f*(P) C Qn_1, it follows that mod(V'\ f*(P)) > npu
and hence

mod(W'\ P) > mod(V'\ f*(P))/€ = nu/t.

Step 4. Let us now complete the proof of Theorem 5 in the reluctantly
recurrent case.

Let us first prove that there exists a 1-nice critical puzzle piece Y;. Take
a critical puzzle piece V of depth > N, such that its central return domain
U is compactly contained in V. Such a puzzle piece exists: one can take V'
to be a critical pull back of P3(0). By Step 3, V has a 1-nice child which is
Yi.
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Once Y;, 1 is defined, let Y5, its the central return domain. By Step
2 and Step 3, there exists s, € N, such that f*=(0) € Yj,, and W/ =
Compg(f*"Ya,_1) is a child of Y5, 1 and W,, = Comp,(f*"Ya,) is (n + 1)-
nice a child of Y,. Define Y?"*! = W,,. Note that by Lemma 11, W/ is an
extension domain of the first return map to Y5,,1. It is easy to see that so
defined Y,,,n > 1 satisfies all the requirement in this proposition.

Case 2. f. is persistently recurrent and there exists a chain of nice intervals
' 5T > --- 3 0 such that ™" is the smallest child of I' and so that
[T+ /|IT™| — 0 as n — oo. Now let us consider the enhanced nest of puzzle
pieces I, D K, D L, D I,;; D ... defined in Section 8 of [18] and let
1,, L,, K, be their real traces. This construction is based on the fact that to
each critical puzzle piece I one can associate an integer v so that if we define

A(T) := Compy(f~(Ly0)(D)) C B(I) := Compy(f~(I))

then f”: B(I) — I has degree bounded by some universal constant and B(I)—
A(I) is disjoint from the critical set. (In fact, in the unicritical case one can
choose v so that L )(I) = Lo(I).) If we denote the smallest child of I by
['(I) then the enhanced nest is inductively defined by L, = A(I1,), K, =
B(1,),L,,; = I'T(L,) where T is a fixed integer chosen in Section 8.1 of [18].
By this construction, there exists some fixed 7' so that I,,,; is a descendant
of I, of generation < 7" with 7" fixed. Hence there exists a sequence of
puzzle pieces Y7 ® Y; 3 Y; © ... such that for each n, Y,,; is a child
of Y,, and so that the puzzle pieces from the enhanced nest all appear in
the sequence Y1,Ys,.... By the Key Lemma stated in Section 4 in [18],
there exists n = n(¢) > 0 such that for all n sufficiently large, I,, has -
bounded geometry: B(0,ndiam(I,)) C I,. Moreover, there exists £ > 0 and
a neighborhood I, of I, so that I, Nw(0) C I, and mod (I, \ I,) > & for
each n > 0. It follows that all Y; have ' bounded geometry for all i large,
see [18].

By construction, for any n, there are at least two nice intervals I'* and
[+ between I, and I,,,;. It follows that |I,,|/|I,| tends to zero. Hence,
by Proposition 8.1 in [18], sup,e, 0z, [Lz(Ln)|/[1n] — 0 and by the bounded
geometry mod(I, — L (g)(I,)) — oo. Since f¥(L pun()1,)) Nint(L,) = 0 for
all £ > 1, we can apply the second part of Lemma 11 (possibly repeatedly
if B(I,) is not a child, but a grandchild I,), and obtain that B(L,) is a C,-
extension domain of the first return map to L, = A(I,,) with C,, — oc. Since
B(I,)\ L, is disjoint from the critical set, we can repeatedly apply the second
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part of Lemma 11 to the children (and their children) of L,,. Since we only
need to repeat this at most 7" times until we get to L, ;, this implies the
Ci-extendibility of the first return maps to each of the puzzle pieces Y; with
Cl — 0. O

Proof of Theorem 5. Let Y,,n > 1 be as in the above proposition, and let
tn =1—X(D(Y,)|Y,). By Remark 7, there exists ng such that for all n > ny,
iy > 0. By Lemma 12, for any € > 0,

Hn
> 1—¢),
Nn+1_Mn+€( )

holds for all n sufficiently large, which implies that

liminf y, > 1 — 2¢.

n—oo

Therefore, lim,, p, = 1. O

6 Pseudo-conjugacy

Definition 5. Let g : |J,U; — V and § : J,U; — V be R-maps. A qc
map ¢ : C — C is called a pseudo-conjugacy between them if ¢ maps V'
onto V', U; onto U;, and respects the boundary dynamics: for each z € oU;,

pog(z) =gop(z)

Proposition 6. Let g and g be R-maps, and let ¢ be a pseudo-conjugacy
between them which is conformal a.e. outside the domain of g. There exists
a universal constant g > 0 such that provided that {U;} is eg-absolutely-small
in 'V, there exists a qc pseudo-conjugacy v such that 1 = ¢ on C\ |J,U;;
and such that 1 is 2-qc on C\ Uy.

For the proof we need the following lemma.

Lemma 13. There exists an &1 > 0 with the following property. Let ¢ : Q) —
Q be a K-gc map between Jordan disks and let A C Q be a measurable set
with A(A|Q2) < e1. Assume that ¢ is conformal a.e. outside A. Then there
exists a max(K/4,2)-qc map ¢ such that $ = ¢ on 0.

Proof. Without loss of generality we may assume that ) = Q = D. Moreover,
we may assume that K < 8, because otherwise ¢ can be written as the

31



decomposition of two qc maps @5 o @1, such that ¢; is 8-qc and conformal
a.e. outside A, and ¢, is K/8-qc.

Assuming that ¢; is small, let us prove that ¢|0D extends to a 2-qc map
from D onto itself. By classical quasiconformal mapping theory, it suffices to
show that if a, b, ¢, d are consecutive distinct points in D with

d—ac—b 1

c—ad—b 2’

then Cr(h(a), h(b), h(c), h(d)) is close to 1/2. Let us consider Mdbius trans-
formations o, 7 such that o(a,b,c) = 7(h(a), h(b),h(c)) = (1,—i,—1), and
let =T o poo ! Notice that o(d) = —i and 7(¢(d)) = ¢(—1i). It suffices
to show that ¢(—i) is close to —i. Note that ¢ is 8-qc and conformal a.e.
outside A = o(A). As

Cr(a,b,c,d) =

(4)

— L < )NAD

m(]D)) = ( | ) < é,
the desired estimate follows from the formula for the solution of Beltrami
equations. See Chapter 5 of [1]. O

Proof of Proposition 6. Let Q be the collection of all gqc maps # which coin-
cide with ¢ on C\ V, and let Ky = inf{K () : # € Q}, where K () denotes
the maximal dilatation of §. For each K > 1, all K-qc maps in Q form a
compact family, so there exists 6y € Q which is Ky-qc.

Define 1) : C — C to be the map such that ¢y = ¢ on C\ Ui;éo U;, and
such that § o1 = 6, o g holds on U#O U;. Then v is a qc map. In fact, for
each k£ € N there exists a homeomorphism v, : C — C such that ¢, = 1 in
Ule U; and 9y, = ¢ otherwise. By Lemma 2 in [12], for each k, v is qc with
K(¢y) < max(K(p), Ky), thus ¢ = limy ¢ is qc. Note that ¢ is conformal
a.e. outside | J; U; because it coincides with ¢ in that region. Moreover, 1 is
Ky-qc on U#O U;.

Now let us apply Lemma 13 to show that there exists a map 6; € Q which
is max(Ky/2,2)-qc. Let v C V\Up be the Jordan curve which separates V\U,
into two annuli with modulus mod(V \ Up)/2 and let Ay be the Jordan disk
bounded by . Then provided that £¢ < €;/2 is small enough, mod(V \ Ay)
is large, so that A(Ag|V) < &1/2. Let Ay = U, Ui, A = AgU A;. Then
AA|V) < &1. Moreover, there exists a 2Ky-qc map x : Ay — 0(Ag) with
x = 1 on dA4,. Extend x to be a qc map from V to V by setting x = ¢ on
V' \ Ap. Then x is a 2K,-qc map which is conformal a.e. outside A. The
existence of #; is then guaranteed by Lemma 13.
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By the minimality of Ky, we have Ky < max(K/2,2), i.e., Ky < 2. Thus
1) constructed above satisfies all the requirements. O

7 R-families

7.1 Construction of R-families

To transfer information from the dynamical plane to the parameter plane,
we shall use the techniques introduced in [21, 3]. We shall need the notion
of R-family.

Definition 6. Let D be a Jordan disk and let ¢g € D. An R-family over
(D, cp) is a family g of R-maps

gc:GUiyc—)VC, ceD

i=0
with the following properties:

e (c,z) — (¢, g:(2)) is holomorphic in both variables ¢ and z;

e there exists a holomorphic motion h of C over (D, ¢y) such that for
each ¢ € D, h. is a pseudo-conjugacy between g., and g.;

e the filled tube h|D x V, is proper, and the map ¢ — ¢.(0) is a diagonal
of this filled tube.

We shall say that h is an equipment of g and that (g,h) is an equipped
R-family.

Let us say that an R-family is well-controlled if for each ¢ € D, there
exists a gc map 9. : C — C such that 1), = h. on 0V, U (U, OUi,) (s0 e
is a pseudo-conjugacy between g., and g.), and such that v, is 2-qc outside
Uo,co-

The following proposition tells us how to obtain an R-family.

Proposition 7. Let ¢ € W and let n € N be such that there exists a minimal
so € N with f20(0) € P2(0), and such that f£(9P2(0)) N P2(0) =0 for all
k > 1. Then for each ¢ € Ppyso—1(co), the first return map g. to P*(0) under
fe is an R-map, and

ge, C € Pn+so—1
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1s an R-family. Moreover, this family has an equipment
h: Pn+30_1(00) x C — Pn+30_1(00) x C
such that h(c,-) is conformal a.e. on C\ dom(g.,)-

Proof. Let p,, : P, x C — P, x C be the holomorphic motion as in Lemma
10. Let Y3, Y5,..., Yy be all the off-critical puzzle pieces of depth n for f,,,
and let Y; . = p,(Yi). For any word i = 43y -- -4 1 € {1,2,...,N}* k> 1,
denote |i| = k£ and define

Yie={2€Ye: f1(2) €Wy, 0, i =0,1,...,k—1}
Wie.={z € Yi.: f¥(z) € P™0)}.

For each i € {1,2,..., N}* and each ¢ € P,, there exists a unique qc map
Qic : Yie, — Yic such that f¥ o ;. = py. o fE, which maps Yj;., onto
Yij. for every j € N and W;,, onto W;,.. Clearly, ¢;. is conformal a.e. on

Yico \ (Wi,co U U(;il Yi,j)- Note that

Qe =) Yie = {z € C: f¥(2) & P(0) for all k > 0},

k |i=k
is a hyperbolic set, and thus has zero measure. Define

0u(2) = Pic(z) if 2 € Yig, — U2, Vi
c pn’c(z) if G (2) > 1/0m.

Then ®(c, z) = (¢, pc(2)) defines a holomorphic motion of the set C\ Q,
over P,(cy). By the Optimal A\-lemma, it extends to a holomorphic motion
of C over P,(cp), again denoted by ®. Since Q., has zero planar measure,
¢, : C — C is conformal a.e. outside | J; W;i,,. Note that for all 0 < £ <
n+ so — 1, ©|PE(co) = pre|PE(co). In particular, the identity map is a
diagonal of the filled tube ®|P,(cy) X P2 (co).

Let ip,i1,... be the set of all indexes such that W; ., C P;%(c), so
organized that W; ., > ¢o. Then U;. := f~ 1(Wi].,c) are the components
of the domain of g., and g¢.|U;. = c'”'“\Uj,c. By assumption, for all j,
Uj.co € P2 (0), which implies that U;. € P7(0) for all c € P,.

Clearly, Ppiso—1(co) = {c € Pp : ¢ € Wi, }. For ¢ € Pyigy-1, the first
return map g, is an R-map. Finally, define a holomorphic motion ® of C over
Prtso—1 such that ¢(c, z) = ¢ (2) if z ¢ W, ., and such that ¢(c, ¢p) = (¢, ¢).
By pulling back ® we obtain a holomorphic motion h of C over P, 5,1 with
the desired properties. O
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Let us say that an R-family g is standard if it can be obtained as in the
proposition. Thus any standard R-family is based over a parapuzzle piece
Pim(co), and it has an equipment h so that h. is conformal a.e. outside the
domain of g,.

7.2 Renormalization of R-families

Let D be a Jordan disk, and let us consider an R-family

g ={g.:|JUic > V., ce D}. (10)

We shall use holomorphic motion to relate some sets in the dynamical plane
with some sets in the parameter plane. More precisely, for each word i =
10?1 - - - tx—1 of non-zero integers define

D; ={ce D:gl(g.(0)) € Uy, for j =0,1,...,k—1};
D; = {c € D;: g;(9(0)) € U},
and for each ¢ € D define
Ue={z€V.:gl(2) € Uije for j=0,1,...,k — 1};
Wie={z € Ui.: gF(z) € Uy}
Lemma 14. For each 4y, the renormalizations Lg., c € Dy, form an R-family.

Proof. Let h: D x C — D x C be an equipment for the family g := {g.}cep
so that h, = idc for some ¢y € Dj . Arguing as in the proof of Proposition
7, we construct a holomorphic motion

®:DxC—DxC, (¢,2) = (¢, 0:(2))

which is again an equipment of g, and maps Wj., onto Wj.. Next define

a holomorphic motion (T)|D§0 x C so that 0c(2) = (e, z) if z ¢ Wi, and

@c(co) = c. Finally pull back this & we obtain a holomorphic motion which
equips Lg.c € D; to an R-family. O

For an R-family as in (10) we define

mod(g) = inf mod(g.) = iéllf') mod(V, \ Upc).

ceD
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Lemma 15. Assume that mod(g) is sufficiently large and that g is a well-
controlled R-family. Then for each 1,

mod(D;, \ D)) > %mod(g) _ M, (11)

where M > 0 is a universal constant. Moreover, Lg = {Lg., c € D;j } is
again a well controlled R-family.

Proof. Let h and ® be as in the proof of the previous lemma. Let k£ = |ip].
For each ¢ € D, ¢, maps U, ., and W;, ., onto U;, . and Wj, . respectively.
Moreover, g¥ o ¢, = he o gk holds on 9Uj, ¢, U W, ¢,- By the assumption
that g is a well controlled family, for each ¢ there exists a qc map izc such
that h, = h, on 0V, UAUy ¢, and such that he is 2-qc outside Uy ¢,. It follows
that there exists a qc map ¢, which coincides with ¢, on the boundary of the
annulus Ui ., \ Wiy, and is 2-qc in this annulus. The estimate (11) follows
by Lemma 9.

When mod(g) is sufficiently large, mod(D \ Dj ) > mod(Dj, \ Dj,) is
large, so by the Optimal A-lemma, ¢, is 2-qc for all ¢ € D; . Therefore ¢,
is 2-qc outside Wj, .. As an equipment of Lg is obtained by pull back the
holomorphic motion 5, it follows that Lg is well-controlled. 0

Remark 8. It is clear from the argument above that if g is a standard R-
family, then for any i, D;, D! are parapuzzle pieces, and the family Lg is
again a standard family.

Before stating the next proposition, let us first give a fact on the capacity.

Lemma 16. Let Q 3 Q' be real-symmetric Jordan disks, and let J > J' be
their real traces. Assume that mod(Q\Y') is sufficiently large. Then for each
v > 1 there exists n = n(vy) such that

Cap,(J', J) < exp (—nmod(Q2\ €)).

Proof. 1t is well-known that provided that mod(Q \ ') is large enough, for
any zy € Q' there exists a round annuli A = {r < |z — 2| < R} C Q\ ¥
with mod(A4) > mod(Q\ ') — M, where M is a universal constant. Let us
take zg € Q' NR, T = (20 — R,20+ R), T' = (29 — 1,20 + r). Then clearly,
J CT' CcTcCJ, soCapy(J',J) < Cap,(T',T). For each y-qs map h from
T into R, clearly |hT"|/|hT| is bounded from above by a power of r/R. The
lemma follows. O
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Proposition 8. Let ¢y € F° and let g be a standard R-family over D =
Pinl(co). Assume that the R-family g = {g.} is well controlled, and that
mod(g) is sufficiently large. Then for any v > 1 there exists n > 0 such that

Cap,(DNR, D NR) < exp (—nmod(g)), where D = U D;.
lij<4e

Proof. Let J; = D;NR and J! = D!NR. By Lemma 9, provided that mod(g)
is large enough, for any word i we have

mod(D; \ D;) > mod(g)/2 — M > mod(g)/3.
By Lemma 16, this implies that
Cap(Ji, J;) < exp(—gmod(g)).
For any k£ > 0, the J;’s with |i| = k are pairwise disjoint, thus

Cap( U Ji,DNR) < sup Cap(Ji, J;) < exp (—Qmod(g)> )
li=+ [i=F 3

Therefore

Cap(DNR, D NR) < (4¢+ 1) exp (—gmod(g)> :

Redefining the constant 1 completes the proof.

7.3 Proof of Theorem 3

The proof of Theorem 3 is based on the following lemmas.

Lemma 17. Let ¢ € DG. Then for any C > 0 there exists a standard
R-family g over some parapuzzle piece Py, (co) such that g is well controlled
and

mod(g) > 2/C, mod'(g) > C.

Proof. Let € > 0 be a small number. By Theorem 5, there exists an arbitrar-
ily large n € N such that the domain of the first return map to P2 (0) under
feo is -absolutely small in P7(0). By Proposition 7, there is a parapuzzle
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piece Pp,(co) such that g = {g.}cep,(co) forms a standard R-family, where g,
denotes the first return map to P*(0) under f,.. Provided that € was chosen
sufficiently small, by Proposition 6, this family is well controlled and thus
mod(g) > mod(g.,)/2 is large. By Lemma 15, there is a smaller parapuz-
zle piece Py (co) (with m' > m) such that Lg.,c € Py (co) forms another
standard well-controlled R-family g. Moreover, by Lemma 8, mod(g) and
mod'(g) are both large. O

Recall that DC is the subset of Fy consisting of all the parameters c for
which the summability condition (2) holds for all & > 0. In the following we
shall use the following criterion:

Lemma 18. Let c € F. Then c € DC if one of the following holds:
1. cg F;

2. for f., there exists a nice interval I > 0 with the following property: if
we define I° = I and define I**! to be the central return domain to I*,
then |I'"TY|/I'| decreases to 0 at least exponentially fast.

Proof. In the first case, the map has no periodic attractor and the critical
point is non-recurrent. It is well known that f. satisfies the Collet-Eckmann
condition: |Df"(c)| is exponentially big in n, which implies that ¢ € DC. In
the second case, the result was proved in [25]. O

Lemma 19. For any 6 > 0 and v > 1, there exists C' > 0 with the fol-
lowing property. Let g be a well-controlled standard R-family over a para-
puzzle Pp(co) with ¢g € R such that mod(g) > 2¢C and mod'(g) > C. Let
T = Pm(Co) NR.

Cap.,(T\DC,T) < 6.

Proof. The strategy is to construct a sequence of open sets
QO =P (co) DY 5P 5 ...
with the following properties:

e for each k, Q® is a disjoint union of parapuzzle pieces Q*%) which
intersect R;

38



e for each (k, 7), there exists a standard R-family g*) over Q*+) which
is well-controlled and

mod(g(k’j)) > 2k, mod'(g(k’j)) > 2kC: (12)

e for each component P of Q*) we have

Cap,((PNR) \ (A% UDC),PNR) < 27716, (13)

The existence of these Q%) completes the proof. In fact, the equation
(13) implies that
Cap, ((T'\ [ Q") \DC,T) < 6.
k

Moreover, by Lemma 18, the modulus estimate (12) shows that for any ¢ €
TNN, 9%, ceDC.

Let us construct these sets by induction. The choice of Q(® satisfies the
requirement by assumption. Assume now that Q%) is constructed. Take a
component P of Q¥ and let g be the R-family over P which is given by
the induction assumption. For each word i of positive integers, define P; and
P! as in the previous subsection. The set Q¥+ is defined to be the union
of all sets of the form P! with |i] > 4¢ which intersect R. This is clearly a
disjoint union of parapuzzle pieces intersecting R. By Lemma 15, for each
Pi, L§., c € P; form a well-equipped R-family. Applying Lemma 8 to g., we
obtain

s 1/~ N
mod(Lg.) > (= Drmod (KQC) Fmeclde
o .
> (4¢ — 1)mod (ggc) + mod(g.) > k420

and

mod'(£4e) > %@C) > ok+1(0,

By Proposition 8, for each P,

Cap, ( U PiNR,PNR) < exp(—nmod(g))

lij<4e
< exp (—2’“6770) < 27k-1g,

39



provided that C is sufficiently large. Note that (P \ |J;P;) "R C F° — F?,
so by Lemma, 18,

P\ (@ P uDpc)c | P
i[<4¢
This completes the construction and thus the proof of the lemma. O
We finish with

Proof of Theorem 3. Combining Lemmas 17 and 19, we obtain the theo-
rem. U
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